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Abstract—Detecting fake news on social media is a critical
challenge due to its rapid dissemination and potential societal
impact. This paper addresses the problem in a realistic scenario
where the original tweet and the sequence of users who retweeted
it, excluding any comment section, are available. We propose a
Graph-based Attention for Coherent Explanation (GRACE) to
perform binary classification by determining if the original tweet
is false and provide interpretable explanations by highlighting
suspicious users and key evidential words. GRACE integrates
user behaviour, tweet content, and retweet propagation dynamics
through Graph Convolutional Networks (GCNs) and a dual
co-attention mechanism. Extensive experiments conducted on
Twitter15 and Twitter16 datasets demonstrate that GRACE out-
performs baseline methods, achieving an accuracy improvement
of 2.12% on Twitter15 and 1.83% on Twitter16 compared to
GCAN. Additionally, GRACE provides meaningful and coherent
explanations, making it an effective and interpretable solution for
fake news detection on social platforms.

Keywords—Graph neural network; dual attention; NLP; seman-
tics; social network

I. INTRODUCTION

Social media has become integral to everyday life, allowing
individuals to share their thoughts, stay updated on current
events, and interact with others [1]. These platforms facilitate
the fast flow of information across vast networks, where user
interactions and feedback shape public opinions and emotions
on various topics [2]. This easy and low-cost communication
fosters collective intelligence, spreading ideas widely and
quickly. However, the very features that make social media so
powerful also have significant drawbacks [3]. The speed and
reach of these platforms make it easier for misinformation to
spread, often without proper checks or regulation [4]. As a
result, while social media can be a tool for empowerment and
connection, it also amplifies the risk of misinformation, posing
challenges to truth and trust in public discourse.

Fake news consists of false stories that are intentionally
shared on social media platforms [5]. Its spread can mislead
the public opinion, leading to political, economic, or psycho-
logical benefits for specific groups [6]. Fake news circulation

manipulates opinions, distorts facts, and poses risks to society
[7]. Research shows that people often struggle to differentiate
between true and false news [8]. Interest in detecting fake news
surged after the 2016 U.S. presidential election and COVID-
19 vaccination drawing attention from researchers and social
media platforms [9], [10], [11].

Detecting fake news is a complex task, primarily when
relying solely on the content of news articles [12]. Traditional
content-based methods often use features like n-grams and
bag-of-words, applying supervised learning models such as
random forests or SVM for binary classification [4], [13]. More
advanced techniques in natural language processing (NLP)
focus on extracting linguistic features like active/assertive
verbs, subjectivity, and writing style [14]. Multi-modal ap-
proaches also integrate user-profiles and retweet propagation
patterns [15]. However, these approaches face several chal-
lenges. Social media content, such as tweets, is usually short,
leading to data sparsity, which makes it harder to detect fake
news effectively [16]. Additionally, many models rely on user
comments or retweets for evidence, but most users reshare
stories without commenting, reducing the available data for
analysis [17].

To address these challenges, researchers have begun fo-
cusing on propagation-based methods, which analyze the
network of tweets and retweets to detect fake news [18],
[19]. These methods are based on the idea that fake news
spreads differently than true news. By studying the patterns of
information diffusion, researchers can identify inconsistencies
and spot fake stories [20]. However, many early approaches
rely on static networks, assuming that the entire structure of
information propagation is known before applying learning
algorithms [21]. Social media networks are dynamic, with new
users and content emerging over time, making static models
less effective.

Recent research has shown that comprising temporary fea-
tures, such as the timing of user interactions, can significantly
improve fake news detection [22], [18]. For instance, in a tem-
poral graph, the news propagation evolves, while a static graph
only apprehends a snapshot of the network at one moment.
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Fake and real news often show different temporal patterns,
with fake news spreading more quickly or following distinct
paths [23]. Regardless, treating these dynamic networks as if
they were static limits the effectiveness of current models. To
enhance detection, it’s crucial to develop models that take into
account the continuous changes in how users interact with each
other. By doing so, these models can offer a more accurate and
reliable way to tell the difference between real and fake news.
These time-aware models would tap into the ever-evolving
nature of social media. It makes them better equipped to detect
misinformation in real-world situations.

This paper concentrates on detecting false content in the
Twitter social media environment. The goal is to determine
if a tweet is fake based solely on its brief text, the sequence
of users who retweeted it, and their profiles. The detection
process is approached with three key constraints: (a) analyzing
the tweet’s short text, (b) excluding user comments, and (c)
not using network structures like social or diffusion networks.
The model is designed to explain its predictions, meaning it
should not only flag fake news but also show the reasoning
behind the decision. Specifically, the model should highlight
the doubtful users who helped to spread the fake news and
identify the particular words or phrases from the source tweet
that captured their attention.

Graph-based Attention for Coherent Explanation (GRACE)
is proposed for fake news detection that integrates user behav-
ior, tweet content, and retweet propagation dynamics. GRACE
begins by feature extracting from user’s Twitter profiles and en-
coding the original tweet’s text using word embeddings [24]. A
user interaction graph is constructed, and Graph Convolutional
Networks (GCNs) [25] generate graph-aware representations
of propagation dynamics. The relationship between the original
tweet and how it spreads through retweets is identified by dual
co-attention mechanism. It’s helpful to highlight the users and
keywords. By combining these features, GRACE offers an
effective and easy-to-understand method for classifying fake
news.

The key contributions of this paper are outlined as follows:

1) GRACE model is introduced to improve the under-
standing of user connection, retweet network, and
their relationship with the short text of the source
tweet.

