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Abstract—In tennis matches, the Hawk-eye system causes 

blurry trajectory judgment and low accuracy in player posture 

recognition due to rapid movement and complex backgrounds. 

Therefore, the research improves the backbone network and 

iterative attention feature fusion mechanism of deblur generative 

adversarial network version. At the same time, Ghost, Sandglass 

module, and coordinate attention mechanism are used to 

optimize the high-resolution network, and a new model for 

deblurring and pose recognition of Hawk-eye images in tennis 

matches is proposed by integrating the improved generative 

adversarial network and high-resolution network. The new 

model achieved an information entropy value of 11.2, a peak 

signal-to-noise ratio of 29.74 decibels, a structural similarity of 

0.89, a minimum parameter size of 4.53, and a running time of 

0.25 seconds on the tennis tracking dataset and the Max Planck 

Society human posture dataset, which was superior to current 

advanced models. The highest accuracy of deblurring and pose 

recognition for the model under different lighting intensities was 

92.44%, and the highest improvement rate of video frame quality 

was 18%. From this, the model has significant advantages in 

deblurring effect, posture recognition accuracy, parameter 

quantity, and running time, and has high practical application 

potential. It can provide an advanced theoretical reference for 

tennis match refereeing and technical training. 

Keywords—DeblurGANv2; HRNet; tennis; hawk-eye system; 

deblurring; pose recognition 

I. INTRODUCTION 

In tennis matches, the Hawk-eye system, as a high-
precision technology application, has been widely used in 
referee decision-making, motion analysis, and other fields 
worldwide. The Hawk-eye system captures image data within 
the field through multiple high-speed cameras and uses image 
processing algorithms for real-time calculation and analysis, 
providing judgments on whether the ball is within or outside 
the boundary. In addition, the movements of players in tennis 
matches are complex and have high spatiotemporal variations. 
Accurately capturing the players' motion posture is the key to 
improving the accuracy of Hawk-eye system judgment [1-2]. 
Pose recognition technology can accurately capture the 
movement information of athletes by analyzing their body 
position, movement trajectory, etc., providing a more precise 
player behavior model for the Hawkeye system and improving 
the reliability of judgment results. F. Meng et al. introduced a 
hybrid neural network to optimize target feature extraction and 
constructed a novel Hawk-eye detection model to improve the 
visual detection level of tennis in the sports industry. The 

model achieved a tennis motion tracking accuracy of 0.694 
under grayscale feature conditions, which was the highest 
among all testing methods [3]. Y. Zhao et al. proposed a 
lightweight tennis Hawk-eye detection scheme combining 
"You Only Look Once version 5" (YOLOv5) to address the 
inefficiency of traditional tennis detection algorithms. 
Compared with traditional methods, experimental results 
showed that this algorithm reduced model parameters by 42% 
and computational complexity by 44%, while improving 
detection accuracy by 2% [4]. Y. Yang et al. built a new tennis 
trajectory prediction method by combining artificial neural 
network detection algorithm and stereo vision. The experiment 
showed that this method had high reliability and robustness, 
effectively improving the prediction ability of tennis trajectory 
[5]. D Gao et al. built a deep learning driven small object 
automatic detection method to address the difficulty of small 
object detection in tennis videos. The experiment showed that 
this method performed well in the integrity, recognition 
accuracy, and detection speed [6]. Y. Ke et al. proposed an 
object detection algorithm on the basis of deep learning aimed 
at handling advanced visual tasks such as tennis. This 
algorithm combines prior knowledge of tennis impact areas. 
The experimental results showed that it could provide high 
detection accuracy and faster detection speed, effectively 
improving the accuracy and stability of tennis impact detection 
[7]. 

