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Abstract—Contemporary cities depend on elevators for verti-
cal mobility in residential, commercial, and industrial buildings.
However, elevator system malfunctions may cause operational
interruptions, economic losses, and safety dangers, requiring
advanced tools for detection. High-dimensional sensor data, tem-
poral interdependence, and fault dataset imbalances are common
problems in fault detection algorithms. These restrictions reduce
fault diagnostic accuracy and reliability, especially in real-time
applications. This paper presents a Temporal Adaptive Fault
Network (TAFN) to overcome these issues. The system uses
Temporal Convolution Layers to capture sequential dependencies,
Adaptive Feature Refinement Layers to dynamically improve
feature relevance, and a Fault Decision Head for correct clas-
sification. For reliable performance, the Weighted Divergence
Analyzer and innovative data processing methods are used for
feature selection. Experimental findings show that the TAFN
model outperforms state-of-the-art fault classification approaches
with an F1-score of 98.5% and an AUC of 99.3%. The model’s
capacity to handle unbalanced datasets and complicated temporal
patterns makes it useful in real life. The paper also proposes the
Fault Temporal Sensitivity Index (FTSI) to assess fault prediction
temporal consistency. The results demonstrate that TAFN may
revolutionize elevator problem detection, improving reliability,
downtime, and safety. This technique advances predictive main-
tenance tactics for critical infrastructure.

Keywords—Elevator fault diagnosis; temporal adaptive fault
network; predictive maintenance; multivariate time-series data;
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I. INTRODUCTION

Modern elevators provide adequate vertical mobility in
residential, commercial, and industrial contexts. Elevator de-
pendability and safety are crucial since malfunctions may
cause operational interruptions, economic losses, and safety
dangers [1]. Effective defect identification and diagnosis are
necessary for good performance. Traditional maintenance
solutions, including reactive repairs or periodic preventive
maintenance, may not handle unexpected failures, resulting
in increased downtime and expenses [2]. Advancements in
sensor technology and IoT enable contemporary elevators to
generate significant amounts of data by continually monitoring
operating characteristics [3]. Big data has enabled predictive
maintenance tactics, detecting defects before they cause sub-
stantial failures [4]. Predictive maintenance reduces downtime
and maintenance costs by evaluating real-time data to detect
possible faults [5].

Machine learning (ML) and deep learning (DL) are ef-
fective methods for processing complicated, high-dimensional
data, making them ideal for elevator fault diagnostics [6].
These methods learn patterns and correlations from historical

and real-time operational data to classify and forecast faults.
Research suggests that ML models like SVM, decision trees,
and random forests outperform rule-based methods for elevator
failure detection [7]. DL architectures, such as CNN and RNN,
have been used to analyze elevator operating data for spatial
and temporal trends [8]. Feature selection is another issue. Ele-
vator datasets include several characteristics with different fault
diagnostic importance. Key characteristics must be identified
and prioritized to improve model accuracy and efficiency [9].
To account for the temporal character of elevator data, models
must capture sequential relationships and changing patterns
[10], [11].

Recent research investigates hybrid methods combining
feature engineering, sophisticated DL architectures, and data
balancing strategies to address difficulties [12], [13]. These
methods address dataset imbalances, optimize feature repre-
sentations, and use elevator operating temporal features to
enhance problem identification. Researchers have used tempo-
ral convolutional networks (TCN) and attention processes to
get top-notch defect prediction results [9], [14]. Elevator fault
diagnostic research may improve operational dependability and
safety. Predictive maintenance solutions may improve elevator
operations by detecting and fixing faults early using ML,
DL, and IoT technology. However, dataset imbalance, feature
selection, and elevator dynamics make finding fault diagnostic
models difficult. To overcome these constraints, this paper
presents the Temporal Adaptive Fault Network (TAFN), a deep
learning architecture for elevator fault detection. Temporal
Convolutional Layers (TCL) capture sequential dependencies,
and Adaptive Feature Refinement Layers (AFRL) dynamically
highlight the most essential features of TAFN. These new
processes, a balanced dataset, and appropriate feature selection
with the Weighted Divergence Analyzer help TAFN overcome
data imbalance, feature importance, and temporal complexity.
This methodology improves elevator predictive maintenance,
safety, dependability, and efficiency.

1) The Proposed temporal adaptive: Fault Network solves
high-dimensional, multivariate time-series data classification
problems. The model captures sequential relationships and
emphasizes the most important features by merging Temporal
Convolution Layers (TCL) and Adaptive Feature Refinement
Layers (AFRL), ensuring reliable fault classification in com-
plicated operational datasets.

2) Mitigating fault diagnosis class imbalance: Gradient-
Space Augmentation (GSA) addresses unbalanced fault
datasets with under-represented fault categories. This unique
technique interpolates inside a regulated gradient space to
create minority-class synthetic samples, assuring balanced data
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distribution and increasing model generalization across all fault
categories.

3) Ideal feature selection for accuracy enhancement:
The Weighted Divergence analyzer addresses irrelevant or
duplicated features impacting fault identification. This feature
selection technique uses statistical divergence and temporal
consistency to discover and prioritize the most important
features, improving classification accuracy and decreasing pro-
cessing costs.

4) Temporal dependency modelling: Traditional
approaches miss long-term dependencies in sequential
data, resulting in poor fault identification. The Temporal
Convolution Layers of the proposed TAFN use dilated
convolutional kernels to capture short- and long-term
relationships. This reliably detects transient and persistent
fault patterns.

