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Abstract—Optimizing path planning and control in robotic
arms is a critical challenge in achieving high-precision and effi-
cient operations in various industrial and research applications.
This study proposes a novel approach leveraging deep Q-learning
(DQL) to enhance robotic arm movements’ computational effi-
ciency and precision. The proposed framework effectively ad-
dresses key challenges such as collision avoidance, path smooth-
ness, and dynamic control by integrating reinforcement learning
techniques with advanced kinematic modelling. To validate the
effectiveness of the proposed method, a simulated environment
was developed using a 6-degree-of-freedom robotic arm, where
the DQL model was trained and tested. Results demonstrated
a significant performance improvement, achieving an average
path optimization accuracy of 98.76% and reducing computa-
tional overhead by 22.4% compared to traditional optimization
methods. Additionally, the proposed approach achieved real-time
response capabilities, with an average decision-making latency of
0.45 seconds, ensuring its applicability in time-critical scenarios.
This research highlights the potential of deep Q-learning in
revolutionizing robotic arm control by combining precision and
computational efficiency. The findings bridge gaps in robotic
path planning and pave the way for future advancements in
autonomous robotics and industrial automation. Further studies
can explore the scalability of this approach to more complex
and real-world environments, solidifying its relevance in emerging
technological domains.
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I. INTRODUCTION

Robotic arms are image-sensitive designs widely used in
the production, medical, and conveyancing industries. In the
case of low-level control of robotic arms, path planning and
control issues still prove ongoing difficulties because they
greatly involve kinematic equations, dynamic scenarios, and
real-time constraints. Although more conventional methods of
such inverse kinematics and model-based control exist, the
work done using these methods fails to meet the requirements
of flexibility and speed in today’s environment [1]. The new
trends and emergence of artificial intelligence, specifically
reinforcement learning, show potential as solutions to these
issues. Of these, deep Q-learning (DQL) remains one of the
most promising methods, allowing robots to learn the best poli-
cies based on the results of interaction with the environment
[2].

Robotic arm interventions are more frequently applied
due to their ability to perform operations demanding precise

tactile identification and iterative mechanical action [3]. In the
automobile industry, car manufacturing companies use robotic
arms to assemble cars, whereas in the medical field, these
systems are useful for surgeries like robotic surgeries [4]. But
realizing smooth path planning and control in such applications
requires overcoming some of the abovementioned obstacles
[5]. For instance, with only five degrees of freedom, as in
robotic systems, joint limits, obstacles, and power consumption
must be integrated into the problem. The former classical
approaches are deterministic and include PID control and in-
verse kinematics but do not include mechanisms for continuous
adaptation to the changing environment. In addition, these
approaches often involve very precise modelling of the robotic
system and the environment and, therefore, do not scale well
to situations where such modelling and analysis is difficult
or exceedingly costly [6]. Although the optimization-based
approach is useful when the environment is fixed and cannot
be changed, it is less useful when the positions of the obstacles
and/or targets vary arbitrarily [7].

Now, with such advances in AI techniques, the switchover
of the area of robotic control has changed. Reinforcement
learning is a type of artificial intelligence that allows agents to
obtain experience with burgeoning techniques that cannot be
easily programmed. Specifically, in the field of RL, DQL is
one of the most important algorithms due to its capability of
managing large space state-action by using neural networks to
approximate the optimum policy [8]. This capability becomes
useful, particularly when applied to robotic arms with many
degree-of-freedoms (DOFs), because the space to look for
optimal actions is astronomical [9].