Generative Adversarial Networks (GANs) are powerful 
deep learning models that have shown great potential in tasks 
such as image generation, denoising, and deblurring [8]. Bian J 
et al. argued that detecting dense movements from fast-moving 
objects in sports videos remained challenging. To this end, a 
novel table tennis detection model by combining GAN and 
P2ANet was proposed. The model could achieve an average 
accuracy of 88.47% for the localization and recognition of 8 
types of table tennis movements, while improving the detection 
robustness [9]. Ghezelsefloo H R et al. proposed an auxiliary 
calibration model for Hawk-eye detection after improving the 
GAN algorithm to effectively reduce the error in Hawk-eye 
detection in sports events. The model had a success rate of 
92.17% in assisting correct judgments in 130 sports, and had 
significant practical value [10]. Peng X et al. constructed a 
video pose detection model for ball players by combining 
sensor image acquisition with GAN and Modbus. The 
performance of the model on Peak Signal-to-Noise Ratio 
(PSNR), Structural Similarity Index (SSIM) was about 4.5 and 
0.143 higher than other algorithms, respectively [11]. In 
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addition, High-Resolution Network (HRNet) is an excellent 
deep learning model that excels in processing detailed 
information in high-resolution images and is widely used in 
fields such as image segmentation, object detection, and pose 
recognition. Nguyen H C et al. proposed an automatic 
combined human pose estimation model by combining HRNet 
and YOLOv5 to improve the accuracy of human motion pose 
estimation. The processing time on a 3.3-megapixel dataset 
was 55FPS, and the highest accuracy of human keypoint 
detection was 98.24% [12]. Li Y combined HRNet to construct 
a monocular video motion capture method, which optimized it 
for human motion reconstruction problems such as floating, 
ground penetration, and sliding. This method achieved a good 
balance between accuracy and frame rate, and had significant 
detection advantages [13]. Fitzpatrick A et al. In order to 
strengthen the accuracy of the hawk-eye monitoring system 
under different serve and return strategies, the researchers 
proposed a hawk-eye-assisted detection model with 
multimodal data training and convolutional graph neural 
network processing. The experimental results show that the 
method achieves higher detection accuracy and greater stability 
for a variety of different serving and hitting motions [14].Ning 
T et al. In order to address the limitations of computer vision-
assisted table tennis ball detection, the researchers proposed a 
real-time computational method for determining the landing 
point of a table tennis ball. The experimental results showed 
that the method achieved a detection speed of 45.3 fps, and the 
key frame extraction method correctly recognized the landing 
point frames with an accuracy rate of more than 93.3% [15]. 

In summary, traditional Hawk-Eye systems mostly rely on 
classical deblurring algorithms, but these methods usually 
cannot effectively deal with fast motion and multi-angle 
shooting conditions, resulting in image distortion and 
inaccurate pose estimation. In addition, while existing pose 
recognition methods are able to achieve better results in static 
or slow scenes, they still exhibit large errors in dynamic tennis 
match scenarios, especially when players are moving fast. 
Although several approaches have been dedicated to solving 
this problem, existing solutions usually face certain limitations. 
For example, traditional algorithms are computationally 
inefficient when dealing with large-scale data and 
insufficiently adaptable when facing complex environments. In 
order to overcome these limitations, the study innovatively 
proposes a novel hawk-eye deblurring and pose recognition 
model for tennis matches, which incorporates the improved 
deblur generative adversarial network version 2 
(DeblurGANv2) and HRNet algorithms, respectively, and 
introduces a lightweight Mobilenetv2 backbone network, 
Ghost module and Sandglass module are introduced to improve 
the computational efficiency, and Iterative Attentionla Feature 
Fusion (IAFF) and Coordinate Attention (CA) mechanisms are 
adopted to enhance the feature extraction capability. Enhance 

the feature extraction ability, and at the same time significantly 
improve the processing speed and robustness of the algorithm, 
especially in the complex environment of the adaptability of 
the excellent performance. Among them, the improved 
deblurring technique of GAN can better handle blurred images 
under different motion states while ensuring image quality. 
Combined with the high-resolution feature of HRNet, the 
accuracy of pose recognition is further improved, especially in 
the capture of complex motion and action details. The research 
aims to significantly improve image clarity and pose 
recognition accuracy in dynamic scenes by combining these 
innovative designs, providing an effective solution for efficient 
and real-time tennis match Hawk-eye systems. This research is 
divided into four parts, the first part is the analysis and 
summary of others' research, the second part describes how the 
Hawk-Eye image deblurring algorithm for tennis matches and 
the tennis match stance recognition model were designed, 
respectively, while the third part tests the performance of the 
model, and the last part is the summary of the article. 

II. METHODS AND MATERIALS 

In response to the challenges of image blur and athlete pose 
recognition in tennis matches, this study first introduces IAFF 
based on DeblurGANv2 and uses Feature Pyramid Network 
(FPN) to achieve bidirectional fusion of multi-scale features. 
Secondly, based on HRNet, Ghost, Sandglass, CA mechanism, 
and Transformer-based object tracking module are sequentially 
introduced to propose a new Hawk-eye analysis model that 
integrates deblurring and pose recognition. 

A. Deblurring Algorithm for Hawk-eye Images in Tennis 

Matches Based on Improved GAN 

Image blur is one of the main issues affecting the accuracy 
of Hawk-eye system judgment, especially during the rapid 
movement of players and the high-speed flight of the ball [16-
17]. The traditional image degradation model mainly generates 
degraded images from the original image after degradation 
function and noise processing, while the restoration model 
restores clear images close to the original image by applying 
restoration functions to the degraded image. Image degradation 
is usually caused by factors such as motion blur and poor 
lighting [18-20]. Through this approach, a classic algorithm for 
image motion blur, DeblurGANv2, is introduced into the study. 
This algorithm efficiently removes motion blur through the 
improved GAN. Compared with traditional deblurring 
algorithms, DeblurGANv2 has adaptability to complex 
backgrounds and multi-scale feature extraction ability, which 
can more comprehensively restore image details and is suitable 
for dynamic motion scenes with large changes [21-23]. In 
order to adapt to tennis motion detection and improve 
universality, the structure of DeblurGANv2 is improved, and 
an improved DeblurGANv2 tennis match Hawk-eye image 
deblurring algorithm is proposed. The framework of this 
algorithm is shown in Fig. 1. 
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Fig. 1. Improved framework of the Hawk-eye image deblurring algorithm 

for tennis match in DeblurGANv2. 

