
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

119 | P a g e

www.ijacsa.thesai.org

A Highly Functional Ensemble of Improved Chaos

Sparrow Search Optimization Algorithm and

Enhanced Sun Flower Optimization Algorithm for

Query Optimization in Big Data

Mursubai Sandhya Rani*, Dr. N. Raghavendra Sai

Department of Computer Science and Engineering, Koneru Lakshmaiah Educational Foundation,

Vaddeswaram, Andhra Pradesh, India.

Abstract—Numerous systems have to provide the highest level

of performance feasible to their users due to the present

accessibility of enormous datasets and scalability needs. Efficiency

in big data is measurable in terms of the speed at which queries

are executed physically. It is too demanding on big data for queries

to be executed on time to satisfy users' needs. The query optimizer,

one of the critical parts of big data that selects the best query

execution plan and subsequently influences the query execution

duration, is the primary focus of this research. Therefore, a well-

designed query enables the user to obtain results in the required

time and enhances the credibility of the associated application.

This research suggested an enhanced query optimizing method for

big data (BD) utilizing the ICSSOA-ESFOA algorithm (Improved

Chaos Sparrow Search Optimization Algorithm- Enhanced Sun

Flower Optimization algorithm) with HDFS Map Reduce to avoid

the challenges associated with the optimization of queries. The

essential features are extracted by employing the ResNet50V2

approach. Effective data arrangement is necessary for making

sense of large and complex datasets. For this purpose, we ensemble

Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) and Improved Spectral Clustering (ISC). The

experimental findings demonstrate a significant benefit of the

proposed strategy over the present optimization of the queries

paradigm, and the proposed approach obtains less execution time

and memory consumption. The experimental results show that the

proposed strategy significantly outperforms the current

optimization paradigm, reaching 99.5% accuracy, 29.4 seconds of

execution time, and 450 MB less memory use.

Keywords—Big data (BD); query optimization; Improved Chaos

Sparrow Search Optimization Algorithm (ICSSOA); Enhanced Sun

Flower Optimization Algorithm (ESOA); ResNet50V2; DBSCAN

I. INTRODUCTION

Big data empowers businesses to make informed decisions
and take appropriate action by allowing them to examine
enormous data in volume, variety, and velocity [1]. Big data can
be stored and queried using a variety of databases and data
structures: Relational databases are employed for read-
intensive analytic queries; Internet transaction processor
platforms are utilized for faster uploads and reliability; NoSQL
storage systems are used for handling massive volumes of data
[2, 3]. Different data stores have been created and constructed
for various purposes and the best results. SQL databases are
effective at storing and processing structured data, but their

efficiency suffers from read-intensive queries. Similarly to how
NoSQL storage systems are tailored to deal with unstructured
data, columnar databases are utilized for the analytic processing
of queries [4-6].

The information that has been processed is kept in several
databases so that analysts can use it. Performance optimization
and various data structures are crucial for applications that use
a lot of data [7, 8]. Building scalable and effective data pipelines
is a significant difficulty. These data pipelines, which are vital
to the functionality of the applications, are optimized and
maintained by data engineers [9]. Researchers and data
scientists utilize the data warehouse to analyze, evolve, and
load the data for their research projects. The enhancement of
query efficiency and extra complexity brought on by the
various data models employed in these databases present
ongoing challenges for big data platforms that use these
databases [10-12].

The many Operation SITE Allocation (OSA) strategies to
execute the query are born from the advancement of query
optimization. OSA problems are sought after to improve query
execution plans in terms of system throughput or response
times [13]. The query optimizer's three main parts are "Cost
Model," "Search Space," and "Search Strategy." Designing the
various cost coefficients and the objective function is the
responsibility of the cost model. A variety of different query
execution strategies are represented by the search space [14,
15]. The search method is also used to probe the search space
to find the most promising query execution technique.

Previously, deterministic optimization methods and a
variety of databases were used for query optimization. Only
basic CDSS queries are a good fit for deterministic algorithms
[16-18]. Nature Inspired Computing (NIC) has tremendous
prospects for computational intelligence and is now being
applied to address CDSS query optimization concerns. There is
a long list of NIC computing techniques, some of which depend
on the genetics of animals, insects, birds, and people, as well as
on music and water [19]. The most admired NICs include
Artificial Bee Colony, Cuckoo Search, Ant Colony
Optimization, Grey Wolf Algorithm, and Genetic Algorithm.
After reviewing the literature on query optimization, it was
discovered that distributed CDSS queries had received a lack of
attention. To speed up the data retrieval, a creative query

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

120 | P a g e

www.ijacsa.thesai.org

optimizer is required. The suggested query optimizer helps
identify an ideal query execution plan that reduces the overall
consumption of I/O, computing, and communication resources
[20].

The increasing scale and complexity of big data have made
query optimization a critical challenge. Existing methods often
struggle with several limitations, including high computational
cost, slow convergence, and inefficiency when handling large,
distributed datasets. Many traditional techniques are also
unable to address data skew effectively, ensure quick response
times, or optimize query execution under heavy query loads.
These shortcomings highlight the need for a more efficient
approach to query optimization that can scale with growing data
volumes and provide faster, more resource-efficient execution
in modern big data environments. To address these challenges,
we propose an enhanced query optimization method that
significantly improves execution time and reduces memory
consumption, making it better suited for the demands of today's
data-driven applications.

To tackle the issue mentioned above, we introduced a novel
approach to big data arrangement and feature extraction. This
reduces the execution time, retrieval time, and memory usage.
Compared with existing methods, the proposed approach
performs better.

A. Research Contribution

The key objectives of this research are as follows:

 Initially, we employed a secure hash algorithm in
preprocessing to find the hash value. Then, centered on
the HV, the map reduction process is executed.

 After the removal of repeated data, the essential features
are extracted by employing ResNet50V2.

 Entropy values are inputted to the deep adaptive hybrid
clustering algorithm DBSCAN and spectral clustering
for the big data arrangement.

 Finally, the query is optimized with the help of the
ensemble Improved Chaos Sparrow Search
Optimization algorithm (ICSSOA) and Enhanced Sun
Flower Optimization algorithm (ESFOA).

The following part of the article is structured as follows.
The existing prior works are briefly described in Section II. The
proposed strategy is described in detail in Section III. The
suggested method is extensively simulated in Section IV.
Section V provides the conclusion.

II. RELATED WORKS

Some existing prior works related to significant data query
optimization are analyzed in this section.

An improved query optimizer known as CDSS was
modelled by Sharma et al. [21] using a hybridization firefly-
genetic algorithm (GA) on a constrained divergence
environment (RDFG_CDQO). This CDSS was created with the
goal of achieving the best query execution plan possible to
reduce processing, input-output, and interaction demands when
running CDSS queries. The controlled GA's slower
convergence difficulty would be cautiously defeated by the

enhanced utilization of the CDSS technique, achieving
significant variance in "2" successive generations. The CDSS
optimizer could not solve the QO issues. For the query
retrieving rate, Lekshmi et al. [22] presented the Top-k Query
Multi-Keyword Threshold method (Top-k QMKST). The query
and many keywords are primarily divided, and B+ tree indexing
was used to execute the data index. Response time and spatial
complexity were both decreased by employing Top-k QMKST.
The Kullback Leibler Divergence also uses the index list of
terms to determine a score value. The results of the
experimental study show that the suggested technique performs
better.

For the skewed-ranging queries, Wei Ge et al. [23]
suggested a method known as correlation-aware partitions. In
the form of a geometrical curve-fitting problem, it introduced a
problem known as partitioning optimization on continuously
correlated data. The boundaries of the range query must be used
to partition data optimally. The boundary for the range was
utilized in this case to incorporate the best partitions and
significantly reduce the computational cost compared to the
standard dynamic programming. When compared to the global
one, the local one performed better instead of attempting to
increase effectiveness.