The inclusion of DQL in robotic arm control gives several
benefits. Therefore, DQL eliminates dependency on model up-
dates with direct learning from environmental stimuli or forces
and provides a better adaptation capability to unexplained
variation [10]. Furthermore, the DQL can learn regarding
multiple objectives that may be relevant in a specific task,
like using less energy as well as acquiring higher accuracy.
These features make it a promising candidate for addressing
the limitation of using traditional methods [11]. However, DQL
has its limitations and issues when applied to actual robotic
systems, which are that a large amount of training data is
required, and there is an urge to overfit the system for specific
environments and high computation during the learning phase.
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A. Research Gap and Limitations of Previous Studies

Despite significant progress, existing path planning and
control methodologies in robotic arms face several limitations.
Several approaches are used in coverage path planning, and
most consider a fixed environment, while environments con-
taining moving obstacles are natural. High cost in computa-
tion, as induced by optimization algorithms such as genetic
algorithms and particle swarm optimization, reduces their
applicability in real-time systems [12]. Furthermore, several
methods designed for particular robotic architectures can be
incompatible with other systems and problems in different
fields, thus making them non-transferable [13]. Despite various
advantages, reinforcement learning techniques are often char-
acterized by slow convergence and low precision, especially
in applications involving large degrees of freedom [14]. In
addition, the methods mentioned above cannot handle multi-
objective optimization issues, such as minimizing energy con-
sumption and improving trajectory accuracy, which is essential
for most industrial applications [15]. The impossibility of
adjusting decisions there immediately, if necessary, also limits
their applicability concerning very volatile and unpredictable
circumstances. Such limitations justify the need for fresh
thinking to develop new methods that can meet demands of
computational effectiveness, flexible designs, and high accu-
racy, which must also achieve high levels of functionality
across numerous real-life conditions [16].

B. Challenges of the Study

This research addresses critical challenges in robotic arm
control. Achieving computational efficiency without com-
promising precision is a fundamental requirement for high-
accuracy tasks. Another challenge relates to the fact that
a business operates in an unpredictable environment, which
requires the company to respond without much delay to
dynamic changes within its operations environment [17]. In
addition, there are other factors that complicate the path
planning problem, for instance, optimizing for minimal path
length while at the same time trying to avoid collisions with
obstacles and trying to find the path that will consume the
least amount of energy. In terms of the latter, scalability is
still important here since we deal with robotic arms that can
have different degrees of freedom, and the object our proposed
solution addresses must work equally well with robotic arms
of different types and in various application domains.

C. Motivations and Novel Contributions

This study is motivated by the need for robust, scalable, and
computationally efficient robotic arm path planning and control
solutions. The novelty of this research lies in the following
contributions:

1) Integration of DQL for Robotic Arm Control: A
novel integration of DQL is proposed to address the
complexities of path planning and dynamic control in
robotic arms, emphasizing computational efficiency
and real-time adaptability.

2) Comprehensive Performance Evaluation: The pro-
posed approach is rigorously tested in both simulated
and dynamic environments, showcasing its generaliz-
ability and robustness.

3) Enhanced Precision with Reduced Latency: The de-
veloped framework achieves high precision (e.g.
98.76% path optimization accuracy) while reducing
average decision-making latency to 0.45 seconds,
outperforming state-of-the-art techniques.

4) Framework Scalability: The study demonstrates the
scalability of the proposed approach across robotic
arms with varying degrees of freedom, paving the
way for broader industrial adoption.

The remaining paper is well organized, as Section II covers
the relevant literature based on our study. Section III elaborates
on the proposed methodology, including the integration of
DQL for path planning and control. Section IV discusses the
experimental setup, including the robotic arm model, training
environment, and evaluation metrics. Section V presents the
results and analysis, including a comparison with baseline
methods. Finally, Section VI concludes the paper and outlines
future research directions.

II. LITERATURE REVIEW

Sumanas et al. [18] discussed the application of a deep
Q-learning approach to improve not only the precision but
also the reliability of robotic systems for positioning, tak-
ing into consideration the positioning errors that occur in
industrial processes. They pointed out problems arising from
multifactor sources of positioning inaccuracies that cannot
be balanced by conventional techniques. To overcome these
disadvantages, they have outlined a methodology in their study
using an ML approach that aims at determining required robot
position changes in real-world settings, including production
adjustments or redesigns. Importantly, they do not incorporate
large external data or require high computational power but
can be applied in situ. With the help of the DQL algorithm,
the improvements in positioning accuracy were noted in the
purpose-built KUKA YouBot robot, and considerable improve-
ments were observed after about 260 iterations in online mode.
The study also brings into focus that reinforcement learning
can increase the further application of industrial robots of
increasing capability by proving that ML-based solutions can
solve complex problems of the real applications of robotic
systems with great efficiency without necessarily demanding
a broad computational network. According to their work, they
reduce the gap between the high level of sophistication in the
methods of applying ML and real-life use in industrial robotics.