In Fig. 1, the algorithm framework mainly has generator, 
discriminator, and attention mechanism modules, and includes 
specific operations such as convolution, upsampling, 
downsampling, feature fusion, stacked convolution, batch 
normalization, and ReLU activation. Firstly, the improved 
backbone network is used to downsample and extract five 
feature maps of different scales step by step, from C0 to C4. 
Then, these feature maps are generated using the top-down 
connection of the FPN, namely P0 to P4. Next, P0 to P4 
gradually perform bottom-up feature fusion to obtain feature 
maps, namely N0 to N4. Afterwards, N0 to N4 are fused with 
the original image to generate the final deblurred image. The 
generated image is then input into the discriminator along with 
the clear image to calculate the clarity probability of the 
generated image, in order to optimize the generator. Finally, 
the generator and discriminator are alternately trained and 
output after convolution, feature fusion layer, and ReLU 
activation. Compared with the improved DeblurGANv2, a 
bottom-up feature fusion branch is added, allowing low-level 
features to fully interact with high-level features. Specifically, 
the feature fusion path is designed through the bidirectional 
connection of FPN, which first performs top-down connection 
and then performs bottom-up fusion. The calculation formula is 
shown in Eq. (1). 

1 1 1( ) ( )i i iP Conv C Upsample P  
              (1) 

In equation (1), iP  represents the intermediate feature map 

fused from top to bottom. 
iC  represents feature maps of 

different scales extracted from the backbone network. 
1 1Conv 

 

signifies a 1×1 convolution operation. Upsample  represents 

upsampling operation. Next, iP  is subjected to bottom-up 

feature fusion to enhance the information transmission of cross 
layer features, as shown in Eq. (2). 

3 3 1( ) ( )i i iN Conv P Downsample N  
            (2) 

In Eq. (2), iN  represents the fused feature map. 

Downsample  represents downsampling operation. To further 

enhance the ability to focus on key regions, the improved 

algorithm adopts the IAFF mechanism. IAFF calculates 
attention weights through multiple iterations to focus on 
important regions in the image [24-26]. The calculation process 
is shown in Eq. (3). 
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In Eq. (3), 
t

IAFFF  represents the fused feature map after the 

t -th iteration. tF  signifies the input feature of the t -th 

iteration.   represents the fusion coefficient. 
tQ , tK  and tV  

signify the query, key, and value matrices for the t -th iteration, 

respectively. d  represents the scaling factor, used to avoid 

excessive attention weights. In addition, to accelerate image 
deblurring processing, the improved algorithm uses 
Mobilenetv2 as the backbone network, replacing the traditional 
heavy convolutional network. Mobilenetv2 uses depthwise 
separable convolution, which contains two parts: depthwise 
convolution and pointwise convolution. The calculation 
formula is shown in Eq. (4) [27-29]. 

( ) ( ) ( )intDSConv x DepthwiseConv x Po wiseConv x 
(4) 

In Eq. (4), ( )DSConv x  represents a depthwise separable 

convolution operation. ( )DepthwiseConv x  represents 

convolution only in the spatial dimension. ( )intPo wiseConv x  

represents using 1×1 convolution to fuse features in the 
channel dimension. This convolution method significantly 
reduces the computational and parameter complexity, as shown 
in Eq. (5). 

tan2

1
DSConv S dardConvFLOPs FLOPs

k
 

               (5) 

In Eq. (5), k  signifies the size of the convolution kernel. In 

summary, the model generator and discriminator network 
structure of the improved DeblurGANv2 are shown in Fig. 2. 

Fig. 2 (a) displays the improved generator structure of 
DeblurGANv2, and Fig. 2(b) displays the improved 
discriminator structure of DeblurGANv2. In Fig. 2 (a), the 
generator includes multiple layers of feature extraction 
modules. Firstly, the main network performs downsampling to 
extract feature maps of different scales layer by layer. Then, 
FPN is used for multi-scale feature fusion, adopting a 
bidirectional connection design of top-down and bottom-up. In 
the feature map processing at each scale, convolutional layers, 
Batch Normalization (BN) layers, and ReLU activation 
functions are used to enhance feature extraction performance, 
and IAFF mechanism is adopted to highlight key regions. 
Finally, the fused feature map is upsampled and residual 
connected to reconstruct a blurred image. As shown in Fig. 2 
(b), the discriminator structure includes a series of 
convolutional layers, Leaky ReLU activation functions, and 
BN layers, which are used to extract high-level features of the 
input image. The discriminator adopts a layer by layer 
downsampling design, gradually compressing the image size 
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through multiple convolutional layers. Finally, the fully 
connected layer is applied to calculate the probability score 
between the generated image and the real clear image, to 
determine whether it is a real image. 