2) Clear and meaningful explanations for the predictions
are provided through the incorporation of a dual co-
attention mechanism.

3) Comprehensive experiments are conducted on pub-
licly available datasets that demonstrate the superior
performance of GRACE as compared to baseline
models.

This paper is structured as follows:

• Section II provides an overview of existing methods
for fake news detection.

• Section III defines the problem and outlines the ob-
jectives addressed by the proposed model.

• Section IV details the experimental setup used in this
study.

• Section V presents the evaluation metrics and results
obtained.

• Finally, Section VI concludes the paper with a sum-
mary of findings and contributions.

II. LITERATURE REVIEW

Fake news, though not a new phenomenon, has acquired
significant public awareness in recent years, primarily due to
its widespread impact on society, politics, and media [26]. As
the dissemination of false content continues to evolve, the liter-
ature on fake news detection has expanded rapidly, addressing
the various challenges posed by this issue. Existing research
can be broadly categorized into two main approaches: content-
based and network-based methods. Content-based approaches
focus on analyzing the textual data of news articles to identify
linguistic, syntactic, and semantic features that distinguish
fake news from legitimate news [27]. While, network-based
methods focus on user’s interactions and relationships within
social media networks. They explore how news spreads across
platforms and how user engagement patterns influence the
dissemination of misinformation [21]. This section provides
an overview of these two categories of fake news detection
techniques and highlight the key developments, strengths, and
limitations.

Content-based approaches focus on analyzing the textual
data of news articles to evaluate their truthfulness. These
methods are especially effective for long range dependencies,
as they allow for a deep analysis of linguistic and semantic
features to identify signs of misinformation [27]. One widely
used technique is TF-IDF, which measures the importance
of specific words within a news story [28]. Topic modeling
helps to uncover the underlying themes in the content. It
offers a structured and meaningful representation of the text
[29]. Other linguistic features, such as PoS tags, assertive or
factive verbs, and markers of subjectivity, are commonly used
to detect subtle language patterns [24]. Further, techniques
that assess writing consistency and social emotions are applied
to highlight anomalies in news content [30]. The underlying
assumption of these content-based methods is that fake news
will exhibit detectable differences in linguistic structure, topic,
or emotional tone compared to genuine news articles [31].

However, traditional content-based methods face several
challenges in detecting fake news, mainly when relying on
handcrafted linguistic cues [13]. These cues, such as lexical
and syntactic features, are often limited in generalizability
across different languages, topics, and domains. These tech-
niques struggle to capture the complex semantic and contextual
information embedded in modern news articles [3]. As news
articles evolve in structure, content-based approaches that rely
solely on traditional methods become less effective. As a
result, researchers are increasingly turning to deep learning
models to address these limitations [14]. The approaches like
Recurrent Neural Networks (RNNs), Convolutional Neural
Networks (CNNs), and Autoencoders [32] provide a solution
by automatically learning hidden representations of text and
capturing complex contextual patterns. These models eliminate
the need for manually designed features and leverage word
embeddings, such as word2vec, to enhance text representation
and better identify patterns [33].
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To make fake news detection more accurate, researchers
have developed multi-modal models that combine different
types of information, such as text and visuals, to improve
their performance [15]. Visual elements like images and videos
often play a significant role in how news is shared and
perceived as credible. For instance, Bahad et al. introduced
an RNN-based model that uses an attention mechanism to
integrate text and visual information, allowing the system to
focus on the most relevant features from both [34]. Similarly,
Zhao et al. created a model that explores the relationship
between text and visuals, which is especially effective in cases
where misleading images are used to spread false claims [35].

To make detection systems more adaptable, researchers
have also applied multi-task learning, enabling models to
transfer knowledge across different types of content and better
handle diverse contexts [36]. Since fake news evolves rapidly,
new approaches like analyzing temporal patterns, adapting to
specific domains, and leveraging weak supervision learning
have been explored [37], [38], [10]. These innovations help
detection systems stay scalable and flexible, allowing them to
adapt to the ever-changing nature of misinformation. By com-
bining these advancements, models are now better equipped
to accurately and dynamically detect fake news in real-world
scenarios.

Recent advancements in NLP have significantly improved
the accuracy and reliability of content-based approaches.
Transformer-based models [39], such as BERT (Bidirectional
Encoder Representations from Transformers) [40] and GPT
(Generative Pre-trained Transformer) [41], have revolutionized
text representation and classification tasks by capturing contex-
tual dependencies more effectively than traditional models. For
instance, BERT has been fine-tuned for fake news detection by
leveraging its bidirectional attention mechanism to understand
subtle linguistic cues and context [42]. Similarly, GPT models
have been employed to generate synthetic datasets for training
effective classifiers and to analyze text for semantic coherence
and logical consistency [35]. Hybrid models combining trans-
formers with other neural architectures have also emerged. For
example, a recent study integrated BERT with Graph Neural
Networks (GNNs) to enhance performance by incorporating
relationships between entities within news articles [43]. Other
studies have focused on domain-specific adaptations of trans-
formers, such as FakeBERT, which was trained on datasets
tailored for misinformation detection [44]. These models not
only outperform traditional approaches but also offer better
generalization across domains and languages.

Network-based methods for detecting fake news focus
on understanding how users interact with content on social
media platforms [18]. Actions like commenting, retweeting,
and following are critical to how information spreads and
provide clues about the fake news propagation [19], [45]. By
studying these patterns, researchers gained valuable insights
into how to identify fake news and separate it from genuine
content [46]. To model how news spreads, both homogeneous
networks (where nodes and edges are similar) and heteroge-
neous networks (where they differ) are used [4].