Bi et al. [19] suggested the RL method for planning the
intercostal robotic ultrasound imaging to avoid the problem
of detecting the acoustic shadows from the rib cage. Normal
thoracic applications of ultrasound imaging can be a problem
in that limited acoustic access due to the rib cage, intercostal
scanning paths are usually the only paths that can be used
to achieve a comprehensive amount of diagnostic information.
Their RL-based method solves this by training the agent in
a simulated environment created using templates of CT scans
involving randomly initialized tumours of arbitrary size and
position. The RL framework uses task-specific state repre-
sentation and rewards to improve training convergence and
eliminate acoustic bleed effects during scanning [20]. The
herein presented approach was effectively tested and validated
on unseen CT datasets, providing proof of concept on gen-
erating non-shadowed scanning trajectories for the purpose of
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ultrasound imaging. The findings demonstrate the effectiveness
of the system in planning scanning paths flexible to the
anatomy and providing accurate recognition of internal organ
lesions found in the liver and even the heart. This work
presents a new approach to the application of robotics in
ultrasound imaging with a focus on the gaps within traditional
use in thoracic applications and enhanced opportunities for
diagnosis in the future. Cheng et al. [21] provided a new
theoretical foundation for IBVS innovation in sustainable
and smart manufacturing systems for complicated high-speed,
high-precision robotic applications. Their strategy presents a
fuzzy control system with a specific use of the Mamdani
fuzzy inference technique to daily regulate variations in serving
gains to improve speed and effectiveness of the convergence
rate. This is in line with the intelligent manufacturing concept,
where accuracy and flexibility are the key necessities. One new
development in their strategy is the advent of generating OG-
VFVRs to navigate around FOV limitations within the image
space on the fly. By completing comparative experiments, their
method achieved significant improvements by minimizing the
convergence iterations and the initial velocities being only 59%
and 12% of the initial velocities in the conventional equivalent
methods, respectively. Moreover, the optimization provided
better continuity regarding the initial speed, as a result of
which the operation became more and more efficient. This
vertical coordinate reached a maximum value of 1011 pixels
for the image, and it showcased superior security performance.
In achieving this, this study is greatly beneficial for the im-
provement of precision and speed in robotic operations, besides
improving on sustainable and technology-based manufacturing
systems. Consequently, the study emphasizes the importance
and likelihood of intelligent control systems to transform
robotics in current complex manufacturing surroundings.

Sivamayil et al. [22] reviewed 127 publications to synthe-
size and discuss the various RL applications in the areas of
robotics and automation, gaming, self-driving cars, NLP, IoT
security, recommendation systems, finance, and EMS. Another
strongly stressed aspect of RL was that it is more flexible
than other structured rule-dependent systems that may not
easily respond to the novel, emergent behaviour encountered in
real-life situations. The authors especially dedicated a number
of pages on how RL can be applied in energy systems, for
instance in smart buildings, HEVs, and renewable energy
systems. In smart buildings, RL has been used in modelling
the heating, ventilation, and air conditioning (HVAC), where
energy use is minimized to provide comfort to the users.
In the case of HEVs, slack variable modelling, in detailed
RL methods, has shown its ability to determine optimal
battery longevity and enhanced fuel economy adaptive control
policies. Additionally, incorporation of the RL in renewable
energy systems helps to reach net-zero carbon emissions,
supporting worldwide sustainability goals. Apart from energy,
the applicability of RL in gaming, robotics, and automated cars
has attracted interest due to the learning of better policies by
mere exploration of experience. In addition, the study pointed
out that RL is important for security applications since the
simulated environment is effective in building better systems.
The present SR therefore can be seen as a source of reference
on the fundamental concepts and numerous uses of RL while
offering insights on the Areas of Growth of the system.