To further improve the restoration effect and image detail 
preservation ability of DeblurGANv2 in deblurring tasks. A 
mixed loss function is designed, including adversarial loss, 

perceptual loss, and image reconstruction loss. Firstly, the 
adversarial loss is used to optimize the game between the 
generator and discriminator, making the output image of the 
generator more realistic. Secondly, the perceptual loss is 
applied to measure the differences in high-level semantic 
features between generated images and real clear images, as 
shown in Fig. 3. 
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Fig. 2. Improved generator and discriminator structure for DeblurGANv2. 
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Fig. 3. Schematic diagram of perceptual loss. 

As shown in Fig. 3, the calculation of perceptual loss is 
achieved by introducing a pre-trained deep Convolutional 
Neural Network (CNN) to extract high-level features, and 
comparing the feature differences between the generated image 
and the real clear image at different convolutional layers. 
Specifically, the input blurred image is first deblurred by a 
generator to generate a restored image. Then, the generated 

image and the real clear image are input into a deep CNN, and 
feature maps are extracted through several layers of 
convolution. In these feature maps, the perceptual loss 

calculates the difference in 2L -norm between the generated 
image and the real image on each layer of the feature map, as 
shown in Eq. (6). 
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2

2
( ( )) ( )perc l l l

l

L G x y   
        (6) 

In Eq. (6), percL  represents perceptual loss, which is applied 

to measure the difference in high-level features between the 

generated image and the real image. 
l  signifies the weight 

coefficient. 
l  represents the feature mapping of the l -th layer 

of the deep CNN. ( )G x  represents the deblurred image output 

by the generator. y  represents the real and clear image. 
2
  

represents the 2L -norm. In order to capture more levels of 
semantic information, perceptual loss usually selects feature 
maps from multiple convolutional layers for calculation, and 
the comprehensive formula is shown in Eq. (7). 

2

, , , ,
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(7) 

In Eq. (7), L  represents the number of selected 

convolutional layers. 
lH , 

lW  and 
lC  respectively represent the 

height, width, and number of channels of the l -layer feature 

map. , ,( ( ))l h w cf G x  represents the feature values at position 

( , )h w  and channel c  in the l -layer feature map. , ,( )l h w cy  

signifies the feature value of the corresponding position of the 

real image in the l -th layer feature map. 

B. Construction of Tennis Match Pose Recognition Model 

Integrating Improved HRNet Algorithm 

After improving the DeblurGANv2 structure, the blurring 
effect of Hawk-eye monitoring images is effectively avoided. 
This research further focuses on the task of athlete posture 
recognition in tennis matches. Pose recognition is an important 
part of technical analysis in tennis matches, which is crucial for 
the standardization analysis of player movements, optimization 
of game strategies, and monitoring of potential rule violations 

[30-31]. However, the rapid changes in player movements, 
complex postures, and dynamic background interference in 
tennis matches make traditional posture recognition methods 
difficult to cope with [32-33]. To address these issues, the 
HRNet algorithm is combined with research. Compared with 
other advanced methods, it consistently maintains high-
resolution feature maps throughout the entire feature extraction 
process and fully utilizes multi-scale information through layer 
by layer fusion of multi-resolution features. In addition, 
targeted optimization and improvement are carried out on the 
basis of the standard HRNet architecture to make it more 
suitable for the scene requirements of tennis matches. The 
improved HRNet is displayed in Fig. 4. 

In Fig. 4, the improved HRNet has four stages, each stage 
achieving the extraction and fusion of multi-scale features 
through parallel resolution branches. The first stage uses 
standard convolution operations for preliminary feature 
extraction, generating high-resolution feature maps. In the 
second stage, while retaining high-resolution branches, low 
resolution branches are applied to capture deeper feature 
information through downsampling. In the third stage, more 
resolution branches are added to achieve multi-scale feature 
alignment and complementarity from high resolution to low 
resolution. In the fourth stage, a cross resolution feature fusion 
strategy is used to effectively combine feature information 
from different resolutions, generating a multi-scale feature map 
with global context awareness capability. Specifically, there 
are four major improvements. First, Ghost and Sandglass have 
been introduced to replace the Bottleneck and Basicblock 
modules in HRNet, reducing the running parameter. Second, 
the introduced CA enhances the feature extraction capability of 
the model. Third, the ability to enhance data has been 
improved through unbiased data augmentation methods. 
Fourth, the effectiveness of object detection is improved 
through a separate object tracking module. The target tracking 
module is shown in Fig. 5. 
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Fig. 4. Improved HRNet structure. 
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Fig. 5. Target tracking module diagram. 

