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Abstract—Numerous systems have to provide the highest level 

of performance feasible to their users due to the present 

accessibility of enormous datasets and scalability needs. Efficiency 

in big data is measurable in terms of the speed at which queries 

are executed physically. It is too demanding on big data for queries 

to be executed on time to satisfy users' needs. The query optimizer, 

one of the critical parts of big data that selects the best query 

execution plan and subsequently influences the query execution 

duration, is the primary focus of this research. Therefore, a well-

designed query enables the user to obtain results in the required 

time and enhances the credibility of the associated application. 

This research suggested an enhanced query optimizing method for 

big data (BD) utilizing the ICSSOA-ESFOA algorithm (Improved 

Chaos Sparrow Search Optimization Algorithm- Enhanced Sun 

Flower Optimization algorithm) with HDFS Map Reduce to avoid 

the challenges associated with the optimization of queries. The 

essential features are extracted by employing the ResNet50V2 

approach. Effective data arrangement is necessary for making 

sense of large and complex datasets. For this purpose, we ensemble 

Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN) and Improved Spectral Clustering (ISC). The 

experimental findings demonstrate a significant benefit of the 

proposed strategy over the present optimization of the queries 

paradigm, and the proposed approach obtains less execution time 

and memory consumption. The experimental results show that the 

proposed strategy significantly outperforms the current 

optimization paradigm, reaching 99.5% accuracy, 29.4 seconds of 

execution time, and 450 MB less memory use. 
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Sparrow Search Optimization Algorithm (ICSSOA); Enhanced Sun 
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I. INTRODUCTION 

Big data empowers businesses to make informed decisions 
and take appropriate action by allowing them to examine 
enormous data in volume, variety, and velocity [1]. Big data can 
be stored and queried using a variety of databases and data 
structures: Relational databases are employed for read-
intensive analytic queries; Internet transaction processor 
platforms are utilized for faster uploads and reliability; NoSQL 
storage systems are used for handling massive volumes of data 
[2, 3]. Different data stores have been created and constructed 
for various purposes and the best results. SQL databases are 
effective at storing and processing structured data, but their 

efficiency suffers from read-intensive queries. Similarly to how 
NoSQL storage systems are tailored to deal with unstructured 
data, columnar databases are utilized for the analytic processing 
of queries [4-6]. 

The information that has been processed is kept in several 
databases so that analysts can use it. Performance optimization 
and various data structures are crucial for applications that use 
a lot of data [7, 8]. Building scalable and effective data pipelines 
is a significant difficulty. These data pipelines, which are vital 
to the functionality of the applications, are optimized and 
maintained by data engineers [9]. Researchers and data 
scientists utilize the data warehouse to analyze, evolve, and 
load the data for their research projects. The enhancement of 
query efficiency and extra complexity brought on by the 
various data models employed in these databases present 
ongoing challenges for big data platforms that use these 
databases [10-12]. 

The many Operation SITE Allocation (OSA) strategies to 
execute the query are born from the advancement of query 
optimization. OSA problems are sought after to improve query 
execution plans in terms of system throughput or response 
times [13]. The query optimizer's three main parts are "Cost 
Model," "Search Space," and "Search Strategy." Designing the 
various cost coefficients and the objective function is the 
responsibility of the cost model. A variety of different query 
execution strategies are represented by the search space [14, 
15]. The search method is also used to probe the search space 
to find the most promising query execution technique. 

Previously, deterministic optimization methods and a 
variety of databases were used for query optimization. Only 
basic CDSS queries are a good fit for deterministic algorithms 
[16-18]. Nature Inspired Computing (NIC) has tremendous 
prospects for computational intelligence and is now being 
applied to address CDSS query optimization concerns. There is 
a long list of NIC computing techniques, some of which depend 
on the genetics of animals, insects, birds, and people, as well as 
on music and water [19]. The most admired NICs include 
Artificial Bee Colony, Cuckoo Search, Ant Colony 
Optimization, Grey Wolf Algorithm, and Genetic Algorithm. 
After reviewing the literature on query optimization, it was 
discovered that distributed CDSS queries had received a lack of 
attention. To speed up the data retrieval, a creative query 
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optimizer is required. The suggested query optimizer helps 
identify an ideal query execution plan that reduces the overall 
consumption of I/O, computing, and communication resources 
[20]. 

