
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 1, 2025

Android Malware Detection Through CNN
Ensemble Learning on Grayscale Images

El Youssofi Chaymae, Chougdali Khalid
Engineering Sciences Laboratory, Ibn Tofail University

Kenitra, Morocco

Abstract—With Android’s widespread adoption as the leading
mobile operating system, it has become a prominent target
for malware attacks. Many of these attacks employ advanced
obfuscation techniques, rendering traditional detection methods,
such as static and dynamic analysis, less effective. Image-based
approaches provide an alternative for effective detection that
addresses some limitations of conventional methods. This re-
search introduces a novel image-based framework for Android
malware detection. Using the CICMalDroid 2020 dataset, Dalvik
Executable (DEX) files from Android Package (APK) files are
extracted and converted into grayscale images, with dimensions
scaled according to file size to preserve structural characteris-
tics. Various Convolutional Neural Network (CNN) models are
then employed to classify benign and malicious applications,
with performance further enhanced through a weighted voting
ensemble optimized by Bayesian Optimization to balance the
contribution of each model. An ablation study was conducted to
demonstrate the effectiveness of the six-model ensemble, showing
consistent improvements in accuracy as models were added
incrementally, culminating in the highest accuracy of 99.3%.
This result surpasses previous research benchmarks in Android
malware detection, validating the robustness and efficiency of the
proposed methodology.
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I. INTRODUCTION

Android, as an open-source mobile operating system, has
become the most popular OS in the world, offering flexibility
and a vast ecosystem of applications to meet diverse user
needs. In 2024, Android commands 71.74% of the mobile OS
market and has a user base of more than 3.3 billion [1], [2].
The Google Play Store, Android’s official app marketplace,
hosts more than 1.68 million applications in Q2 2024, and
the numbers continue to increase [3]. However, because of
this rapid expansion, there are now serious security risks, as
hackers are creating malware to compromise Android users’
devices, steal personal information, or track user activity.

Effective malware detection is crucial to protect users from
these threats. Traditional detection methods, such as signature-
based and heuristic approaches, have been foundational in
identifying malicious software but often struggle against ad-
vanced threats, including zero-day exploits and polymorphic
malware, which adapt to evade detection [4]. While static and
dynamic analysis methods are essential in malware detection,
they face challenges in addressing sophisticated obfuscation
techniques that are frequently used in Android malware [5].

Artificial Intelligence (AI) has emerged as a promising
solution to these challenges. AI, through machine learning

(ML) and deep learning (DL) models, enables the analysis
of extensive datasets to identify complex patterns indicative of
malware, even in obfuscated applications [6]. Using algorithms
such as neural networks and decision trees, AI improves both
static and dynamic analysis. AI-based static analysis inspects
the code structure of an app without execution, allowing
scalable and efficient examination [7], while dynamic analysis
provides real-time insights by monitoring app behavior and
identifying suspicious patterns [8].

Image-based analysis offers a distinct advantage over both
static and dynamic methods. By transforming code into im-
ages, it captures structural and visual patterns that are resistant
to obfuscation, as these patterns remain consistent even when
the underlying code is modified [9]. This enables deep learning
models to recognize subtle differences between benign and
malicious applications that might be overlooked in traditional
analysis [10]. Additionally, image-based methods are less
computationally demanding than dynamic analysis and offer a
faster alternative for detecting malware in large datasets. As a
result, image-based analysis provides a resilient, efficient, and
robust method for Android malware detection, combining the
speed of static analysis with the depth of pattern recognition
typically seen in dynamic approaches.

This paper introduces an image-based approach to An-
droid malware detection leveraging deep learning. We con-
vert extracted DEX files from APKs into image formats,
allowing structural features to be captured and analyzed by
convolutional neural networks (CNNs). Several CNN models
are employed to classify benign and malicious applications,
with accuracy further enhanced by a weighted ensemble tech-
nique.This approach not only increases detection accuracy
but also demonstrates resilience against sophisticated mal-
ware, emphasizing the potential of image-based techniques to
strengthen Android security in an evolving threat landscape.

The main contributions of this study are structured as
follows:

• Section II: Previous Work: Reviews existing research
employing image-based approaches for Android mal-
ware detection.

• Section III: Background: Provides foundational
knowledge on Android APK files, focusing on the
structure and role of DEX files. Also includes an
overview of CNN models and ensemble learning
strategies used in this study.