As shown in Fig. 5, the target tracking module mainly 
includes three core parts: target detection, target association, 
and trajectory update, which are also key steps based on the 
Transformer target tracking algorithm. Firstly, the input video 
frames are processed by an object detection network to 
generate an initial detection box for the target, and key 
information such as the target category and confidence level is 
annotated. Subsequently, the target association module 
combines the appearance features of the target, such as color, 
texture, and motion features, such as speed and trajectory, to 
match the target in the current frame with the tracked target in 
the previous frame, ensuring the continuity and consistency of 
the trajectory. Among them, the target association module 
achieves matching by calculating the similarity matrix between 
targets, where the similarity comprehensively considers the 
appearance and motion features of the targets, as shown in Eq. 
(8). 

, cos ,( ) ( )ij i j i jS IoU B B f f    
              (8) 

In Eq. (8), ijS  represents the similarity score between target 

i  and target j .   and   both represent weight parameters. 

( ),i jIoU B B  represents the intersection over union ratio of the 

bounding boxes of target i  and target j . 
if  and jf  represent 

the appearance feature vectors of target i  and target j , 

respectively. os ,( )c i jf f  represents the cosine similarity 

between appearance feature vectors. After the association is 
completed, the trajectory update module uses Kalman filtering 
to dynamically estimate the position and velocity of the target, 
in order to smooth the tracking results, as displayed in Eq. (9). 
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In Eq. (9), tx  and 
1tx 

 represent the target state variables 

at the current time and the previous time, respectively. F  

represents the state transition matrix. 
tr  represents the 

observation vector at the current time. R  represents the 

observation model matrix. E  represents the Kalman gain. 
1tP

 

represents the covariance matrix of the previous time state.   

represents the covariance matrix of observed noise. In addition, 
improving the CA mechanism in the HRNet encodes the global 
directional information of the input feature map, and then 
generates a weight distribution through embedding coordinate 
information. Finally, the feature map is adjusted using 
weighting, as displayed in Eq. (10). 
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    (10) 

In Eq. (10), 
h

cz  and 
w

cz  represent the global information 

encoding of feature map X  in the height and width directions, 

respectively. ( , , )X i j c  represents the feature values of the 

input feature map at position ( , )i j  and channel c . 
cf  

represents the generated channel weight.   represents the 

activation function. ( , , )Y i j c  represents the output feature 

map. 1 1

hConv   and 1 1

wConv   represent 1×1 convolution 

operations in the height and width directions, respectively. 
Regarding the original Bottleneck and Basicblock modules in 
HRNet, Ghost and CA modules are respectively integrated for 
optimization. The schematic diagram of the optimized 
Bottleneck and Basicblock modules is shown in Fig. 6. 

Fig. 6 (a) displays the Bottleneck module structure before 
and after optimization. Fig. 6 (a) shows the Basicblock module 
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structure before and after optimization. As shown in Fig. 6 (a), 
the two 1×1 convolutions and 3×3 convolutions in the original 
module have been replaced by the Ghost module, which 
efficiently reduces feature redundancy by generating primary 
and auxiliary features. In addition, CA modules are inserted 
between Ghost modules. By modeling the interaction between 
space and channels, the model's ability to express features of 
the target area has been enhanced. In Fig. 6 (b), the structure 
originally composed of two stacked 3×3 convolutions has been 

replaced with a lightweight convolution combination 
implemented by the Sandglass module. The Sandglass module 
significantly reduces the number of parameters and 
computational complexity while retaining feature information. 
At this point, the calculation formula for Ghost in Bottleneck is 
shown in Eq. (11). 

( ( ) ),m m aY Concat X W X W W   
       (11) 
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Fig. 6. Schematic diagram of Bottleneck and Basicblock modules before and after optimization. 

In Eq. (11), 
mW  and 

aW  represent the convolution kernel 

parameters of the main feature and auxiliary feature, 
respectively. The Sandglass in Basicblock is shown in Eq. (12). 

( ( int ( )))Y X DepthwiseConv Po wiseConv X 
(12) 

In Eq. (12), _)int (Po wiseConv  represents a 1×1 point 

convolution. (_)DepthwiseConv  represents deep convolution. 

Based on the improvement of HRNet structure and the 
comprehensive improvement of DeblurGANv2, a new tennis 
match Hawk-eye deblurring and pose recognition model is 
proposed. The process is shown in Fig. 7. 

Start Real-time data collection Feature extraction 

and fusion
IAFF Mobilenrtv2 Confrontation training

GhostSandglassEnd Attitude estimation CATransformer
 

Fig. 7. New model flow of Hawk-eye deblurring and pose recognition in tennis match. 

As shown in Fig. 7, firstly, the improved DeblurGANv2 is 
used for multi-scale feature extraction and fusion of blurred 
images. The IAFF mechanism is introduced to focus on key 
regions, and the Mobilenetv2 backbone network is taken to 
reduce computational overhead. The generator is optimized 
through adversarial training to generate high-quality and clear 
images. Subsequently, based on the improved HRNet for pose 
recognition, Ghost and Sandglass modules are introduced to 
replace the original Bottleneck and Basicblock modules to 
reduce the number of parameters, while combining CA 
mechanism to enhance the feature expression of key regions. 
Finally, through object detection and Transformer-based object 
tracking modules, target association and trajectory updates are 
achieved, outputting clear images, pose keypoints, and motion 
trajectories. 