Chen et al. [23] introduced a deep reinforcement learn-

ing (DRL) framework for autonomous robotic grasping and
assembly skill learning, where DQL is used for grasping
and PPO for assembly tasks. It combines prior knowledge to
improve the approach used in modelling the grasping actions to
reduce the training time and interaction data needed in learning
the assembly strategy. To improve the system’s output even
more, they developed special reward functions based on tasks
such as grasping and assembly constraint rewards as means
to determine the quality of the operations. Its effectiveness
was confirmed in mock and actual practice conditions. For
grasping tasks, in both scenarios, the success rate on average
was 90%. In assembly tasks, under a peg-in-hole tolerance
of 3 mm, the success rate of this framework was 86.7%
in simulation and 73.3% in a physical environment, which
indicated this framework can be well applied to real-world
conditions [24]. This research shows the possibility of using
DRL combined methods for solving the complex robotic tasks
via minimising the training load and improving the task-
solving effectivity. The combination of the DQL and PPO
algorithms and the method of constraint-based learning of the
reward function provide a real leap forward in increasing the
accuracy and productivity of robots in industrial environments.
This study lays down a strong framework upon which further
developments in autonomous robotic systems may build on.

He et al. [25] designed a self-adaptive trajectory tracking
control strategy for mobile robots by employing backstepping
control associated with Double Q-learning in an effort to
rectify drawbacks that may be observed in backstepping.
Depending on more traditional approaches, trajectory precision
cannot be relied upon in complex indoor inspection, leading
to problems like image misalignment or focus when at high
zoom. They have some limitations in their work, and to
overcome these limitations, the proposed framework presents
an incremental, model-free Double Q-learning algorithm that
adapts the gains of the trajectory tracking controller in real-
time. For further optimization of the non-uniform state space
search, the approach is designed to have the incremental active
learning exploration algorithm with memory and experience re-
play involved. This design allows for enhanced controller gain
reduction and fast online learning, thus increasing adaptability.
This method was further confirmed in simulation scenarios
in Gazebo; this was followed by tests on physical platforms
using different trajectories. Two figures were presented to
show that the Double Q-backstepping algorithm was more
robust, generalized better in real-time, and was more immune
to disturbances than the other three algorithms. It was also
observed that the proposed approach showed better trajectory
tracking and stability than that observed with the conventional
Backstepping-Fractional-Older PID and Fuzzy-Backstepping
control methodologies. This research reveals that RL can be
used to significantly improve mobile robot trajectory tracking
control and present a reliable approach for its application in
dynamic and complex working environments. The findings
have set up further development opportunities for the adaptive
robot control system.

Okafor et al. [2] developed a DRL for sorting objects
by a robot in complex environments with high clutter lev-
els [26]. Their approach involves light-weight vision models
built from Pixel-wise Q-valued Critic Networks, or PQCN,
combined with backbone architectures such as DenseNet121,
DenseNet169, MobileNetV3, and SqueezeNet. Correspond-
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ingly, these models in conjunction with fully convolutional
neural networks (FCN) enable affordance mapping to trans-
form visual percepts into action plans for how to push, grasp,
and place objects. To improve the training throughput, the
framework uses dual and single transfer learning and gradient-
based replenishment methods. The outcomes of the study
establish that the PQCN-DenseNet121 model, trained with
DTL, worked as expected in sorting images with impressive
success rates in several object classes.

III. METHODOLOGY

The presented approach uses DQL as the theoretical frame-
work for path planning and control of the robotic arms,
which addresses the major issues including real-time adapt-
ability, precision, and computational efficiency. The above
approach incorporates reinformation learning algorithms fused
with modern kinematics modelling to optimize robotic systems
in unpredictable conditions.

A. Problem Formulation

Path planning and control for robotic arms are modeled
as a Markov Decision Process (MDP), where the environment
is defined by a state space S, an action space A, a reward
function R(s, a), and a transition probability P (s′|s, a). The
goal is to determine an optimal policy π∗ that maximizes the
expected cumulative reward, defined as:

J(π) = Eπ

[ ∞∑
t=0

γtR(st, at)

]
, (1)

where γ is the discount factor ensuring the balance between
immediate and future rewards. This formulation enables the
robot to make sequential decisions under uncertainty by evalu-
ating the long-term rewards associated with a given state-action
pair. The problem becomes particularly challenging in high-
dimensional state-action spaces, which necessitates efficient
computational techniques for policy optimization.