Homogeneous networks, consisting of uniform nodes and
edges, make it easier to study news spread within a unified
structure [47]. A notable study by Chang et al. analysed
the dispersal of false news on Twitter and found that false

news spreads faster, further, and more broadly than true news
[19]. This observation highlights the accelerated nature of
fake news diffusion. To enhance fake news detection, Huang
et al. proposed a tree-structured RNN model that integrates
textual features and propagation structure features [48]. Sim-
ilarly, Gong et al. introduced a bi-directional GCN to learn
representations of content semantics and diffusion structures
[43].

In difference, heterogeneous networks consist of multiple
nodes and edges, offering a more detailed representation of
the relationships within the news ecosystem [49]. Kang et al.
proposed a model that encodes semantic information and the
global structure of the diffusion graph, incorporating posts,
comments, and user interactions [50]. Huang et al. developed
a meta-path-based heterogeneous graph attention network to
capture the semantic relationships among text content in news
propagation [48]. Additionally, Xie et al. enhanced the robust-
ness of graph-based fake news detectors by modelling entities
through a heterogeneous information network and utilizing
graph adversarial learning to ensure more distinctive structural
features [51]. Another significant advancement in heteroge-
neous network models was introduced by Nguyen et al. by
developing Factual News Graph (FANG). This framework
leverages social structures and user engagement patterns for
effective fake news detection [44].

Network-based methods for fake news detection effectively
handle multimodal data by leveraging the unique strengths
of graph structures to integrate and process text and visual
features. Jin et al. [52] proposed a Hierarchical Propagation
Network that constructs a hierarchical graph where nodes
represent multimodal features such as text embeddings, visual
features, and user interactions. These nodes are interconnected
through propagation layers that explicitly model the interplay
between modalities, enabling a seamless integration of mul-
timodal signals. Wang et al. [53] introduced a Multimodal
Fusion Graph where text and image features are processed
through graph attention layers, dynamically weighing their
contributions to detect fake news. This method effectively
links modalities by treating textual and visual embeddings
as interconnected nodes in a unified graph. Shu et al. [54]
utilized a Graph-based Multimodal Embedding framework,
which creates a graph where text and image metadata are
nodes, and the relationships between them (e.g. co-occurrence
in news items) are edges. The GME approach ensures joint
feature learning by allowing intermodal dependencies to be
explicitly modeled and updated during training. Zhou et al.
[55] extended this concept by employing knowledge-enhanced
graphs, incorporating external knowledge from textual and
visual data into the graph structure. Here, knowledge graph
embeddings serve as additional nodes, creating a richer mul-
timodal representation that enhances the interplay between
modalities for accurate fake news detection. These approaches
demonstrate how network-based methods construct and lever-
age graphs to unify and effectively process both modalities.

While these network-based models have shown promise,
much previous work has focused on static networks. However,
our research takes a dynamic approach by analyzing social
media news within temporal diffusion networks, reflecting the
continuous evolution of news propagation.

Approaches focusing on user behavior analyze the charac-
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teristics of individuals who interact with news content, such
as retweeting or commenting on stories. Yang et al. proposed
extracting account-based features like the user’s gender, home-
town, and follower count [56]. Shu et al. found that user
profiles associated with fake news differ significantly from
those linked to legitimate news [4]. Liu et al. introduced a
joint Recurrent and Convolutional Neural Network (CRNN)
model that captures more detailed profiles of users, particularly
those who retweet news stories [57]. In contrast, session-based
heterogeneous graph embedding methods [51] rely on user
session data to learn user traits but are not directly applicable
to fake news detection.

III. MATERIALS AND METHODS

A. Preliminaries

Let S = {σ1, σ2, . . . , σ|S|} represent a collection of tweet
stories, and A = {α1, α2, . . . , α|U|} be a group of individuals
(users) in the social media network. Each tweet story σi ∈ S is
a short-text document, denoted by σi = {wi1, wi2, . . . , wili},
where li is the number of words in the tweet story σi, and wik

represents the k-th word in the story σi. Each user αj ∈ A
is associated with a feature vector vj ∈ Rd, where d is the
dimensionality of the user’s feature vector.

When a tweet story σi is shared, certain individuals will
retweet it, forming a sequence of retweet records, referred to
as the retweet propagation path. Let the propagation path of
story σi be denoted by Pi = {(αj ,vj , tj)}, where (αj ,vj , tj)
indicates that individual αj with feature vector vj retweeted
story σi at time tj . Here, j = 1, 2, . . . ,K, with K = |Pi|
being the total number of retweets. The set of individuals who
retweet story σi is denoted as Ai ⊆ A.

Within the propagation path Pi, the individual α1 is the
original poster of story σi at time τ . For all subsequent
individuals j > 1, individual αj retweets the story at time
τj , where τj > τ1.

The tweet story σi is labeled with a binary value κi ∈
{0, 1} to indicate its truthfulness, where:

κi =

{
0 if the news σi is true,
1 if the news σi is fake.

Given a tweet story σi and its corresponding propagation
path Pi (which includes individuals αj who retweet the news
and their associated feature vectors vj), the goal is to predict
the authenticity κi of the story σi, a binary classification task.

The model should highlight a subset of individuals αj ∈
Ai who retweeted σi and a subset of words wik ∈ σi that
help to explain why σi is classified as either true or fake.
This interpretability aspect is essential for understanding the
reasoning behind the model’s prediction.