III. RESULTS 

The study first establishes an experimental environment 
and conducts hyperparameter tuning, with deblurring effect 
and pose recognition accuracy as the core indicators for testing. 
The experiment covers two classic datasets and conducts 
ablation testing, comparative testing, and multi-scenario 
experiments on lighting, number of people, etc., to verify the 
robustness and adaptability of the model. Compared with 
multiple advanced models, the proposed model has achieved 
good results, especially showing significant advantages in 
parameter quantity and inference time. In complex lighting and 
multi-target scenes, the proposed model also demonstrates 
excellent performance and practical application potential. 
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A. Performance Testing of Hawk-eye Deblurring and Pose 

Recognition Model in New Tennis Matches 

The study selects two classic public datasets as data 
sources, namely the Tennis Tracking Dataset (TTD) and the 
Max Planck Institute for Informatics Human Pose Dataset 
(MPII). Among them, TTD is a dataset focused on tennis 
match analysis, which includes key point annotations of 
players such as head, shoulder, elbow, knee and other joint 
points, tennis trajectories, as well as action annotations on the 
court such as serving, returning, running, etc. The MPII dataset 
is a high-quality dataset focused on human pose estimation, 
containing 25000 images covering over 40000 human 
instances. The images in this dataset are from real-life 
scenarios and provide rich annotations for 16 joint points, 
including head, shoulders, elbows, knees, etc. The detailed 
experimental environment parameters are displayed in Table I. 

TABLE I.  EXPERIMENTAL PARAMETER TABLE 

Experimental equipment Value 

CPU AMD Ryzen 9 5950X 

GPU NVIDIA RTX 4090 

Memory 64GB DDR5 

Graphics Memory 24GB GDDR6X 

Development Environment Ubuntu 20.04, Python 3.9 

Programming Tools PyTorch 1.10 

Initialize learning rate 0.0005 

Learning rate batch size 64 

Momentum parameters 0.95 

Training period 200 epochs 

The study first conducts value selection tests on the feature 
fusion coefficients in the deblurring stage and the 
convolutional kernel layers in the pose recognition stage, to 
achieve the optimal state and facilitate subsequent testing. 
Taking information entropy as an indicator, Fig. 8 displays the 
test results. 
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Fig. 8. Hyperparameter selection test result. 

Fig. 8 (a) shows the selection test of different feature fusion 
coefficients in the TDD dataset, and Fig. 8 (b) shows the 
selection test of different convolutional kernel layers in the 
MPII dataset. According to Fig. 8 (a), when the fusion 
coefficient was 0.75, the information entropy grew the fastest 
and tended to stabilize at a sample size of 200, reaching a 
maximum value of 10.8. When the fusion coefficients were 
0.25 and 0.50, the information entropy tended to stabilize at 
250 samples, with values of 10.1 and 9.5, respectively. Overall, 
a fusion coefficient of 0.75 can significantly improve the 
deblurring effect. In Fig. 8 (b), with the increase of sample 
size, the information entropy gradually increased. When the 
number of convolutional kernel layers was 45, the information 
entropy reached its maximum value of 11.2 at a sample size of 
200 and tended to stabilize. When the number of convolutional 
kernel layers was 30, the information entropy tended to 
stabilize at 250 samples, reaching 10.8. When the number of 
convolutional kernel layers was 15, it increased to 330 samples 
to reach a stable state, with an information entropy value of 
10.0. In summary, when the fusion coefficient was 0.75 and the 
number of convolutional kernels was 45, the deblurring effect 
of the model was optimal. The study conducts ablation testing 
on the final model using the Mean Average Precision (mAP) of 
keypoint detection as the indicator, as presented in Fig. 9. 
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Fig. 9. Ablation test results. 

Fig. 9 (a) displays the ablation test results on the TTD 
dataset, and Fig. 9 (b) displays the ablation test results on the 
MPII dataset. As shown in Fig. 9 (a), the mAP value of the 
basic model DeblurGANv2 fluctuated significantly during the 
iteration process, stabilizing at around 80.18%. After adding 
HRNet, the model performance improved and mAP remained 
stable at around 85.37%. After further improving 
DeblurGANv2 and introducing improved HRNet, the mAP 
value increased to around 88.74%, demonstrating better 
stability. The improved DeblurGANv2 and improved HRNet 
models were ultimately integrated, with mAP values reaching 
the highest level. It stabilized at around 92.48%, with minimal 
fluctuations throughout the entire iteration process, 
demonstrating the best deblurring and pose recognition 
performance. According to Fig. 9 (b), the mAP value of the 
basic model DeblurGANv2 fluctuated greatly and remained 
stable at around 78.77%. After joining HRNet, mAP increased 
to 83.21%. The improved DeblurGANv2 and HRNet models 
showed improvements in both stability and accuracy. The final 
integrated improved model performed the best, with mAP 
values stable above 90.49% and minimal fluctuations, 
demonstrating the strongest robustness and consistency. Other 
advanced deblurring and pose detection models are introduced 