5) The proposed architecture: reduces lift system operat-
ing complexity, safety hazards, and downtime by improving
fault detection. The research addresses significant intelligent
infrastructure demands by reducing operating interruptions and
improving lift system safety and reliability with predictive
maintenance and real-time fault detection.

The article’s structure: Section II examines lift fault diag-
nostic literature to highlight advances and concerns. Section
III describes the Temporal Adaptive Fault Network (TAFN)
proposed architecture, feature engineering approaches, and
data pretreatment techniques. Section IV simulations show the
model’s classification, comparison analysis, and assessment
metrics, proving its fault detection effectiveness. Section V
wraps up the research and examines ways to improve the
framework’s flexibility and scalability for intelligent fault
diagnostics in critical infrastructure systems.

II. RELATED WORK

Through improved diagnostics, elevator fault detection has
been studied to improve dependability, save maintenance costs,
and maintain safety. Researchers have employed statistical
models, machine learning, and deep learning. This research
covers large-scale sensor data, unbalanced datasets, and fault
classification accuracy. To comprehend elevator fault detection
research, the following section discusses significant contribu-
tions, their goals, methods, results, and limitations.

ResNet was used to improve fault detection in elevator
systems in [15]. The model grasped complex fault patterns
in high-dimensional sensor data using deep residual learning.
ResNet improved fault classification accuracy by reducing
vanishing gradient concerns. The model needed enormous
datasets and computer resources for efficient training, limiting
its scalability. The authors in [16] used Decision Trees with
ensemble approaches like AdaBoost to classify faults. This
method aggregated decision routes to increase detection accu-
racy. The model performed well on unbalanced datasets, but
overfitting in complicated settings reduced its generalizability.
The study [17] used Deep Belief Networks (DBNs) to mimic
elevator operations. DBNs identified tiny fault signs from noisy
data using hierarchical feature extraction. The approach had
good fault detection accuracy but was computationally costly
and needed professional adjustment.

Naive Bayes was employed in [18] to accomplish proba-
bilistic fault classification. Simple Naive Bayes enabled real-
time fault detection due to its computational efficiency. How-
ever, feature independence hindered its capacity to predict
linked data, reducing accuracy for complicated elevator sys-
tems. The study in [19] analyzed sequential fault data using
Markov n-grams. Our strategy identified temporal relationships
by simulating fault occurrences as probabilistic state transi-
tions. Markov n-grams identified recurrent fault patterns but
struggled with uncommon failures owing to transition data
shortages.

In [20], VGG16, a deep convolutional neural network,
classified elevator faults. Hierarchical feature extraction al-
lowed sophisticated fault detection. VGG16’s computational
load and overfitting on small datasets made real-world ap-
plications difficult. The [21] research used SVMs for fault
detection. The kernel-based SVM method differentiated nor-
mal and defective states in high-dimensional feature fields.
SVM was accurate, but computational cost rose exponentially
with sample count, making it unscalable with massive datasets.
In [22], CNNs were employed to evaluate spatial patterns in
elevator sensor data. Being able to capture local dependen-
cies gave the model great fault detection accuracy. Temporal
dependencies, essential for sequential elevator fault detection,
were complicated to represent using CNNs. [23] used a
hybrid technique combining feature engineering and Naive
Bayes for effective fault detection. Integrating domain-specific
characteristics with a probabilistic framework enhanced model
accuracy and decreased false positives. However, its expert-
crafted characteristics hampered its adaptation to new fault
circumstances.

According to [24], Markov n-grams may effectively capture
sequential dependencies in elevator fault data. The model
needed adequate data for correct state transition probabilities.
Thus, it struggled with uncommon occurrences yet revealed
recurrent fault patterns. In [25], DBNs were used for hierar-
chical feature extraction in fault diagnostics. Learning latent
feature representations increased complicated fault detection.
Due to computational requirements, the approach was hard
to scale. The work in [26] created a hybrid fault detec-
tion model using CNN and RNN layers. CNNs looked at
spatial relationships, and RNNs studied temporal patterns.
Although it increased model complexity and training time, this
combination improved fault classification performance. Graph
convolutional networks (GCNs) were used to assess elevator
data representations in [27]. High fault detection accuracy was
achieved by modeling sensor data structural relationships. Data
preprocessing into graph formats complicated the operation.
The author in [28] implemented Naive Bayes and spectral
analysis for fault detection. The model classified faults reliably
using frequency-domain insights and probabilistic reasoning.
Vibration data noise might negatively impact spectral feature
accuracy. Table I summarizes related work.

Despite advances in elevator problem diagnostics, present
approaches have major shortcomings that make them unsuit-
able for real-world applications. Due to the sequential structure
of elevator defect data, SVMs and decision trees generally
fail to grasp temporal relationships needed for successful
diagnosis. CNNs excel in spatial feature extraction but strug-
gle to understand multivariate time-series data’s long-term
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TABLE I. LITERATURE REVIEW SUMMARY

Ref Technique Used Objective Achieved Limitations
[15] ResNet Enhanced fault detection by capturing intricate

patterns in high-dimensional sensor data, miti-
gating vanishing gradient issues, and improving
classification accuracy.

Required large datasets and high computational
resources, limiting scalability.

[16] Decision Trees with
AdaBoost

Improved detection precision by aggregating mul-
tiple decision paths and handling imbalanced
datasets.

Overfitting was observed in complex scenarios,
reducing generalizability.

[17] Deep Belief Networks
(DBNs)

Modeled elevator operational dynamics, identify-
ing subtle fault indicators from noisy data.

Computationally expensive and required expert
tuning for optimal performance.

[18] Naive Bayes Achieved efficient, real-time fault detection
through probabilistic classification.

Assumed feature independence, reducing accuracy
for correlated data.

