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Abstract—The widespread adoption of airborne vehicles, in-
cluding drones and UAVs, has brought significant advancements
to fields such as surveillance, logistics, and disaster response.
Despite these benefits, their increasing use poses substantial chal-
lenges for real-time detection and classification, particularly in
multi-class scenarios where precision and scalability are essential.
This paper proposes a high-performance detection framework
based on YOLOv11, specifically tailored for identifying airborne
vehicles. YOLOv11 integrates innovative features, such as anchor-
free detection and enhanced attention mechanisms, to deliver
superior accuracy and speed. The proposed framework is tested
on a comprehensive airborne vehicle dataset featuring diverse
conditions, including variations in altitude, occlusion, and en-
vironmental factors. Experimental results demonstrate that the
fine-tuned YOLOv11 model exceeds the performance of existing
models. Additionally, its ability to operate in real-time makes
it ideal for critical applications like air traffic management and
security monitoring.
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I. INTRODUCTION

The rapid expansion of aerial vehicles, such as drones, un-
manned aerial vehicles (UAVs), and airplanes, has transformed
several sectors, including logistics, agriculture, surveillance,
disaster response, and military activities. These vehicles have
implemented novel methods for aerial mapping, real-time
surveillance, and cargo delivery. Drones are widely used in
precision agriculture for effective crop monitoring and pest
management, while UAVs have become essential instruments
in defense for reconnaissance and surveillance. Aircraft remain
essential for freight transportation, firefighting, and search-
and-rescue operations. Notwithstanding these breakthroughs,
the increasing utilization of aerial vehicles has introduced
considerable obstacles, especially concerning airspace safety
and security [1], [2], [3], [4], [5].

Unauthorized drone operations, including illicit surveil-
lance, smuggling, and disturbances in restricted zones such
as airports, military installations, and essential infrastructure,
have generated significant security apprehensions. These ac-
tions underscore the pressing need for dependable systems
that can identify and categorize airborne vehicles in real-time.
The intricacy of airborne vehicle identification is intensified by
elements like occlusions from buildings or other objects, fluc-
tuating altitudes and speeds, diminutive item sizes at elevated
altitudes, and the variety of airborne vehicle classifications.
Conventional detection techniques, including radar, acoustic

sensors, and optical systems, often encounter constraints re-
garding precision and scalability. Radar systems, while pro-
ficient in monitoring bigger aircraft, may have difficulties
with tiny drones because to their reduced radar cross-sections.
Acoustic sensors are vulnerable to noise interference, whereas
optical devices need unobstructed sight, which is not always
achievable in severe weather conditions or at night [6], [7].

Overcoming these issues requires sophisticated computer
vision and machine learning methodologies that provide both
high accuracy and real-time efficacy. Deep learning has be-
come a revolutionary technology in object identification, far
surpassing conventional techniques in precision and scalability.
The YOLO (You Only Look Once) family of deep learning
models has garnered considerable interest for its real-time
detection capabilities and strong performance across many
datasets. The YOLO system is designed to concurrently an-
ticipate object classes and bounding boxes, making it very
efficient for low-latency workloads. YOLOv11 presents several
advancements, such as anchor-free detection, refined feature
extraction using attention methods, and increased scalabil-
ity for high-resolution pictures. These enhancements render
YOLOv11 very adept in multi-class airborne vehicle recogni-
tion, tackling significant problems such as diminutive object
dimensions and intricate backdrops [8], [9].

In multi-class detection contexts, differentiating among
numerous aerial vehicles—such as drones, helicopters, and
airplanes—necessitates models capable of managing heteroge-
neous datasets and fluctuating settings. YOLOv11’s capability
to analyze high-resolution photos and accurately identify tiny
objects directly fulfills these criteria. Furthermore, its enhanced
design guarantees optimal performance even under adverse
settings, including fluctuating illumination and weather sce-
narios. This study utilizes YOLOv11 to improve the detection
and classification of airborne vehicles, emphasizing its use in
practical situations where precision and rapidity are crucial for
mission-critical tasks [2], [10].