• Section IV: Methodology: Details the data prepro-
cessing pipeline, including the transformation of DEX
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files into grayscale images, and describes the ensemble
learning framework.

• Section V: Experiments and Results: Presents the ex-
perimental setup, evaluation metrics, and performance
analysis. Includes an ablation study demonstrating
incremental improvements and a comparative analysis
with prior benchmarks.

• Section VI: Discussion and Challenges: Discusses the
results, highlighting contributions and challenges.

• Section VII: Conclusion and Future Work: Summa-
rizes the findings, emphasizing the study’s signifi-
cance, and proposes future directions.

II. PREVIOUS WORK

Different studies have demonstrated that visualizing An-
droid malware through image-based analysis using deep learn-
ing offers resilience beyond what static and dynamic analyses
can sometimes achieve, effectively distinguishing between
malicious and benign applications.

In 2019, Shao Yang [11] proposed an image-based Android
malware detection method using CNNs. This approach con-
verts Dalvik bytecode files (‘classes.dex‘) into RGB images,
capturing code patterns by mapping byte sequences to pixel
values. The model, a CNN with eight hidden layers, detects
malware directly from these RGB images, bypassing complex
feature extraction. Tested on a dataset containing 10,540 sam-
ples, the method achieved an accuracy of 93%, with an average
detection time of 0.22 seconds.

In 2020, Ding et al. [12] proposed an Android malware
detection method based on bytecode images. Their approach
involves extracting the ‘classes.dex‘ file from APKs and con-
verting it into grayscale images by transforming the byte
stream into a two-dimensional matrix. Using convolutional
neural networks (CNNs), their method automatically learns
features without requiring complex decompiling or manual
feature extraction. Tested on the Drebin dataset, it achieved
an accuracy of 95.1%.

In 2020, Rahali et al. [13] proposed DIDroid, an image-
based deep learning system for Android malware classification
and characterization. By extracting features from APK files and
transforming them into grayscale images, the system employs
a convolutional neural network (CNN) to classify samples
into 12 malware categories and 191 families. Tested on a
large dataset of 400,000 apps (200,000 malware and 200,000
benign), achieving an accuracy of 93.36%.

In 2021, Zhang et al. [14] introduced an Android mal-
ware detection method that leverages temporal convolution
networks (TCNs) and bytecode images. This approach com-
bines the ‘AndroidManifest.xml‘ file with the data section of
the ‘classes.dex‘ file to create grayscale images, capturing
both structural and sequential bytecode features. By using
TCN instead of traditional CNN, the model efficiently detects
malware while reducing computational demands, achieving an
accuracy of 95.44%.

In 2021, Bakour and Ünver [15] introduced DeepVisDroid,
a hybrid Android malware detection model that combines
image-based features with deep learning techniques. They

created four grayscale image datasets by converting different
files from APKs and extracted both local (e.g. SIFT, SURF,
ORB) and global (e.g. color histogram, Hu moments) features
for training. Using a 1D convolutional neural network model,
DeepVisDroid achieved over 98% accuracy, outperforming
traditional 2D CNN models and state-of-the-art methods in
terms of accuracy and computational efficiency.

In 2022, Mitsuhashi and Shinagawa [16] conducted an
extensive study on image-based malware variant classification,
evaluating 24 CNN models with various fine-tuning levels on
datasets like Malimg and Drebin. Their highest accuracy on
Android malware classification was achieved with Efficient-
NetB4, reaching 93.65% on the Drebin dataset.

In 2022, Ullah et al. [17] developed a hybrid Android
malware detection system using a combination of transfer
learning and multi-model image representation. Their approach
combines both textual and texture features from network
traffic, leveraging transfer learning to create embeddings from
network data and generating malware images for visual anal-
ysis. Using CNNs, they extracted texture features, and an
ensemble model combined these with textual features for final
classification. Tested on the CIC-AAGM2017 and CICMal-
Droid 2020 datasets, the system achieved 99% accuracy.

In 2023, Jo et al. [18] proposed a Vision Transformer
(ViT)-based Android malware detection method that combines
high accuracy with interpretability. Their approach converts
DEX files into RGB images and uses the ViT model’s attention
mechanism to detect malware while identifying malicious
behavior by highlighting influential areas within the image,
allowing extraction of class and method names and providing
insights into the malware’s underlying behavior. Tested on real-
world datasets, the model achieved an accuracy of 80.27% with
an interpretability score of 0.70.