The increasing scale and complexity of big data have made 
query optimization a critical challenge. Existing methods often 
struggle with several limitations, including high computational 
cost, slow convergence, and inefficiency when handling large, 
distributed datasets. Many traditional techniques are also 
unable to address data skew effectively, ensure quick response 
times, or optimize query execution under heavy query loads. 
These shortcomings highlight the need for a more efficient 
approach to query optimization that can scale with growing data 
volumes and provide faster, more resource-efficient execution 
in modern big data environments. To address these challenges, 
we propose an enhanced query optimization method that 
significantly improves execution time and reduces memory 
consumption, making it better suited for the demands of today's 
data-driven applications. 

To tackle the issue mentioned above, we introduced a novel 
approach to big data arrangement and feature extraction. This 
reduces the execution time, retrieval time, and memory usage. 
Compared with existing methods, the proposed approach 
performs better. 

A. Research Contribution 

The key objectives of this research are as follows: 

 Initially, we employed a secure hash algorithm in 
preprocessing to find the hash value. Then, centered on 
the HV, the map reduction process is executed. 

 After the removal of repeated data, the essential features 
are extracted by employing ResNet50V2. 

 Entropy values are inputted to the deep adaptive hybrid 
clustering algorithm DBSCAN and spectral clustering 
for the big data arrangement. 

 Finally, the query is optimized with the help of the 
ensemble Improved Chaos Sparrow Search 
Optimization algorithm (ICSSOA) and Enhanced Sun 
Flower Optimization algorithm (ESFOA). 

The following part of the article is structured as follows. 
The existing prior works are briefly described in Section II. The 
proposed strategy is described in detail in Section III. The 
suggested method is extensively simulated in Section IV. 
Section V provides the conclusion. 

II. RELATED WORKS 

Some existing prior works related to significant data query 
optimization are analyzed in this section. 

An improved query optimizer known as CDSS was 
modelled by Sharma et al. [21] using a hybridization firefly-
genetic algorithm (GA) on a constrained divergence 
environment (RDFG_CDQO). This CDSS was created with the 
goal of achieving the best query execution plan possible to 
reduce processing, input-output, and interaction demands when 
running CDSS queries. The controlled GA's slower 
convergence difficulty would be cautiously defeated by the 

enhanced utilization of the CDSS technique, achieving 
significant variance in "2" successive generations. The CDSS 
optimizer could not solve the QO issues. For the query 
retrieving rate, Lekshmi et al. [22] presented the Top-k Query 
Multi-Keyword Threshold method (Top-k QMKST). The query 
and many keywords are primarily divided, and B+ tree indexing 
was used to execute the data index. Response time and spatial 
complexity were both decreased by employing Top-k QMKST. 
The Kullback Leibler Divergence also uses the index list of 
terms to determine a score value. The results of the 
experimental study show that the suggested technique performs 
better. 

For the skewed-ranging queries, Wei Ge et al. [23] 
suggested a method known as correlation-aware partitions. In 
the form of a geometrical curve-fitting problem, it introduced a 
problem known as partitioning optimization on continuously 
correlated data. The boundaries of the range query must be used 
to partition data optimally. The boundary for the range was 
utilized in this case to incorporate the best partitions and 
significantly reduce the computational cost compared to the 
standard dynamic programming. When compared to the global 
one, the local one performed better instead of attempting to 
increase effectiveness. 

Sinha et al. [24] proposed an approach for distributed 
datasets by combining the genetic algorithm (GA) and the k-
means clustering method. The suggested strategy is divided into 
two phases; in the initial stage, parallel GA is performed to data 
chunks spread across many machines. GA takes into account 
the covariance among the data sets and offers an improved 
summary of the original information. Phase 2 applies K-means 
with K-means++ initialization on the intermediate output to 
produce the outcome. 

Ansari et al. [25] suggested a parallel variant of the 
conventional K-means algorithm for use in the Hadoop 
distributed environment. The results of the experiments 
demonstrate that the suggested K-means algorithm operates 
better than conventional K-means when clustering a significant 
volume of datasets. Compared to current methods, the 
suggested approach produces better results. 