This study presents many significant contributions:

• Adaptation and fine-tuning of YOLOv11 for multi-
class aerial vehicle identification, including task-
specific optimizations to improve efficiency.

• Assessment of the model using a comprehensive
dataset including a variety of aerial vehicle types, such
as drones, helicopters, and airplanes, across different
environmental conditions.
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• Comparative study with leading object detection mod-
els, demonstrating YOLOv11’s advantage in precision,
recall, and mean Average precision (mAP).

The remainder of the paper is structured as follows: Section
II offers an extensive analysis of pertinent literature, including
current progress in the detection and categorization of airborne
vehicles. Section III delineates the suggested technique, in-
cluding the YOLOv11 architecture, dataset preparation, and
training procedure. Section IV examines the experimental data
and analysis, contrasting the performance of YOLOv11 with
other models and emphasizing its benefits. Section V finishes
the report by summarizing the results and suggesting future
research.

II. RELATED WORK

Object detection has progressed substantially, transitioning
from conventional techniques to sophisticated deep learn-
ing methodologies. Initial methodologies, such Haar cascades
and Histogram of Oriented Gradients (HOG), depended on
manually created features and traditional machine learning
methods. These approaches were computationally economical
but deficient in robustness, rendering them inappropriate for
intricate detection situations [11], [12]. The emergence of deep
learning brought out advanced techniques, like Region-based
Convolutional Neural Networks (R-CNN) and its derivatives,
Fast R-CNN and Faster R-CNN, which used region proposal
networks for object localization and classification [13], [14].
Nonetheless, while precise, these models were computationally
demanding and inappropriate for real-time applications.

Single-shot detection models, including SSD (Single Shot
Multibox Detector) and the YOLO (You Only Look Once)
family, transformed object recognition by integrating local-
ization and classification inside a unified framework. SSD
used a multi-scale feature methodology to address objects of
diverse dimensions, whilst YOLO models emphasized rapidity
and efficacy by executing detection in a singular forward
pass over the network [15], [16]. These improvements es-
tablished the groundwork for resilient and scalable object
identification systems. Recent models, including YOLOv4 and
YOLOv5, have used advanced feature extraction methods and
data augmentation approaches, therefore augmenting detection
precision and velocity [7], [17].

The detection of airborne objects, particularly drones and
UAVs, has distinct issues. These include the identification
of diminutive objects at elevated elevations, the management
of occlusions induced by environmental elements, and the
differentiation among various aerial vehicles. Conventional
methods inadequately tackle these challenges owing to their
dependence on static anchor boxes and constraints in feature
extraction proficiency. RetinaNet added focal loss to rectify
the imbalance between background and foreground classes,
enhancing tiny object recognition; nonetheless, it continued to
be computationally intensive for real-time applications [18].
Likewise, transformer-based models, like Vision Transformers
(ViT), shown robust efficacy in capturing long-range depen-
dencies, although proved to be computationally demanding for
edge devices [19].

Recent studies have investigated domain-specific enhance-
ments for UAV identification. Ma et al. [20] introduced a hy-

brid methodology that integrates radar and image data, show-
casing enhanced classification precision for drones in low-
visibility environments. Zhang et al. [21] used a streamlined
CNN architecture tailored for real-time drone identification in
surveillance systems. Furthermore, Hossain et al. [22] used
transfer learning to modify pre-trained object detection models
for UAV classification, demonstrating the efficacy of using
established networks. Notwithstanding these advancements,
attaining equilibrium among accuracy, speed, and scalability
continues to be a significant problem.