In 2024, Aldini and Petrelli [19] proposed a method for
Android malware detection and classification by visualizing
app data as grayscale images. Their approach uses a static
analysis of files within APKs, such as ‘classes.dex‘ and
‘AndroidManifest.xml‘, converting these to grayscale images.
Multiple convolutional neural network (CNN) models were
applied to detect and classify malware, with CNN-LSTM and
CNN-SVM models showing high accuracy rates. The study
tested the method on datasets including Drebin and AndroZoo,
achieving accuracy rates around 99% for detection and 97%
for classification.

In 2024, Kiraz and Doğru [20] presented an image-based
approach for Android malware detection, focusing on visu-
alizing static features. They used the AndroPyTool to extract
permissions, intents, receivers, and services from Android apps
and converted these features into embedding vectors using
the BERT algorithm. The embeddings were then transformed
into images and classified with a CNN model. Tested on the
CICMalDroid 2020 dataset, their method achieved an accuracy
of 91%.

In 2024, Tang et al. [21] introduced an Android malware
detection approach that utilizes a unique mixed bytecode
image combined with an attention mechanism. Their method
processes Android executable files by converting bytecode into
grayscale and Markov images, then fusing these into a mixed
image for enhanced feature representation. This approach
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integrates channel and spatial attention mechanisms within
a ResNet model, improving classification accuracy. Testing
on the Drebin and CICMalDroid 2020 datasets, their model
achieved an accuracy of 98.67%.

In 2024, Wang et al. [22] proposed an Android malware
detection method based on RGB images with multi-feature
fusion. Their approach extracts features from DEX files, An-
droidManifest.xml files, and API calls, converting each into
grayscale images enhanced through techniques like Canny
edge detection and histogram equalization. These images are
then merged into RGB images, with each channel representing
a different feature type. Tested on the CICMalDroid 2020
dataset with models like AlexNet, GoogleNet, and ResNet,
the method achieved an accuracy of 97.25%.

In 2024, Yapici [23] introduced an image-based approach
for Android malware detection, converting Dalvik bytecode
files into grayscale and RGB images for deep learning analysis.
Addressing issues of dataset duplication and class imbalance,
the study incorporates data cleaning and augmentation to
improve result accuracy. This method achieved an accuracy
of 98.7%.

III. BACKGROUND

A. Broader Security Innovations

As Android malware continues to evolve in complexity, ad-
vancements in security technologies offer critical complemen-
tary strategies to APK analysis. For instance, methods like reli-
able concurrent error detection have been developed to improve
computational reliability, particularly in systems relying on
elliptic curve cryptography, which is integral to secure commu-
nications [24]. Enhancements in elliptic curve techniques, such
as binary Edwards curves optimized for resource-constrained
environments, highlight significant progress in creating robust
cryptographic frameworks for embedded systems [25].

Efforts to reduce the computational cost of cryptographic
operations have also led to the design of low-cost S-box
solutions, which are essential for encryption processes such
as those employed in the Advanced Encryption Standard
(AES) [26]. Furthermore, the development of constant-time
cryptographic libraries for protocols like supersingular isogeny
Diffie-Hellman (CSIDH) underscores the emphasis on mitigat-
ing timing attacks, thereby ensuring secure operations in the
context of quantum-resistant cryptography [27].

In addition, the security of deeply embedded and cyber-
physical systems, often constrained by limited resources, re-
mains a focal point. Innovative approaches address challenges
such as maintaining data confidentiality and integrity in envi-
ronments requiring lightweight yet effective solutions [28].

These collective advancements contribute to fortifying the
security landscape, enhancing the resilience and reliability
of APK file analysis in identifying and mitigating Android
malware.

B. APK File Structure

Android Package (APK) files serve as the standard format
for distributing and installing applications on Android devices
[29]. Essentially, an APK is a compressed archive containing

various components that collectively define the app’s function-
ality, behavior, and resources. The structure of an APK file is
depicted in Fig. 1, and its key components include:

• Dalvik Bytecode (classes.dex): This file contains
the compiled code that runs on the Android Runtime
(ART) or Dalvik Virtual Machine (DVM). It defines
the application’s logic and behavior, including its
methods, classes, and API calls. Due to its critical
role in execution, the classes.dex file is often a
focal point in malware detection research.

• Manifest (AndroidManifest.xml): This XML
file provides essential metadata about the application,
such as its package name, permissions, components
(activities, services, etc.), and hardware/software re-
quirements. Malware often manipulates the manifest
file to gain unauthorized access or exploit vulnerabil-
ities.