To manage high-dimensional state-action spaces, the
robotic arm’s problem is broken down into discrete steps,
where each step corresponds to a specific joint configuration
and its associated action. The kinematic model of the robotic
arm provides the essential mapping from joint angles to end-
effector position and orientation. This relationship is governed
by the forward kinematics equation:

T =

n∏
i=1

Ti, (2)

where Ti represents the transformation matrix for the i-
th joint, encapsulating rotation and translation. These matrices
are derived using Denavit-Hartenberg (DH) parameters, which
define the spatial relationship between consecutive joints.
The forward kinematics allows the determination of the end-
effector’s pose in Cartesian coordinates given a set of joint
angles.

Nevertheless, inverse kinematics is also used to calculate
joint angles needed to achieve a specific end-effector position.

On the other hand, the inverse kinematics problem is not trivial
because there might be multiple solutions, or even no solution
at all, in some cases when the robot is placed in a constrained
environment. It is whether these challenges are compounded
by dynamic constraints and imposing demands for real-time
strategic adaptation that substantiate the integration of machine
decision-making modalities such as reinforcement learning.

To address these complexities, the MDP formulation incor-
porates task-specific constraints, such as collision avoidance,
energy efficiency, and precision in reaching target positions.
These constraints are encoded within the reward function
R(s, a), ensuring that the policy optimizes both task perfor-
mance and operational safety. For example, penalizing prox-
imity to obstacles or inefficient movements guides the robot
toward optimal behaviors.

Furthermore, the state space S includes not only the joint
angles but also joint velocities, accelerations, and sensory
data from the environment. This enriched representation will
facilitate a better understanding of the robotic control problem.
It captures the dynamic interplay between the robot and its
environment, making control strategies more resilient.

The transition probabilities P (s′|s, a) reflect the stochastic
nature of the robotic system, including uncertainties in actua-
tion and environmental changes. These probabilities are esti-
mated using a combination of empirical data and probabilistic
models, ensuring accurate predictions of future states. This
aspect is crucial for enabling the robot to operate effectively
in dynamic and uncertain environments.

Using the defined MDP framework, this formulation offers
a systematic way to solve the intricate challenge of path
planning and control of robotic arms. Adding reinforcement
learning algorithms also allows the robot to update the opti-
mal policy based on trial-and-error interaction environments,
increasing its versatility in practical application.

B. Deep Q-Learning Framework

The Deep Q-Learning (DQL) approach approximates the
Q-value function Q(s, a) using a neural network, enabling
efficient learning in high-dimensional state-action spaces. The
Q-network predicts the expected reward for each action in a
given state, iteratively updated using the Bellman equation:

Q(s, a)← Q(s, a)+α
[
R(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
,

(3)

where α denotes the learning rate, s′ is the next state, and
a′ is the action in the next state. This iterative update ensures
that the Q-values converge to the optimal values over time,
balancing immediate and future rewards through the discount
factor γ.

To stabilize training and avoid divergence in Q-value esti-
mation, a target network is employed. The target network is a
copy of the Q-network that is periodically updated to maintain
a consistent target for updates. The soft update mechanism is
defined as:

θtarget ← τθonline + (1− τ)θtarget, (4)
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where τ is the soft update rate, controlling the degree
of change in the target network. This mechanism reduces
instability by decoupling the target generation from the Q-
network updates, ensuring smoother learning.

An integral component of the DQL framework is the
experience replay buffer, which stores transitions (s, a,R, s′)
observed during training. By sampling minibatches of past
experiences uniformly, the replay buffer breaks temporal cor-
relations between consecutive samples, improving training
efficiency and reducing overfitting. The sampling process also
allows the model to revisit rare but informative experiences,
enhancing learning robustness.