B. Proposed Model

The GRACE model is developed to tackle the challenge of
detecting fake news in social media networks by combining
tweet content, user behavior, and the propagation dynamics
of retweets. As depicted in Fig. 1, This model consists of
several components including user characteristics extraction,
news story encoding, user propagation representation, dual

co-attention mechanisms, and the final prediction layer. Each
component is meticulously crafted to improve the model’s
ability to predict the truthfulness of a tweet while also pro-
viding interpretability by highlighting the users and words
contributing to the classification.

The user characteristics extraction component involves
creating a feature vector xj ∈ Rv for each user uj ∈ A, where
v is the number of features. These features are derived from
various aspects of a user’s behavior, such as the number of
followers, the number of retweets, the time difference between
the tweet and retweet, and other profile-related information.
This vector allows us to quantify how a user engages with
content on social media, which is crucial for identifying fake
news spreaders.

The source tweet σi is represented as a sequence of words,
denoted by σi = {wi1, wi2, . . . , wili}, where li is the number
of words in tweet σi. We use a word-level encoder to represent
this tweet. Each word wik in the tweet is initially encoded as
a one-hot vector. A FC layer is applied to generate the word
embeddings for each tweet, and the resulting embeddings are
stored in a matrix V = [v1, v2, . . . , vm] ∈ Rd×m, where m is
the length of the padded tweet and d is the dimensionality of
the word embeddings.

To model the interactions among users who retweet the
source tweet σi, we construct a graph Hi = (Vi,Fi), where
Vi represents the set of users who retweeted σi. The edges
Fi represent the interactions between users. Since the true
interactions between users are unknown, we assume that the
graph is fully connected. This implies that for every edge
eαβ ∈ Fi, where uα, uβ ∈ Vi and uα ̸= uβ , the number
of edges is given by:

|Fi| =
n · (n− 1)

2
(1)

where n = |Vi| is the number of users who retweeted σi.

To incorporate user features into the graph, we assign a
weight wab to each edge eab ∈ Fi, which is derived from the
cosine similarity between the feature vectors ua and ub. The
weight is calculated as:

wab =
ua · ub

∥ua∥∥ub∥
(2)

We use the adjacency matrix W = [wab] ∈ Rn×n to
represent the weights between any pair of nodes va and vb
in the graph Fi.

C. Graph Convolutional Network (GCN)

A Graph Convolutional Network (GCN) [25] is applied to
propagate information through the graph Fi. A GCN layer
performs a convolution operation on the graph, updating node
embeddings by aggregating information from their neighbors.
For the graph Fi, with adjacency matrix Π and feature matrix
Λ representing user attributes in Fi, the updated g-dimensional
node feature matrix Ω(l+1) ∈ Rn×g at layer l+1 is calculated
as:
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Fig. 1. The proposed model architecture diagram.

Ω(l+1) = ϕ
(
Π̃Ω(l)Γl

)
(3)

Here, Π̃ = Σ−1/2ΠΣ−1/2 represents the normalized adja-
cency matrix, Σ is the diagonal degree matrix, and ϕ is a non-
linear activation function. This process is repeated iteratively
over multiple layers, allowing information to propagate and be
refined across the graph.

D. Co-attention Mechanisms

The correlation between the source tweet and users’ in-
teractions, including retweets, is captured using a dual co-
attention mechanism. This mechanism simultaneously models
the relationship between the source tweet and its retweets,
as well as interactions between users within the propagation
graph.

1) Tweet-Retweet Correlation: The first attention mecha-
nism focuses on the relationship between the source tweet
(Qσ) and the embeddings of retweets (Qu), which are derived
from user propagation embeddings. The attention weights,
representing the correlation between the content of the tweet
and retweets, are computed as:

Aσ = softmax(QT
σQu) (4)

These weights capture how strongly each retweet relates to
the source tweet, refining both the source tweet and retweet
representations for improved feature learning.

2) User-User Correlation: The second attention mecha-
nism captures interactions between users by modeling the
relationship between user embeddings across the propagation
graph. This is achieved through:

Au = softmax(QT
uQu) (5)

Here, the attention weights emphasize connections between
users who share similar propagation behaviors, enabling the
model to better understand the dynamics of retweet propaga-
tion.

By combining these two mechanisms, the model learns
attention-driven representations that reflect the content and
propagation dynamics of the source tweet and retweets. These

refined representations are used as inputs for the final predic-
tion stage.

E. Final Prediction

The final prediction κ̂i is obtained by combining the
learned user features, source tweet embeddings, and propaga-
tion representations. The concatenated vector is passed through
a fully connected layer with a sigmoid activation, producing a
probability between 0 and 1 that represents the likelihood of
the source tweet σi being fake. This process can be expressed
as:

κ̂i = σ (Wf · [ru, rt, rp] + bf ) (6)

where ru is the learned representation of user character-
istics, rt is the learned embedding of the source tweet, and
rp is the learned propagation representation of the users. The
vector [ru, rt, rp] is the concatenation of these representations,
Wf is the weight matrix, and bf is the bias term. The sigmoid
function σ(·) is applied to ensure that the output is a probability
between 0 and 1.

F. Loss Function

The binary cross-entropy loss function is used for model
training. It measures the difference between the predicted
probability κ̂i and the true label κi:

L(κ̂i, κi) = −κi log(κ̂i)− (1− κi) log(1− κ̂i) (7)

The loss function is minimized using the Adam optimizer,
ensuring that the model’s parameters are updated to reduce the
classification error over time. The optimization process helps
the model improve its predictions by adjusting weights, thereby
minimizing the loss and enhancing the performance of the fake
news detection system.
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Algorithm 1 GRACE (Graph-based Attention for Coherent Explanation)
Input: Tweet stories S = {σ1, . . . , σ|S|}, user profiles A, propagation paths Pi, truthfulness labels κi.
Output: Predicted labels κ̂i and explanation (highlighted users αj and words wik).