• Resources (res/): This folder contains non-compiled
resources, such as layouts, images, and strings, that
are used to define the application’s user interface and
content.

• Compiled Resources (resources.arsc): This file
stores compiled resource data in binary form, opti-
mized for efficient runtime access by the application.

• Assets (assets/): A directory for additional files
that the application needs at runtime, such as config-
uration files, data files, or embedded libraries.

• Native Libraries (lib/): This folder contains native
code files (e.g. .so files) that are platform-specific,
often used to optimize performance or access device-
specific functionality.

• Signatures (META-INF/): This folder contains cryp-
tographic signatures and certificates used to verify
the integrity of the APK file. Modifications to the
APK often invalidate its signature, signaling potential
tampering.

Fig. 1. APK file structure.
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C. DEX File Structure

The Dalvik Executable (DEX) file is central to defining the
behavior and logic of Android applications [29], comprising
several essential sections that govern its execution flow. The
structure of this file is illustrated in Fig. 2 and includes:

• Header: Contains metadata such as the magic number,
checksum, file size, and offsets to other sections.

• String IDs: Holds identifiers for strings, including
class names, method names, and constant values.

• Type IDs: Defines data types referenced in the appli-
cation, including classes and primitives.

• Proto IDs: Specifies method prototypes, detailing re-
turn types and parameter lists.

• Field IDs: Provides definitions of fields within
classes, specifying their types and names.

• Method IDs: Enumerates methods, linking them to
their respective classes and prototypes.

• Class Defs: Describes each class, including its fields,
methods, and metadata.

• Data Section: Contains supplementary information
such as constants, initialization data, and debugging
details.

Fig. 2. DEX file structure.

D. CNN Models

In this study, six pre-trained convolutional neural network
(CNN) architectures were employed for Android malware
detection. Each model was chosen for its unique strengths and
suitability for image-based classification tasks. Additionally,
these models were fine-tuned for binary classification to dis-
tinguish between benign and malware samples:

• ResNet50 [30]: A residual network with 50 layers
and 25.6 million parameters, excelling in avoiding
vanishing gradient issues through its residual learning
approach.

• AlexNet [31]: A classic CNN with 8 layers and
60 million parameters, known for its simplicity and
speed, particularly effective on smaller datasets.

• DenseNet121 [32]: A densely connected network with
121 layers and 8 million parameters, designed to
maximize feature reuse and minimize redundancy.

• MobileNetV2 [33]: A lightweight CNN with 53 layers
and 3.4 million parameters, optimized for deployment
on mobile and embedded systems.

• EfficientNetB0 [34]: A scaled CNN with 16 layers and
5.3 million parameters, achieving an excellent balance
between high accuracy and computational efficiency.

• ShuffleNetV2 [35]: A channel-shuffling network with
50 layers and 2.3 million parameters, designed for
extreme speed and low computational overhead.

E. Weighted Voting Ensemble

The Weighted Voting Ensemble is a technique that com-
bines the predictions of multiple models by assigning each
a weight based on its performance [36]. For a given input,
the ensemble calculates the probability of classification as a
weighted sum of individual model outputs:

Pensemble(x) =

n∑
i=1

wi · Pi(x), (1)

where Pi(x) is the probability assigned by the i-th model for
input x, wi is its corresponding weight, and n is the total
number of models in the ensemble. A threshold is then applied
to determine the final classification. This approach leverages
the complementary strengths of individual models, enhancing
accuracy and reducing errors.

F. Bayesian Optimization

Bayesian Optimization is a probabilistic framework for
optimizing expensive-to-evaluate functions [37]. It employs a
surrogate model, typically a Gaussian Process (GP), to approx-
imate the objective function f(x), where f(x) in this study
represents the ensemble accuracy. The GP is characterized as:

f(x) ∼ GP(µ(x), k(x, x′)), (2)

where µ(x) is the mean function, and k(x, x′) is the kernel
function measuring similarity between points x and x′.

Using the Expected Improvement (EI) criterion, Bayesian
Optimization iteratively refines weights by balancing explo-
ration and exploitation:

EI(x) = E[max(f(x)− f(x∗), 0)], (3)

where f(x∗) is the best observed value of the objective
function. This method efficiently identifies the optimal weight
configuration to maximize ensemble accuracy.
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IV. METHODOLOGY

A. Proposed Architecture

This study presents a novel image-based framework for
Android malware detection, leveraging convolutional neural
networks (CNNs) and a weighted voting ensemble to enhance
detection accuracy.