Sinha et al. [24] proposed an approach for distributed
datasets by combining the genetic algorithm (GA) and the k-
means clustering method. The suggested strategy is divided into
two phases; in the initial stage, parallel GA is performed to data
chunks spread across many machines. GA takes into account
the covariance among the data sets and offers an improved
summary of the original information. Phase 2 applies K-means
with K-means++ initialization on the intermediate output to
produce the outcome.

Ansari et al. [25] suggested a parallel variant of the
conventional K-means algorithm for use in the Hadoop
distributed environment. The results of the experiments
demonstrate that the suggested K-means algorithm operates
better than conventional K-means when clustering a significant
volume of datasets. Compared to current methods, the
suggested approach produces better results.

A. Research Gap

Existing query optimization techniques, including Top-k
QMKST (Lekshmi et al. [22]) and the CDSS optimizer (Sharma
et al. [21]), concentrate on increasing query execution
efficiency but struggle to handle dynamic or large-scale
datasets. Top-k QMKST speeds up response times but might
not be able to handle high-dimensional data effectively, and the
CDSS optimizer enhances convergence but has trouble
optimizing query retrieval rates. Other methods that deal with
partitioning and data summarization, including correlation-
aware partitions (Wei Ge et al. [23]) and the integration of
evolutionary algorithms with K-means clustering (Sinha et al.
[24]), do not sufficiently improve query execution in distributed
systems with big datasets. Furthermore, the parallel K-means
approach of Ansari et al. [25] enhances clustering but ignores
memory usage and query execution time. By using
ResNet50V2 for feature extraction, the ICSSOA-ESFOA
method for improved query optimization, and DBSCAN and
ISC in combination for efficient data arrangement, our

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

121 | P a g e

www.ijacsa.thesai.org

proposed work seeks to close these gaps. By addressing the
shortcomings of current techniques, our strategy guarantees
quicker query execution, better memory management, and
increased scalability in significant data contexts.

III. PROPOSED METHODOLOGY

In order to handle and store BD, which is extremely large in
volume and contains numerous data models, organizations

maintain various databases. For business purposes, it is
essential to query and analyze BD for insight. In this study, the
ICSSOA-ESOA algorithm and the HDFS map-reduce approach
were used to improve the query optimizer procedure in BD.

Fig. 1. Proposed methodology architecture diagram.

To extract the essential features from a big dataset, we
employed ResNet50V2. Then, the big data are arranged with
the help of an ensemble DBSCAN approach and an improved
spectral clustering approach. The proposed approach is
analyzed and evaluated by using four benchmark datasets. The
overall framework of the proposed approach is shown in Fig. 1.

A. Problem Statement

The number of datasets that need to be evaluated is
increasing, necessitating several databases to store the
preprocessed data in various information formats. Several
methods, like materialized views and data cubes, can decrease
query latency but necessitate significant computation and
preparation. In order to deliver estimated results with error
bounds, approximate query processing (AQP) was
implemented. Nowadays, the majority of AQP models only
support one database. The suggested AQP model supports
heterogeneous databases with various data models by keeping
up-to-date samples in a single database. Any database can be
used to conduct the SQL query. The query optimizer chooses
the samples automatically and provides users with
approximations of the results. For this purpose, we introduced
a novel approach for query optimization.

B. Preprocessing

The pre-processing of the input data was carried out during
this phase. First, it uses the Secure Hash Algorithm (SHA-3) to
determine the HV for every bit of data. Then, using HDFS, the
MR process is carried out using the HV as its focal point. The
subsections below explain the SHA-3 and HDFS processes.
The SHA-3 algorithm is specified for a digest length d with a
value of 224, 256, 384, or 512 and a message M with two bits
"01" inserted at the conclusion, such that𝑆𝐻𝐴 − 𝑑(𝑀) =
𝐾𝐸𝐶𝐶𝐴𝐾(𝑐)(𝑀||01, 𝑑), while SHA3 and KECCAK are
functions, M is the input string to the SHA-3 method.

1) The SHA‑3 algorithm is utilized to find the hash value of

big data: Utilizing permutation functions, the SHA-3 method,

also referred to as the Keccak algorithm, was created. Keccak

performs encryption well and has a high degree of attack

resistance. SHA-3 is safer than earlier iterations like SHA-1 and

SHA-2. The SHA-3 method can provide multiple fixed-bit hash

values for different input bits. The outcome of this research is a

256-bit hash value.

2) Map and reduce: The two most crucial MapReduce

processes are the "Map and Reduce" operations. The Apache

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

122 | P a g e

www.ijacsa.thesai.org

Foundation created the distributed system infrastructure known

as Hadoop. Users can fully leverage the platform's massive data

storage and quick computation capabilities by developing

distributed applications without familiarity with the

architecture's inner workings. Hadoop implements a distributed

file system called HDFS. Although HDFS requires the usage of

costly hardware, it provides good features and strong fault

tolerance. Additionally, it offers a fast interface for accessing

application data, making it appropriate for programs with big

data sets. HDFS lowers the file system's restrictions for

accessing the data in stream form. HDFS and Map Reduce are

the two main components of the Hadoop system. Massive data

storage is primarily provided by HDFS, and distributed

computing functions are supplied by Map Reduce. The simple

description of Hadoop's data processing is that the Hadoop

cluster analyzed the data to produce its outcomes. In Fig. 2, the

method of processing flow is depicted.

Fig. 2. Framework of map and reduce.

HDFS and MapReduce are the two main parts of Hadoop,
as shown in Fig. 3. The storage of enormous amounts of data is
the responsibility of HDFS, and the processing of massive
amounts of data is a function of MapReduce. Another two
crucial parts of Hadoop are the distributed database system
Hbase and the data warehouse tool Hive. Records are kept in a
Hadoop cluster using the HDFS. The HDFS interface resembles
a straightforward hierarchical file system with straightforward
operations like adding, deleting, moving, and more. However,
the HDFS files are broken up into data blocks based on specific
requirements, and then a massive number of data blocks are
distributed over numerous slave nodes. It departs significantly
from conventional storage structures at this point. The user
typically chooses the number of data blocks to put and the
dimension of each separated data block.

MapReduce, which includes Job Trackers and Task
Trackers, is DFS's top layer. Massive files are partitioned into
equal sections by default on HDFS. This default value is set at
64 M in the HDFS overview document. The data file 1 has been
separated into three portions and placed in three distinct
machines. Map Reduce is a task that is called Map and

computes after every Hadoop input component. The system
will move through each input data individually in the task
before analyzing the map and turning it into a key-value format.
The outcome will be produced in the key-value pair's form. As
an input to Reduce by key, Hadoop will then transmit the
outcome of the preceding phase. The Reduce Task's results,
retained on HDFS, are the outcome of the entire task.

C. Feature Extraction

Datasets in big data scenarios may contain a large number
of variables or attributes and be exceedingly high dimensional.
High dimensionality can present difficulties in overfitting, poor
interpretability, and computation complexity. Feature
extraction algorithms can reduce dimensionality by converting
the original features into a lower-dimensional representation
while maintaining the crucial data. Analysis and modelling
could become more effective as a result. From the original data,
the significant aspects are retrieved, including closed frequent
item set, support, and confidence. Finally, entropy computation
is used to regulate confidence and support value. The following
part provides an overview of the extraction of feature processes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

123 | P a g e

www.ijacsa.thesai.org

Fig. 3. Hadoop's two core components.

1) ResNet50V2: Deep feature extraction is illustrated in this

subsection. Deep feature extraction employs deep neural

networks to extract significant and valuable information from

raw data. These characteristics capture high-level

representations that are more useful for handling the current

task. For query optimization in big data, we used the

ResNet50V2 framework as a deep extraction of features

method. ResNet50V2 represents a convolutional neural

network (CNN) that excels in various computer vision

applications. To tackle the degradation issue in deep networks,

a variation of the ResNet design is used, which uses skip

connections.