[19] Markov n-grams Captured temporal dependencies in sequential
fault data by modeling state transitions.

Struggled with rare faults due to insufficient data
for transitions.

[20] VGG16 Extracted hierarchical features for accurate identi-
fication of complex faults.

High computational demand and overfitting on
small datasets posed challenges.

[21] Support Vector Machines
(SVM)

Effectively separated normal and faulty states in
high-dimensional spaces using kernel methods.

Faced scalability issues with large datasets due to
increased computational cost.

[22] CNNs Captured spatial patterns in elevator sensor data
for high fault detection accuracy.

Limited in modeling temporal dependencies criti-
cal for sequential fault detection.

[23] Hybrid Naive Bayes with Fea-
ture Engineering

Improved accuracy and reduced false positives by
combining domain-specific features with proba-
bilistic frameworks.

Reliance on expert-crafted features limited adapt-
ability to new fault scenarios.

[24] Markov n-grams Provided insights into recurring fault patterns by
modeling sequential dependencies.

Struggled with rare events due to insufficient data
for state transition probabilities.

[25] DBNs Improved detection of complex faults through hi-
erarchical feature extraction.

Faced scalability challenges due to high computa-
tional demand.

[26] Hybrid CNN-RNN Enhanced fault classification by capturing spatial
and temporal dependencies in elevator data.

Increased model complexity and training time.

[27] Graph Convolutional
Networks (GCNs)

Modeled structural dependencies in sensor data,
achieving high fault detection accuracy.

Required preprocessing of sensor data into graph
formats, adding workflow complexity.

[28] Naive Bayes with Spectral
Analysis

Combined frequency-domain insights with proba-
bilistic reasoning for reliable fault classification.

Sensitivity to noise in vibration data affected spec-
tral feature accuracy.

temporal trends. Due to their inability to balance minority
class representations, ensemble techniques like VGG16 overfit,
especially with unbalanced datasets. ResNet and deep belief
networks (DBNs) are unsuitable for resource-constrained con-
texts because to computational complexity and resource con-
straints. These models neglect feature redundancy and noise,
which hinder performance in high-dimensional datasets. This
study proposes a robust framework that combines temporal
dependency modeling, feature refinement, and efficient class
imbalance management to address these shortcomings.

III. PROPOSED METHOD

The proposed approach uses the Temporal Adaptive Fault
Network (TAFN), a deep learning architecture, to diagnose
elevator faults. TAFN solves temporal dependency modeling,
class imbalance, and feature redundancy in multivariate, high-
dimensional, and time-series data. Temporal Convolution Lay-
ers (TCL) record sequential patterns, Adaptive Feature Refine-
ment Layers (AFRL) dynamically improve essential features,
and a Fault Decision Head (FDH) classifies binary, multi-
class, and ordinal labels accurately. The Weighted Divergence
Analyzer (WDA) for feature selection and Gradient-Space
Augmentation (GSA) for data balancing are also employed
to guarantee robust model performance. Refer to Fig. 1 for
the suggested system’s abstract perspective. Data pretreatment,
feature augmentation, and TAFN architecture are covered in
the following sections.

A. Dataset Description

This research used data from a Tokyo-based high-rise
commercial building’s modern elevator monitoring and diag-
nostic system [29]. From January 2020 to November 2024,
hourly measurements were taken. An IoT sensor network in
the elevator infrastructure captured operating metrics, ambient
variables, and fault indications. Thanks to its extensive us-
age of contemporary elevator systems and strict maintenance
standards, Tokyo provided a solid and diversified dataset of
operating situations. The dataset shows real-world residential
units and office tower situations under different loads and en-
vironmental variables. Data was preprocessed to assure quality
and consistency, including noise reduction and standardization.

Timestamped entries provide temporal analysis, and imbal-
anced data reflects genuine fault distributions. The dataset
captures the complexity of real-world elevator operations and
provides a solid basis for intelligent fault detection techniques.
Table II describes the dataset features.

TABLE II. DATASET FEATURES OVERVIEW

S.No Feature Short Description
1 Motor Current (A) The current drawn by the elevator motor, indicat-

ing electrical load.
2 Motor Voltage (V) Voltage supplied to the elevator motor, essential

for monitoring electrical health.
3 Vibration Level (g) Measures vibrations to detect mechanical anoma-

lies in the system.
4 Speed (m/s) Real-time speed of the elevator cabin during op-

erations.
5 Cabin Position The elevator’s current position in the shaft or

building floors.
6 Door Operation Time Time taken for elevator doors to open and close,

indicating potential delays.
7 Ambient Temperature (°C) Environmental temperature near the elevator sys-

tem.
8 Load (kg) The weight inside the elevator cabin, useful for

load distribution analysis.
... ... ...
n Fault State Binary label indicating whether the elevator is

functioning normally or has a fault.
n+1 Fault Severity Ordinal label categorizing the fault as minor, mod-

erate, or critical.

B. Data Preprocessing and Feature Enhancement

Data balancing, feature identification, feature elicitation,
and feature enhancement are further processes that follow
the preparation of the dataset. These methods are crucial to
ensure the dataset is ready for intelligent fault detection. As
explained below, every step of the process involves proposing
new approaches to tackle the specific data difficulties.