for comparison. For example, Scale-Recurrent Network (SRN), 
Multi-Stage Progressive Restoration Network (MPRNet), Deep 
Blind Generative Adversarial Network (DBGAN), High-
Resolution Transformer (HRFormer), Pose Estimation 
Network (PoseNet), and Dynamic Encoder for Keypoint 
Regression (DEKR) are used for comparison. The test results 
are shown in Table II, using PSNR, SSIM, parameter count, 
and runtime as indicators. 

TABLE II.  INDEX TEST RESULTS OF DIFFERENT MODELS 

Model 
PSNR 

(dB) 
SSIM 

Parameter 

quantity (M) 

Running 

time (s) 

SRN 30.05 0.91 6.82 4.35 

MPRNet 29.56 0.88 20.63 1.17 

DBGAN 28.87 0.87 15.58 0.95 

HRFormer 29.85 0.96 25.41 0.66 

PoseNet 27.92 0.85 12.74 0.75 

DEKR 28.51 0.86 18.88 0.58 

Our model 29.74 0.89 4.53 0.25 

According to Table II, the model exhibited good 
comprehensive performance. In terms of PSNR index, the 
proposed model achieved 29.74dB, which was close to SRN 
and HRFormer and better than most comparative models. 
SSIM was 0.89, slightly lower than HRFormer's 0.96, but still 
stable. The most significant advantage lies in the parameter 
count and running time. The parameter count of the proposed 
model was only 4.53M, significantly lower than MPRNet's 
20.63M and HRFormer's 25.41M. The inference time was 
0.25, which was 78%-94% faster than SRN and MPRNet. This 
indicates that the model has high efficiency while balancing 
effectiveness, making it very suitable for real-time image 
processing tasks. 

B. Simulation Testing of Hawk-eye Deblurring and Pose 

Recognition Model for New Tennis Matches 

To verify the practical application effect of the new model, 
two sets of photos are randomly selected from two types of 
datasets for testing the deblurring and pose estimation effects 
of different models, as presented in Fig. 10. 

(b) MPRNet (c) DBGAN (d) Our model(a) SRN

(f) PoseNet (g) DEKR (h) Our model(e) HRFormer
 

Fig. 10. Comparison of deblurring and pose recognition effect of different models. 
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Fig. 10 (a)-(d) show the actual comparison results of 
deblurring applications between SRN, MPRNet, DBGAN, and 
the proposed model. Fig. 10 (e)-(f) show the comparison 
results of pose recognition applications between HRFormer, 
PoseNet, DEKR, and the proposed model. From Fig. 10 (a), 
SRN and MPRNet had similar deblurring effects, but SRN's 
restoration details were slightly insufficient, while MPRNet 
had slight artifacts in the texture part. The DBGAN model 
performed poorly in handling high dynamic blur, with obvious 
edge blurring. In contrast, the model performed the best, with 
clear image details, better overall restoration performance than 
other models, and more natural texture parts. From Fig. 10 (b), 
the HRFormer and DEKR models could effectively detect the 
key points of tennis players. However, the HRFormer model 
was susceptible to interference in complex backgrounds, and 
the PoseNet model may miss detection, especially in inaccurate 
recognition during rapid limb movement. The model can 
accurately identify all key points and has strong robustness to 
complex poses and motion blur, demonstrating higher 
recognition accuracy. The performance of the model under 
different lighting conditions is tested using video frame quality 
improvement rate and fuzzy image recognition rate as 
indicators. The results are shown in Fig. 11. 

Fig. 11 (a) shows the video frame quality improvement rate 
test results of four models, and Fig. 11 (b) shows the fuzzy 
image recognition rate test results of the four models. 
According to Fig. 11 (a), SRN and MPRNet exhibited 
relatively stable performance under weak and normal light 
conditions, with improvement rates ranging from 10% to 12%. 
However, in strong and ultra strong light environments, the 
effectiveness of DBGAN and SRN significantly decreased. In 
contrast, the model showed good improvement rates under 
various lighting conditions, especially in strong and ultra 
strong light environments, with a video frame quality 
improvement rate of 16%-18%, indicating that it could still 
effectively deblur under severe lighting changes. According to 
Fig. 11 (b), the recognition rates of HRFormer and PoseNet 
were relatively high under weak light and normal light, stable 
between 80.73%-85.46%, respectively. However, the 
recognition rate of DEKR fluctuated greatly in strong and ultra 
strong light environments. In contrast, the model maintained a 
high recognition rate under all lighting conditions, especially in 
ultra strong light environments, with a recognition rate of up to 
92.44%, which was significantly better than other models. 
Overall, the model demonstrates stronger robustness and 
stability in deblurring and pose recognition tasks, and has 
superior adaptability to changes in lighting conditions. The 
research tests the accuracy of model deblurring and pose 
recognition in multi-player scenarios, and the results are shown 
in Fig. 12. 
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Fig. 11. Test results of video frame quality improvement rate and fuzzy 

image recognition rate in different modes. 
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Fig. 12. Results of model deblurring and pose recognition accuracy under 

different numbers of people. 