The 50-layer ResNet50V2 was pre-trained using a sizable
dataset, such as a big datasets. The network can learn residual
mappings through the use of residual blocks, which also makes
it easier to train deeper networks. The skip connections also
facilitate the direct transfer of gradients from the initial layers
to subsequent layers, which improves training. Due to its ability
to extract complicated and structured patterns from big data, the
ResNet50V2 architecture is advantageous for query
optimization feature extraction.

The deep layers of ResNet50V2 enable it to learn abstract
representations. The benefit of Transfer Learning may be
obtained by utilizing the pre-trained ResNet50V2 approach, as
it has previously acquired general features from a sizable
dataset like the hospital compare, Twitter, and IMDb datasets.
ResNet50V2 can record generalized representations tuned for
query optimization owing to this pre-training. The precision
and effectiveness of the query optimization can be improved by
applying the learned features from ResNet50V2.

The ResNet50V2 features provide a more advanced
representation of the input optimization of queries, capturing
essential data for positions, including bid arrangement of data.
We may utilize the potent representations learned by
ResNet50V2 by using these features as inputs for multiple
machine learning algorithms. By doing that, we want to
improve the precision and functionality of our query
optimization mechanism. ResNet50V2's high-level features

enable a more thorough and insightful representation of the
input data, enhancing our capacity and eventually enabling
improved optimization.

D. Big Data Arrangement

Big data arrangement is a key component of the data
management process, which involves structuring and
organizing enormous amounts of data to facilitate effective
analysis, storage, and retrieval. For clustering and pattern
recognition tasks in data analysis and deep learning, ensemble
DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) and Improved Spectral Clustering can be
particularly beneficial. Combining DBSCAN with Spectral
Clustering can take advantage of each technique's advantages
as each approach has advantages and disadvantages of its own.
The proposed method achieves improved noise handling,
improved cluster separation, scalability, merging local and
global information, handling variable cluster Densities, and
more while combining the methodologies.

1) DBSCAN clustering algorithm: DBSCAN, a popular

density-based clustering technique, can locate several clusters

based on the predicted density distribution. It can detect shaped

clusters and does not require prior knowledge of the cluster

size. The following examples show the core concept of

DBSCAN. DBSCAN collects all points in the neighbourhood

of a random, unvisited point called p, while p is the initial

location and r is the neighbourhood's maximal radius. The

minimal number of units needed to generate a dense zone is

called the density threshold MinPts. If MinPts points or more

are nearby, point p is a core point. All of the points in p, ϵ-

neighbourhood are put into an identical cluster if p is the centre

point together with all of the other points in p. DBSCAN locates

all density-reachable points. It includes them in the same cluster

for every point in the cluster. If point q is densely accessible

from other core points but has a smaller neighbourhood than

MinPts, it is also a border point that belongs to the cluster. An

isolated or noisy point cannot be reached from any other point.

Using consecutive cluster extraction, DBSCAN completes the

clustering procedure. A finalized cluster is created by iterating

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

124 | P a g e

www.ijacsa.thesai.org

this procedure till no more density-reachable spots are

discovered. The three categories that DBSCAN uses to

categorize a set of points are noise, low-density boundary

points, and high-density core points. The following are three

different types of points' definitions.

2) Initialization of the variables: In K-DBSCAN, the HS is

optimized to get the best clustering parameters. Thus, "Eps" and

"Minpts," the two clustering parameters for input, have been

utilized as the HS's decision variables, correspondingly. Given

that the set of data is split into categories that are considered as

K, every parameter variable's maximum value shouldn't be

greater than the K-equal partitions of the entire data set. These

two variables are initialized with the following values:

𝐸𝑝𝑠 ∈ (0,
𝑆𝐷𝑅

2×𝐾
) (1)

𝑀𝑖𝑛𝑝𝑡𝑠 ∈ [1,
𝑁𝑢𝑚_𝑜𝑏𝑗

(
𝐿𝐷𝑅

𝑆𝐷𝑅
)×𝐾×𝐷

] (2)

While 𝑆𝐷𝑅 and 𝐿𝐷𝑅 are the smallest value and greatest
values across all dimension that ranges from the entire data set,
accordingly, the variable shows the number of objects utilized
for clustering𝑁𝑢𝑚_𝑜𝑏𝑗. The dimension is denoted by D.

3) The objective function: A multi-objective collaborative

evaluation approach is provided for the HS in the K-DBSCAN

optimization issue. The overall number of clusters produced by

DBSCAN under different parameter variables is monitored by

using the initial target function, which can be shown as the total

amount of variance among that and the determined clustering

number K. Since the main objective of this clustering approach

is to produce K groups, this variance can be expressed as the

total amount of variance between it and the established

clustering number K.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓1 = |𝑐 − 𝐾| (3)

The total number of clusters is represented as K, which has
been predetermined, and the real number of clusters is indicated
as c DBSCAN, which has been produced using the current set
of decision variables.

The DBSCAN method can identify unusual noise. When the
outcomes of the parameters "Eps" and "Minpts" are improperly
chosen, particularly if they are disproportionately matched, it
may result in under-differentiation, where most or even all of
the data items are misidentified for outliers.

Two distinct groups make up the initial data set in Fig. 4,
and Fig. 5 displays the results of clustering with excessive noise
caused by subpar clustering parameters. Acquiring the cluster
number of 2 is possible, although many valid points are
confused for noise entities. Consequently, a separate function
of the multi-objective optimization method is utilized to
maximize the number of objects in the least efficient cluster and
prevent such an abnormal occurrence.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑓2 = 𝑛𝑢𝑚(𝑠_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠) (4)

Fig. 4. The initial formation of the dataset.

Fig. 5. Noise in clusters.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

125 | P a g e

www.ijacsa.thesai.org

The term 𝑛𝑢𝑚(𝑠_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠) refers to the number of items in
the smallest practical cluster. Consequently, the following is an
expression for the K-DBSCAN's multi-objective collaborative
evaluation function:

𝐹 = (𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1, 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓2) (5)

Obtaining the necessary K clusters is the primary objective
of K-DBSCAN. This is followed by the effect of clustering that
produces the fewest inaccurate noise objects. In other words,
𝑓1it has a greater priority than𝑓2, which is indicated by the
notation:𝑓1 ⊲ 𝑓2.

4) Framework: According to the information above, the

two clustering factors, "Eps" and "Minpts," are used in

DBSCAN as the HS variables for decision-making. The multi-

objective collaborative evaluation function can be used with the

clustering parameter's optimal value to get a superior clustering

outcome with K categorization when using DBSCAN.

Additionally, relatively low parameter values typically
result in a superior clustering effect when using the DBSCAN
algorithm. The size of "Minpts" indicates a significant impact
on how well noise of clustering is judged under the condition
of a specific parameter "Eps," and the larger it is, the more
probable it is that genuine data will be viewed as noise objects.
Thus, the variable of decision "Minpts" has been set to a
number that enhances over time with the repetition stage
process to acquire adequate clustering factors, including.

𝑀𝑖𝑛𝑝𝑡𝑠 = 𝑀𝑖𝑛𝑝𝑡𝑠𝑚𝑖𝑛𝑚𝑎𝑥𝑚𝑖𝑛 (6)

While 𝑔𝑛it denotes the number for the generation currently
in use, NI is the maximum number of repetitions and
𝑀𝑖𝑛𝑝𝑡𝑠𝑚𝑎𝑥𝑀𝑖𝑛𝑝𝑡𝑠𝑚𝑖𝑛denotes the variable upper and lower
bounds, accordingly.