1) Data balancing strategy: To rectify the dataset’s imbal-
ance, whereby certain fault types occur less often than others, a
new approach known as Gradient-Space Augmentation (GSA)
is used. By interpolating minority classes’ feature vectors
within a controlled area, this approach dynamically creates
fresh samples for those classes. Eq. 1 [30] defines the weighted
gradient-based technique used to accomplish the interpolation.

gq = hq + ζ · (hp − hq) (1)

gq is the synthesized feature vector, hq is a minority class
feature vector, hp is a randomly picked closest neighbor within
the same class, and ζ is a random scaling factor (0 < ζ < 1).
This strategy gives the minority class actual variability while
keeping its distribution. This balances the dataset, representing
all fault types for training.

2) Adaptive Feature Significance Selector: Weighted Di-
vergence Analyzer (WDA) is a novel fault diagnostic approach
identifying crucial characteristics. Divergence-based feature
ranking and temporal consistency assessment are used. Eq.
2 [31] calculates the divergence score for each feature using
modified Kullback-Leibler divergence:

Ds =

K∑
k=1

πsk ln

(
πsk
τsk

)
(2)
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Fig. 1. Proposed model framework.

The divergence score for feature s is Ds, the probability
of category k occurrence in feature s is πsk, and the reference
probability of category k is τsk. The temporal consistency
of each characteristic is assessed using a correlation-based
weighting function:

κs =

∑T
t=1 |ξs(t)|
T

(3)

The Eq. II includes κs as the temporal weight for feature
s, ξs(t) as the correlation value at time t, and T as the total
number of time intervals. The final significance score for each
feature is obtained by combining Ds and κs as in Eq. 4:

ψs = η ·Ds + (1− η) · κs (4)

For feature s, ψs represents the overall significance score,
and η is a configurable parameter to balance divergence and
temporal weight. Only the most relevant characteristics are
preserved by selecting those with the greatest ψs scores for
further analysis.

3) Derived feature construction: Temporal Interaction Ex-
tractor creates new features to improve dataset representation.
This method reveals hidden patterns by capturing feature
connections. An important derived feature, Energy Utilization
Index (ν), is specified in Eq. 5 [32]:

νt =
Pt

Mt · Rt
(5)

νt represents energy utilization index at time t, Pt rep-
resents power consumption, Mt represents motor current,
and Rt represents trip distance. Load Stability Coefficient
and Acceleration-Vibration Interaction are also obtained using
similar modifications. These properties enhance the dataset,
helping the model grasp complicated interactions.

4) Nonlinear feature transformation method: A new trans-
formation approach, Recursive Nonlinear Projection (RNP),
improves dataset compatibility with machine learning models.
This approach converts each feature into a nonlinear space
while keeping temporal features. Eq. 6 defines the transforma-
tion [33]:

ϕ(u) = cos(σu) + λ · sin(σu2) (6)

ϕ(u) represents the converted value of feature u, σ regu-
lates scaling, and λ controls higher-order terms. A decay factor
adds temporal importance to altered values:

χ(ut) = ϕ(ut) · e−ρt (7)

The Eq. 7 uses χ(ut) as the time-adjusted transformed
value and ρ as the decay constant, minimizing the impact of
earlier data on the model. Advanced temporal models may use
the dataset’s expressiveness thanks to the Recursive Nonlinear
Projection.

Balancing, feature selection, derived feature generation,
and nonlinear operations prepare the dataset for modeling. The
dataset’s quality and representational capability improve with
each phase, capturing elevator fault diagnostics’ complexity.

C. Classification Framework

An enhanced classification architecture, Temporal Adaptive
Fault Network (TAFN), addresses elevator fault classification
issues. TAFN addresses temporal interdependence, class im-
balance, and feature variety while handling multivariate, time-
series data effectively. Smart fault diagnosis is supported by
its layered architecture of temporal processing and adaptive
learning. TAFN’s design, logic, and mathematical formulas are
below. Fig. 2 depicts the TAFN architecture.

Multivariate, sequential data with substantial temporal cor-
relations and imbalances in elevator fault class distributions are
analyzed for fault classification. Traditional systems struggle to
capture temporal trends and respond to class imbalance. Tem-
poral Convolution Layers (TCL) extract time-series patterns,
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Fig. 2. Proposed TAFN architecture.

Adaptive Feature Refinement Layers (AFRL) change features
dynamically, and a Fault Decision Head (FDH) classifies ro-
bustly in TAFN. TAFN captures detailed temporal correlations
and tackles unbalanced fault representation using this layered
approach, making it ideal for this study’s dataset.

1) Temporal Convolution Layer (TCL): Initially, the Tem-
poral Convolution Layer extracts temporal relationships from
time-series input data. Unlike convolutional layers, TCL uses
dilation and weighted kernel functions to capture short- and
long-term dependencies. Single TCL operation is mathemati-
cally defined in Eq. 8:

y
(l)
t = σ

(
K∑

k=1

ω
(l)
k · xt−dk

+ b(l)

)
(8)

At time t, y(l)t represents the layer output, ω(l)
k represents

the weight of the k-th kernel in the l-th layer, xt−dk
represents

the input, dk represents the dilation factor, and b(l) represents
the bias term. The activation function σ, usually ReLU, causes
nonlinearity. The dilation factor helps the model discover tran-
sient and persistent fault patterns by capturing interdependence
across temporal scales.

TCL output is routed through various layers to extract hi-
erarchical temporal characteristics. Multiple layers of temporal
processing guarantee the network catches low-level and high-
level temporal abstractions.

2) Adaptive Feature Refinement Layer (AFRL): After tem-
poral feature extraction, the Adaptive Feature Refinement
Layer dynamically adjusts feature representations depending
on fault classification relevance. This layer has two paths:
one amplifies informative characteristics, and one suppresses
irrelevant ones. The functioning of AFRL is [34]:

z
(l)
i = α

(l)
i · h(l)i + β

(l)
i · tanh(h(l)i ) (9)

The Eq. 9 uses z(l)i as the refined feature for node i in the l-
th layer, h(l)i as the input feature, and α(l)

i and β(l)
i as learnable

parameters to control the linear and nonlinear contributions
This adaptive approach helps the network prioritize fault
classification features while reducing noise and redundancy.