The methodology is organized into three primary stages:
data preprocessing, model training, and ensemble prediction.

In the preprocessing stage, the DEX file is extracted from
Android APKs and transformed into grayscale images that
encapsulate structural patterns indicative of malware. During
model training, advanced CNN architectures are employed to
analyze these images, enabling deep feature extraction and
precise classification. Lastly, an optimized weighted voting en-
semble integrates predictions from multiple models to improve
overall performance and reliability.

The overall workflow of the proposed framework is illus-
trated in Fig. 3.

B. Data Preprocessing

In this study, the data preprocessing stage transforms
Android APK files into grayscale images, which serve as input
for the proposed deep learning framework. This transformation
captures the structural patterns embedded in the DEX files,
enabling robust malware detection. The preprocessing pipeline
consists of the following steps:

1) DEX File Extraction: The first step involves extracting
the classes.dex file from Android APKs. This file was
chosen as the primary feature for analysis due to its struc-
tural richness and resilience to obfuscation techniques. Unlike
other APK components, such as resource files or manifest
configurations, the bytecode in the DEX file retains identifiable
patterns that are critical for distinguishing between benign and
malicious applications.

The extraction process treats the APK as a compressed
archive, which is unzipped using Python’s zipfile module.
The classes.dex file is typically located in the root di-
rectory of the APK. To handle improperly named files, the
script automatically renames files lacking the correct .apk
extension, ensuring compatibility with the extraction process.
This automated pipeline consistently prepares the DEX file for
transformation into grayscale images.

2) Binary-to-Image Conversion: Once the DEX file is
extracted, its binary content is read and converted into an 8-
bit grayscale pixel matrix. Each byte in the binary sequence
is mapped to a pixel intensity (0–255). This mapping ensures
that the structural patterns in the bytecode are preserved in the
resulting image.

The file size determines the width of the image, using a
method adapted from Nataraj et al. [9]. The height is calculated
dynamically to fit all pixels into a 2D matrix, using the
formula:

Height =
Total Number of Bytes

Image Width
.

Table I outlines the mapping of file size ranges to image
widths. This scaling ensures consistency while maintaining the
integrity of structural characteristics.

TABLE I. IMAGE WIDTH CALCULATION BASED ON FILE SIZE

File Size Range Image Width

<10 kB 32

10 kB – 30 kB 64

30 kB – 60 kB 128

60 kB – 100 kB 256

100 kB – 200 kB 384

200 kB – 500 kB 512

500 kB – 1000 kB 768

>1000 kB 1024

By retaining the sequence of bytecode as pixel intensities,
this method preserves the unique structural characteristics of
the application, such as opcode patterns and control flow rep-
resentations. These features are critical to distinguish malware
from benign applications.

C. Model Training

This study initially experimented with various pre-
trained CNN architectures to identify the models most ef-
fective for classifying benign and malicious Android ap-
plications. Following extensive evaluations, six CNN mod-
els—ResNet50, AlexNet, DenseNet121, MobileNetV2, Effi-
cientNetB0, and ShuffleNetV2—were selected for their com-
plementary strengths in feature extraction and classification.
These models demonstrated high performance in terms of
accuracy, precision, recall, and F1-scores during preliminary
testing. Each model was initialized with pre-trained weights
from ImageNet and trained using a consistent pipeline to
ensure fairness and comparability.

1) Image Preparation: The grayscale images generated
from the classes.dex files were resized to a fixed input
dimension of 224 × 224 pixels. They were normalized us-
ing the ImageNet dataset’s mean ([0.485, 0.456, 0.406]) and
standard deviation ([0.229, 0.224, 0.225]). Data augmentation
techniques, including resizing and normalization, were applied
to enhance model generalization.

2) Classifier Adaptation: Each model’s classifier was cus-
tomized for binary classification by replacing the original fully
connected layers with the following configuration:

• A dropout layer (p = 0.4) to mitigate overfitting.

• A dense layer with 256 units and ReLU activation.

• A second dropout layer (p = 0.4).

• A final dense layer with one output node and a
sigmoid activation function.

3) Training Process: The models were trained using the
AdamW optimizer with a learning rate of 0.0001 and a weight
decay of 1×10−5. The binary cross-entropy loss function was
employed for optimization. Training was conducted over 20
epochs with a batch size of 32. An early stopping mechanism,
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Fig. 3. The proposed architecture for android malware detection.

with a patience of 5 epochs, was implemented to prevent
overfitting while ensuring optimal model performance.