1: Initialize: Pre-trained word embeddings, user feature vectors vj , graph adjacency matrices A, and model parameters.
2: for each tweet σi ∈ S do
3: Encode tweet σi as word embeddings V ∈ Rd×m.
4: Extract user feature vectors vj ∈ Rd for users in Pi.
5: Construct a graph Hi = (Vi,Fi):
6: for each pair of users (αα, αβ) ∈ Vi do
7: if users are connected then
8: Compute edge weight:

ωαβ =
xα · xβ

∥xα∥∥xβ∥
.

9: end if
10: end for
11: Apply GCN to propagate embeddings over Hi:

H(l+1) = ρ
(
AH̃(l)Wl

)
,

where ρ is a non-linear activation function.
12: Compute dual co-attention:
13: Source-to-user attention:

Aσ = softmax(QT
σQu).

14: User-to-user attention:
Au = softmax(QT

uQu).

15: Concatenate learned embeddings ru, rt, and rp:

r = [ru, rt, rp].

16: Predict truthfulness:
κ̂i = σ (Wf · r+ bf ) .

17: Highlight key users αj and words wik based on Aσ and Au.
18: end for
19: Optimize model parameters by minimizing the binary cross-entropy loss:

L(κ̂i, κi) = −κi log(κ̂i)− (1− κi) log(1− κ̂i).

IV. EXPERIMENTAL SETUP

The GRACE model is implemented using the PyTorch
framework. The tweet text is represented using pre-trained
word embeddings. Each word in the tweet is mapped to its
corresponding vector representation. These embeddings help
transform the raw text into a meaningful numerical format
suitable for further processing. GCN layers capture the inter-
actions among users who retweet the source tweet. The graph
represents users as nodes, and the interactions between users
(such as retweeting) form the edges. Each node’s feature vector
is updated based on its neighbours, allowing the model to learn
user-specific representations in the context of retweet propa-
gation. The number of GCN layers is set to 3, with each layer
processing information from the node’s direct and indirect
neighbours. These features are concatenated after obtaining the
embeddings from the tweet content, user characteristics, and
user propagation representations. The concatenated vector is
passed through fully connected (dense) layers to make the final
classification decision. The hidden layers in the fully connected
section use ReLU activation, while the output layer employs a
sigmoid activation function to predict the probability of a fake

tweet.

A. Hyperparameters

The proposed model is designed with several key hyper-
parameters that allow for efficient and effective training as
described in Table I. A learning rate of 0.001 was selected after
a grid search of several potential values. This choice balances
convergence speed and stability, ensuring that the model trains
effectively without overshooting the optimal solution. The
batch size was set to 64, a commonly used value in graph-
based models like GCNs. A batch size of this allows for
efficient computation and good convergence properties while
maintaining memory efficiency during training.

The model architecture is developed with three GCN lay-
ers, which strike a balance between capturing the interactions
within the retweet network and avoiding overfitting caused
by excessive depth. Each GCN layer contains 128 hidden
units, which are sufficient to learn rich user interaction features
without making the model too large and prone to overfitting. A
dropout rate of 0.3 is applied to mitigate overfitting, meaning
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30% of the neurons are randomly dropped during training,
helping the model avoid reliance on specific features.

Following the GCN layers, fully connected (FC) layers
were added with 256 hidden units to combine and process
features from tweet content, user characteristics, and propaga-
tion patterns. To reduce overfitting in these layers, a higher
dropout rate of 0.5 was applied, randomly dropping 50% of
the neurons during training to improve generalization.

ReLU activation is used throughout the hidden layers to
introduce non-linearity, enabling the model to learn more
complex patterns and decision boundaries effectively. The
output layer uses the sigmoid activation function, which maps
the final output to a probability between 0 and 1. This value
is interpreted as the likelihood that a given tweet is fake.
The Adam optimizer was chosen for optimisation, known for
its efficiency in handling sparse gradients and large datasets.
The binary cross-entropy loss function was used as the loss
criterion, as it is well-suited for binary classification tasks like
fake news detection. The model was trained for 20 epochs,
which is sufficient for convergence without overfitting. These
hyperparameters were carefully chosen to ensure the model
performs well on the fake news detection task, balancing model
complexity, training efficiency, and the ability to generalize to
unseen data.

TABLE I. HYPERPARAMETERS FOR GCAN MODEL

Hyperparameter Value
Learning Rate 0.001

Batch Size 64
GCN’s Layers 3
Hidden Units 128
Dropout Rate 0.3

Hidden Units in FC Layers 256
Dropout Rate (FC layers) 0.5

Activation Function (Hidden) ReLU
Activation Function (Output) Sigmoid

Optimizer Adam
Loss Function Binary Cross-Entropy

Epochs 20

B. Datasets

This study utilizes two widely used datasets, Twitter15 and
Twitter16, compiled by Ma et al. [58], which are recognized
benchmarks in the field of fake news detection. These datasets
provide a comprehensive basis for evaluating propagation-
based modeling approaches, as they include tweets along with
the corresponding sequences of retweeting users, which are
essential for capturing propagation dynamics.

The Twitter15 dataset includes 1,490 claims, while Twit-
ter16 contains 818 claims. Both datasets are annotated with
four ground truth veracity labels: True News (T), Fake News
(F), Non-Fake News (NF), and Unverified News (U). For our
binary classification experiments, we focus only on True News
(T) and Fake News (F) labels, aligning with the scope of our
study.