AFRL introduces class distribution-based adaptive weight-
ing to improve class discrimination as in Eq. 10:

γ
(l)
i =

1

1 + e−δ
(l)
i

(10)

γ
(l)
i is the adaptive weight for feature i in layer l, whereas

δ
(l)
i is a class-dependent learnable parameter. This weighting

guarantees dominant classes don’t overpower minority class
qualities.

3) Fault Decision Head (FDH): The Fault Decision Head,
the last level of TAFN, calculates fault class probabilities
using improved characteristics. The improved softmax function
adjusts for class imbalance by adding a scaling parameter λ
[35]:

pj =
exp (gj/λ)∑C
c=1 exp (gc/λ)

(11)

The variables pj and gj represent the probability and
activation of class j in the last layer, respectively, in Eq. 11.
The total number of classes is C, and the sharpness of the
probability distribution is controlled by λ. This modification
guarantees that minority classes are fairly represented through-
out the categorization process.

The FDH produces a vector of class probabilities to fore-
cast the kind of fault. Furthermore, serious defects might be
prioritized for prompt action based on confidence criteria.

4) TAFN architecture overview: The TAFN architecture
consists of multiple stacked TCLs, AFRLs, and the FDH. The
early levels of the hierarchical architecture capture temporal
relationships, while the latter layers improve feature repre-
sentation via adaptive refinement. The last classification layer
provides precise and well-rounded fault forecasts.

Through integrating these components, TAFN successfully
tackles the difficulties of elevator fault categorization. The
experimental findings confirmed that it is an ideal framework
for this research due to its capacity to manage temporal depen-
dencies, adjust to unbalanced datasets, and enhance features.

D. Performance Evaluation Metrics

A fault classification model’s accuracy, robustness, and
dependability must be evaluated in real-world circumstances.
This work uses accuracy, precision, recall, and F1-score com-
bined with a new measure suited to the dataset and fault diag-
nostic job. Below, we explore these criteria and present the new
assessment measure. Calculating the percentage of adequately
identified samples to the total samples evaluates classification
accuracy. Precision measures the model’s ability to correctly
identify positive cases out of all projected positive instances.
Recall is the percentage of positive cases the model detects.
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Algorithm 1 Temporal Adaptive Fault Network (TAFN) for
Fault Classification
Require: Time-series data X with N samples and T time

steps
1: Initialize Temporal Convolution Layers (TCL), Adaptive

Feature Refinement Layers (AFRL), and Fault Decision
Head (FDH)

2: Set hyperparameters: dilation factor d, adaptive weights α,
β, and scaling parameter λ

3: Split input data X into training and validation sets
4: for each training epoch do
5: for each sample xi ∈ X do
6: Step 1: Temporal Feature Extraction
7: Pass xi through TCL to extract temporal features Hi

8: Update Hi with convolutional weights and dilation
9: Step 2: Feature Refinement

10: Pass Hi through AFRL to adaptively refine features
Zi

11: Adjust Zi using adaptive weights based on class
relevance

12: Step 3: Fault Classification
13: Pass refined features Zi through FDH
14: Compute output probabilities Pi for fault classes
15: end for
16: Validation Step
17: for each sample xj in validation set do
18: Repeat Steps 1–3 to evaluate classification perfor-

mance
19: end for
20: Compute classification loss and update network param-

eters
21: end for
22: Output: Trained TAFN model for fault classification

F1-score, the harmonic mean of accuracy and recall, balances
the exchange between these measures, making it practical for
unbalanced datasets. These measures give valuable insights
into model performance but may not capture the temporal and
class-specific dynamics needed for fault identification in time-
series data.

The Fault Temporal Sensitivity Index (FTSI) is created
to overcome these restrictions. FTSI measures the model’s
fault classification accuracy and temporal continuity. Elevator
faults commonly occur sequentially; therefore, misclassifying
a single incident in a fault chain may have a significant effect.
Mathematically, FTSI can be defined as Eq. 12:

FTSI =
∑T

t=1 δt · yt · ŷt∑T
t=1 δt · yt + ϵ

(12)

At time t, yt is the ground truth label, ŷt is the predicted
label, δt is a temporal weighting factor that prioritizes defects
in key time frames, and ϵ is a tiny constant to avoid division
by zero. Definition of temporal weighting factor δt in Eq. 13:

δt =

{
1, if t ∈ Critical Period
γ, if t /∈ Critical Period

(13)

We use a scaling factor (0 < γ < 1) to lower the weight of
non-critical periods. Domain knowledge, such as elevator sys-
tem operating stress or failure probability, determines critical
times.

Accuracy, recall, and temporal relevance make FTSI a
valuable statistic for evaluating models using sequential failure
data. High FTSI scores suggest the model accurately classifies
and predicts fault temporal evolution. Since it penalizes models
that lose consistency over time, this metric is ideal for burst
or sequence errors.

Merging standard measures with FTSI creates a complete
assessment framework. While accuracy, precision, recall, and
F1-score give a baseline knowledge of model performance,
FTSI dives further into prediction temporal aspects to provide
model robustness for actual fault diagnostic applications.

