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Abstract—One such research area is building detection, which
has a high influence and potential impact in urban planning,
disaster management, and construction development. Classifying
buildings using satellite images is a difficult task due to build-
ing designs, shapes, and complex backgrounds which lead to
occlusion between buildings. The current study introduces a new
method for constructing recognition and classification globally
based on Google Maps contour trace detection and an evolved
image processing technique, seeking synergies with a systematic
methodology. We first extract the building outlines by taking the
image from the R̈oadmapv̈iew in Google Maps, converting it to
gray scale, thresholding it to create binary boundaries,and finally
applying morphological operations to facilitate noise removal and
gap filling. These binary outlines are overlaid on colorful satellite
imagery, which aids in identifying buildings. Machine learning
techniques can also be used to improve aspect ratio analysis and
improve overall detection accuracy and performance.
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I. INTRODUCTION

Building detection in aerial images, a key and well-
studied domain has recently drawn considerable attention.
High-resolution satellite imagery is increasingly available, and
thus necessitates automatic and accurate methods for building
detection [1]. Building detection is an important task for
urban planning, disaster response [2], change detection [3],
construction and development activity monitoring [4].

However, several above-mentioned factors make the detec-
tion of buildings from satellite images a challenging and com-
plex task. Buildings vary significantly in their shapes, sizes,
and materials. That is, a building in a dense urban location
may differ quite markedly from an equivalent suburban one in
both form and scale [5].

Furthermore, it may be difficult to differentiate certain
structures from their surroundings since they are made of ma-
terials that share spectral characteristics with the surrounding
area [6], [7]. Other elements seen in metropolitan settings, such
as streets, trees, and shadows, can also produce complicated
backdrops that make it more difficult to identify buildings.
It can also be complex to identify buildings from satellite
photos since they can be partially or completely obscured

by other objects, including trees or other structures [8]. The
unpredictability of satellite imagery itself is another element
that makes construction detection more difficult. Depending on
the sensor, atmospheric conditions, and capture time, satellite
imagery can differ greatly in terms of resolution, spectral
bands, and quality [9].

It is difficult to create a general technique that can reliably
identify structures because cities vary throughout time, from
small adjustments to total demolition and reconstruction [10].

To overcome the difficulties caused by many elements and
increase the precision and resilience of detection algorithms,
advanced image processing [11], machine learning, and deep
learning approaches can be applied. For the detection of
buildings and urban areas from aerial photos, machine learning
and deep learning approaches have demonstrated excellent
results [2], [12], [13], [14]. Nevertheless, there are a number of
restrictions on their use in this situation. First of all, the caliber
and volume of training data are critical to these algorithms
[15], [16].

The resulting model might not function well on fresh data
if the training set is skewed toward particular building or area
types or is not representative of real-world data. Large-scale
training data collection and labelling can also be costly and
time-consuming [17], [18].

Second, machine learning algorithms could find it difficult
to generalize to various architectural styles and metropolitan
regions [6].

A model trained on photos of contemporary high-rise
structures in a crowded city, for instance, would not function as
well when used to photos of low-rise, older structures in a rural
region. Thirdly, variations in camera settings, illumination,
and weather can have an impact on machine learning and
deep learning models. Image processing techniques provide a
number of benefits over machine learning techniques for more
accurate and code-efficient building detection from satellite
pictures. First off, compared to machine learning algorithms,
image processing methods are less dependent on the caliber
or volume of training data. Regardless of data variances, they
are based on well-established rules and algorithms designed to
detect particular features or patterns in the photographs. This
saves time and money by doing away with the requirement for
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intensive data collecting and labelling [19]. Second, because
image processing methods are not impacted by changes in
lighting, weather, or camera settings, they may be used in a
variety of metropolitan environments and building styles with
little modification. This guarantees dependable and consistent
outcomes in various settings. Finally, machine learning models
are not as good at detecting buildings that are partially or com-
pletely blocked as image processing techniques. Even when
building characteristics are completely or partially obscured by
other objects, they can still be identified by using sophisticated
algorithms like morphological filtering, edge identification, and
texture analysis. This lowers the likelihood that the findings
will contain false positives or false negatives. Creating trust-
worthy algorithms for identifying and categorizing buildings
from high-resolution satellite data [20] has been the subject
of numerous studies. But putting in place a system that
can function globally presents other difficulties that need to
be resolved, like the fact that different parts of the world
have different kinds, sizes, and shapes of buildings, and that
handling big datasets with different quality and resolution
levels is necessary. A unique Roadmap-to-Satellite Building
Detector (RSBD) method is put forth to overcome these
obstacles. It makes use of outlines from Google Maps as well
as other cutting-edge image processing techniques to create a
highly effective and scalable system for building detection and
classification on a worldwide basis. The Roadmap view image
from Google Maps [21], which includes building outlines [22],
is transformed to grayscale for this study. The final image is
next subjected to a threshold, the value of which is established
by the desired degree of building outline colour.

The threshold image is then enhanced and minor details
are eliminated using morphological processes like dilation and
erosion [23].

The contours in the threshold image are then determined
by features like area or aspect ratio, and those that are not
building outlines are filtered out. The identified buildings are
then displayed once the filtered outlines have been put on a
Google Maps satellite view image [24].

This research aims to solve issues like quality and reso-
lution, as well as the variations in building kinds, sizes, and
shapes across the globe, intended for global application. In
this work, six distinct global locations with diverse building
kinds, sizes, shapes, and picture resolution were used to
test the Roadmap-to-Satellite Building Detector (RSBD). The
experimental results and quantitative validation in this research
indicate the promising potential of the developed approach.

The rest of this paper is organized as follows: Section II
is the Literature Review where we discuss the related work.
Section III explains the Methodology used by the authors.
Section IV provides a Use Case Analysis that illustrates the
usefulness of our work. Section V presents the Results of our
experiments and evaluations. Section VI contains a detailed
Discussion that interprets the results and their implications.
Section VII discusses the Threshold Value Analysis, which
sheds light on the essential counts that directly affect the output
of our analysis. Finally Section VIII concludes the paper.

The major contributions of this article can be summarized
as follows:

• Utilizes gray-colored building outlines found in

Google Maps’ “Roadmap” map type as a foundational
element for building detection from satellite images.

• Introduces an adaptive thresholding technique to con-
vert the grayscale Google Maps “Roadmap” view
image into a binary representation.

• Morphological operations are applied to enhance the
thresholded image, and contour filtering [25] is em-
ployed to remove non-building contours based on
specific properties, such as area and aspect ratio,
respectively.

• Presents a globally applicable methodology designed
to address challenges related to variations in building
types, sizes, shapes, image quality, and resolution
across different regions worldwide, making it adapt-
able to diverse contexts.

• Validates the Roadmap-to-Satellite Building Detector
(RSBD) through extensive testing on six distinct re-
gions worldwide, encompassing diverse building char-
acteristics and image resolutions. The experimental
results and quantitative validation demonstrate the
method’s promise and potential for efficient and ef-
fective building detection.

• A comprehensive critical analysis of the existing
work related to building detection in aerial images
is presented providing insights into the strengths and
weaknesses of the approaches.

II. RELATED WORK

Numerous studies have been conducted on urban areas and
building detection from aerial images using advanced image
processing [26], [27], [28], [29] and machine learning tech-
niques [2], [12], [13], [14]. In recent years, with the increasing
availability of high-resolution satellite imagery, research on
urban areas and building detection from aerial images using
image processing techniques has been extensively explored due
to its importance in various fields, including urban planning,
disaster response, and monitoring of construction and develop-
ment activities. Zerubia et al. presented one of the first studies
in this area [26] . They developed a texture parameter that
takes into account the image’s local conditional variations by
modelling the luminance field using chain-based models.