These datasets are particularly suitable for evaluating our
proposed model as they include rich propagation structures
that allow us to assess the effectiveness of graph-based ap-
proaches. Additionally, they represent real-world social media
interactions, offering realistic challenges and scenarios for fake
news detection.

To enrich the data, we collected user profile information
using the Twitter API, as the original datasets do not include
user profiles. This additional data allows us to incorporate
user-specific features, such as activity patterns and engagement
metrics, which are crucial for analyzing user behavior in the
context of fake news propagation.

The datasets are divided into three parts: 70% for training,
15% for testing, and 15% for validation. This ensures a
balanced and rigorous evaluation of the model. Table II and
Fig. 2 provide a summary of the key statistics and label
distributions, illustrating the diversity and scale of the datasets.

These choices ensure that our approach is validated against
reliable, well-established benchmarks, offering a fair com-
parison with prior works and a robust demonstration of the
proposed model’s effectiveness.

TABLE II. DATASET STATISTICS

Feature Twitter15 Twitter16
Total Claims 1,490 818
True News (T) 370 205
Fake News (F) 374 204
Non-Fake News (NF) 374 203
Unverified News (U) 372 206
Total Postings 331,612 204,820
Users 190,868 115,036
Avg. Retweets per Story 292.19 308.70
Avg. Words per Source 13.25 12.81
# Total Nodes 912,638 501,032
# Total Edges 697,523 382,936

Fig. 2. Label distribution for Twitter15 and Twitter16 datasets.

C. Evaluation Metrics

To assess the proposed model’s performance for fake news
detection, we use several key metrics that provide insights into
its effectiveness. These metrics include Accuracy, Precision,
Recall, F1 Score, and the Area Under the Receiver Operating
Characteristic Curve (AUC).

Accuracy is the most straightforward metric, measuring
the overall correctness of the model across all predictions.
It is the ratio of correct predictions to the total number of
predictions. Precision evaluates the proportion of positive
predictions (predicted fake news) that are actually correct. A
high Precision indicates that the model is accurate when it
predicts fake news. Recall focuses on the model’s ability to
capture all actual positive instances (actual fake news). It is the
ratio of true positives to the sum of true positives and false
negatives. A high Recall means that the model successfully
identifies most of the true fake news instances. F1 Score is the
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harmonic mean of Precision and Recall. It provides a balanced
measure and offers a single number that evaluates the model’s
performance in relevance and completeness.

V. RESULTS

Results are reported in Table III. The GRACE model
demonstrated notable accuracy and F1 score improvements
across the Twitter15 and Twitter16 datasets. The F1 score
increased by 2.42% from baseline models, reaches at 84.50,
while accuracy improved by 2.08%, achieving 89.50 on the
Twitter15 dataset. On the Twitter16 dataset, the F1 score saw
a 2.07% improvement, reaching 77.50, and accuracy increased
by 1.83%, reaching 92.50. On average, the GRACE model
showed a 2.24% improvement in F1 score and a 1.95%
improvement in accuracy across both datasets. These results
reflect the model’s consistent enhancement in both key perfor-
mance metrics. The GRACE model’s improvements indicate
its strong capacity to achieve higher classification precision
and accuracy than baseline models, showcasing its ability to
generalize well across different datasets. The bigger improve-
ments in Twitter15 suggest the model’s adaptability in handling
diverse data characteristics, while its solid performance in
Twitter16 further emphasizes its robustness in real-world, noisy
data scenarios.

A. Baseline Models

The proposed model is compared with several baseline
methods on the Twitter15 and Twitter16 datasets, as shown
in Table III. The GCAN (Graph-aware Co-attention Network)
predicts fake news by considering the orignal tweet and its
propagation, with a variant, GCAN-G, which excludes the
graph convolution component to evaluate the effectiveness
of graph-aware representations [21]. SVM-TS combines a
Support Vector Machine with heuristic rules and a time-series
structure to classify posts as fake or real, leveraging hand-
crafted features. While effective initially, deep learning models
now outperform traditional approaches due to superior feature
extraction capabilities [59]. DTC is a rumor detection method
that uses a Decision Tree classifier and leverages various
handcrafted features to evaluate information credibility [60]. It
focuses on extracting and analyzing features related to content,
user behavior, and network interactions to improve detection
accuracy. CRNN, a deep residual network, integrates four
cascading graph convolutional networks to capture long-range
dependencies and nonlinear features effectively [61]. RFC is
a ranking method based on Random Forest that refines and
elaborates the inquiry phrases within posts. By leveraging this
approach, it aims to enhance the analysis and prioritization of
relevant information [62]. dEFEND represents tweet contents
and interaction graphs in a latent space, capturing multi-level
features of fake news through claim-aware and inference-
based attention mechanisms [63]. The CSI model stands out
as an advanced fake news detection model that integrates
both article content and the collective behaviour of users
propagating fake news [64]. This model uses LSTM to capture
sequential dependencies and computes user-specific scores to
evaluate the likelihood of a tweet being fake. The tCNN model
introduces a modified Convolutional Neural Network (CNN)
to learn local variations in user profile sequences, combining
them with features from the source tweet [65]. This approach

effectively captures intricate variations in user behaviour. The
CRNN merges CNN and RNN to learn local and global
user profile variations [66]. This hybrid technique enables the
model to capture temporal and spatial dependencies in retweet
propagation. mGRU is a modified gated recurrent unit (GRU)
model designed for rumor detection. It captures temporal
patterns by leveraging retweet user profiles in combination
with the source tweet’s features [58].