To accelerate convergence and improve exploration, an ϵ-
greedy policy is employed. This policy selects random actions
with probability ϵ, encouraging exploration of the state-action
space, while exploiting the learned Q-values for the remaining
1− ϵ fraction of the time. The value of ϵ is decayed over time
to transition from exploration to exploitation as the training
progresses.

The Q-network itself is a deep neural network consisting
of multiple layers, including input, hidden, and output layers.
The input layer processes the state representation, which may
include joint positions, velocities, and sensory data. The hidden
layers extract high-level features, while the output layer pre-
dicts Q-values for all possible actions. The network is trained
using stochastic gradient descent to minimize the temporal
difference (TD) error:

L(θ) = E(s,a,R,s′)

[(
R(s, a) + γmax

a′
Q(s′, a′; θtarget)

−Q(s, a; θ)
)2]

, (5)

where θ represents the Q-network parameters. This loss
function penalizes discrepancies between predicted Q-values
and target Q-values, driving the network toward optimal pre-
dictions.

The DQL framework also integrates advanced techniques
such as prioritized experience replay and double Q-learning
to enhance performance. Prioritized experience replay assigns
higher sampling probabilities to transitions with larger TD
errors, focusing learning on challenging samples. Double Q-
learning mitigates overestimation bias by decoupling action
selection and evaluation during the Q-value updates.

Overall, the DQL framework provides a robust and scalable
solution for learning optimal policies in complex robotic
environments. By combining neural network function approx-
imation, experience replay, and target network stabilization, it
effectively addresses the challenges of high-dimensionality and
instability in reinforcement learning.

C. Reward Function Design

The reward function R(s, a) balances competing objectives
such as precision, efficiency, and safety. It is designed as:

R(s, a) = w1Rprecision +w2Refficiency +w3Rcollision, (6)

Fig. 1. Deep Q-Learning framework for robotic arm control.

where w1, w2, w3 are weights tuned for specific tasks.
Precision is defined as the Euclidean distance between the end-
effector and the target:

Rprecision = −||pend − ptarget||, (7)

where pend is the end-effector position and ptarget is the
target position. Efficiency is measured as the inverse of the
path length:

Refficiency = −
T∑

t=0

||at||2, (8)

Collision avoidance penalizes proximity to obstacles using
a Gaussian penalty function:

Rcollision = exp

(
−||pend − pobs||2

2σ2

)
, (9)

where pobs is the obstacle position and σ controls the
penalty’s spread.

D. Algorithm for Path Planning and Control

Algorithm 1 DQL-Based Path Planning

1: Initialize Q-network, target network, and replay buffer
2: Set hyperparameters: learning rate α, discount factor γ,

and batch size
3: for each episode do
4: Observe the initial state s
5: for each time step do
6: Select an action a using ϵ-greedy policy
7: Execute a, observe reward R and next state s′

8: Store (s, a,R, s′) in the replay buffer
9: Sample minibatches and update Q-network using

Equation (3)
10: Periodically update target network
11: end for
12: end for

E. Simulation Environment and Model Setup

The robotic arm model was implemented in PyBullet, with
the simulation environment configured to emulate real-world
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Fig. 2. Workflow of the DQL-Based path planning algorithm.

constraints such as dynamic obstacles and varying payloads.
The robotic arm has six degrees of freedom, defined by:

q = [q1, q2, . . . , q6], (10)

where qi represents the joint angles. The state space S
includes joint angles, velocities, and end-effector positions.
The action space A comprises discrete angular changes per
joint.

Fig. 3. Simulation environment in PyBullet.

F. Convergence Analysis

The convergence of the DQL algorithm is ensured through
iterative Bellman updates, with the Q-values approaching
optimality as iterations progress:

lim
t→∞

||Qt −Q∗|| = 0. (11)

G. Evaluation Metrics

Performance was evaluated using path accuracy, compu-
tational efficiency, and success rate metrics. Fig. 1, 2, and 3

provide visual insights into the framework, algorithm work-
flow, and simulation setup.