To provide additional information on the likelihood that
pixels would belong to a certain cluster, they created a
modified fuzzy C-means method with an entropy term that
does not require prior knowledge of the number of classes.
This approach was tested on both simulated and real satellite
images from CNES and ESA and was further applied to
a Markovian segmentation model. Benediktsson et al. [27]
suggested employing morphological and neural techniques to
classify panchromatic high-resolution data from metropolitan
regions. Three steps make up the method: feature extraction
or selection, classification, and the creation of a differential
morphological profile employing geodesic opening and closing
operations. High-resolution Indian Remote Sensing 1C (IRS-
1C) and IKONOS remote sensing data were used to test the
suggested approach, which demonstrates better classification
accuracy with comparatively few characteristics required. A
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technique for detecting buildings from low-contrast satellite
pictures was presented by Aamir et al. [28].

The suggested technique uses a line-segment detection
system to precisely identify building line segments and uses
singular value decomposition based on the discrete wavelet
transform to improve image contrast. The entire building’s
contours are then obtained by hierarchically grouping the
identified line segments. The suggested technique performs
better than current methods when applied to high-resolution
images with sufficient contrast. In order to extract building
rooftops from satellite pictures, Avudaiammal et al. [29] in-
troduced MBION-SVM, a system that combines morpholog-
ical, spectral, form, and geometrical features with an SVM
classifier. The technique employs the Normalized Difference
Vegetation Index (NDVI) and Otsu thresholding to remove
mislabeled rooftops and the Morphological Building Index
(MBI) to identify likely buildings.

An SVM is trained using geometrical features of rec-
ognized rooftops, and self-correction is utilized to eliminate
rooftops that have been incorrectly categorized and provide
surface area data. Kohli et al. [30] used object-oriented image
analysis and expert knowledge to present a built environment
morphology-based urban slum detection approach. For slum
detection, the technique employed spatial measurements and
the contrast of textural features. Compared to the land cover
classification accuracy of 80.8%, the agreement percentage
between the reference layer and slum classification was only
60%. According to the study’s findings, the approach is prac-
tical and might be successfully used in related situations.

A novel approach to building extraction from high-
resolution satellite data is presented by Liu et al. [7] utilizing
the probabilistic Hough transform and multi-scale object-
oriented categorization. Building roof extraction and shape
reconfiguration are the two stages of the system. Building roofs
are extracted using a fuzzy rule decision tree classifier after
the multispectral and panchromatic pictures are fused and seg-
mented at various space scales. After determining the building
roof’s dominant line using the probabilistic Hough transform,
the building boundary is fitted using a building squaring
algorithm.Experimental results show that the approach can
precisely identify and extract rectangular building roofs. A
new method for automatically extracting building footprints
from HRS pan-sharpened IKONOS multispectral pictures was
presented by Gavankar et al. [31]. In order to extract buildings
and remove incorrectly categorized urban elements, the method
mainly concentrates on optimizing segmentation and shape
parameters. Completeness, accuracy, and quality indicators are
used to assess the technique’s suitability. Automatic building
detection from pan-sharpened very high spatial resolution
satellite data was the main focus of Dey et al. [32].

In multi-level segmentation-based building detection, the
suggested method makes use of shadow context, color tone,
size, edge features, structural and geometric features, and
prior information. Although the results are encouraging, they
require modifications for real-world applications. Additionally,
the study demonstrates the effectiveness of the UNB pan sharp-
ening method in applications that make use of spectral and
spatial data. A region-based level set segmentation technique
was presented by Karantzalos et al. [33] for the automatic
identification of artificial items in satellite and aerial photos.

The method measures information within regions according
to their statistical description, optimizing the position and
shape of an evolving geometric curve.Because of its rapid
convergence and complete automation, the technique is ap-
propriate for real-time applications. The algorithm was tested
on various aerial and satellite photos. It correctly identified
roads, buildings, and other man-made features, demonstrating
its efficacy through both qualitative and quantitative evaluation.
In order to create normalized Digital Surface Models (nDSM)
and differentiate between ground and non-ground points, Cao
et al. [34] used point cloud data processing techniques such
as noise removal and point reduction. They then created a
technique that uses characteristics including flatness, normal
direction variance, and nDSM texture to designate structures
at an object scale. A graph-cut technique was utilized to fuse
and normalize these features. The impact of varying grid sizes
on parameter correctness and detail was also investigated. In
conclusion, the authors thoroughly examined point cloud data
in order to construct labeling and characterization. Farhadi
et al. [15] use satellite imagery to extract building footprints
(BF) in order to address the difficult challenge of tracking the
expansion of urbanization. They suggest a novel unsupervised
method dubbed Feature-Based Building Footprint Extraction
(F2BFE), which makes use of a Digital Elevation Model
(DEM) and Sentinel-1 and 2 satellite photos. The process uses
sophisticated thresholding techniques for feature extraction and
generates a radar index (NRI) from Sentinel-1 data to extract
main building footprints (PBF). Furthermore, spectral indices
associated with various land cover categories are extracted
from Sentinel-2 photos. In order to create precise and effective
ways for identifying buildings in satellite data [35], machine
learning approaches have recently gained popularity. Support
vector machines (SVMs) are a common machine learning
method for object detection. SVMs are binary classifiers that
have been effectively used for a number of pattern recognition
tasks, such as identifying objects in aerial photos. The sug-
gested approach in a paper by Turker et al. [36] uses SVM
classification to identify building patches in the image and
sequential processing of edge detection, Hough transformation,
and perceptual grouping to extract building boundaries.

The developed method is validated through experiments
conducted on pan-sharpened and panchromatic Ikonos im-
agery, which demonstrate high accuracy in detecting industrial
and residential buildings,achieving average detection rates of
93.45% for industrial and 95.34% for residential buildings.
Cao et al. [14], addressed the challenge of accurately detecting
changes in built-up areas (BAs) for a comprehensive under-
standing of urban development. They introduced a multi-scale
weakly supervised learning approach that utilized image-level
labels and high-resolution images. Creating multi-scale Class
Activation Maps (CAM) for BA pseudo labels, reducing noise
in the pseudo labels, and producing trustworthy pseudo labels
for BA change detection were the three main components of
the approach. Additionally, they used ZY-3 satellite pictures
to create multi-view datasets that covered China’s largest
cities. This method, which uses multi-scale CAM and temporal
correlations for increased accuracy, was beneficial because it
was economical and efficient in situations with few labels.
One machine learning method that has become more and more
prominent in building detection is random forests (RFs).

RFs are an ensemble learning technique based on decision
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trees that has been effectively used for a variety of remote
sensing tasks. The efficiency of machine learning techniques
in mapping Jeddah, Saudi Arabia’s informal settlements using
very-high resolution imagery and terrain data was investigated
in a study by Fallatah et al. [13]. The study used an object-
based RF technique to map 14 markers of settlement features.
With an overall accuracy of 91%, the object-based RF method
was found to be more successful than object-based image
analysis. Building detection in satellite images has also made
extensive use of artificial neural networks (ANNs) [37], in
addition to SVMs and RFs. Large datasets can be used to teach
ANNs, which are strong machine learning models, intricate
patterns, and correlations. Building traits were automatically
extracted from high-resolution Pleiades data using machine
learning methods in a work by Idris et al. [38]. Building
footprints were extracted using the Artificial Neural Network
(ANN) with an accuracy rate of 80.13%, proving its efficacy
and excellent computational efficiency. The findings of the
study offer an automated method for building extraction that
can streamline database and map updates for planning and
decision-making.