The confusion matrices are presented in Fig. 3. These
metrics show the model’s performance in classifying news
across multiple categories. For the Twitter15 dataset, the model
correctly identifies True News, with 109 instances accurately
classified, while only four are misclassified as False News
and seven as Unverified News. This indicates the model’s
proficiency in distinguishing authentic information. The model
successfully classifies 36 instances for False News, with min-
imal misclassifications (6 as True News and one as Unverified
News). In Twitter16 dataset, The model accurately identifies
True News, classifying 56 instances correctly, while only
three are misclassified as False News and four as Unverified
News. It also performs well in detecting False News, correctly
classifying 23 instances, with just a few misclassifications (2
instances each into True News and Unverified News). The

Fig. 3. Confusion matrices for Twitter15, Twitter16 on test dataset.

differences in classification accuracy across these two datasets
can be attributed to the varying complexity of the classifi-
cation tasks. While both datasets include multiple categories,
the Twitter15 and Twitter16 datasets introduce the additional
challenge of distinguishing Unverified News from True and
False News, resulting in a higher degree of misclassification,
especially between False News and Unverified News, which
share similar content characteristics. These results underscore
the model’s adaptability in handling both binary and multi-
class classification challenges, demonstrating its effectiveness
across diverse datasets.

The performance of the proposed model is evaluated in
terms of accuracy in Fig. 4 for early detection. It is analyzed
under varying conditions by altering the number of observed
retweet users per source story, ranging from 10 to 50. The
results demonstrate that GRACE consistently and significantly
outperforms all competing methods across all scenarios. De-
spite as few as 10 observed retweeters, GRACE achieves
an impressive 82% accuracy on Twitter16, underscoring its
robustness and reliability. These findings highlight GRACE’s
capability to deliver accurate and early detection of fake
news dissemination, which is critical for effectively combating
misinformation and mitigating its impact.

We assess the effectiveness of proposed approach and
baseline models for early stage fake news detection. Early
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TABLE III. COMPARISON OF PROPOSED MODEL WITH BASELINE AND STATE-OF-THE-ART MODELS ON TWITTER15 AND TWITTER16 DATASETS

Method Twitter15 Twitter16
F1 Recall Precision Accuracy F1 Recall Precision Accuracy

DTC 49.48 48.06 49.63 49.49 56.16 53.69 57.53 56.12
SVM-TS 51.90 51.86 51.95 51.95 69.15 69.10 69.28 69.32
mGRU 51.04 51.48 51.45 55.47 55.63 56.18 56.03 66.12
GCAN-G 79.38 79.90 79.59 86.36 67.54 68.02 67.85 79.39
RFC 46.42 53.02 57.18 53.85 62.75 65.87 73.15 66.20
tCNN 51.40 52.06 51.99 58.81 62.00 62.62 62.48 73.74
CRNN 52.49 53.05 52.96 59.19 63.67 64.33 64.19 75.76
CSI 71.74 68.67 69.91 69.87 63.04 63.09 63.21 66.12
GCAN 82.50 82.95 82.57 87.67 75.93 76.32 75.94 90.84
dEFEND 65.41 66.11 65.84 73.83 63.11 63.84 63.65 70.16
GRACE 84.17 84.95 84.74 89.53 77.51 78.09 77.73 79.11

Fig. 4. Accuracy over retweet users on Twitter15 and Twitter16 datasets.

identification of fake news is essential to curbing its spread and
minimizing its harmful societal impacts. For this evaluation,
we use a specific tweet’s propagation time or initial release
time within a news event as the detection deadline. Tweets
posted beyond this deadline are excluded from consideration.
To compare the performance of various detection methods,
we vary the detection time points within a specific range and
analyze their performance.

Fig. 5 presents the accuracy of all methods at different
time intervals across three datasets. The results indicate that

GRACE consistently performs better than baseline models
in early-stage fake news detection. Across all datasets, the
accuracy of all methods improves rapidly during the early
stages of information diffusion. Notably, our model exhibits a
distinct performance advantage as the propagation progresses,
demonstrating its ability to sustain high accuracy over time and
effectively adapt to the dynamics of fake news dissemination.

Fig. 5. (a) Early detection of fake news on Twitter15; (b) early detection of
fake news on Twitter16.

The source-propagation co-attention mechanism embedded
in our proposed model offers meaningful insights into identi-
fying the characteristics of suspicious users and the linguistic
cues they emphasize during the spread of information. As
Fig. 6 demonstrates, the model highlights several distinct
traits commonly associated with suspicious retweeters. These
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include unverified accounts, newly created profiles with shorter
account lifespans, minimal user descriptions, and shorter graph
path lengths connecting them to the source tweet’s author.

Moreover, the analysis reveals that these users focus dis-
proportionately on specific words, such as “breaking” and
“pipeline,” often used in sensationalized or misleading content.
By leveraging these observations, the model enhances its abil-
ity to detect fake news and provides interpretability by uncov-
ering suspicious accounts’ behavioural patterns and language
preferences. Such explainability is crucial for understanding
the underlying mechanisms of fake news dissemination and
developing strategies to mitigate its spread effectively.

Fig. 6. Key evidential words identified by the GRACE model in the source
tweet (top) and suspicious users flagged during the retweet propagation

process (bottom). Each column corresponds to a specific user characteristic,
providing deeper insights into user behaviours. For simplicity, only a select

number of user characteristics are presented.