D. Ensemble Prediction

To enhance the overall performance and robustness of
the classification, an ensemble prediction strategy was em-
ployed. The ensemble combines the outputs of six pre-trained
convolutional neural network (CNN) models: ResNet50,
AlexNet, DenseNet121, MobileNetV2, EfficientNetB0, and
ShuffleNetV2. By leveraging the strengths of each model, the
ensemble aims to improve classification accuracy and reduce
errors in detecting Android malware.

The ensemble prediction uses a weighted voting mecha-
nism, where the outputs from each model are aggregated based
on their performance during validation. For each input image,
the probability of classification is calculated as a weighted sum
of the individual model predictions. Weights were constrained
to [0, 1], normalized to sum to 1, and refined over 300
iterations using the Expected Improvement (EI) criterion.

Bayesian Optimization was employed to determine the
optimal weights for the ensemble, as detailed in Algorithm 1.
This probabilistic technique was chosen for its ability to effi-
ciently explore high-dimensional parameter spaces while bal-
ancing exploration with exploitation. Unlike manual selection
or traditional methods such as grid or random search, Bayesian
Optimization leverages information from prior iterations to
refine the weight configurations, resulting in faster convergence
and more effective optimization.

Algorithm 1 Bayesian Optimization for Ensemble Weights

Require: Validation dataset D, pre-trained models:
{ResNet50, AlexNet, DenseNet121, MobileNetV2,
EfficientNetB0, ShuffleNetV2},
number of iterations N = 300, batch size = 32.

Ensure: Optimal weights {w1, w2, . . . , w6} for the ensemble.
1: Initialize bounds [0, 1] for each wi and randomly generate

initial weights.
2: for i = 1 to N do
3: Generate candidate weights {w1, w2, . . . , w6}.
4: Normalize weights such that

∑6
i=1 wi = 1.

5: Compute ensemble prediction for each image x:

Pensemble(x) =

6∑
i=1

wi · Pi(x)

6: Evaluate ensemble accuracy on D.
7: Refine weights using the Expected Improvement (EI)

criterion:
8: a. Explore unvisited regions of the weight space.
9: b. Exploit regions with promising results.

10: Update surrogate model with new results.
11: end for
12: return Optimal weights {w1, w2, . . . , w6} achieving the

highest ensemble accuracy.
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V. EVALUATION AND RESULT

A. Dataset

In this study, the CICMalDroid 2020 dataset [38] was
utilized, a benchmark dataset designed to support research and
development in Android malware detection. The dataset was
created by the Canadian Institute for Cybersecurity (CIC) and
contains a total of 17,341 APK files. It categorizes APKs into
five classes: Adware, Banking, SMS, Riskware, and Benign.
Each class represents a specific type of Android application
behavior, with malware types grouped based on their malicious
intent, and benign applications serving as the control group.

1) Dataset Preparation: During the preprocessing stage,
415 APK files were excluded due to various issues, including:

• Missing or inaccessible classes.dex files.

• Permission restrictions preventing file access.

• Corrupted or non-standard file formats.

• Invalid or unusual filenames.

• Integrity check failures, such as bad CRC-32.

These issues prevented consistent processing of a subset
of the dataset. As a result, only valid and complete files were
included to maintain data quality and ensure reliable model
training.

2) Data Splitting: Initially, the dataset was split into train-
ing (80%) and validation (20%) subsets for each class, ensuring
balanced representation in both subsets. Following this, all
malware classes were concatenated into a single class named
Malware for binary classification, while the Benign class
remained unchanged. This process resulted in the following
data distribution:

• Benign: 3,216 samples for training and 805 for vali-
dation.

• Malware: 10,001 samples for training and 2,502 for
validation.

B. Experimental Setup and Performance Metrics

The experiments were conducted on a Windows operating
system using Python as the programming language. The mod-
els were implemented with the PyTorch 2.4.1 deep learning
framework, and the training process was accelerated using
CUDA 11.8 on an NVIDIA RTX 2060 GPU.

To evaluate the performance of the proposed models, a
variety of metrics were employed to ensure a comprehensive
understanding of their classification capabilities. Each metric
serves a distinct purpose, offering insights into specific aspects
of the models’ performance and their ability to distinguish
between benign and malware samples. The definitions of the
metrics used are as follows:

• Accuracy (AC): Represents the overall proportion of
correctly classified samples:

AC =
TP + TN

TP + TN + FP + FN
(4)

where TP is true positives, TN is true negatives, FP
is false positives, and FN is false negatives.