Building detection in satellite photography has been ac-
complished through the use of convolutional neural networks
(CNNs). One kind of deep learning model that is capable of
extracting hierarchical features from huge datasets is CNN.
A damaged building detection technique based on CNNs
optimized with the Bayesian optimization approach was pro-
posed by Ekici et al. [39]. The effectiveness of the improved
CNN model is confirmed by performance evaluation metrics
derived from balanced and unbalanced testing datasets, and
testing and validation results demonstrate the robustness of the
suggested approach. UNet-AP, a unique CNN architecture, was
presented by Rastogi et al. [40] for the automatic extraction
of building footprints from satellite data. The architecture was
evaluated using multispectral satellite images and contrasted
with the UNet and SegNet baseline implementations. The find-
ings demonstrate that the suggested architecture consistently
improves performance across various urban settlement classes,
surpassing both UNet and SegNet.

A new model called SG-EPUNet was introduced by Geo et
al. [14] for updating building footprints in bitemporal remote
sensing pictures. Change detection, building extraction, and
edge preservation are all combined into one framework in
this approach. It uses a gated attention module (GAM) to
improve building edges and an Edge-preservation building
extraction network (EPUNet) for accurate building footprint
extraction. By using semi-supervised self-training, SG-EPUNet
overcomes the problem of limited post-change labels by up-
dating building footprints using pre-change and post-change
picture attributes along with a change saliency map.

The proposed approach leverages deep learning [41] and
transfer learning to improve model robustness and general-
ization, making it suitable for automating building footprint
updates in remote sensing imagery. However, the proposed
SG-EPUNet show limitations in updating the small newly-built
buildings, especially when the image resolution is low.

Zheng et al. [2] addresses the critical issue of rapid
and accurate building damage assessment in the aftermath
of sudden-onset natural and man-made disasters. the study
introduces a novel framework called ChangeOS. In ChangeOS,

a deep object localization network replaces the conventional
superpixel segmentation in OBIA to generate precise building
objects. These objects are then integrated into a unified se-
mantic change detection network along with a deep damage
classification network, facilitating end-to-end building damage
assessment. This approach not only ensures semantic consis-
tency but also provides deep object features for more coherent
feature representation. Ding et al. [42] introduce the Semi-
LCD method to enhance Binary Change Detection (BCD)
performance when labeled samples are limited. Semi-LCD
combines sample perturbation, consistency regularization, and
pseudo-labeling. It comprises a supervised module for labeled
data and an unsupervised module for unlabeled data. They
also propose a lightweight change detection network, LCD-
Net, designed to maintain high performance while reducing
model complexity. During training, a combined loss function
balances supervised and unsupervised components. In testing,
the unsupervised module is not used, and change probabilities
are binarized to obtain BCD results.

This approach aims to improve BCD with limited labeled
data and address model complexity issues.

Wang et al. [43]proposed a deep learning-based approach
to detect structured building rooflines from satellite images.
The proposed approach uses CNNs to detect corner and line
segment primitives, and a collaborative branch of semantic an-
notation information to obtain the building segmentation map.
Experiments on the SpaceNet dataset show that the proposed
approach improves the accuracy of building extraction, and the
planar graph representation promotes 3D reconstruction and
other subsequent applications.

Mohammadian et al. [44] focus on building detection and
change detection using remote sensing images, the authors
propose a novel siamese model called SiamixFormer. This
model utilizes both pre- and post-disaster images as inputs
and features a hierarchical transformer architecture with two
encoders. In SiamixFormer, each stage of both encoders con-
tributes to a temporal transformer for feature fusion. This
fusion involves generating a query from pre-disaster images
and (key, value) pairs from post-disaster images, considering
temporal features for enhanced performance.

The use of temporal transformers in feature fusion allows
the model to maintain large receptive fields effectively, outper-
forming CNN-based approaches. Finally, the output from the
temporal transformer is passed through a simple MLP decoder
at each stage.

Although machine learning techniques have shown promise
in detecting buildings in urban areas from aerial images, they
have limitations. These limitations include heavy dependence
on the quality and quantity of training data [16], difficulty
in generalizing to different types of urban areas and building
styles [6], and challenges in detecting partially or fully ob-
structed buildings [7]. Furthermore, gathering and classifying
training data can be costly and time-consuming [17], [18].

On the other hand, image processing methods can get
around these restrictions when it comes to detecting buildings
in satellite photos. In order to overcome the aforementioned
constraints, image processing techniques are employed in this
study. A thorough critical evaluation of the corpus of research
on building detection in aerial photos is provided in Table I. To
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address the problem of detecting buildings in high-resolution
satellite data, the research that are part of this investigation
use a variety of approaches, such as image processing tech-
niques, deep learning, and machine learning algorithms. For
each study, its advantages and limitations are highlighted,
providing insights into the strengths and weaknesses of the
respective approaches. This critical assessment serves as a
valuable reference for researchers, practitioners, and decision-
makers in the fields of urban planning, disaster response, and
construction monitoring, helping them make informed choices
when selecting methodologies for building detection tasks.

III. METHODOLOGY

As shown in Fig. 1, Google Maps building outlines are the
graphical representation of buildings on a map. These belong to
the “Roadmap” map type of Google Maps which is intended
to show the road network and various geographical features
like building footprints. These outlines are lines that outline
the shape of a footprint for buildings, and they’re typically
presented in light gray or beige. Note that the building outlines
shown in Google Maps are not precise: Google’s machine
learning algorithms identify and extract building outlines from
satellite and aerial images, an image processing technique
[31]. These techniques are not always foolproof and often
misidentify building footprints, mistaking them with shadows,
vegetation or other features [45]. Building outlines are helpful
for getting a high-level sense of the general area and so navi-
gating in Google Maps, but they are likely not detailed enough
to support urban planning, disaster response or construction
tracking efforts. But still, those outlines of buildings can help
kick-start the automated process of building detection using
satellite images. In this research, several image processing
operations are applied to the Roadmap image to extract and
clean up the building boundaries. You then get an overlaid
image, which you can also lay down on a color satellite image
and see the structures. The Roadmap-to-Satellite Building
Detector (RSBD) flowchart is in Fig. 2 and the articles below
explain each step in detail.

A. Converting Google Maps Images to Grayscale for Simpli-
fied Image Processing

Let Iq(r, c) represent the “Roadmap” image where q ∈
{1} and pixel value at row r and column c. The Iq image of
the target location is obtained by passing the parameters like
coordinates, zoom level, and size to the Google Maps Static
API [22]. To simplify the image processing operations and
reduce the amount of data that needs to be processed [46], the
image Iq is converted to grayscale using the Eq. (1):

Gq(r, c) = 0.114·I(r, c, 0)+0.587·I(r, c, 1)+0.299·I(r, c, 2)
(1)

where I(r, c, 0), I(r, c, 1), and I(r, c, 2) represent the val-
ues of the respective color channels of each pixel, and Gq(r, c)
is the resulting grayscale image. The choice of weights used
in Eq. (1) was motivated by the well-established phenomenon
that the human eye is more sensitive to green light compared
to red or blue light [47]. Therefore, the green channel was
given a higher weight in the computation, followed by the red
and blue channels.

Figure 1. Google map roadmap view with building outlines.

Figure 2. Flow diagram of the Roadmap-to-Satellite Building Detector
(RSBD) process.

B. Thresholding Technique for Building Outline Extraction
from Grayscale Images

Thresholding is a commonly used technique for converting
a grayscale image into a binary image, where each pixel is
classified as either foreground or background. Its goal is to
make it easier to do additional picture analysis by separating
the object of interest—in this case, building outlines—from
the background. This study employed a binary thresholding
approach, which allocates zero to all pixel values below the
threshold and the maximum value to all pixel values above it.
The maximum value of 255 and the empirically determined
threshold value of 243 in Eq. (2) are based on the features of
the building outlines in the grayscale image that was produced
from Eq. (1). The following formula is used to apply the
thresholding:

T (r, c) =

{
maxval if Gq(r, c) > thresh
0 otherwise

(2)

where Gq(r, c) is the intensity value of the grayscale image
at pixel (r, c), thresh is the threshold value 243, maxval is
the maximum value 255, and T (r, c) is the resulting threshold
image.
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TABLE I. CRITICAL ANALYSIS OF EXISTING STUDIES ON BUILDING DETECTION IN AERIAL IMAGES

Year Author Method Advantages Limitations
2000 Zerubia et al. [26] Chain-based models, fuzzy C-means

algorithm, Markovian model.
• Texture parameter for luminance field.
• No prior knowledge of classes required.
• Tested on real satellite images.