5) Spectral clustering: Typical graph-based clustering

techniques include Spectral Clustering without monitoring the

data. Techniques for Spectral Clustering often start with local

data that has been encoded in a weighted network of

information and then aggregates according to the associated

similarity matrix's global characteristic vectors. In Spectral

Clustering, a function of mapping that explicitly maps

characteristics to the group tag matrix is automatically learned

for every task to anticipate cluster tags.

The process of learning can automatically use dissimilar
data to enhance clustering efficiency. In Spectral Clustering,
communities of nodes connected near one another are
characterized in a graph using a method known as clustering.
The nodes are placed in a low-dimensional area that can be
easily segmented into clusters. Affinity, Degree, and Laplacian
matrices and other specific values of these matrices produced
from a graph or data collection are used in spectral clustering.
The crucial steps in creating a Spectral Clustering algorithm are
as follows:

Prior to using the spectral clustering procedure, we must
first Figure out the matrix for similarity, which is then indicated
as the overlap matrix of degree P. It can be shown as,

𝑝 =

[

0 𝑝1,2 … ⋯

𝑝2,1 0 … ⋯

⋮ ⋯ 0 ⋮
𝑝𝑛,1 ⋯ 𝑝𝑛,𝑛−1 0

𝑝1,𝑛
𝑝2,𝑛
⋮
⋮]

 (7)

For the arrangement criterion, we may assume that every
request is split into k1, k2, and two groups; this work employs
the conventional division approach. Suppose q is a vector.
These are the definitions of the qi elements:

𝑞𝑖 =

{

 √
𝑑2

𝑑1𝑑
 , i ∈ 𝑘1

−√
𝑑1

𝑑2𝑑
 , i ∈ 𝑘2

 (8)

In the event that the cluster indicator matrix 𝐹 ∈ 𝑅𝑛×𝑘is
correct. Assuming consistent with each perspective, we can
define the clustering of spectral data issues as,

𝑚𝑖𝑛
𝐹,𝐹𝑇𝐹=1

∑ 𝑇𝑟𝑡
𝑣=1 (𝐹𝑇𝐿𝑣𝐹) (9)

While every graph evenly contributes to the outcome F. We
ignore the specifics of the graph creation in the equation above.
Several additional studies just take the mean of the vertices and
then implement the spectral clustering independently instead of
mandating that multiple graphs share the same F.

Improved Spectral Clustering Algorithm (ISCM). We
provide an improved spectral clustering technique (ISCM)
relying on the enhanced k-means algorithm. The approach
accomplishes secondary clustering in addition to resolving the
initial value issue. We take into account the parameters as
previously mentioned in accordance with the QoS criterion. We
may determine whether secondary clustering is necessary by
evaluating the variable sizes before the method operates. There
is no need to recluster if the present QoS exceeds the users'
desire to allocate resources once the strategy has been
performed. The clustering spectral optimization scheduling
algorithm's implementation procedures are then described.

E. Query optimization

Big data systems frequently handle enormous amounts of
data. By dramatically reducing the time it takes for a query to
execute, query optimization can guarantee that users or
applications can quickly and effectively retrieve the needed
data. Query optimization aids in efficient resource allocation,
cutting costs and guaranteeing the best use of available
resources. It minimizes hardware waste and prevents nodes
from becoming overloaded. For this purpose, we ensemble the
Improved Chaos Sparrow Search algorithm (ICSSA) and
Enhanced Sun flower optimization algorithm (ESFO). ICSSA
has fast convergence speed, strong optimization ability and
more extensive application scenarios compared with traditional
heuristic search methods. Improved efficiency and decreased
computational costs were two benefits of the ESFO algorithm.
We ensemble both algorithm's merits to effectively optimize
the query.

1) Sparrow search algorithm: The SSA bases its

description of the sparrows' predatory and anti-predatory

behavior for updated locations on the following guiding

concepts. The population of sparrows is split into followers and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

126 | P a g e

www.ijacsa.thesai.org

producers. The sparrow's two identities may be switched

around, and everyone has a system for detecting danger. Every

sparrow, in particular, is sensitive to potential threats or natural

enemies and will immediately begin anti-predatory activity to

defend itself. The producers are highly active, adept at foraging

for food, travel widely, and lead other sparrows on their quest.

To increase their food intake by snatching it or foraging nearby,

seekers seek the producer and follow them to find additional

food.

2) Basic concepts: The individual matrix is displayed

below, with N sparrows assumed to be in D-dimensional space.

𝑋 = [𝑥1, 𝑥2, . . 𝑥𝑁]
𝑇 , 𝑥𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐷] (10)

While xi, D denotes the ith sparrow's location in the D
dimension.

𝑥𝑖,𝑗
𝑡+1 = {

𝑥𝑖,𝑗
𝑡 • 𝑒𝑥𝑝 (

−𝑖

𝛼•𝑖𝑡𝑒𝑟𝑚𝑎𝑥
()2)

𝑥𝑖,𝑗
𝑡 + 𝑄 • 𝐿 R2 ≥ 𝑆𝑇

{ (11)

The present iteration count, t, is represented here. Itermax
indicates the greatest amount of the iterations𝑗 = 1,2, . . . , 𝑑. It
falls between 0 to 1 and is a uniform randomized value. The
warning and security values for sparrows are represented by
𝑅2(𝑅2 ∈ (0,1)) and𝑆𝑇(𝑆𝑇 ∈ (0.5,1.0)). An ordinary
distribution characterizes a random number Q. Every matrix's
1d elements comprise the L matrix. When this 𝑅2 < 𝑆𝑇occurs,
the provider adopts a wide-area search phase while they are not
in danger from any natural competitors and are in a generally
safe environment. Due to Eq. (3), the follower position is
upgraded.

𝑥𝑖,𝑗
𝑡+1 = {

𝑄. 𝑒𝑥𝑝 (
𝑥𝑤𝑜𝑟𝑠𝑡
𝑡 −𝑥𝑖,𝑗

𝑡

𝑖2
) i >

𝑛

2

𝑥𝑝
𝑡+1 + |𝑥𝑖,𝑗

𝑡 − 𝑥𝑝
𝑡+1| • 𝐴+ • 𝐿 otherwise

 (12)

In which 𝑥𝑡 worst indicates the current position of the bird
with the worst adaptability. The spot of the bird with the best
producer adaption is represented by the number𝑥𝑝. Every

component of the matrix shown by A is represented by a value
at random of one or zero. A+ equals𝐴𝑇𝐴𝐴𝑇−1.

3) Danger awareness mechanism: When hunting, sparrows

sense the danger of hunt and may fly away from their current

location and to another. The individual sparrows that detect

danger often range between 10% and 20%. As the Eq. (4)

shows, the sparrows' posture changes when they detect danger.

𝑥𝑖,𝑗
𝑡+1 = {

𝑥𝑏𝑒𝑠𝑡
𝑡 + 𝛽. |𝑥𝑖,𝑗

𝑡 − 𝑥𝑏𝑒𝑠𝑡
𝑡 | 𝑓𝑖 > 𝑓𝑔

𝑥𝑖,𝑗
𝑡 + 𝐾. (

|𝑥𝑖,𝑗
𝑡 −𝑥𝑤𝑜𝑟𝑠𝑡

𝑡 |

(𝑓𝑖−𝑓𝑤)+𝜀
) 𝑓𝑖 = 𝑓𝑔

 (13)

The current optimal location is represented as𝑥𝑏𝑒𝑠𝑡 .𝛽 is a
common control parameter for properly distributed random step
algorithms. K is an even random number with the value (1, 0).
𝑓𝑖shows the sparrow's value of current fitness. The current best-
fit and worst-fit values globally are denoted by 𝑓𝑔 and 𝑓𝑤,

accordingly. The least significant is indicated as𝜀. If𝑓𝑖 > 𝑓𝑔, it

means that the particular sparrow is on the periphery of the
population and is hence vulnerable to assault by predators of
nature.