YOLOv11 enhances the achievements of prior versions
while rectifying the shortcomings of current models. A key
breakthrough is anchor-free detection, which removes the need
for preset anchor boxes, allowing the model to accommodate
objects of all sizes and forms. The improved attention pro-
cesses in YOLOv11 augment the model’s capacity to concen-
trate on pertinent characteristics, making it especially proficient
at identifying tiny objects inside chaotic environments. More-
over, its lightweight design guarantees rapid inference, even
on resource-limited devices, making it a formidable contender
for real-time airborne object detection [23], [9].

Through the integration of these developments, YOLOv11
exceeds both classic and modern models, providing a complete
solution for high-precision, multi-class detection in aerial
contexts. Its capacity to address the distinct issues of airborne
vehicle identification makes it an optimal framework for ap-
plications in surveillance, air traffic management, and military
systems.

III. METHODOLOGY

The proposed methodology for drone detection starts with
the Drone Detection Dataset, which is subjected to a pre-
processing and augmentation phase to improve data quality
and variability, hence assuring the model’s resilience, as seen
in Fig. 1. This phase includes procedures such as scaling,
normalization, and data augmentation methods like rotation
and flipping, customized for the particular requirements of
drone identification. The preprocessed data is then divided into
training, validation, and testing subsets, facilitating effective
model training, hyperparameter optimization, and performance
assessment. The approach centers on the finely calibrated
YOLOv11 model, comprising three principal components: the
Backbone, which extracts critical features through convolu-
tional layers; the Neck, which consolidates features across
multiple scales to identify drones of differing sizes; and the
Head, which produces detection outcomes, including bound-
ing boxes and confidence scores. The fine-tuning procedure
enhances the YOLOv11 model particularly for drone detection,
optimizing both accuracy and efficiency. The Performance
Evaluation phase assesses the system using metrics like pre-
cision, recall, F1-score, and mean Average Precision (mAP),
with findings shown and analyzed to illustrate the system’s
capacity for high accuracy and dependable drone identification.

A. Fine-Tuned YOLOv11 Architecture

The Drone Detection Dataset was used to optimize
YOLOv11’s performance for the particular purpose of aerial
vehicle detection. Fine-tuning is modifying a pre-trained model
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Fig. 1. Proposed approach-based fine-tuned YOLOv11.

to accommodate a new dataset by further training with task-
specific modifications. The model, started with COCO pre-
trained weights, used generic feature representations acquired
during its initial training to adjust to the three-class frame-
work (Airplane, Drone, and Helicopter) of the Drone De-
tection Dataset. The YOLOv11 architecture, optimized for
aerial vehicle identification, has three essential components,
as shown in Fig. 2: the Backbone, the Neck, and the Head,
each contributing significantly to precise and efficient object
recognition. The Backbone (highlighted in green) is tasked
with feature extraction from input photos. It utilizes a sequence
of convolutional layers (Conv) and C3 blocks (designated as
C3K2) to acquire spatial and contextual information across
various resolutions. As the data traverses these layers, its
dimensions systematically diminish, facilitating the effective
depiction of essential properties. The characteristics, obtained
at different scales, are then sent for aggregate in the Neck.
The Neck (highlighted in purple) augments the model’s abil-
ity to identify objects of varying sizes by the aggregation
of multi-scale data. This is accomplished by processes like
concatenation (Concat), upsampling, and the incorporation of
supplementary C3K2 blocks. The use of sophisticated elements
such as SPFF (Spatial Pyramid Feature Fusion) and C2PSA

(Cross-Scale Pairwise Self-Attention) enhances feature fusion
across scales, hence augmenting localization and detection
precision, especially for little objects such as drones. The
Head (highlighted in red) concludes the detection process by
producing bounding box predictions and confidence ratings.
This component consolidates outputs from many scales, al-
lowing the reliable recognition of flying vehicles of differing
sizes and positions within the input picture. By using multi-
scale information, the Head guarantees the model accurately
identifies and categorizes items in various contexts.