• Limited to texture-based features. •
May not generalize well to all urban ar-
eas. • Specific to certain satellite images.

2003 Benediktsson et al. [23] Morphological and neural
approaches

• Improved classification accuracy. •
Few features needed. • Tested on high-
resolution data.

• Specific to certain data sources (IRS-
1C, IKONOS).

2018 Aamir et al. [28] Singular value decomposition, line-
segment detection

• Works with low contrast satellite im-
ages. • Accurate building line segment
detection.

• Focuses on line segments, not complete
building shapes.

2020 Avudaiammal et al. [29] Morphological Building Index
(MBI), SVM classifier

• Integrates multiple features. • Elimi-
nates mislabeled rooftops. • Geometrical
features used.

• Relies on multiple preprocessing steps.
• Requires a labeled dataset for SVM
training.

2016 Kohli et al. [ [30]] Object-oriented image analysis, tex-
tural feature contrast, spatial metrics

• Suitable for urban slum detection. •
Qualitative and quantitative evaluation.

• Lower accuracy compared to land
cover classification.

2005 Liu et al. [7] Multi-scale object-oriented classifi-
cation, probabilistic Hough trans-
form, building squaring algorithm

• Accurate detection and extraction of
rectangular building roofs.

• Specific to certain image types. • Multi-
scale segmentation may be computation-
ally expensive.

2019 Gavankar et al. [31] Optimization of segmentation and
shape parameters

• Focuses on building footprint extrac-
tion. • Evaluates completeness and cor-
rectness.

• Specific to HRS pansharpened
IKONOS images.

2011 Dey et al. [32] Shadow context, color tone, size,
edge features, structural and geomet-
ric features, multi-level segmentation

• Utilizes various spectral and spatial
features. • Shows promising results.

• Requires modifications for real-world
applications. • Performance may vary
with image quality.

2009 Karantzalos et al. [33] Region-based level set segmentation • Automated and converges quickly. •
Detects roads, buildings, and man-made
objects.

• Effectiveness may depend on image
content and quality.

2020 Cao et al. [34] Point cloud data processing, feature
fusion

• Comprehensive analysis of point cloud
data. • Addresses building characteriza-
tion and labeling.

• Sensitivity to parameter settings. • May
require careful tuning for different sce-
narios.

2023 Farhadi et al. [15] Feature-Based Building Footprint
Extraction (F2BFE)

• Focuses on monitoring urbanization
growth. • Utilizes Sentinel-1 and 2 satel-
lite images. • Automated approach.

• Dependent on Sentinel satellite data
availability. • Effectiveness may vary
with disaster types.

2015 Turker et al. [36] SVM classification, edge detection,
Hough transformation, perceptual
grouping

• High accuracy in detecting industrial
and residential buildings. • Sequential
processing.

• Specific to certain imagery (Ikonos).

2023 Cao et al. [12] Multi-scale weakly supervised learn-
ing, Class Activation Maps (CAM),
pseudo labels

• Cost-effective approach. • Leverages
multi-scale CAM and temporal correla-
tions.

• Effectiveness may depend on label
availability and quality. • May require
large-scale datasets.

2020 Fallatah et al. [13]] Object-based RF approach • Effective in mapping informal settle-
ments. • High overall accuracy.

• May not generalize well to different
regions.

2021 Idris et al. [38] Artificial Neural Network (ANN) • High accuracy in building footprint ex-
traction. • High computational efficiency.

• Performance may vary with dataset and
model complexity.

2021 Ekici et al. [39] Convolutional Neural Networks
(CNNs)

• Robust damaged building detection
method. • Optimized using Bayesian op-
timization.

• Effectiveness may depend on dataset
and model optimization.

2022 Rastogi et al. [40] UNet-AP architecture • Improved building footprint extraction.
• Outperforms baseline implementations.

• Specific to multispectral satellite im-
agery.

2021 Geo et al. [14] SG-EPUNet model • Updates building footprints in bi-
temporal remote sensing images. • Incor-
porates deep learning and transfer learn-
ing. • Addresses limited post-change la-
bels.

• May have limitations in updating small
newly built buildings with low-resolution
images.

2021 Zheng et al. [2] ChangeOS framework • Precise building object generation. •
End-to-end building damage assessment.

• Framework-specific and may require
additional labeled data. • Effectiveness
may vary with disaster types.

2023 Ding et al. [42] Semi-LCD method • Enhances Binary Change Detection
(BCD) performance with limited labeled
samples. • Addresses model complexity.

• Effectiveness may depend on the avail-
ability of labeled data. • Complexity
tradeoffs.

2021 Wang et al. [43] CNNs for corner and line segment
detection, collaborative branch for
semantic annotation

• Detects structured building rooflines.
• Promotes 3D reconstruction and other
applications.

• Specific to structured building
rooflines. • Evaluation may vary with
different datasets.

2023 Mohammadian et al. [44] SiamixFormer siamese model • Uses pre- and post-disaster images for
building and change detection. • Utilizes
hierarchical transformer architecture.

• May require large datasets for optimal
performance. • Performance depends on
the quality of input images.
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C. Morphological Operations for Binary Image Processing:
Closing Operation with Structuring Elements

A crucial part of image processing is morphological oper-
ations, which are commonly used to work with binary images,
where the pixels have binary values of 0 or 1. Because
these procedures can change the shape and structure of binary
images, they have a wide range of applications, such as object
detection, smoothing, and noise removal [48]. These tech-
niques offer ways to enhance image quality, extract significant
information, and get images ready for further processing or
analysis. The morphological operation carried out in Eq. (3) is
closing, which entails applying erosion and dilation procedures
one after the other. In order to improve object detection
accuracy in later processing stages, the closing procedure is
used to fill in tiny gaps in foreground objects [23].

Mq(r, c) = (T (r, c)⊕K)⊖K (3)

The following is the mathematical expression (3) for the
closing operation carried out in this investigation. Let K be
the structuring element, let T (r, c) be the input binary image,
and let ⊕ and ⊖ stand for dilation and erosion operations,
respectively. Image T (r, c) is first dilated using the structuring
element K, and then it is eroded using the same structuring
element K. Following the operation, the final image is saved
as Mq(r, c).

D. Contour Detection for Object Recognition and Segmenta-
tion

Applications for contour detection include object recogni-
tion, tracking, and segmentation. It is an essential procedure for
determining the borders that divide multiple objects or areas
inside an image. In order to highlight picture features and make
the Mq(r, c) binary image from Eq. (3) suitable for contour
detection, it is subjected to morphological processes such as
erosion or dilation. As a result, this method may be applied
to detect the borders between highways, buildings, and other
objects in a picture [49]. In this study, by using Eq. (4), all the
contours are retrieved and used to construct a full hierarchy of
nested contours. The contour approximation method employed
compresses horizontal, vertical, and diagonal segments, leaving
only their endpoints. Mathematically, contour detection can be
represented as follows:

C = findContours(Mq(r, c),Mode,Method) (4)

In the mathematical Eq. (4) of contour detection, the binary
image Mq(r, c) is subjected to contour detection with the use
of two parameters: Mode, which specifies the contour retrieval
mode, and Method, which specifies the contour approximation
method. The resulting output C is a list of detected contours.