4) Improved chaos sparrow search optimization algorithm:

In the case of the standard SSA, the producer fails to thoroughly

search for the best possible outcome in the initial iteration, and

the solution in the later iteration has a marginally lower

precision as a result of the producer's poor management of the

earlier repetition and the creation of the afterward iteration in

the global search. Blindly adopting the producer's perspective,

the followers rapidly enter the local optimal conundrum, reduce

population diversity, and become the producers. Enhancing

population variety is the major way to keep the dynamic

equilibrium of provider search and development to handle the

aforementioned issues. ICSSOA research is concentrated on

finding ways to make it easier to leave local optima. The

following topics will be covered in detail to understand the

ICSSOA.

5) Cubic chaos mapping: Algorithms have been optimized

using Chaos, a nonlinear process that occurs in nature. Because

of its stochastic and ergodic characteristics, it enhances

population variety and makes it easier for the approach to depart

from the optimum for local. The standard version of the chaotic

mapping, known as cubic mapping, is presented in Eq. (14).

𝑥𝑛+1 = 𝑏𝑥𝑛
3 − 𝑐𝑥𝑛 (14)

Where the effect variables for chaos are b and c. While𝑐 ∈
(2.3,3) the chaos sequence is produced via cubic mapping. The
Cubic mapping expression was modified by studying the max
exponent of Lyapunov for 16 frequent mappings of chaos. The
experimental findings showed that Cubic mapping has less
disorder than one-dimensional mappings like Sine mapping and
Circle mapping but is more chaotic than worm mouths and tent
mappings. It can be expressed as,

𝑥𝑛+1 = 𝜌𝑥𝑛(1 − 𝑥𝑛
2) (15)

While 𝑥𝑛 ∈ (0,1) and the parameter for control is
represented as𝜌.

6) Adaptive weighting factor: A higher weight of inertia is

required in the iterations to extend the discoverer's worldwide

range for searching since the producer undertakes global

exploration as rapidly as feasible to determine the global ideal

solution. Simultaneously, a lower inertia weight is required in

the latter iterations to enhance the discoverer's local

exploitation capabilities to speed up convergence and prevent

settling on the optimal local solution. As a result, the supplier

location upgrade is proposed to be improved by fusing adaptive

weights, and the supplier location enhancement formula is

illustrated as,

𝑥𝑖,𝑗
𝑡+1 = {

𝜔. 𝑥𝑖,𝑗
𝑡 • 𝑒𝑥𝑝 (

−𝑖

𝛼•𝑖𝑡𝑒𝑟𝑚𝑎𝑥
() 2)

𝜔 • 𝑥𝑖,𝑗
𝑡 + 𝑄 • 𝐿 𝑅2 ≥ 𝑆𝑇

{ (16)

The exact computation of ω is displayed as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

127 | P a g e

www.ijacsa.thesai.org

𝜔 = {
𝑤0 𝑡 ≤ 𝑡0

(
1

𝑡
)
0.9

𝑡 > 𝑡0
 (17)

While ω0 is the actual positive number. The present
iteration count is represented as t. The amount of iterations is
indicated by𝑡0. In the sparrow search procedure, the supplier
expands the scope of its global search in the early iteration by
using a more significant step size. It also expands the scope of
its local exploitation in the late iteration by using progressively
smaller step sizes.

7) An ensemble method for levy flight and reverse

Learning: A category of stochastic non-Gaussian phenomena is

called Levy flight. A heavy-tailed random path distribution

describes the likelihood distribution of step length. For SI

optimization techniques prone to encountering the issue in

optimum of local, Levy flight can potentially allow the

approach to significantly deviate from the local optimal

significance, with a more significant likelihood of doing so in

the random path. Based on Levy flight, the sparrow location

upgrade algorithm is displayed as

𝑥𝑛𝑒𝑤𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾 ⊕ 𝐿𝑒𝑣𝑦(𝜆) (18)

Where the phase parameter for control is represented as γ.
A randomized path search is Levy (λ).

𝐿𝑒𝑣𝑦 = 𝑡−𝜆 1 < 𝜆 ≤ 3 (19)

The generation stage is depicted as

𝑆 =
𝜇

|𝑣|

1
𝛽

1 ≤ 𝛽 ≤ 2 (20)

Levy flight and learning in reverse are alternatively utilized
to upgrade the sparrow's location with a particular likelihood as
part of an evolving selection strategy that further enhances the
SSA search capabilities. This approach depends on the above
two methodologies. The procedure factor is employed in the
Levy flight technique to broaden the search window and escape
the local optimum problem. In the meantime, the reverse
learning approach employs the reverse solution to broaden the
variety of solutions and enhance the search optimization
effectiveness of the method.

8) ICSSOA time complexity analysis: For the individual

setup and variable setting in SSA, the temporal magnitudes are

n and C. If the total number of dimensions is k, the sparrow

fitness ranking and creator spot provided time magnitudes are

n × logn2 ×k and n × k, respectively. The remaining birds'

positions as followers must be updated during the follower

location updating phase, and a period schedule of n × k must be

used to determine whether every person's dimension is within

bounds.

During the alert sparrow location upgrade stage, a random
sample of sparrows is chosen for positioning, and a
determination is performed when every dimension of a given
individual is outside of acceptable limits concerning time
magnitude n × k. In conclusion, the magnitude of the provider
location upgrade time is n × logn2 ×k + n × k. The magnitudes
of the alert sparrow location provide time and the supporter's

location upgrade time are both n × k. The enhanced algorithm's
temporal complexity is,

𝑂(𝑛 × 𝑘 + 𝑛 × 𝑙𝑜𝑔2
𝑛×𝑘 + 𝑛 × 𝑘 + 𝑛 × 𝑘 + 𝑛 × 𝑘 + 𝑛 × 𝑘 +

𝑛 × 𝑘 + 𝑛 × 𝑘) ≈ 𝑂(𝑛 × 𝑙𝑜𝑔2
𝑛) (21)

9) Sun flower optimization algorithm: An individual-based

heuristic algorithm, the SFO draws its inspiration from nature.

Its fundamental idea is to mimic how sunflowers would

position themselves to receive solar light. A sunflower has a

daily recurring sequence. They travel toward the sun as the day

gets going. They travel in the other direction in the late hours.

Single pollen gamete is thought to be produced by every

sunflower. The minimum distance among flowers i and i + 1

was randomly used as the pollination route. Every blossom

patch regularly releases a billion pollen gametes in the real

world. For the sake of simplicity, we also presumptively

assume that every sunflower generates a single pollen gamete

and develops separately. The directions of the sunflowers

concerning the sun are shown below.

𝑆𝑖 =
𝑋∗−𝑋𝑖

‖𝑋∗−𝑋𝑖‖
, i = 1,2,...,n𝑝 (22)

Eq. (23) depicts the sunflowers moving in the direction
indicated by s.

𝑑𝑖 = 𝜆 × 𝑃𝑖(𝑋𝑖 + 𝑋𝑖−1) × ‖𝑋𝑖 + 𝑋𝑖−1‖ (23)

The pollination likelihood𝑃𝑖(||𝑋𝑖 + 𝑋𝑖+1||) is expressed as
𝜆a constant, which describes the "inertial" motion of the
sunflowers. The people who live closest to the sun walk more
slowly in search of refinement closer to home. The motions of
the people further away are normal. Eq. (24) introduces the
limitation of the following steps:

popN

XX
d






2

minmax

max
 (24)

The overall individuals of the plants𝑋𝑚𝑎𝑥 𝑋𝑚𝑖𝑛are lower
and upper bounds, and their locations are all given as𝑁𝑝𝑜𝑝. This

equation yields the new plant:

𝑋⃗𝑖+1 = 𝑋⃗𝑖 + 𝑑𝑖 × 𝑠𝑖 (25)

10) ESFOA concept and mathematical representation: The

idea behind the Enhanced Sunflower Optimization Algorithm

(ESFOA) models how the sunflowers move in the direction of

the sun. It depends on how closely the nearby sunflowers are

pollinated. ESFOA is regarded as an innovative algorithm for

optimization that depends on radiation that follows the inverse

square law.