• Precision (P): Measures the proportion of true positive
predictions out of all positive predictions:

P =
TP

TP + FP
(5)

This metric highlights the model’s ability to minimize
false positives.

• Recall (R): Evaluates the proportion of true positive
predictions among all actual positive samples:

R =
TP

TP + FN
(6)

Recall is critical in malware detection to ensure that
malicious applications are not overlooked.

• F1-Score (F): The harmonic mean of precision and
recall, providing a balance between the two:

F =
2 · P ·R
P +R

(7)

The defined metrics were utilized to evaluate the classi-
fication performance of six individual CNN models and the
proposed ensemble learning approach. Table II provides a
comparative summary of the results, presenting the accuracy,
precision, recall, and F1-score for each model. This analysis
highlights the unique strengths and weaknesses of each model
while demonstrating the superior performance of the ensemble
approach.

TABLE II. PERFORMANCE METRICS FOR ALL MODELS

Model
Accuracy

(%)
Precision

(%)
Recall
(%)

F1 Score
(%)

ResNet50 98.54 98.76 99.32 99.04

AlexNet 98.51 99.11 98.92 99.01

DenseNet121 98.42 99.59 98.32 98.95

MobileNetV2 98.45 99.35 98.60 98.97

EfficientNetB0 98.52 99.04 99.00 99.02

ShuffleNetV2 98.39 98.64 99.24 98.94

Ensemble
Learning

99.30 99.59 99.48 99.54

The superior performance of the ensemble was achieved
through the optimal weights determined by Bayesian Opti-
mization. These weights were carefully assigned to balance
the contributions of each model, reflecting their relative im-
portance in the ensemble’s predictions. Table III presents
the final weights for each model, highlighting the significant
contributions of MobileNetV2 and EfficientNetB0, which had
the highest weights, underscoring their strong performance in
feature extraction and classification.

For further insights into the models’ classification perfor-
mance, the Receiver Operating Characteristic (ROC) curves,
presented in Fig. 4, offer a detailed evaluation of the individual
models and the ensemble learning approach. All models exhibit
excellent discriminatory capabilities, with Area Under the
Curve (AUC) values exceeding 0.997. The ensemble learning
approach outperformed all individual models, achieving the
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TABLE III. OPTIMAL WEIGHTS FOR ENSEMBLE MODELS

Model Optimal Weight

AlexNet 0.037

DenseNet121 0.172

EfficientNetB0 0.225

MobileNetV2 0.288

ResNet50 0.124

ShuffleNetV2 0.154

highest AUC of 0.9993. This superior performance highlights
the ensemble’s ability to effectively combine the strengths of
individual models, resulting in enhanced classification accu-
racy.

Fig. 4. ROC curves for CNN models and ensemble learning.

To provide a more detailed evaluation of the ensemble’s
predictions, the confusion matrix in Fig. 5 illustrates its
classification outcomes for benign and malware samples. The
model successfully classified 795 benign and 2,489 malware
samples, with only 10 false positives and 13 false negatives.
These results demonstrate the ensemble’s high precision and
recall, ensuring robust malware detection with minimal errors.

The proposed ensemble learning approach demonstrated
significant improvements in Android malware detection accu-
racy compared to prior methods. Table IV provides a com-
parative analysis of existing approaches, highlighting datasets,
models, and achieved accuracies. The proposed method outper-
formed techniques such as CNN-LSTM, CNN-SVM [20], and
single-model approaches such as ResNet [19] and EfficientNet
[16], it also surpassed studies employing multi-feature fusion
strategies [22].

C. Ablation Study: Incremental Model Analysis

An ablation study was conducted to determine the optimal
configuration of the ensemble by incrementally adding models
and evaluating their impact on performance metrics. Starting
with a baseline ensemble of ResNet50, AlexNet, and Efficient-
NetB0, additional models—MobileNetV2, DenseNet121, and

Fig. 5. Confusion matrix for the ensemble learning approach.