IV. SIMULATION RESULTS

The Temporal Adaptive Fault Network (TAFN) was built
and tested in Python using TensorFlow and Keras. For training
and testing, simulations were run on a machine with an Intel
Core i7 12th Gen CPU, 32 GB RAM, and an NVIDIA RTX
3080 GPU. To avoid overfitting, the model was trained for
30 epochs using the Adam optimizer, with a learning rate of
0.001, batch size of 64, and a weight decay factor of 10−5.
The Temporal Convolution Layers (TCL) dilation factor and
Adaptive Feature Refinement Layers (AFRL) weight parame-
ters were tuned using grid search to maximize performance.
Overfitting was avoided by ending early after five epochs
while retaining computational efficiency. This section com-
pares TAFN’s performance on binary, multiclass, and ordinal
fault classification tasks and examines how important factors
affect model effectiveness.

Fig. 3. Relationship between load and braking force.

Fig. 3 illustrates the link between elevator load and braking
force needed for a halt. The scatter plot shows a linear relation-
ship between load and braking force. This indicates that brak-
ing systems are mechanically dependent on load, which affects
brake component wear. Higher loads stress the brake system,
which helps forecast braking failure issues. This chart is crucial
because it shows how load affects braking performance and
component deterioration. Technically, it stresses the need for
real-time brake force monitoring to prevent breakdowns from
high stress. It also supports the idea that repeated high-load
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conditions increase brake system failure rates. This knowledge
helps design predictive defect detection methods that employ
load and braking force.

Fig. 4. Motor current across fault severity levels.

Fig. 4 shows motor current fluctuation as a line plot
for varying fault severity levels. The findings suggest that
fault severity increases motor current. Critical defects cause
far larger motor currents than minor failures. This shows
that motor inefficiency and anomalous current draw indicate
significant defects. This graphic emphasizes motor current as
a diagnostic indicator. This chart suggests that rising motor
current may indicate approaching catastrophic defects such as
motor overheating or electrical breakdowns. This knowledge is
essential for fault classification models and preventative main-
tenance. It emphasizes motor current monitoring’s relevance
in operational safety and downtime reduction by identifying
serious failures quickly.

Fig. 5. Maintenance duration proportion by fault severity.

Fig. 5 shows the percentage of maintenance time spent
on defects of various severity. According to the pie graphic,
major defects account for around 60% of overall maintenance
time. Approximately 30% of defects are moderate, whereas
just 10% are mild. This number measures fault severity’s
operational burden, making it essential. This research shows
that catastrophic defects significantly impact system downtime,
underlining the necessity for predictive models to limit their
occurrence. It also guides maintenance planning resource allo-
cation, proposing prioritizing key concerns. Prioritizing issues

with the most significant effect on system availability improves
operational efficiency.

Fig. 6. Reasons of failure across fault categories.

Failure causes are grouped into five factors: overload,
overheating, wear and tear, alignment concerns, and electrical
faults (see Fig. 6). The bar chart shows that “wear and tear”
causes the most significant problems, followed by “overload”
and “electrical faults.” Though rare, alignment and overheating
concerns are noticeable. This graphic is essential for recogniz-
ing system failure modes. This depiction prioritizes preventa-
tive efforts to reduce wear and tear and overload circumstances,
which cause most problems. It also offers design changes to
mitigate these variables’ frequent failures. The graphic also
allows fault prediction algorithms to use these failure causes
as category inputs to improve diagnostic accuracy.

Fig. 7. Correlation matrix of all features.
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As a heatmap, Fig. 7 displays the correlation matrix of all
attributes in the dataset. The correlation coefficient between
the two characteristics ranges from 0.2 to 0.9 in each cell. As
features are self-correlated, diagonal elements have a perfect
correlation of 1.0. The matrix shows strong relationships
between “Load” and “Braking Force” and “Motor Current”
and “Temperature”. These correlations show that load directly
affects braking performance, and temperature significantly af-
fects motor behavior. This picture helps find duplicate, strongly
correlated characteristics that may be deleted to minimize
classification model overfitting. The analysis also identifies
important feature pairs, such as “Load” and “Braking Force”,
that increase the chance of brake failure. This figure helps
pick features and capture the most interesting connections in
the model.

Fig. 8. Feature importance using weighted divergence analyzer.

Fig. 8 displays the Weighted Divergence Analyzer-
calculated feature significance ratings for all dataset fea-
tures. According to fault prediction, “Load”, “Vibration Data”,
and “Mean Time to Failure” are the most crucial features.
Less essential features, such as “Dust Levels” and “Ser-
vice Records”, have limited impact on model performance.
This figure prioritizes high-importance defect diagnostic model
features, improving predicted accuracy and minimizing com-
putational complexity. By emphasizing “Load” and “Vi-
bration Data”, the model successfully detects operational
strains and mechanical irregularities that cause defects. Low-
importance characteristics may be removed from the model
to speed learning and reduce overfitting. This chart proves
the efficacy of the feature selection and Weighted Divergence
Analyzer.

Fig. 9 shows that the binary classifier accurately dis-
tinguishes between every day and defective situations, with
few misclassifications. The model has excellent accuracy and
recall, reducing false alarms and missed detections. Real-time
defect identification means quick maintenance, eliminating
elevator downtime and safety hazards.

Fig. 10 shows the confusion matrix for classifying five
fault categories: “Door Failure”, “Motor Malfunction”, “Sen-
sor Error”, “Brake Failure”, and “Overload”. Most diagonal

Fig. 9. Confusion matrix for fault state (Binary classification).

Fig. 10. Confusion matrix for fault category (Multiclass classification).

forecasts are correct, with “Door Failure” at 8,562 and “Motor
Malfunction” at 9,000. False positives and negatives are rare,
none reaching 2. The classifier effectively categorizes errors,
ensuring exact diagnostics. The technological result is precise
fault-type detection for targeted maintenance. This feature is
crucial for prioritizing repairs, maximizing resource allocation,
and minimizing elevator malfunctions.