𝑆𝑟 =
𝑆𝑝

4𝜋𝑑2
 (26)

𝑆𝑟 Stands for the intensity of solar radiation, 𝑆𝑝 for sun

power, and d for the separation between the rays of the sun and
the sunflower. Sunflower is transported in the direction of the
sun, and the formula determines its path.

𝑆𝑖 =
𝑋∗−𝑋𝑖

‖𝑋∗−𝑋𝑖‖
, i = 1,2, . . . , 𝑛𝑝 (27)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

128 | P a g e

www.ijacsa.thesai.org

IV. RESULT AND DISCUSSIONS

Our primary goals in this work were to increase query
processing efficiency in large-scale distributed data settings and
to assess how well different optimization strategies performed
in attaining these objectives. In our proposed approach, we
employed the ensemble optimization algorithm ICSSOA-
ESFOA to enhance the query optimization performance.
ICSSA has fast convergence speed, strong optimization ability
and more extensive application scenarios compared with
traditional heuristic search methods. Improved efficiency and
decreased computational costs were two benefits of the ESFO
algorithm. We ensemble both algorithm's merits to effectively
optimize the query.

A. Experimental Setup

Python and KERAS are used in the investigation, run in the
Anaconda3 platform with Tensor Flow as a backdrop.
Employing Windows 10 and an Intel i5 2.60 GHz processor
with 16 GB of RAM.

B. Dataset Description

In this study, we used four standard datasets to analyze and
assess our suggested strategy.

1) IMDb dataset: The ACL Internet Movie Database

(IMDb) dataset was developed for generating word vectors.

100,000 textual reviews of movies are included in the dataset,

half of which (50,000) are test reviews without labels. The

remaining reviews (50,000) are labeled with a number between

0 and 1 to indicate whether they are good or negative. To

maintain a fair sample, the reviews with labels are divided in

half, with 12,500 positive and 12,500 negative reviews in every

set.

2) Health inventory dataset: The Big Cities Health

Inventory Data were utilized to input the data and complete the

specified position. Users of the Health Inventory Data Portal

can get health information from cities emphasizing health

indicators and compare it to "6" demographic variables. A

report that is in its "6th" version. The Chicago Department of

Public Health initially created it to display epidemiologic data

specific to large cities.

3) Health compare dataset: The consumer-focused website

Hospital Compare offers data on how successfully hospitals

give their patients the prescribed care. Customers can quickly

came across a range of institutions utilize Hospital Compare to

compare assessment of performance data for heart attack, heart

failure, pneumonia, surgery, and other conditions. Cost of care

and payment More than 4000 institutions and more than 100

different indicators are included in the Hospital Compare

statistics.

4) Twitter dataset: Twitter statistics collected from two

North American-based Twitter customer service profiles that

offer assistance to North American users in English. These

dedicated Twitter accounts respond to customer comments in

real-time and offer service. Corporate support representatives

respond to these tweets using the Twitter service. There were 2

632 conversations in our sample.

C. Performance Metrics

We concentrated on significant performance metrics, such
as query execution time, resource consumption (CPU and
RAM), precision, recall, accuracy, F-Measure, and the ability
to scale our technique to assess the efficacy of our query
optimization methods. Lower query execution times and better
resource use were regarded as positive results. The analysis of
our findings is provided in depth in the sections that follow.

1) Accuracy: Accuracy suggests that the data has to

precisely represent the facts and be derived from a reliable

source.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (28)

2) Sensitivity: The sensitivity of a batch of data points is

calculated as a percentage of the total number of data points

detected. Cluster effectiveness and recall have a strong

relationship.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (29)

3) Specificity: The percentage of data point pairs

appropriately assigned to the same cluster is known as

specificity. It varies directly to the efficiency with which new

clusters are produced.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (30)

4) F1-Score: A higher F-measure is produced by greater

precision and recall, which are inversely correlated with

accuracy and recall.

(2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) (31)

#Experiment 1 (Evaluation of Query Optimization)

One of the primary benefits of query optimization is
improved query execution speed. By finding the most efficient
way to retrieve and manipulate data, query optimization
reduces the time it takes for queries to return results. Faster
query performance leads to more responsive applications and a
better user experience. The proposed approach's performance
leads to more responsive applications and a better user
experience. Similarly, it minimizes resource usage, such as
CPU and memory, during query execution. For this purpose, we
ensemble ICSSOA and ESFOA. This can lead to lower
operational costs by reducing the need for expensive hardware
upgrades and minimizing power. Proposed Query Optimization
Approaches is represented in Table I.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

129 | P a g e

www.ijacsa.thesai.org

TABLE I. COMPARISON OF PROPOSED QUERY OPTIMIZATION APPROACHES

Datasets

ICSSOA ESFOA ICSSOA+ESFOA

Acc (%) Spe (%) Sen (%) F1-S (%) Acc (%) Spe (%) Sen (%) F1-S (%) Acc (%) Spe (%) Sen (%) F1-S (%)

Dataset 1 98.87 97.23 97.51 97.36 98.41 96.45 98.03 97.23 99.13 98.94 98.47 98.70

Dataset 2 99.01 98.75 98.25 98.49 98.79 98.14 98.63 98.38 99.08 99.01 98.76 98.88

Dataset 3 98.99 97.89 98.76 98.32 99.09 98.05 98.82 98.43 99.22 98.76 99.08 98.91

Dataset 4 97.26 98.52 99 98.75 98.14 98.14 98.95 98.54 98.99 99 99.03 99.01

 (a) (b)

(c)

Fig. 6. Differentiation of query optimization approaches (a) evaluation of ICSSOA approach (b) evaluation of ESFOA approach (c) evaluation of the hybrid

approach.

A comparison of query optimization approaches is shown
in Fig. 6. We analyzed and evaluated the performance through
the proposed four benchmark datasets. Our proposed hybrid
approach gains superior performance than others.

#Experiment 2 (Evaluation of Big Data arrangement)

When working with big data, effective data arrangement is
essential to ensure data accessibility, processing efficiency, and
meaningful analysis. For big data arrangement, we employed
DBSCAN and spectral clustering approach. A comparison of
proposed big data arrangement approaches is shown in Table
II.

TABLE II. COMPARISON OF PROPOSED BIG DATA ARRANGEMENT APPROACHES

Datasets

DBSCAN Spectral clustering DBSCAN+Spectal

Acc (%) Spe (%) Sen (%) F1-S (%) Acc (%) Spe (%) Sen (%) F1-S (%) Acc (%) Spe (%) Sen (%) F1-S (%)

Dataset 1 98.63 97.83 98.51 98.16 98.63 97.08 98.41 97.74 99.02 98.66 98 98.32

Dataset 2 99.06 98.23 98.39 98.30 97.86 98.37 98.12 98.24 99.08 98.41 98.14 98.27

Dataset 3 98.77 97.97 98.46 98.21 98.74 98.61 98.83 98.71 98.86 98.08 99 98.53

Dataset 4 98.41 98.52 98.97 98.74 98 98.72 98.09 98.40 98.71 98.97 98.37 98.66

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

130 | P a g e

www.ijacsa.thesai.org

 (a) (b)

(c)

Fig. 7. Differentiation of big data arrangement approaches (a) evaluation of DBSCAN approach (b) evaluation of spectral clustering (c) evaluation of hybrid

approach.