B. Ablation Study

The ablation study is conducted in Table IV. It highlights
the significance of each component in the proposed model.
Removing the dual co-attention mechanism (“-A”) leads to a
noticeable drop in performance, which underscores its role in
linking tweet content with user interactions and propagation
dynamics. Excluding the graph-aware representation (“-G”)
also affects the model’s accuracy, as it captures the structural
relationships between users in the retweet network. Simi-
larly, removing the user characteristics module (“-U”), which
captures behavioural patterns like account age and retweet
frequency, significantly reduces the model’s ability to detect
suspicious users. The absence of source tweet embeddings (“-
S”) results in a substantial decline, showing the importance of
semantic content in distinguishing fake news. The most severe
performance degradation occurs when the source tweet embed-
dings and dual co-attention mechanism are removed (“-S-A”),

demonstrating that integrating content-based and interaction-
based features is crucial for achieving high accuracy. These
results confirm that each component contributes meaningfully
to the overall effectiveness of the GRACE model.

C. Discussion

The findings from our study highlight the robustness
and interpretability of the GRACE model in detecting fake
news across various datasets and scenarios. By leveraging
multiple data modalities [58], such as user characteristics,
tweet content, and propagation dynamics, GRACE achieves
superior performance compared to existing baseline models.
This discussion contextualizes these results, explores their
implications, and addresses the model’s broader applicability
and potential limitations.

One of the most significant insights from our work is
the importance of integrating user behavior and propagation
dynamics into fake news detection. Traditional models often
focus solely on tweet content, neglecting the behavioral and
relational cues that can provide essential context [36], [54].
GRACE fills this gap by incorporating graph-aware propa-
gation modeling and user embedding representation, which
allows it to capture the underlying social dynamics in retweet
propagation. This synergy between components is evident from
our ablation study, where removing key elements, such as the
dual co-attention mechanism or graph-based user representa-
tions, led to noticeable drops in performance.

The results also reveal GRACE’s adaptability in both the
early and advanced stages of fake news propagation. For
instance, GRACE’s ability to maintain high accuracy with
limited early-stage data (e.g. as few as 10 retweeters) un-
derscores its potential for real-time applications. This early
detection capability is crucial for mitigating the spread of
misinformation, as even a small delay in identification can
result in widespread dissemination and societal harm.

Another strength of GRACE lies in its explainability. The
co-attention mechanism enables the model to highlight the
specific words in tweets and user behaviors contributing to
its predictions. For instance, the model identified linguistic
patterns, such as emotionally charged words like “breaking”,
and behavioural traits, including unverified accounts and re-
cently created profiles, as key indicators of suspicious activity.
This interpretability is vital for building trust with end-users,
particularly in applications where automated decisions must be
transparent and defensible.

Understanding the characteristics of suspicious users and
the propagation patterns of fake news provides actionable
insights for social media platforms and policymakers. By
identifying high-risk accounts and content early, GRACE can
assist in designing targeted interventions, such as flagging
or debunking misleading posts before they gain significant
traction.

D. Limitation and Future Work

While GRACE demonstrates strong performance and in-
terpretability, it is not without limitations. One of the pri-
mary challenges is the reliance on user interaction data to
build propagation graphs. The model’s effectiveness could
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TABLE IV. ABLATION STUDY RESULTS OF GRACE ON TWITTER15 AND TWITTER16 DATASETS

Method Twitter15 Twitter16
F1 Rec Precision Accuracy F1 Recall Precision Accuracy

Full Model 84.17 84.95 84.74 89.53 77.51 78.09 77.73 79.11
-A 81.45 82.13 80.97 87.12 74.89 75.12 74.45 76.45
-G 82.03 82.67 81.45 87.67 75.43 75.87 75.01 77.02
-U 80.12 80.89 79.68 85.34 73.25 73.98 72.87 74.34
-S 78.65 79.02 78.30 83.21 72.11 72.56 71.43 72.89
-S-A 75.34 75.89 74.12 80.78 70.34 70.92 69.87 71.21

be reduced if user data is incomplete or anonymized due
to privacy concerns. Additionally, while GRACE assumes a
fully connected graph without explicit user relationships, this
assumption may not always reflect real-world interactions,
potentially leading to inaccuracies in propagation modelling.
Future work could explore incorporating more advanced graph
representation techniques, such as dynamic graph neural net-
works, to better model evolving user interactions over time
to enhance GRACE further. Additionally, leveraging external
knowledge bases or fact-checking databases could improve the
model’s ability to validate content credibility, particularly for
previously unseen news stories. Finally, expanding GRACE to
handle multilingual content and adapting it to different cultural
contexts would increase its applicability on a global scale.

VI. CONCLUSION

In this study, we introduced Graph- based Attention for Co-
herent Explanation (GRACE) approach for detecting fake news
on social media platforms. GRACE addresses the complex and
dynamic nature of misinformation by leveraging tweet content,
user behaviour, and retweet propagation dynamics, making
it capable of identifying fake news with high accuracy and
interpretability. Unlike traditional methods, GRACE operates
in a more realistic and challenging setting by focusing on short-
text tweets and their retweeter sequences, closely aligning with
the real-world propagation of misinformation. The evaluation
results underscore GRACE’s robustness and effectiveness,
demonstrating its ability to deliver accurate predictions while
maintaining explainability through its co-attention mechanism.
Notably, GRACE excels in early-stage detection, achieving
satisfying performance even with limited propagation data.
This early detection capability is critical for minimizing the
spread of misinformation and reducing its societal impact.

Beyond fake news detection, GRACE has broader applica-
tions for other short length text classification tasks in social
media, such as sentiment analysis and tweet popularity pre-
diction. Its flexible and modular design makes it a promising
candidate for addressing various social media challenges. Fu-
ture work will enhance the model’s generalization capabilities
to accommodate different platforms and contexts.
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