E. Building Contour Filtering Based on Area and Aspect Ratio

As mentioned previously, Google’s machine learning al-
gorithms analyze satellite and aerial imagery to identify and
map the shapes of buildings. However, these building outlines
may not always be accurate, as shadows, vegetation, or other
features can sometimes be misinterpreted as building outlines.

Commonly used geometric metrics, such as area or length-
width ratio, can help remove small, noisy items or elongated
objects such as roads [6].

To eliminate object contours in an image that are not
classified as buildings, two filtering conditions are applied
based on their area and aspect ratio. In Eq. (5), first, contours
with an area less than 500 pixels are considered too small
to be a building and are discarded. Second, contours with
an aspect ratio of the bounding rectangle less than 0.5 are
considered too narrow to be a building and are also discarded.
The values of 500 for the area and 0.5 for the aspect ratio
were chosen empirically based on the image resolution and
the desired level of accuracy for detecting building outlines.
These filtering conditions exclude contours that are unlikely to
represent buildings, thus improving the accuracy of subsequent
processing steps.

B =

{
building if area > 500 ∧ aspect ratio > 0.5

¬building otherwise
(5)

Where,

area = 0.5× |(x1y2 − x2y1) + · · ·+ (xny1 − x1yn)| (6)

and,

aspect ratio =
w

h
(7)

The filtered list of building contours is represented by B,
which is obtained by applying two conditions based on the area
and aspect ratio of the contours. Here, the symbol ¬ represents
the logical NOT operator, and the caret symbol ∧ represents
the logical AND operator. The resulting list B contains only
the contours that satisfy both conditions and are identified as
buildings. Eq. (6) calculates the area of a contour, where n
is the number of points in the contour and (xi, yi) are the
coordinates of the ith point in the contour. The vertical bars
| . . . | indicate the absolute value of the sum of the terms inside.
The aspect ratio of the contour is then calculated in Eq. (7)
as the ratio of the width (w) to the height (h), normalized by
converting the w value to a floating-point number and dividing
it by h.

F. Buildings Detection and Visualization of Identified Build-
ings on Satellite Images

Finally, the filtered contour list is superimposed on the
satellite image of the target location, providing a visual
representation of the identified buildings within the image.
Building outlines from Google Maps are used as a baseline
by the Roadmap-to-Satellite Building Detector (RSBD), which
offers an effective method of detecting buildings from satellite
photos. This approach may find use in construction monitoring,
disaster response, and urban planning.
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IV. TEST CASES ANALYSIS

The trials carried out to assess the effectiveness of the
Roadmap-to-Satellite Building Detector (RSBD) methodology
are detailed in this section. In order to evaluate RSBD’s robust-
ness and generalizability in identifying distinct building kinds
in difficult situations, the study tests it on a varied collection
of Google Maps photos from different parts of the world in
Section VI(A). Furthermore, a quantitative comparison of the
detection findings with ground truth data is provided in Section
IV(B). Metrics like True Positives had to be calculated for
this analysis. False Negatives, False Positives, Completeness,
Correctness, and Quality to measure the accuracy and effec-
tiveness of Roadmap-to-Satellite Building Detector (RSBD).
Furthermore, Section VII explains our rationale for using a
specific threshold value of 243 for thresholding grayscale
images consistently throughout our experiments.

A. Qualitative Analysis

33 Google Map [20] photos taken from various parts of the
world, including Pakistan, Canada, the United Arab Emirates,
India, Yemen, and Thailand, were used to test the Roadmap-to-
Satellite Building Detector (RSBD). These regions presented
significant challenges due to variations in building types,
number of buildings, materials, and occlusions by objects
such as trees and shadows. Out of these 33 images, six were
acquired from different sites in Pakistan, six from Canada,
five from UAE, six from India, five from Yemen, and five
from Thailand. The objective of testing the methodology on
different regions of the world was to evaluate its robustness
and generalizability to various urban areas with varying char-
acteristics. Some building detection results can be found in the
following paragraphs.

B. RSBD Performance in Identifying Small Buildings in Sub-
Urban Areas: Test Case in Quetta, Pakistan

In this study, we took a series of actions through the
roadmap-to-Satellite Building Detector (RSBD) process and
reported the detailed results in Fig. 3 based on the test case
concerning satellite low-rise building extraction in residential
areas. The selected image, shown in the Fig. 3, is a view of an
area, which is a suburb of Quetta, Pakistan, was taken using
Google maps, [50](let:30.2668639, and long: 66.9495658).
The RSBD was tested at identifying small buildings, typically
residential buildings that tend to be low and have small
footprints with this case. The RSBD procedure consists of
processes such as contour detection, filtering, and classifi-
cation. First, detected contours on the roadmap view are
filtered with two conditions, namely area and aspect ratio. This
is done by establishing criteria to determine if the contour
smatch what is regarded as a typical building in terms of
shape and size. Contours that are too small or have aspect
ratios that do not correspond to regular building sizes, for
example, are eliminated. This step is important as it helps
to reduce the occurrence of false positives wherein some
other features which are not buildings, or other such life is
wrongly detected as buildings. This filtering is shown on the
output of Fig. 3(d) where some contours are filtered out based
on less than meets the conditions set. By aggregating data
from various sources through a rigorous selection process,
the accuracy of the building detection mechanism drastically

improves, as only authentic buildings get recognized. Also, the
result presented in Fig. 3(f) confirms the RSBD’s ability to
correctly pinpoint and delineate small structures. This ensures
accuracy for urban planning and development in suburban
areas where identification of the spatial distribution of resi-
dential structures is critically important. Of specific interest
for application development, building detection can be highly
beneficial for housing development, infrastructure deployment,
resource allocation and disaster management strategies. The
RSBD process plays an important role in enabling evidence-
based urban & suburban development decisions by effectively
mapping and monitoring these structures.

(a) Roadmap view (b) Threshold Result

(c) Morphological Operation (d) Filtered Contour

(e) Satellite view (f) Detected Buildings

Figure 3. Roadmap-to-Satellite Building Detector (RSBD) successfully
identifies small residential buildings in sub-urban areas: A test case in

Quetta, Pakistan.
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C. RSBD Performance in Identifying High-Rise Buildings: Test
Case in Denver, Canada

Fig. 4 [51] is an example of a test scenario with satellite
image of urban region with tall buildings. A satellite im-
agevfrom Google Maps [44] of the commercial buildings in
Denver Canada along the heights at latitude 39.7491684 and
longitude -104.980819 The specific test case was devised to
test the strength of the roadmap-to-Satellite Building Detector
(RSBD) to detect several enormous high-rise buildings (tall
commercial structures with large footprints) in the scene [5].
These structures are typically located in business districts
or as part of a downtown area, making building detection
particularly challenging due to their scale and architectural
complexity. Therefore, the manual collection of such data is
both rich in time and labor cost, which comprise limitations
to collection of data and task automation, allowing the RSBDs
ability for such high-rise buildings detect, classification as
prerequisite for requirement on order chronicles such, namely,
environmental, disaster, urban planning applications. With the
rapid growth of urbanization, the accurate recognition and
monitoring of high-rise buildings became crucial for sus-
tainable city management. They hold significance as social
and economic constructs in cities across the world. Their
existence impacts the skyline and cityscape, infrastructure
demands, emergency services and more. As shown in Fig.
4(f), the RSBD can accurately identify and delineate these
structures, indicating its potential to advance in these areas.
The successful outcome demonstrates the ability of the RSBD
to accurately delineate large high-rise buildings with mean-
ingful implications for urban development and management.
Such literacy contributes to the sustainable development of
cities by promoting more efficient infrastructure investment,
urban planning and emergency responses. The RSBD provides
valuable information about the stuff of high-rise buildings,
records data on their location and dimensions, and allows urban
planning decision-making to be better informed, leading to
more efficient resource allocation and improved resilience to
natural or human-made disasters.