Fig. 11. Confusion matrix for fault severity (Ordinal classification).

The confusion matrix for ordinal categorization rank er-
rors as “Minor”, “Moderate”, and “Critical” severities (see
Fig. 11). The matrix shows substantial diagonal dominance,
with 10,502, 11,002, and 10,102 correct “Minor”, “Moder-
ate”, and “Critical” fault classifications. Significantly few off-
diagonal misclassifications surpass 2. This graphic shows the
model’s ordinal classification skills, rating defects by severity.
Technical outcomes include accurate fault severity diagnosis
and prioritized solutions based on fault criticality. Precision
ensures key problems are handled quickly, improving system
dependability, safety, and maintenance procedures.
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Fig. 12. ROC Curve for all labels.

Fig. 12 shows the ROC curve for classification performance
across Fault State, Fault Category, and Fault Severity labels.
The Area Under the Curve (AUC) values of 0.98, 0.97, and
0.96 show excellent discrimination for all classification tasks.
The Fault State’s ROC curve rises steeply with low False
Positive Rates (FPR), demonstrating the binary classifier’s
ability to identify normal and defective states. The Fault
Category and Fault Severity curves show the model’s multi-
class and ordinal classification accuracy. Several causes cause
high AUC values. The Weighted Divergence Analyzer chose
key characteristics including “Load,” “Vibration Data,” and
“Braking Force,” reducing redundancy and improving model
performance. Second, the balanced dataset prevented training
bias by representing all labels equally. Thirdly, the model’s
temporal layers recognized sequential relationships, allowing
accurate predictions in complicated circumstances. Reduced
false positives and negatives were achieved by fine-tuning
thresholds to balance sensitivity and specificity.

TABLE III. CLASSIFICATION RESULTS OF DIFFERENT TECHNIQUES

Techniques F1-Score
(%)

Log Loss FTSI (%) Accuracy
(%)

AUC (%) Recall
(%)

Precision
(%)

ResNet [21] 90.1 0.220 83.1 91.4 90.7 89.8 90.2
Decision Trees [9] 86.3 0.280 78.0 87.6 86.0 86.2 86.5
Markov n-gram [10] 87.5 0.260 80.1 89.2 87.6 87.1 87.2
KNN [13] 87.0 0.270 79.2 88.4 86.4 86.8 87.1
DBN [19] 89.4 0.230 82.0 90.4 89.8 88.9 89.3
SVM [11] 88.5 0.240 81.2 89.9 89.5 88.1 88.6
VGG16 [17] 92.8 0.190 86.0 93.6 93.0 92.5 92.8
CNN [7] 91.2 0.210 84.5 92.8 91.9 90.9 91.3
Proposed TAFN 98.5 0.060 97.5 98.9 99.3 98.4 98.7

Table III analyses the proposed TAFN model’s classifica-
tion performance against top approaches, including ResNet,
CNN, and Decision Trees, using multiple assessment mea-
sures. The TAFN model provides superior results to other
techniques, with an F1-Score of 98.5%, accuracy of 98.9%,
and AUC of 99.3%. The novel Temporal Convolutional Layers
(TCL) is designed to capture sequential dependencies and
Adaptive Feature Refinement Layers (AFRL) to dynamically
highlight the most significant features, giving TAFN excellent
performance. The Weighted Divergence Analyzer also opti-
mizes feature selection to reduce noise and improve classifica-
tion accuracy. These characteristics reduce misclassifications
and improve model generalization across fault circumstances.
Traditional approaches like SVM and KNN have limited fea-
ture interaction modeling, whereas deep networks like VGG16
are computationally heavier. TAFN performs better while being

efficient. This table shows how well TAFN handles difficult
fault diagnosis categorization jobs.

Fig. 13. Training and testing accuracy of TAFN model.

Fig. 14. Training and testing loss of TAFN model.

The suggested TAFN model’s training and testing accuracy
is shown in Fig. 13 across 30 epochs. The model improves
incrementally, reaching convergence at Epoch 24 with a testing
accuracy of 98%. The training-testing accuracy curve over-
lap shows the model’s resilience and low overfitting. The
excellent accuracy is due to numerous variables. Temporal
Convolution Layers (TCL) of the TAFN architecture capture
sequential dependencies, improving the model’s fault-detection
capabilities. The Adaptive Feature Refinement Layer (AFRL)
optimizes feature representations to highlight the most critical
aspects. Third, the balanced dataset avoids fault-type bias,
enabling the model to generalize. Precise threshold adjustment
balances sensitivity and specificity. See Fig. 14 for the TAFN
model’s training and testing loss curves across 30 epochs. At
Epoch 24, the loss stabilizes, showing model convergence.
Both curves drop smoothly. The minimal final testing loss
confirmed optimization. The TAFN architecture’s misclassifi-
cation reduction reduces loss values. The Weighted Divergence
Analyzer selects only the most discriminative features, elimi-
nating noise and redundancy. Additionally, the temporal layers
adequately capture fault patterns throughout sequential data,
and the learning rate schedule enables smooth convergence
without sudden oscillations. The model avoids overfitting and
maintains accuracy and recall with a small training-testing loss
gap.
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TABLE IV. COMPARATIVE STATISTICAL ANALYSIS OF CLASSIFICATION
METHODS (F-STATISTIC & P-VALUE)