A. Research Gap 

Existing query optimization techniques, including Top-k 
QMKST (Lekshmi et al. [22]) and the CDSS optimizer (Sharma 
et al. [21]), concentrate on increasing query execution 
efficiency but struggle to handle dynamic or large-scale 
datasets. Top-k QMKST speeds up response times but might 
not be able to handle high-dimensional data effectively, and the 
CDSS optimizer enhances convergence but has trouble 
optimizing query retrieval rates. Other methods that deal with 
partitioning and data summarization, including correlation-
aware partitions (Wei Ge et al. [23]) and the integration of 
evolutionary algorithms with K-means clustering (Sinha et al. 
[24]), do not sufficiently improve query execution in distributed 
systems with big datasets. Furthermore, the parallel K-means 
approach of Ansari et al. [25] enhances clustering but ignores 
memory usage and query execution time. By using 
ResNet50V2 for feature extraction, the ICSSOA-ESFOA 
method for improved query optimization, and DBSCAN and 
ISC in combination for efficient data arrangement, our 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

121 | P a g e  

www.ijacsa.thesai.org 

proposed work seeks to close these gaps. By addressing the 
shortcomings of current techniques, our strategy guarantees 
quicker query execution, better memory management, and 
increased scalability in significant data contexts. 

III. PROPOSED METHODOLOGY 

In order to handle and store BD, which is extremely large in 
volume and contains numerous data models, organizations 

maintain various databases. For business purposes, it is 
essential to query and analyze BD for insight. In this study, the 
ICSSOA-ESOA algorithm and the HDFS map-reduce approach 
were used to improve the query optimizer procedure in BD. 

 

Fig. 1. Proposed methodology architecture diagram. 

To extract the essential features from a big dataset, we 
employed ResNet50V2. Then, the big data are arranged with 
the help of an ensemble DBSCAN approach and an improved 
spectral clustering approach. The proposed approach is 
analyzed and evaluated by using four benchmark datasets. The 
overall framework of the proposed approach is shown in Fig. 1. 

A. Problem Statement 

The number of datasets that need to be evaluated is 
increasing, necessitating several databases to store the 
preprocessed data in various information formats. Several 
methods, like materialized views and data cubes, can decrease 
query latency but necessitate significant computation and 
preparation. In order to deliver estimated results with error 
bounds, approximate query processing (AQP) was 
implemented. Nowadays, the majority of AQP models only 
support one database. The suggested AQP model supports 
heterogeneous databases with various data models by keeping 
up-to-date samples in a single database. Any database can be 
used to conduct the SQL query. The query optimizer chooses 
the samples automatically and provides users with 
approximations of the results. For this purpose, we introduced 
a novel approach for query optimization. 

B. Preprocessing 

The pre-processing of the input data was carried out during 
this phase. First, it uses the Secure Hash Algorithm (SHA-3) to 
determine the HV for every bit of data. Then, using HDFS, the 
MR process is carried out using the HV as its focal point. The 
subsections below explain the SHA-3 and HDFS processes. 
The SHA-3 algorithm is specified for a digest length d with a 
value of 224, 256, 384, or 512 and a message M with two bits 
"01" inserted at the conclusion, such that𝑆𝐻𝐴 − 𝑑(𝑀) =
𝐾𝐸𝐶𝐶𝐴𝐾(𝑐)(𝑀||01, 𝑑), while SHA3 and KECCAK are 
functions, M is the input string to the SHA-3 method. 

1) The SHA‑3 algorithm is utilized to find the hash value of 

big data: Utilizing permutation functions, the SHA-3 method, 

also referred to as the Keccak algorithm, was created. Keccak 

performs encryption well and has a high degree of attack 

resistance. SHA-3 is safer than earlier iterations like SHA-1 and 

SHA-2. The SHA-3 method can provide multiple fixed-bit hash 

values for different input bits. The outcome of this research is a 

256-bit hash value. 

2) Map and reduce: The two most crucial MapReduce 

processes are the "Map and Reduce" operations. The Apache 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

122 | P a g e  

www.ijacsa.thesai.org 

Foundation created the distributed system infrastructure known 

as Hadoop. Users can fully leverage the platform's massive data 

storage and quick computation capabilities by developing 

distributed applications without familiarity with the 

architecture's inner workings. Hadoop implements a distributed 

file system called HDFS. Although HDFS requires the usage of 

costly hardware, it provides good features and strong fault 

tolerance. Additionally, it offers a fast interface for accessing 

application data, making it appropriate for programs with big 

data sets. HDFS lowers the file system's restrictions for 

accessing the data in stream form. HDFS and Map Reduce are 

the two main components of the Hadoop system. Massive data 

storage is primarily provided by HDFS, and distributed 

computing functions are supplied by Map Reduce. The simple 

description of Hadoop's data processing is that the Hadoop 

cluster analyzed the data to produce its outcomes. In Fig. 2, the 

method of processing flow is depicted. 