D. RSBD Performance in Identifying Individual Structures:
Test Case in Dubai, UAE

The performance of the roadmap-to-Satellite Building De-
tector (RSBD) in identifying a single structure was evaluated
using a test image urban areas with a single structure (see
Fig. 5). Moving to the next step, we extracted the geo-
graphical coordinates of the building: a building in Dubai,
United Arab Emirates with latitude (25.0980968) and longitude
(55.2373434) [52]. This case was used to test the RSBDs
ability to highlight on only one building from an image in
an urban filled setting. The results show that RSBD was
able to locate and delineate the only building in the image,
suggesting it is effective on such images. This is useful
in numerous use cases like disaster response, infrastructure
assessment, urban planning, etc. In crowded urban centers
such as Dubai, it is important to properly identify and track
individual buildings. The RSBD supports these efforts through
mapping and monitoring isolated buildings with a high degree
of precision. Accurate identification is vital for work that
includes the assessment of the state of individual buildings,
urban planning optimization and effective emergency response
in big cities. Focusing on individual buildings can improve the

(a) Roadmap view (b)Threshold Result

(c) Morphological Operation
(d) Filtered Contour

(e) Satellite view (f) Detected Buildings

Figure 4. Roadmap-to-Satellite Building Detector (RSBD) successfully
identifies high-rise commercial buildings: A test case in Denver, Canada.

accuracy and effectiveness of urban management strategies,
from assessing structural integrity after a natural disaster to
planning new infrastructure projects. This ability of the RSBD
to compute such analyses positions it as a crucial tool for urban
planners, emergency responders, and infrastructure modelers
alike, providing them with valuable insights upon which they
can rely confidently.

E. RSBD Performance in Detecting Multiple Buildings: Test
Case in Mumbai, India

Satellite view from Google Maps [53] in Fig. 6 showing
an urban area in Mumbai, India, latitude:19.088443, longi-
tude: 72.9033463. This test case tested the capability of our
Roadmap-to-Satellite Building Detector (RSBD) to identify
multiple buildings that are closely clustered in a single image.
Development of the test area covered urban and suburban
buildings of varying height, shape, and type representative
of the Mumbai skyline The outcomes illustrated in Fig. 6(f)
confirm the RSBD’s ability to correctly label and segment
multiple structural elements of the image. This capability is
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(a) Roadmap view (b)Threshold Result

(c) Morphological Operation
(d) Filtered Contour

(e) Satellite view (f) Detected Buildings

Figure 5. Roadmap-to-Satellite Building Detector (RSBD) successfully
identifies high-rise commercial buildings: A test case in Dubai, UAE.

especially vital in crowded areas such as Mumbai, where up-
to-the-minute information about buildings is critical for all
manner of urban management tasks. Precise building detec-
tion aids infrastructure development, land-use planning, and
disaster management, critical elements for sustainable urban
development and resilience. The success of the RSBD at
detecting buildings of various sizes and types highlights its
versatility and adaptability across urban environments. This
functionality is a boon for urban analysts and urban planners
worldwide, as it improves the eviction mapping with better
accuracy and aids in decision making at various levels. Re-
gardless of the definition, the RSBD’s reliability at identifying
numerous structures mean that it will be an important tool
for urban planners, whether it be for efficiently formulating
infrastructure needs in high-density urban areas or keeping
track of the suburbs.

(a) Roadmap view (b)Threshold Result

(c) Morphological Operation
(d) Filtered Contour

(e) Satellite view (f) Detected Buildings

Figure 6. Roadmap-to-Satellite Building Detector (RSBD) successfully
identifies high-rise commercial buildings: A test case in Mumbai, India.

F. RSBD Performance in Detecting Earthen Buildings: Test
Case in Shibam, Yemen

Houses are built from mud in many other parts of the
world which we call earthen houses. This construction material
is common in many areas since it is easily available and is
comparatively cheap. However, many of these structures have
spectral characteristics comparable to their environment, mak-
ing them difficult to detect using conventional methods. The
result of a case of satellite image of Shibam, Yemen with co-
ordinates (15.9223003, 48.6393691) [54] is represented in Fig.
7. Shibam is famous for its mud-brick structures dating back
centuries and representing the traditional building style of the
area. This test aimed to evaluate the performance of RSBD in
the detection and segmentation of buildings in cases where the
spectral differences between the buildings and the surrounding
terrain are weak. As shown in Fig. 7, it is apparent that the
RSBD was able to accurately separate the mud houses from
their surroundings, whilst also suppressing the background
landscape in the process due to spectral similarity. This finding
highlights the strength and versatility of the RSBD to identify
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buildings built with natural materials, which are prevalent in
rural, and some urban, areas across the globe. Capability of
classifying such buildings is important for urban planning,
heritage conservation, and disaster management, especially in
areas of the world where earthen houses predominate. It aids
efforts to keep current records of building inventories and to
ensure appropriate measures are taken to decorate architectural
heritage and for disaster preparedness. The success of the
RSBD in these challenging detection scenarios validates its
potential as a versatile tool that can be utilized in several
distinct geographical and cultural settings.

(a) Roadmap view (b)Threshold Result

(c) Morphological Operation
(d) Filtered Contour

(e) Satellite view (f) Detected Buildings

Figure 7. Roadmap-to-Satellite Building Detector (RSBD) successfully
identifies high-rise commercial buildings: A test case in Shibam, Yemen.

G. RSBD Performance in Detecting Buildings Obstructed by
Objects: Test Case in Thailand

The last test scenario was used to assess the ability of the
roadmap-to-Satellite Building Detector (RSBD) S2 to detect
buildings that are difficult to identify given the surrounding
features of the environment, which may include various ob-
structions (trees and shadows). For many of these real-world
scenario’s buildings can be fully or partially hidden from

sight, leading to misclassification when detecting buildings in
satellite data because of the Spectro-physical overlap between
the elements hiding buildings. Fig. 8 shows the satellite
image from Google Maps, is a suburb region in Thailand
latitude 19.3287643, longitude 98.3887638 [47] [55]. House
have forest,3D Rendering The difficulty of RSBD monitoring
with the vegetative coverage of buildings, which may impede
image processing conventional methods. Fig. 8(f) shows the
overall effectiveness of the RSBD in accurately segmenting
anatomy across all patients, even in such challenging scenarios.
And even though some buildings were covered by trees, the
RSBD has been able to tell the difference and remains an
advanced detection tool in cases where natural elements hinder
visibility. This feature is vital for applications like urban
forestry management, land-use planning, and disaster response,
where accurate recognition of concealed buildings is crucial for
sound decision-making and resource allocation.

The RSBD has demonstrated strong performance in both
obscured and unobscured conditions (79.9% and 73.1%, re-
spectively), reinforcing the ability to reliably detect person-
borne threats in different environmental contexts. Such ro-
bustness allows for its utilization for many remote sensing
applications and urban studies and helps maintain accurate
inventories of buildings and preparedness against natural or
human-made disasters. Overall, this successful detection of
hidden structures is a powerful enhancement of the utility
of the RSBD in a wide range of settings, further validating
its utility as a general-purpose solution to complex urban
detection problems.