TABLE IV. COMPARATIVE ANALYSIS OF ANDROID MALWARE
DETECTION METHODS

Ref Dataset Model Acc (%)

[11]
AMD (6,134 malware),

Google Play (4,406 benign)
CNN 93

[12] Drebin CNN 95.1

[13]

400,000 apps

(200,000 malware,

200,000 benign)

CNN 93.36

[14]

CICAndMal2017,

CICInvesAndMal2019,

CICMalDroid 2020

TCN 95.44

[15] Custom Dataset
DeepVisDroid

(1D-CNN)
98

[16]
Malimg,

Drebin
EfficientNetB4 93.65

[17]
CIC-AAGM2017,

CICMalDroid 2020

Hybrid

(Textual+Image)
99

[18] Real-world datasets ViT 80.27

[19]
Drebin,

CICMalDroid 2020
ResNet 98.67

[20]
Drebin,

AndroZoo

CNN-LSTM,

CNN-SVM

99 detec-

tion,

97 classi-

fication

[21] CICMalDroid 2020 CNN 91

[22] CICMalDroid 2020

AlexNet,

GoogleNet,

ResNet

97.25

[23]
Custom Dataset

(Dalvik Bytecode)

Grayscale+RGB

Deep Learning
98.7

Our
Method

CICMalDroid 2020
Ensemble

CNN Models
99.3

ShuffleNetV2—were iteratively incorporated based on their
individual metrics, such as precision, recall, and F1-score.

Each addition was rigorously evaluated for its contribution
to accuracy and robustness, with weights re-optimized using
Bayesian Optimization to ensure balanced contributions. The
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study demonstrated a consistent progression in performance:
accuracy improved from 99.09% with three models to 99.30%
with six models, achieving the best performance across all
metrics in the final configuration.

The results highlight the incremental benefits of integrat-
ing diverse architectures into the ensemble, validating the
soundness of the methodology. Fig. 6 illustrates the steady
improvements, emphasizing the rationale and effectiveness of
this approach.

Fig. 6. Comparison of accuracy across ensemble learning configurations.

VI. DISCUSSION AND CHALLENGES

The proposed ensemble approach achieved remarkable
results, surpassing prior methodologies in Android malware
detection with an accuracy of 99.3%, addressing challenges
posed by evolving malware obfuscation techniques, partic-
ularly through the use of grayscale images derived from
DEX files, which preserve critical bytecode patterns. The
methodology not only outperformed single-model approaches,
such as CNNs in [12] (95.1%) and TCN [14] (95.44%), but
also exceeded advanced methods like CNN-LSTM [20] and
multi-feature strategies [22], which achieved accuracies of 97%
and 97.25%, respectively. This demonstrates the ensemble’s
capacity to generalize across diverse malware families while
maintaining classification robustness.

However, several challenges were encountered during the
study. One notable issue was overfitting, mitigated effectively
by employing early stopping to ensure generalization without
compromising performance. Another challenge was the lack
of recent Android malware datasets. The rapid evolution of
malware introduces the risk that outdated datasets may fail
to capture current threats, limiting the generalizability of
detection systems.

Furthermore, deploying a six-model ensemble in real-time
environments poses practical difficulties due to the increased
computational resources and latency required to run multiple
models simultaneously. Addressing this limitation will be

crucial for translating the proposed approach into real-world
applications.

Despite these challenges, the study demonstrates the po-
tential of ensemble learning in advancing the state of Android
malware detection. By combining multiple CNN architectures
and optimizing their contributions, this methodology provides
a robust framework that paves the way for future research on
integrating multi-feature analysis and scaling to larger datasets.

VII. CONCLUSION

This study introduced a novel ensemble learning frame-
work for Android malware detection, utilizing grayscale im-
ages derived from DEX files and six pre-trained CNN mod-
els. Achieving an impressive accuracy of 99.3%, the pro-
posed method surpassed existing approaches in the field. By
leveraging a weighted voting mechanism, optimized through
Bayesian Optimization, the ensemble demonstrated superior
performance across key metrics, achieving precision, recall,
and F1-scores of 99.59%, 99.48%, and 99.54%, respectively.
This robust approach effectively minimized classification er-
rors while ensuring reliable malware detection.

The findings underscore the benefits of combining multiple
CNN architectures to harness their complementary strengths in
feature extraction and classification. Additionally, the frame-
work demonstrated resilience against obfuscation techniques
frequently used by malware developers, enhancing its practi-
cality for real-world applications.

Future research will focus on expanding this methodology
to encompass larger, more diverse datasets and integrating
multi-feature approaches with advanced analysis techniques.
These efforts aim to further improve detection accuracy and
adaptability, addressing the ever-evolving landscape of An-
droid malware threats.
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