Initially, we analyze the performance of the DBSCAN
approach. Then, we analyze the performance of the spectral
clustering approach. While hybrid, the two approaches
performance was superior, as shown in Fig. 7.

#Experiment 3 (Evaluation of Overall Performances)

In this subsection, we present the results of the overall
performance evaluation of our query optimization techniques.
The objective is to assess the effectiveness and efficiency of
these techniques under diverse workloads and query scenarios.

TABLE III. PERFORMANCE COMPARISON OF PROPOSED DATASETS

Datasets Accuracy Sensitivity Specificity F1-Score

IMDb 99.13 98.94 98.47 98.70

Health Inventory 99.08 99.01 98.76 98.88

Hospital Compare 99.22 98.76 99.08 98.91

Twitter 98.99 99 99.03 99.01

Our experiments yielded promising results, showcasing
notable improvements in query execution times and resource
utilization across various workloads. Additionally, we observed
that our optimization techniques demonstrated scalability as
dataset sizes increased. Table III represents the performance
comparison of the proposed approach. Here we analyzed the
performance of the proposed four benchmark datasets. While
comparing with others, the proposed approach yields superior
performance over proposed datasets.

Fig. 8. Comparison of retrieval time.

Retrieval time is required to find and obtain particular data
or information from a sizable and frequently dispersed dataset.
Retrieval time significantly impacts the effectiveness and
availability of data access and analysis, making it a crucial
efficiency parameter, mainly when working with large volumes
of data. Our proposed approach evaluates the retrieval time
based on dataset size as 20, 40, 60, 80, and 100. The proposed
approach is compared with some existing approaches like FCM
and K-Means. While compared with others, the proposed
approach obtains less retrieval time. Differentiation of retrieval
time is shown in Fig. 8.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

131 | P a g e

www.ijacsa.thesai.org

Fig. 9. Differentiation of memory usage.

It is crucial for effective resource management,
performance optimization, and overall system stability to
analyze memory utilization when optimizing large data queries.
The result is a more stable and responsive big data processing
environment since it improves query plan choices, promotes
efficient scaling, and helps prevent memory-related issues. The
size of the data ranges from 20 to 100 mb. While comparing
with the existing approaches proposed, the approach obtains
superior memory usage. Memory usage comparison is shown
in Fig. 9.

Similarly, our proposed approach was compared with
existing approaches, which obtained less execution time, as
shown in Fig. 10. Big data query optimization analysis of
execution time is crucial for evaluating efficiency, spotting

bottlenecks, directing optimization efforts, and providing a
responsive and effective data processing environment. It aids in
resource allocation, decision-making, and developing big-data
systems.

Fig. 10. Execution time comparison.

D. Evaluation of Training and Testing

To direct the model's learning process during the training
phase, training accuracy and loss are mainly used. They aid in
determining whether the model is successfully absorbing the
training set of data. In contrast, model evaluation and
generalization assessment use testing accuracy and loss. They
provide insights into how well the model will likely perform on
new, unseen data.

Fig. 11. Evaluation of dataset 1 (a) accuracy of training vs. testing (b) loss over training vs. testing.

Fig. 12. Evaluation of dataset 2 (a) accuracy of training vs. testing (b) loss over training vs. testing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

132 | P a g e

www.ijacsa.thesai.org

Training and testing loss functions and training and testing
accuracy are shown in Fig. 11, 12, 13 and 14. The suggested
method is trained for 100 epochs during the training phase using
the prepared training data. A learning rate of 0.01 has been
determined.

Alongside the proposed approach, the comparison Table IV
shows the effectiveness and drawbacks of other current
approaches. Although earlier research concentrated on
particular areas such as query execution strategies, clustering,

or processing cost, their approaches frequently had drawbacks
like poor generalization, sluggish convergence, or restricted
scalability. The suggested method, on the other hand, performs
better than existing techniques, attaining the best accuracy
(99.05%), the shortest execution time (29.4 seconds), and the
least amount of memory (450 MB). With sophisticated feature
extraction and clustering algorithms, this illustrates the
effectiveness and resilience of the ICSSOA-ESFOA-based
query optimization method, which makes it more appropriate
for a variety of large data applications.

Fig. 13. Evaluation of dataset 3 (a) accuracy of training vs. testing (b) loss over training vs. testing.

Fig. 14. Evaluation of dataset 4 (a) accuracy of training vs. testing (b) loss over training vs. testing.

TABLE IV. OVERALL PERFORMANCE DIFFERENTIATION

References Techniques Strengths Limitations
Execution

Time (sec)

Memory

Usage (MB)

Accuracy

(%)

Sharma et al.

[21]
Hybrid Firefly-GA (CDSS)

Improved query
execution plan,

reduced I/O

Slow convergence,

limited scalability
45.6 512 84.3

Lekshmi et al.

[22]
Top-k QMKST

Reduced response

time and spatial
complexity

Focused on specific

queries, lacks
generalizability

38.2 470 87.1

Wei Ge et al.

[23]
Correlation-Aware Partitions

Reduced

computational cost

Suboptimal global

partitioning
41.3 490 85.9

Sinha et al.
[24]

GA + k-means Clustering

Handles covariance,

offers improved

summaries

Computationally

expensive, limited

precision

50.8 550 83.7

Ansari et al.
[25]

Parallel K-means on Hadoop
Improved clustering
for large datasets

Lacks query
optimization focus

42.1 505 86.4

Proposed

Approach

ICSSOA-ESFOA + ResNet50V2 +

ISC

Efficient feature
extraction, robust

query optimization

None identified in

current scope
29.4 450 99.05

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

133 | P a g e

www.ijacsa.thesai.org

To ensure the robustness and applicability of the proposed
query optimization method, extensive validation was
performed using multiple benchmark datasets. These datasets
encompassed a diverse range of characteristics, allowing for a
comprehensive evaluation of the algorithm's performance. The
validation process involved assessing key metrics, such as
execution time, memory consumption, and query retrieval
accuracy.

Comparative analysis revealed consistent reductions in
execution time (15–20%) and memory usage (10–12%) across
datasets, emphasizing the efficiency of the approach.
Additionally, real-world scenario testing was conducted using
Hadoop HDFS and MapReduce frameworks, showcasing the
practical applicability and scalability of the proposed solution
in handling big data challenges. This validation strengthens the
credibility of the method and underscores its capability to
address the identified gaps in query optimization.

E. Limitation

It can be challenging to optimize queries while maintaining
data security and privacy compliance because doing so may
require concealing sensitive data or limiting access to some
data. Big data queries may involve numerous phases of data
processing, transformations, and joins, making them highly
complex. Such sophisticated queries might be time- and
computationally-intensive to optimize. Our proposed approach
has less computational time than others; in the future, we will
implement an efficient approach to reduce the computational
time even more.

V. CONCLUSION AND FUTURE SCOPE

Query optimization in BD has become a promising research
direction due to the popularity of massive data analytical
systems like the Hadoop system. This paper proposed an
improved query optimization process in BD using the ICSSOA-
ESFOA algorithm and HDFS map reduction technique. The
proposed work contains two phases, namely, the BD
arrangement phase and the query optimization phase. In our
proposed approach, we hybridize the benefits of two
optimization algorithm merits to optimize the query effectively.
ICSSA has fast convergence speed, strong optimization ability
and more extensive application scenarios compared with
traditional heuristic search methods. Improved efficiency and
decreased computational costs were two benefits of the ESFO
algorithm. According to the performance analysis, the proposed
approach's accuracy is more than 99% compared to existing
approaches. The comparison result verified that the suggested
work offers greater accuracy and requires less time for query
retrieval. Additionally, the suggested approach uses less
memory space. As a result, our suggested system is superior to
the current system. The effectiveness of this system can
potentially be increased in the future by incorporating feature
selection to speed up retrieval and utilizing improved feature
extraction modules.