H. Quantitative Analysis

A quantitative comparison of the detection results with the
ground truth was used to validate the Roadmap-to-Satellite
Building Detector (RSBD). The evaluation results of the RSBD
approach applied to a set of 33 test photos sourced from
Google Map satellite imagery are displayed in Table II. We
gathered satellite imagery for every nation, concentrating on
certain categories like “Earthen Buildings,” “Multiple Build-
ings,” “Individual Building,” “High-rising Buildings,” “Small
Buildings,” and “Buildings Obstructed”. True Positives (TP),
False Negatives (FN), and False Positives (FP) are evaluation
metrics that are derived from ground truth data and are essen-
tial parts of detection accuracy measurements. After a thor-
ough, careful, and time-consuming process of photo interpreta-
tion, an expert manually constructed and annotated the ground
truth, which includes the precise locations of the buildings.
Furthermore, three quality metrics are presented and computed
using the previously specified detection metrics: Completeness,
Correctness, and Quality [56]. Specifically, FP stands for the
number of buildings that were not found in the image, FN
for the structures that were not found, and TP for the number
of buildings that were correctly identified. According to Eq.
(8), completeness is the number of real structures found in
the picture. According to Eq. (9), correctness is a metric that
quantifies the proportion of detected buildings that were, in
fact, buildings. Completeness and Correctness are combined to
create Quality, which is a measure of the algorithm’s overall
performance as given by Eq. (10). Therefore, one can assess
an algorithm’s efficacy and accuracy in identifying buildings
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(a) Roadmap view (b)Threshold Result

(c) Morphological Operation
(d) Filtered Contour

(e) Satellite view (f) Detected Buildings

Figure 8. Roadmap-to-Satellite Building Detector (RSBD) successfully
identifies high-rise commercial buildings: A test case in Thailand.

in an image by computing these three measures.

Completeness =
TP

TP + FN
× 100% (8)

Correctness =
TP

TP + FP
× 100% (9)

Quality =
2× Completeness × Correctness

Completeness + Correctness
× 100% (10)

With an average Completeness score of 79%, the Roadmap-
to-Satellite Building Detector (RSBD) does a respectable job
of identifying buildings in the test photos, according to the
data shown in Table II. This suggests that over 80% of the
real structures in the pictures can be identified by the RSBD.
Furthermore, the majority of the recognized buildings appear
to be real buildings, as indicated by the average Correctness
score of 9%. The RSBD achieves a reasonable balance between
correctness and completeness, as seen by its average Quality
score of 85%.

TABLE II. EVALUATION OF THE DETECTION RESULTS IN THE TEST
IMAGE SET

Country Satellite Image TP FN FP Complete Correct Quality

Pakistan*

Small Buildings
(1) 17 4 1 81% 94% 87%

Small Buildings
(2) 23 3 4 88% 85% 87%

High-rising Build-
ings 6 1 0 86% 100% 92%

Single Building 1 0 0 100% 100% 100%
Multiple Buildings 22 4 2 85% 92% 88%
Earthen Buildings 20 2 0 91% 100% 95%

Canada*

Small Buildings 16 3 0 84% 100% 91%
High-rising Build-
ings 6 1 1 86% 86% 86%

Single Building 1 1 0 50% 100% 67%
Multiple Buildings
(1) 19 5 2 79% 90% 84%

Multiple Buildings
(2) 21 5 0 81% 100% 89%

Buildings
Obstructed 8 2 0 80% 100% 89%

UAE*

Small Buildings 17 9 0 65% 100% 79%
High-rising Build-
ings 8 1 0 89% 100% 94%

Multiple Buildings
(1) 20 6 1 77% 95% 85%

Multiple Buildings
(2) 23 3 3 88% 88% 88%

Earthen Buildings 22 4 0 85% 100% 92%

India*

Small Buildings
(1) 18 8 2 69% 90% 78%

Small Buildings
(2) 16 10 1 62% 94% 74%

High-rising Build-
ings 4 0 1 100% 80% 89%

Multiple Buildings
(1) 19 7 1 73% 95% 83%

Multiple Buildings
(2) 21 5 1 81% 95% 87%

Buildings
Obstructed 6 3 1 67% 86% 75%

Yemen*

Small Buildings 23 3 2 88% 92% 90%
Single Building 1 0 0 100% 100% 100%
Multiple Buildings
(1) 22 4 1 85% 96% 90%

Multiple Buildings
(2) 17 9 2 65% 89% 75%

Earthen Buildings 20 6 4 77% 83% 80%

Thailand*

Small Buildings 18 8 1 69% 95% 80%
High-rising Build-
ings 9 2 0 82% 100% 90%

Multiple Buildings
(1) 19 7 3 73% 86% 79%

Multiple Buildings
(2) 21 5 2 81% 91% 86%

Buildings
Obstructed 4 1 1 80% 80% 80%

It is important to note, too, that the RSBD performs
differently in various geographical areas. In particular, the
RSBD outperforms Yemen and India in terms of construction
detection in Pakistan, Canada, the United Arab Emirates, and
Thailand. This regional variation in performance suggests that
variables like geographic features and differences in building
kinds and densities may have an impact on the RSBD accuracy.

V. RESULTS

The performance of the Roadmap-to-Satellite Building
Detector (RSBD) is demonstrated in Fig. 9 utilizing six distinct
satellite pictures from Pakistan, with an emphasis on the
identification of various building types. In terms of quality
evaluation and detection accuracy, the data shows encouraging
outcomes. Notably, RSBD received a 95% overall quality
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score for “Earthen Buildings,” with 91% completeness and
100% accuracy. Likewise, for “Multiple Buildings,” the RSBD
revealed an overall quality score of 88%, a completeness of
85%, and an accuracy of 92%. RSBD obtained a perfect
completeness and correctness rate of 100% for “Individual
Building” detection. Furthermore, RSBD demonstrated excel-
lent completeness scores of 86% and 81% for “High-rising
Buildings” and “Small Buildings,” respectively, in addition to
high accuracy rates, yielding overall quality ratings of 9%
and 87%, respectively. These results highlight how well the
Roadmap-to-Satellite Building Detector (RSBD) can recognize
a variety of building types across Pakistan’s regions.

Figure 9. Roadmap-to-Satellite Building Detector (RSBD) Performance
Across Different Satellite Images in Pakistan.

The performance of the Roadmap-to-Satellite Building
Detector (RSBD) across six distinct satellite pictures in Canada
is shown in Fig. 10. Among the many image categories,
RSBD demonstrated a remarkable degree of accuracy, with
correctness ranging from 86% to 100%. The RSBD technique
is strong, as seen by its completeness, which ranges from 50%
to 86% and assesses the capacity to discover true positives. The
total RSBD quality ranges from 67% to 91%, demonstrating
how well RSBD can recognize buildings in satellite imagery
from a variety of Canadian locales.

Figure 10. Roadmap-to-Satellite Building Detector (RSBD) Performance
across different satellite images in Canada.

Findings from an examination of satellite imagery from
different parts of the United Arab Emirates (UAE) are shown

in Fig. 11, with an emphasis on the identification of distinct
building types. The Roadmap-to-Satellite Building Detector
(RSBD) performance in these categories is shown in the
graph, which shows encouraging outcomes. Notably, RSBD
received an overall quality score of 85% for the “Multiple
Buildings” category, with 77% completeness and 95% accu-
racy. Likewise, with “Earthen Buildings,” RSBD achieved a
remarkable 85% completeness and 100% accuracy, yielding
a 92% quality score. For “Small Buildings” and “High-rising
Buildings,” respectively, RSBD demonstrated high accuracy
rates of 100% and outstanding quality scores of 79% and
94%. These findings underscore the potential of Roadmap-to-
Satellite Building Detector (RSBD) in accurately identifying
diverse building types in UAE satellite imagery, contributing
to advancements in remote sensing applications.

Figure 11. Roadmap-to-Satellite Building Detector (RSBD) Performance
across different satellite images in UAE.