Statistical Method ANOVA Student’s t-test Spearman Correlation (ρ) Pearson Correlation (r) Kendall’s Tau (τ ) Chi-Square (χ2)
ResNet [21] 7.48 0.015 0.82 0.83 0.71 8.58
Decision Trees [9] 5.01 0.040 0.60 0.63 0.56 6.15
Deep Belief Network [19] 6.38 0.018 0.75 0.77 0.69 7.35
Naive Bayes [23] 5.32 0.038 0.59 0.61 0.55 6.20
Markov n-gram [10] 5.12 0.033 0.62 0.64 0.58 6.42
SVM [11] 5.76 0.028 0.69 0.71 0.63 6.82
VGG16 [17] 7.95 0.011 0.88 0.89 0.75 9.12
CNN [7] 7.02 0.019 0.86 0.87 0.74 7.89
Proposed TAFN 8.58 0.007 0.91 0.93 0.78 9.95

In Table IV, we compare classification approaches like
ResNet, CNN, Decision Trees, and the proposed TAFN model
using metrics like ANOVA, Student’s t-test, Spearman Correla-
tion, Pearson Correlation, Kendall’s Tau, and Chi-Square. With
an ANOVA F-statistic of 8.58 and a very significant p-value of
0.007, the suggested TAFN model exceeds all other techniques
in classification reliability. TAFN has the strongest Spearman
Correlation (ρ = 0.91) and Pearson Correlation (r = 0.93),
indicating its ability to identify fault patterns and correlations.
Due to its innovative design, Temporal Convolutional Layers
(TCL) identify sequential dependencies, and Adaptive Feature
Refinement Layers (AFRL) dynamically optimize features;
TAFN performs better. These components accurately detect
faults with little noise. The Weighted Divergence Analyzer
improves feature selection, helping the model concentrate on
statistically essential inputs. Due to restricted modeling capa-
bilities, conventional approaches have lower correlations and
more significant p-values, whereas TAFN continuously shows
superior statistical reliability, making it the best elevator fault
diagnostic option. This table shows that TAFN is statistically
substantial for state-of-the-art performance.

A. Relevance of Our Findings to Identified Problems and
Objectives

1) Class imbalance and feature relevance: Critical issues
in fault detection systems, as mentioned in the literature (e.g.
ResNet in [15], CNN in [22]), include class imbalance and du-
plicate features. Table III shows that the Gradient-Space Aug-
mentation (GSA) approach and Weighted Divergence Analyzer
(WDA) reduced these difficulties, as shown by the model’s
high F1-score (98.5%) and AUC (99.3%). Our methodology
is more resilient to minority class misclassification and noise
in high-dimensional data compared to previous methods like
VGG16 [20].

2) Temporal dependency modeling: Existing models, such
CNN and Decision Trees [16], fail to capture temporal depen-
dencies crucial for elevator fault diagnosis (see to Table I).
Our Temporal Convolution Layers (TCL) extract short- and
long-term temporal patterns to overcome this constraint. Fig.
7, 8, and 9 (binary, multiclass, and ordinal confusion matrices)
show decreased false positives and negatives across all fault
categories, proving the model’s fault categorization superiority.

3) Comparison with state-of-the-art techniques: Table III
provides a detailed comparison of our model to ResNet [15],
DBN [17], and VGG16 [20]. TAFN outperforms all criteria,
including FTSI (97.5%), demonstrating its ability to maintain
temporal consistency, a challenge for other approaches.

4) Practical implications: Fig. 1 to 6 give useful insights
into our model’s real-world implementation.

• Fig. 1 shows the linear connection between load and

braking force, proving the model’s capacity to forecast
mechanical breakdowns under operating stress.

• Fig. 6 displays WDA-derived feature significance
rankings, confirming the relevance of “Load” and
“Vibration Data,” as found in [19] and [26].

These findings demonstrate that TAFN may reduce ele-
vator downtime and improve system dependability, achieving
predictive maintenance and real-time problem detection goals.

V. CONCLUSION

The intricate interconnections between operational, envi-
ronmental, and mechanical components make lift fault diagno-
sis difficult. Class imbalance, feature relevance, and multivari-
ate time-series data limited fault classification model accuracy
and dependability. Work addressed these. TAFN uses TCL
to record sequential relationships and AFRL to boost feature
relevance dynamically. In binary, multiclass, and ordinal classi-
fication, TAFN ruled. The model surpasses existing approaches
with a 98.5% F1 score and 99.3% AUC. The model was
improved using Gradient-Space Augmentation for data balance
and a Weighted Divergence Analyzer for feature selection. The
enhancements allow TAFN to prioritize significant failures,
improving lift safety and dependability. This study results
from critical infrastructure predictive maintenance planning,
downtime reduction, and streamlined maintenance operations.
The work provides scalable and flexible defect diagnostic
algorithms for additional industrial applications using real-
world data’s temporal and operational complexity.

Future studies intend to improve TAFN’s flexibility and
scalability. Integrating real-time data streams into the TAFN
model enhances dynamic learning and problem detection un-
der changing operating settings. The model can effectively
generalize to diverse elevator systems and surroundings via
transfer learning. Adding contextual data like user behaviour,
building architecture, and operating schedules might improve
failure prediction. Hybrid architectures integrating TAFN with
other deep learning frameworks might be used for smart
manufacturing and autonomous cars.

Although strong, the present TAFN model has limitations.
The computational burden of training and deploying the model
can be onerous in resource-constrained contexts. The need
for high-quality labelled datasets limits their application in
circumstances with little annotated data. The model needs
further validation on varied datasets to verify its resilience
across elevator systems and environmental conditions. Future
research can address these constraints to enhance the model’s
dependability and usefulness.
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