IV. EXPERIMENTAL SETUP

The experimental setup was designed to validate the pro-
posed Deep Q-Learning (DQL) framework for path planning
and control of robotic arms. This section describes the robotic
arm model, the simulation environment, and the training con-
figuration used to develop and test the proposed approach.

The robotic arm utilized in the experiments was modeled
with precise kinematic and dynamic properties. Each joint
was parameterized using Denavit-Hartenberg (DH) parameters,
enabling accurate computation of the end-effector’s position
and orientation. The robotic arm had six revolute joints, pro-
viding sufficient flexibility to perform complex maneuvers in
a three-dimensional workspace. Forward kinematics, governed
by Eq. (2), and inverse kinematics techniques were used to
compute joint configurations for target end-effector positions
while adhering to joint limits and workspace constraints. The
actuation model allowed discrete angular movements within
predefined limits to simulate realistic operational conditions.

The simulation environment was implemented in PyBullet,
a robust physics simulation platform. The environment was
configured to include dynamic obstacles that moved randomly
within the workspace to emulate realistic industrial scenarios.
Target configurations were both predefined and randomly gen-
erated to test the robustness and generalizability of the frame-
work. The setup also included variations in payload weights,
ensuring the robotic arm’s adaptability to different operational
requirements. The reward function, as described in Section III,
balanced objectives such as precision, efficiency, and collision
avoidance during training. The state space S consisted of
joint angles, velocities, accelerations, and sensory inputs from
the environment, while the action space A included discrete
angular changes per joint. Transition probabilities P (s′|s, a)
captured the stochastic nature of the robotic system, including
uncertainties in actuation and environmental interactions.

The training configuration was carefully selected to ensure
stability and convergence of the DQL model. The learning
rate α was set to 0.001, facilitating efficient updates to the Q-
network. The discount factor γ was chosen as 0.95, balancing
immediate and future rewards. A replay buffer was used to
store up to 100,000 transitions, allowing diverse experience
sampling during training. Minibatches of size 64 were sampled
from the replay buffer for gradient updates. An ϵ-greedy
exploration policy was employed, where ϵ decayed linearly
from 1.0 to 0.1 over 100,000 steps. The training process
involved 10,000 episodes, with each episode terminating after
200 timesteps or upon successful task completion. A soft
update mechanism with a rate τ of 0.01 was used to main-
tain synchronization between the Q-network and the target
network. The training process leveraged GPU acceleration to
handle the computational demands of the high-dimensional
state-action space (Table I).

The overall experimental setup provided a robust founda-
tion to test the proposed DQL framework, ensuring that the
robotic arm could effectively navigate complex environments,
adapt to dynamic conditions, and optimize path planning and
control in various scenarios.
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TABLE I. EXPERIMENTAL SETUP PARAMETERS

Parameter Value
Robotic Arm DOF 6
Environment Simulation Tool PyBullet
Dynamic Obstacles Included Yes
Payload Variations Light to Heavy
Replay Buffer Size 100,000 transitions
Batch Size 64
Learning Rate (α) 0.001
Discount Factor (γ) 0.95
Episodes 10,000
Soft Update Rate (τ ) 0.01
Exploration Policy ϵ-Greedy
GPU Acceleration Used Yes

V. RESULTS AND ANALYSIS

This section presents the results obtained from the exper-
imental evaluation of the proposed Deep Q-Learning (DQL)
framework for robotic arm path planning and control. The re-
sults demonstrate how the framework effectively addresses the
novel contributions, including computational efficiency, real-
time adaptability, enhanced precision, and scalability across
various scenarios. Key metrics such as path optimization ac-
curacy, decision-making latency, and computational overhead
reduction are highlighted, supported by tables, graphs, and
visualizations.

A. Integration of DQL for Robotic Arm Control

The proposed framework achieved significant improve-
ments in computational efficiency and real-time adaptability.
The computational time required to determine optimal actions
was compared against baseline methods, including genetic al-
gorithms and particle swarm optimization. Fig. 4 illustrates the
computational time comparison, showing a 22.4% reduction in
overhead for the proposed method.

Fig. 4. Comparison of computational efficiency across methods.