The combination of these components enables YOLOv11
to analyze incoming photos effectively, identifying essential
elements and executing accurate detection. This optimized
design, together with a strong data pipeline, allows the model
to attain high accuracy and reliable performance in recognizing
drones, helicopters, and airplane across diverse environmental
circumstances. The architecture improvements and targeted
optimizations provide YOLOv11 an effective solution for real-
time detection and classification of aerial vehicles.
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Fig. 2. Fine-tuned YOLOv11 architecture.

Fig. 3. Visualization of the Dataset. (a) Number of annotations per class. (b)
Visualization of the location and size of each bounding box. (c) Statistical

distribution of the positions of the bounding boxes. (d) Statistical
distribution of the sizes of the bounding boxes.

B. Dataset Preparation

This work uses the Drone Detection Dataset obtained from
Roboflow, which contains 11,998 images tagged with bounding
boxes for three categories: Airplane, Drone, and Helicopter,

as seen in Fig. 3. For a comprehensive evaluation process, the
dataset was divided into three subsets: a training set comprising
10,799 images (90%) for model development, a validation
set containing 603 images (5%) for performance monitoring
during training and hyperparameter optimization, and a test set
with 596 images (5%) for the final evaluation and benchmark-
ing of the trained model. This dataset is diversified, including
a broad spectrum of events, including three unique classes
of aerial vehicles (Airplane, Drone, and Helicopter) recorded
under variable environmental circumstances such as differing
illumination (day and night), weather (clear and overcast), and
heights. Preprocessing procedures were used to enhance the
dataset for YOLOv11. All photos were downsized to 640×640
pixels with a stretch transformation to conform to YOLOv11’s
input specifications. Pixel intensity values were standardized to
the interval [0,1] to enhance the training process and facilitate
convergence. Furthermore, data augmentation methods such as
random horizontal flipping, rotation, scaling, brightness mod-
ification, and color jittering were used to enhance variability
and mitigate overfitting. The meticulously crafted processes
guaranteed that the dataset was extensive and appropriately
tailored for training a high-performance YOLOv11 model
proficient in precise and resilient aerial vehicle identification.

C. Model Training and Optimization

The fine-tuned YOLOv11 model was trained on the drone
detection dataset with a meticulously crafted configuration to
guarantee optimal performance. A learning rate of 0.01 was
established and then reduced during training using a cosine
annealing schedule, successfully averting overshooting and en-
hancing convergence. A batch size of 32 was used to improve
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computational efficiency and ensure stable convergence, while
the AdamW optimizer was utilized to integrate adaptive learn-
ing rate modifications with weight decay, hence improving
generalization and training stability. Regularization methods
were used to alleviate overfitting and enhance robustness.
Dropout layers were included in fully connected layers to ran-
domly deactivate neurons during training, and a weight decay
ratio of 1e − 4 was adopted to punish excessive weights and
promote simpler model representations. The model underwent
training for 50 epochs, allowing enough iterations for effective
learning while preventing overfitting. Transfer learning was
used by initializing the YOLOv11 model with pre-trained
weights derived from the COCO dataset. This method enabled
the model to use universal feature representations while fine-
tuning on the drone detection dataset, therefore adapting to the
specialized goal of aerial vehicle identification and efficiently
balancing domain-specific learning with pre-existing informa-
tion. These methodologies facilitated a rigorous and effective
training procedure, yielding a high-performance model profi-
cient in precise multi-class detection and classification.

D. Evaluation Metrics

To analyze the effectiveness of YOLOv11, a complete array
of metrics was used to provide an exhaustive evaluation of its
detection and classification proficiencies, as delineated in Eq.
1, 2, 3, 4, and 5. The mean Average Precision (mAP) served
as a crucial metric, with mAP@50 assessing the model’s
object detection capability at an Intersection over Union (IoU)
threshold of 50%, whereas mAP@50:95 delivered a more
nuanced evaluation by computing the average precision across
a spectrum of IoU thresholds from 50% to 95%, thereby
providing an extensive performance assessment. Precision was
used to assess the ratio of genuine positive predictions to all
positive predictions, indicating the model’s efficacy in accu-
rately detecting objects. Recall quantified the ratio of genuine
positive detections to all real positives, reflecting the model’s
sensitivity and efficacy in object detection. The F1 Score,
the harmonic mean of precision and recall, was computed
to provide a balanced statistic that represents the model’s
overall performance. Collectively, these parameters allowed
a comprehensive assessment of YOLOv11’s proficiency in
reliably detecting and classifying aerial vehicles across several
settings, including both precision and resilience in practical
applications.