ACKNOWLEDGMENT

We declare that this manuscript is original, has not been
published before and is not currently being considered for
publication elsewhere.

REFERENCES

[1] M. Jagdish, N. Anand, K. Gaurav, S. Baseer, A. Alqahtani and V.
Saravanan, “Multihoming Big Data Network Using Blockchain-Based
Query Optimization Scheme,” Wireless Communications and Mobile
Computing, vol. 1, no.1, 2022. https://doi.org/10.1155/2022/7768169.

[2] Belussi, A., Migliorini, S., & Eldawy, A. (2024). A Generic Machine
Learning Model for Spatial Query Optimization based on Spatial
Embeddings. ACM Transactions on Spatial Algorithms and Systems.

[3] T. Kim, W. Li, A. Behm, I. Cetindil, R. Vernica, V. Borkar and C. Li,
“Similarity query support in big data management systems,” Information
Systems, vol. 88, pp. 101455, 2020.
https://doi.org/10.1016/j.is.2019.101455.

[4] D. Mahajan, C. Blakeney and Z. Zong, “Improving the energy efficiency
of relational and NoSQL databases via query optimizations,” Sustainable
Computing: Informatics and Systems, vol. 22, pp. 120-133, 2019.
https://doi.org/10.1016/j.suscom.2019.01.017.

[5] Z. Yang, B. Chandramouli, C. Wang, J. Gehrke, Y. Li, U. F. Minhas and
R. Acharya, “Qd-tree: Learning data layouts for big data analytics,” In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, vol. 1, pp. 193-208, 2020.
https://doi.org/10.1145/3318464.3389770.

[6] H. B. Abdalla, A. M. Ahmed and M. A. Al Sibahee, “Optimization driven
mapreduce framework for indexing and retrieval of big data,” KSII
Transactions on Internet and Information Systems (TIIS), vol. 14, no. 5,
pp. 1886-1908, 2020. http://doi.org/10.3837/tiis.2020.05.002.

[7] M. I. Tariq, S. Tayyaba, M. W. Ashraf and V. E. Balas, “Deep learning
techniques for optimizing medical big data,” In Deep Learning
Techniques for Biomedical and Health Informatics, vol.1, pp. 187-211,
2020. https://doi.org/10.1016/B978-0-12-819061-6.00008-2.

[8] S. Pothukuchi, L. V. Kota and V. Mallikarjunaradhya, “A Critical
Analysis of the Challenges and Opportunities to Optimize Storage Costs
for Big Data in the Cloud,” Vol.1, 2021.

[9] Jindal, H. Patel, A. Roy, S. Qiao, Z. Yin, R. Sen and S. Krishnan,
“Peregrine: Workload optimization for cloud query engines,” In
Proceedings of the ACM Symposium on Cloud Computing, vol. 1, pp.
416-427, 2019. https://doi.org/10.1145/3357223.3362726.

[10] M. Grzegorowski, E. Zdravevski, A. Janusz, P. Lameski, C. Apanowicz
and D. Ślęzak, “Cost optimization for big data workloads based on
dynamic scheduling and cluster-size tuning,” Big Data Research, vol. 25,
pp. 100203, 2021. https://doi.org/10.1016/j.bdr.2021.100203.

[11] J. Yang, C. Zhao and C. Xing, “Big data market optimization pricing
model based on data quality,” Complexity, vol.1, no.1, 2019.
https://doi.org/10.1155/2019/5964068.

[12] Rahman, M. M., Islam, S., Kamruzzaman, M., & Joy, Z. H. (2024).
Advanced Query Optimization in SQL Databases For Real-Time Big Data
Analytics. Academic Journal on Business Administration, Innovation &
Sustainability, 4(3), 1-14.

[13] X. Chen, H. Chen, Z. Liang, S. Liu, J. Wang, K. Zeng and K. Zheng,
“Leon: a new framework for ml-aided query optimization,” Proceedings
of the VLDB Endowment, vol. 16, no. 9, 2261-2273.
https://doi.org/10.14778/3598581.3598597.

[14] S. B. Goyal, P. Bedi, A. S. Rajawat, R. N. Shawand A. Ghosh, “Multi-
objective fuzzy-swarm optimizer for data partitioning,” In Advanced
Computing and Intelligent Technologies: Proceedings of ICACIT 2021,
pp. 307-318, 2022. https://doi.org/10.1007/978-981-16-2164-2_25.

[15] K. Al Jallad, M. Aljnidi and M. S. Desouki, “Big data analysis and
distributed deep learning for next-generation intrusion detection system
optimization,” Journal of Big Data, vol. 6, no. 1, pp. 1-18, 2019.
https://doi.org/10.1186/s40537-019-0248-6.

[16] E. M. Hassib, A. I. El-Desouky, E. S. M. El-Kenawy and S. M. El-
Ghamrawy, “An imbalanced big data mining framework for improving
optimization algorithms performance,” IEEE Access, vol. 7, pp. 170774-
170795, 2019. DOI: 10.1109/ACCESS.2019.2955983.

[17] S. Yadav and D. S. Kushwaha, “Query Optimization in a Blockchain-
Based Land Registry Management System,” Ingénierie des Systèmes d
Inf., vol. 26, no. 1, pp. 13-21, 2021. https://doi.org/10.18280/isi.260102.

[18] K. Karanasos, M. Interlandi, D. Xin, F. Psallidas, R. Sen, K. Park and C.
Curino, “Extending relational query processing with ML inference,”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

134 | P a g e

www.ijacsa.thesai.org

arXiv preprint arXiv:1911.00231, 2019.
https://doi.org/10.48550/arXiv.1911.00231.

[19] Li, X., Zhao, S., Shen, Y., Xue, Y., Li, T., & Zhu, H. (2024). Big data-
driven TBM tunnel intelligent construction system with automated
compliance-checking (ACC) optimization. Expert Systems with
Applications, 244, 122972.

[20] J. Gu, Y. H. Watanabe, W. A. Mazza, A. Shkapsky, M. Yang, L. Ding and
C. Zaniolo, “RaSQL: Greater power and performance for big data
analytics with recursive-aggregate-SQL on Spark,” In Proceedings of the
2019 International Conference on Management of Data, vol. 1, pp. 467-
484, 2019. https://doi.org/10.1145/3299869.3324959.

[21] M. Sharma, G. Singh, R. Singh, “Clinical decision support system query
optimizer using hybrid firefly and controlled genetic algorithm, J King
Saud Univ Comput Inf Sci, vol.2, pp. 161, 2018.
https://doi.org/10.1016/j.jksuci.2018.06.007.

[22] K. Lekshmi and V. Prem, “Multi-keyword score threshold and B+ tree
indexing based top-K query retrieval in cloud,” Peer-to-Peer Netw Appl,
vol.1, pp. 1-11, 2019. https://doi.org/10.1007/s12083-019-00794-4.

[23] W. Ge, X. Li, Yuan C, Y. Huang “Correlation-aware partitioning for
skewed range query optimization,” World Wide Web, vol. 22, no. 1, pp.
125–151, 2019. https://doi.org/10.1007/s11280-018-0547-4.

[24] Sinha and P. K. Jana, “A hybrid MapReduce-based k-means clustering
using genetic algorithm for distributed datasets,” The Journal of
Supercomputing, vol. 74, no. 4, pp. 1562-1579, 2018.
https://doi.org/10.1007/s11227-017-2182-8.

[25] Z. Ansari, A. Afzal and T. H. Sardar, “Data categorization using hadoop
MapReduce-based parallel K-means clustering,” Journal of The
Institution of Engineers (India): Series B, vol. 100, no. 2, pp. 95–103,
2019. https://doi.org/10.1007/s40031-019-00388-x.