The performance of the Roadmap-to-Satellite Building
Detector (RSBD) on six distinct satellite photos of India is
shown in Fig. 12. According to the graph, when recognizing
several buildings, the Roadmap-to-Satellite Building Detector
(RSBD) obtained an exceptional average completeness rate
of 77% and an accuracy rate of 95%, yielding a quality
score of 83%. RSBD obtained a 78% overall quality score,
a 66% completeness rate, and a 92% accuracy rate for small
buildings. Furthermore, with 100% completeness and 80%
correctness rate, RSBD demonstrated exceptional performance
in identifying high-rise buildings, earning an 89% quality
score. RSBD obtained a quality score of 75%, a correctness
rate of 86%, and a completeness rate of 67% when working
with obstructed buildings. These results highlight how well
Roadmap-to-Satellite Building Detector (RSBD) can recognize
and classify buildings in satellite photos, especially when it
comes to seeing several, tall buildings. A thorough examination
of satellite image data from multiple Yemeni regions is shown
in Fig. 13, with an emphasis on the identification of distinct
building types. With completeness ranging from 65% to 100%
and correctness ranging from 83% to 100%, the graph shows
encouraging results in terms of detection accuracy. With an
average score of 87%, the overall quality of the buildings that
were detected likewise shows excellent performance. With the
best performance seen in the recognition of individual build-
ings, these results demonstrate the promise of the Roadmap-
to-Satellite Building Detector (RSBD) for precise building
detection in Yemen.
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Figure 12. Roadmap-to-Satellite Building Detector (RSBD) Performance
across different satellite images in India.

Figure 13. Roadmap-to-Satellite Building Detector (RSBD) Performance
across different satellite images in Yemen.

Findings from satellite photos of different parts of Thailand
are shown in Fig. 14, with an emphasis on identifying struc-
tures and classifying them according to their kind. Significant
differences in the performance metrics between the various
building categories are shown in the graph. For example,
Roadmap-to-Satellite Building Detector (RSBD) received a
79% overall quality score in the “Multiple Buildings” category,
with 73% completeness and 86% accuracy. Conversely, the
“Small Buildings” category had an overall quality score of
80% due to its higher accuracy of 95% and lower completeness
of 69%. These results highlight how crucial it is to modify
detection tactics according to particular building types when
using satellite data for urban study in Thailand. Moreover,
the “High-rising Buildings” category demonstrated exceptional
performance with an 82% completeness, 100% correctness,
and a remarkable overall quality score of 90%. This suggests
that RSBD excels in detecting taller structures in these satellite
images.

VI. DISCUSSION

This section presents and analyzes the findings from the
Roadmap-to-Satellite Building Detector (RSBD) approach. In
addition to exploring the findings’ wider ramifications, the
discussion will offer an interpretation of these results in light
of earlier research and working ideas.

Figure 14. Roadmap-to-Satellite Building Detector (RSBD) Performance
across different satellite images in Thailand.

A. Robustness and Generalizability

The robustness and generalizability of RSBD were demon-
strated by the qualitative study conducted in several geo-
graphical areas. Despite differences in building kinds, sizes,
materials, and occlusions, RSBD was able to detect buildings
in a variety of scenarios. The methodology’s flexibility to
diverse urban settings is demonstrated by its high performance
in several regions. These results are consistent with earlier
research that emphasized the significance of creating reliable
building detection techniques for satellite photography, consid-
ering the variety of urban settings found throughout the world.

B. Detection Accuracy

The quantitative analysis offered a thorough evaluation
of the detection accuracy of RSBD. The performance was
assessed using the True Positives (TP), False Negatives (FN),
and False Positives (FP) measures. With an average com-
pleteness score of 79%, the approach was able to identify
roughly 79% of the real structures in the test photos. The
bulk of the structures that were spotted were, according to
the average accuracy score of 93%, genuine positives. A good
balance between completeness and correctness was indicated
by the quality score, which averaged 85%. One significant
finding is the regional variance in performance, with RSBD
doing better in certain areas than others. Variations in image
quality, building density, and geographic elements could all be
responsible for this discrepancy. It highlights that in order to
achieve the best results, the methodology must be modified to
account for certain area features. Additionally, it is in line with
earlier studies that have emphasized the difficulties in detecting
buildings in various geographical locations.

C. Machine Learning vs. Image Processing

The fact that RSBD relies on image processing methods
rather than machine learning or deep learning algorithms is
one of its noteworthy features. Benefits of this option include
lower data needs, resilience to changes in weather and lighting,
and efficiency when dealing with partially blocked structures.
These benefits are consistent with the drawbacks of machine
learning models that were covered in the introduction, where
issues with data quality, generalization, and environmental
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sensitivity were noted. Because machine learning and deep
learning techniques work well on particular datasets, they have
frequently been preferred in earlier research for constructing
detection. Nevertheless, RSBD’s findings imply that image
processing methods can outperform machine learning models
in certain areas while still producing competitive outcomes.
This discovery adds to the continuing debate on whether
methods are best suited for building detecting jobs.

VII. THRESHOLD VALUE ANALYSIS

As mentioned earlier, thresholding is a commonly used
technique to convert grayscale images into binary images
by classifying each pixel as foreground or background. This
approach is particularly useful in separating the object of
interest, which in this study pertains to building outlines, from
the background and streamlining subsequent image analysis.
In this study, a threshold value of 243 was consistently
employed throughout all experiments. This choice was made
after a thorough examination of the features of the building
outlines in the grayscale pictures. Fig. 15 shows the histogram
of pixel intensity values for two grayscale images acquired
using Eq. (1) in various test scenarios to further clarify our
choice. These graphs demonstrate that 243, 249, and 253
were the intensity values that appeared most frequently in the
grayscale photographs. These specific intensity values were
found to correlate with ground, roads, and building outlines,
respectively, after empirical investigation.

(a) Test Image 1 (b) Test Image 2

Figure 15. Threshold selection for building outlines in grayscale images:
Using pixel intensity histogram analysis.

This study led to the selection of 243 as the threshold
value for all studies. This choice was made since it was
discovered that this specific intensity value worked best for
recognizing building outlines in the grayscale pictures. Addi-
tionally, the Roadmap-to-Satellite Building Detector (RSBD)
produced great results, showing that this method of detecting
buildings from satellite photos has several uses, such as urban
planning and catastrophe management. This method allows
us to precisely recognize and examine building outlines from
satellite photos, yielding insightful information for a range of
uses.

VIII. CONCLUSION

The experimental findings show that the Roadmap-to-
Satellite Building Detector (RSBD) has the ability to auto-
matically identify and categorize buildings in satellite imagery
from Google Maps. The approach successfully recognized and
categorized buildings in six global locations, including low-rise

and high-rise, urban and rural, and successfully handled single
and multiple structures in an image. To improve the precision
and resilience of the detection process, this methodology
makes use of sophisticated capabilities, such the Google Maps
Roadmap view, and uses contour filtering and morphological
procedures. Furthermore, it is well-suited for universal appli-
cations due to its adaptability to different building kinds, sizes,
and shapes throughout worldwide areas. Nevertheless, this
suggested approach has a drawback. The RSBD method uses
Google Maps Road Map view’s footprints to identify struc-
tures in satellite photos. As a result, RSBD won’t recognize
buildings whose outlines Google has supplied are out-of-date
or missed by Google’s algorithm. The significance of regional
adaptation is highlighted by the regional differences in RSBD’s
performance. Future studies might concentrate on adjusting the
methodology to particular geographical areas while accounting
for elements like construction types, regional materials, and
environmental circumstances. This modification may result in
improved precision and dependability in many settings. Even
though RSBD mostly uses image processing, future studies
might look into using machine learning or deep learning
methods to improve its functionality even more. To increase
detection accuracy, machine learning models could be trained
to adjust to local variables. Even greater outcomes could be
achieved by combining the advantages of machine learning
with image processing. To sum up, the Roadmap-to-Satellite
Building Detector (RSBD) presents a viable way to address
the difficulties associated with automatically identifying and
categorizing buildings in satellite imagery. The methodology’s
potential for worldwide applications is demonstrated by its
resilience and flexibility in a variety of urban settings. Future
research and development in the area of automatic building
detection and classification from high-resolution satellite data
can benefit greatly from the conclusions of this work.
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