IoU =
Area of Overlap
Area of Union

(1)

mAP =
1

n

n∑
i=1

APi (2)

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(3)

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(4)

F1 Score = 2× Precision × Recall
Precision + Recall

(5)

IV. EXPERIMENTAL RESULTS

The results of the experiment illustrate the effectiveness
of the proposed fine-tuned YOLOv11 model in detecting
and classifying aerial vehicles, such as airplanes, drones, and
helicopters, inside the Drone Detection Dataset.

Fig. 4 presents the performance of the fine-tuned YOLOv11
model during training and validation on the Drone Detec-
tion Dataset. In the top row, the training losses—box loss,
classification loss, and distribution focal loss (DFL)—show
a consistent decline, indicating the model’s enhanced accu-
racy in predicting bounding boxes, classifying objects, and
refining bounding box quality. Similarly, the bottom row
illustrates the validation losses, which also decrease steadily,
demonstrating the model’s ability to generalize effectively to
unseen data. Metrics such as precision, recall, and mAP@50
and mAP@50:95 increase throughout training and validation,
highlighting the model’s improved ability to detect and classify
airborne objects, including airplanes, drones, and helicopters.
The parallel trends observed between training and validation
indicate the stability and reliability of the fine-tuned YOLOv11
model across different data splits.

Fig. 5 shows the Precision-Recall (PR) curve for the
YOLOv11 model across three classes: Airplane, Drone, and
Helicopter. Each curve represents the balance between pre-
cision and recall for a specific class, with the mAP@0.5
(mean Average Precision at IoU 0.5) values annotated in the
legend. The Airplane class achieves a high mAP of 0.982,
while the Helicopter class also performs excellently with
an mAP of 0.983. The Drone class shows a slightly lower
performance with an mAP of 0.933. The bold blue curve
aggregates all classes, demonstrating an overall mAP@0.5 of
0.966. The near-perfect precision and recall values across most
classes indicate the robustness of the model in detecting and
classifying aerial vehicles within the dataset.

Fig. 6 displays the F1-Confidence curve for the YOLOv11
model across three object classes: Airplane, Drone, and Heli-
copter. Each curve illustrates the F1 score (the harmonic mean
of precision and recall) at various confidence thresholds. The
Airplane and Helicopter classes achieve high F1 scores close to
0.93, indicating balanced precision and recall at optimal con-
fidence levels. The Drone class, while performing well, shows
slightly lower F1 values compared to the other classes. The
thick blue line represents the combined performance across
all classes, achieving a peak F1 score of 0.93 at a confidence
threshold of 0.340. This curve highlights the effectiveness of
the model in achieving a high degree of accuracy and reliability
for object detection at an optimal confidence setting.

Fig. 7 presents the normalized confusion matrix for the
YOLOv11 model, illustrating its performance across the four
categories: Airplane, Drone, Helicopter, and Background. Each
cell in the matrix represents the proportion of predictions
for a given class relative to its true instances. The diagonal
cells indicate correct predictions, with high values of 0.97 for
Airplane, 0.94 for Drone, and 0.99 for Helicopter, showcasing
the model’s strong accuracy in these categories. Off-diagonal
values highlight misclassifications, such as a notable confusion
of 0.19 where some Airplanes are misclassified as Drones and
0.10 where some Helicopters are misclassified as Background.
The matrix underscores the model’s overall reliability while
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Fig. 4. Training and validation performance metrics.