The real-time adaptability of the system was validated by
testing under dynamic environments with moving obstacles.
The system maintained a decision-making latency of 0.45
seconds, ensuring responsiveness in time-critical scenarios.

B. Comprehensive Performance Evaluation

The framework was evaluated across various metrics to
ensure robustness and generalizability. Table II summarizes the
key metrics, including path optimization accuracy, collision
avoidance success rate, and energy efficiency.

TABLE II. PERFORMANCE METRICS OF THE PROPOSED FRAMEWORK

Metric Value
Path Optimization Accuracy (%) 98.76
Collision Avoidance Success Rate (%) 100
Energy Efficiency Improvement (%) 18.5
Decision-Making Latency (s) 0.45

The collision avoidance success rate was measured by
evaluating episodes where the robotic arm successfully avoided
all obstacles. The system achieved a perfect success rate of
100% in simulated environments.

C. Enhanced Precision with Reduced Latency

Precision in path optimization was demonstrated by eval-
uating the Euclidean distance between the end-effector and
the target. The average path optimization accuracy of 98.76%
highlights the system’s ability to achieve precise movements.
Fig. 5 provides a graphical representation of the precision
across different scenarios.

Fig. 5. Path optimization precision across scenarios.

The reduced decision-making latency was analyzed by
measuring the time taken to compute actions during the
episodes. The system’s average latency of 0.45 seconds was
significantly lower than traditional methods, as shown in Fig.
6.

D. Framework Scalability

The scalability of the framework was tested by varying the
degrees of freedom of the robotic arm and the complexity of
the environment. The framework consistently maintained high
performance, as summarized in Table III.

The reliability of the system was further analyzed using
a confusion matrix. Fig. 7 depicts the confusion matrix,
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Fig. 6. Decision-Making latency comparison.

TABLE III. SCALABILITY EVALUATION OF THE FRAMEWORK

DOF / Scenario Accuracy (%) Latency (s)
6 DOF - Static 99.2 0.42
6 DOF - Dynamic 98.5 0.48
7 DOF - Static 98.7 0.43
7 DOF - Dynamic 97.9 0.50

showing the classification accuracy of the system in predicting
successful and failed tasks.

The results presented in this section validate the effec-
tiveness of the proposed DQL framework in achieving the
novel contributions outlined in the study. The framework
demonstrated superior computational efficiency, precision, and
adaptability while maintaining scalability across varying sce-
narios. These findings highlight the potential of the proposed
approach for real-world applications in autonomous robotics
and industrial automation.

VI. CONCLUSION

This study presented a novel approach leveraging Deep
Q-Learning (DQL) to optimize path planning and control
for robotic arms. Therefore, by integrating the reinforcement
learning methods in the context of the developed advanced
kinematic model, the key problems that appeared during the
framework development have been formulated and solved,
turning into critical issues such as real-time adaptability,
accuracy, computational costs, and scalability. These results
indicate that the proposed method can provide higher accuracy
for path optimization, faster decision-making time, and better
collision avoidance than the traditional approach. The experi-
mental evaluation affirmed the DQL framework’s resilience in
the conditions’ heterogeneity. The framework also performed
consistently better than the existing methods for different
degrees of freedom and payload load configurations. It showed
great promise for addressing a range of industrial and research
problems. These results effectively revealed a significant cut
in computational complexity, enabling the framework to be
implemented in real-time, which is paramount in robotics
and automation. Furthermore, the study underscored the im-
portance of incorporating task-specific constraints into the

Fig. 7. Confusion matrix for task prediction.

reward function. This would enable the robotic arm to learn
optimal policies that balance precision, energy efficiency, and
safety. Features like prioritized experience replay and the target
network stabilization we introduced earlier helped enhance the
framework’s stability and convergence. This research bridges
gaps in robotic path planning and control by providing a scal-
able and efficient solution with real-world applicability. Future
work may focus on extending this framework to multi-agent
robotic systems, integrating additional sensory modalities, and
testing in real-world industrial environments to further validate
its utility and adaptability. The findings serve as a foundation
for advancing autonomous robotics and industrial automation
technologies.
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