Fig. 12 (a) displays the deblurring accuracy and time for 
different models on the TTD dataset, and Fig. 12 (b) displays 
the pose recognition accuracy and time for different models on 
the MPII dataset. From Fig. 12 (a), SRN and MPRNet had 
higher AP values in the 2-person scenario, reaching 90.08% 
and 88.84% respectively. However, as the number of people 
increased, the AP values gradually decreased, especially in the 
10 person scenario, dropping below 80.96%. The performance 
of DBGAN in multi-player scenarios was relatively unstable, 
with large fluctuations in accuracy and longer inference time. 
In contrast, the model proposed maintained a high AP value of 
85.17%-92.38% for all participants, and had the shortest 
inference time, stabilizing at around 20ms, demonstrating good 
real-time performance and accuracy. As shown in Fig. 12 (b), 
HRFormer and PoseNet exhibited high AP values of over 
90.02% in both 2-person and 4-person scenarios, but their 
accuracy significantly decreased in the 10-person scenario. The 
recognition accuracy and time performance of DEKR in multi-
target scenes were unstable and exhibit significant fluctuations. 
In contrast, the posture recognition accuracy of the model 
remained stable under different numbers of people, with AP 
values consistently above 88.74% and inference time 
controlled at around 30 ms, significantly better than other 
models. Four types of pose recognition models are tested using 

tracking error, target overlap rate, and decision accuracy as 
indicators, as displayed in Table III. 

TABLE III.  POSE RECOGNITION TEST RESULTS OF DIFFERENT MODELS 

Data 

set 
Model 

Tracking 

error/% 

Overlap 

rate/% 

Decision 

accuracy/% 

TTD 

HRForm

er 
6.83 78.57 88.92 

PoseNet 8.93 75.23 85.37 

DEKR 7.62 77.19 87.13 

Our 

model 
5.27 82.35 92.53 

MPII 

HRForm
er 

7.12 79.83 89.21 

PoseNet 9.27 74.67 84.71 

DEKR 8.03 76.32 86.83 

Our 
model 

5.31 81.93 93.07 

According to Table III, the tracking error of the proposed 
model on the TTD dataset was 5.27%, significantly lower than 
HRFormer's 6.83% and PoseNet's 8.93%. The overlap rate was 
82.35%, which was about 5%-7% higher than other models. 
The decision accuracy was 92.53%, significantly better than 
DEKR's 87.13%. On the MPII dataset, the tracking error of the 
proposed model was 5.31%, which performed the best. The 
overlap rate was 81.93%, slightly higher than DEKR's 76.32%. 
The decision-making accuracy was the highest, at 93.07%, 
which was significantly improved compared with HRFormer. 
The above data shows that the model exhibits superior 
performance and robustness in all indicators. 

IV. CONCLUSION 

In tennis matches, image blur and pose recognition errors 
are the main issues affecting the accuracy of the Hawkeye 
system. To address this challenge, the research improved 
DeblurGANv2 and HRNet, proposing a novel tennis game 
image deblurring and pose recognition model. When the fusion 
coefficient was 0.75 and the number of convolutional kernels 
was 45, the deblurring effect of the model was optimal, 
achieving an information entropy value of 11.2. At the same 
time, after sequentially improving DeblurGANv2 and HRNet, 
the mAP value of the combined model reached 92.48%, 
indicating that the improvement and fusion of each module in 
the study were effective. Compared with other deblurring and 
pose recognition models, this new model had a PSNR of up to 
29.74dB, SSIM of up to 0.89, minimum parameter size of 4.53, 
and shortest running time of 0.25s, which was 78%-94% faster 
than SRN and MPRNet. Under different lighting intensities, 
the proposed model had strong robustness to complex poses 
and motion blur, showing a recognition accuracy of up to 
92.44% and a video frame quality improvement rate of 16% -
18%. In a multi-person scenario, the model had the highest 
recognition AP value of 92.38%, and the shortest stable 
inference time was around 20ms. The lowest pose recognition 
tracking error was 5.27%. Although the overlap rate was higher 
than other models, the decision accuracy was 92.53%, far 
exceeding other methods. In summary, the model has 
significant advantages in both processing effectiveness and 
efficiency. However, the performance of the model still 
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fluctuates to some extent under extreme lighting conditions, 
such as ultra-low light or severe lighting environments. Future 
research will further optimize the robustness of the model and 
explore methods that combine multi-modal data to enhance its 
adaptability and generalizability in practical applications. 
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