Fig. 5. PR Curve for YOLOv11 on drone detection dataset.

Fig. 6. F1-Confidence curve for YOLOv11 on drone detection dataset.

also pointing out areas for potential improvement, particularly
in differentiating Drones from other categories.

Fig. 7. Normalized confusion matrix for YOLOv11 on drone detection
dataset.

Fig. 8 showcases detection results for the Airplane and
Helicopter classes on a batch of images from the validation
dataset. Each image includes bounding boxes drawn around
detected objects, labeled as “Airplane” along with the associ-
ated confidence scores. The confidence values range from 0.6
to 0.9, reflecting the model’s confidence in the accuracy of its
predictions. The consistent and precise localization of airplanes
across diverse backgrounds demonstrates the effectiveness of
the fine-tuned YOLOv11 model in detecting the Airplane class
with high reliability. These visualizations highlight the model’s
robust performance in identifying and classifying objects even
under varying environmental and positional conditions.

A. Comparative Study

Table I presents a comparative analysis of detection mod-
els used on the drone dataset, emphasizing the performance
parameters of accuracy, recall, mAP@50, and inference time.
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(a) Detection results for airplane class on validation dataset.

(b) Detection results for helicopter class on validation dataset.

Fig. 8. Prediction results on validation dataset.

The findings from [24] indicate a precision of 0.91, a recall of
0.89, and a mAP@50 of 0.93; nevertheless, the inference time
remains unreported. Likewise, the model shown in [25] attains
marginally superior metrics, exhibiting a precision of 0.94, a
recall of 0.92, and a mAP@50 of 0.94. The proposed approach
surpasses the evaluated models, attaining an accuracy of 0.94,
a recall of 0.943, and a mAP@50 of 0.966. Moreover, it has
an inference time of about 1.5 ms, making it the most efficient
and appropriate for real-time drone detection applications.
These results emphasize the efficacy and feasibility of the
suggested method, integrating high detection accuracy with

rapid processing speed.

TABLE I. COMPARISON OF DETECTION MODELS

Model Precision Recall mAP@50 Inference Time (ms)

YOLOv4 [24] 0.91 0.89 0.93 —
YOLOv5 [25] 0.94 0.92 0.94 —
Proposed Approach 0.94 0.943 0.966 1.5

V. CONCLUSION

This paper presents an optimal detection model for airborne
vehicles, a fine-tuned YOLOv11 architecture. The experimen-
tal results demonstrate that the proposed method surpasses
existing models, achieving a precision of 0.94, a recall of
0.943, and an mAP@50 of 0.966, with an inference time
of only 1.5 ms. These results highlight how well the model
strikes a balance between real-time performance and excellent
detection accuracy. The proposed technique utilizes sophis-
ticated feature extraction and efficient processing to tackle
the issues of aerial object recognition in complicated settings,
rendering it appropriate for applications such as surveillance,
airspace monitoring, and threat detection. Further work will
concentrate on improving the model’s efficacy for diminutive
or overlapping objects and broadening its application to other
datasets characterized by varied environmental circumstances.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of
Scientific Research at Northern Border University, Arar, KSA
for funding this research work through the project number
“NBU-FFR-2025-1260-01”

REFERENCES

[1] S.-W. Roh and J.-W. Lim, “Drone detection and classification using
deep learning,” Sensors, vol. 21, no. 9, p. 3002, 2021.

[2] A. Sharma and R. Mittal, “Drone detection and identification in the rf
spectrum using a machine learning approach,” IEEE Access, vol. 9, pp.
96 856–96 867, 2021.

[3] N. Al-lQubaydhi, A. Alenezi, T. Alanazi, A. Senyor, N. Alanezi,
B. Alotaibi, M. Alotaibi, A. Razaque, and S. Hariri, “Deep learning
for unmanned aerial vehicles detection: A review,” Computer Science
Review, vol. 51, p. 100614, 2024.
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