 

Fig. 2. Framework of map and reduce. 

HDFS and MapReduce are the two main parts of Hadoop, 
as shown in Fig. 3. The storage of enormous amounts of data is 
the responsibility of HDFS, and the processing of massive 
amounts of data is a function of MapReduce. Another two 
crucial parts of Hadoop are the distributed database system 
Hbase and the data warehouse tool Hive. Records are kept in a 
Hadoop cluster using the HDFS. The HDFS interface resembles 
a straightforward hierarchical file system with straightforward 
operations like adding, deleting, moving, and more. However, 
the HDFS files are broken up into data blocks based on specific 
requirements, and then a massive number of data blocks are 
distributed over numerous slave nodes. It departs significantly 
from conventional storage structures at this point. The user 
typically chooses the number of data blocks to put and the 
dimension of each separated data block. 

MapReduce, which includes Job Trackers and Task 
Trackers, is DFS's top layer. Massive files are partitioned into 
equal sections by default on HDFS. This default value is set at 
64 M in the HDFS overview document. The data file 1 has been 
separated into three portions and placed in three distinct 
machines. Map Reduce is a task that is called Map and 

computes after every Hadoop input component. The system 
will move through each input data individually in the task 
before analyzing the map and turning it into a key-value format. 
The outcome will be produced in the key-value pair's form. As 
an input to Reduce by key, Hadoop will then transmit the 
outcome of the preceding phase. The Reduce Task's results, 
retained on HDFS, are the outcome of the entire task. 

C. Feature Extraction 

Datasets in big data scenarios may contain a large number 
of variables or attributes and be exceedingly high dimensional. 
High dimensionality can present difficulties in overfitting, poor 
interpretability, and computation complexity. Feature 
extraction algorithms can reduce dimensionality by converting 
the original features into a lower-dimensional representation 
while maintaining the crucial data. Analysis and modelling 
could become more effective as a result. From the original data, 
the significant aspects are retrieved, including closed frequent 
item set, support, and confidence. Finally, entropy computation 
is used to regulate confidence and support value. The following 
part provides an overview of the extraction of feature processes. 
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Fig. 3. Hadoop's two core components. 

1) ResNet50V2: Deep feature extraction is illustrated in this 

subsection. Deep feature extraction employs deep neural 

networks to extract significant and valuable information from 

raw data. These characteristics capture high-level 

representations that are more useful for handling the current 

task. For query optimization in big data, we used the 

ResNet50V2 framework as a deep extraction of features 

method. ResNet50V2 represents a convolutional neural 

network (CNN) that excels in various computer vision 

applications. To tackle the degradation issue in deep networks, 

a variation of the ResNet design is used, which uses skip 

connections. 

The 50-layer ResNet50V2 was pre-trained using a sizable 
dataset, such as a big datasets. The network can learn residual 
mappings through the use of residual blocks, which also makes 
it easier to train deeper networks. The skip connections also 
facilitate the direct transfer of gradients from the initial layers 
to subsequent layers, which improves training. Due to its ability 
to extract complicated and structured patterns from big data, the 
ResNet50V2 architecture is advantageous for query 
optimization feature extraction. 

The deep layers of ResNet50V2 enable it to learn abstract 
representations. The benefit of Transfer Learning may be 
obtained by utilizing the pre-trained ResNet50V2 approach, as 
it has previously acquired general features from a sizable 
dataset like the hospital compare, Twitter, and IMDb datasets. 
ResNet50V2 can record generalized representations tuned for 
query optimization owing to this pre-training. The precision 
and effectiveness of the query optimization can be improved by 
applying the learned features from ResNet50V2. 

The ResNet50V2 features provide a more advanced 
representation of the input optimization of queries, capturing 
essential data for positions, including bid arrangement of data. 
We may utilize the potent representations learned by 
ResNet50V2 by using these features as inputs for multiple 
machine learning algorithms. By doing that, we want to 
improve the precision and functionality of our query 
optimization mechanism. ResNet50V2's high-level features 

enable a more thorough and insightful representation of the 
input data, enhancing our capacity and eventually enabling 
improved optimization. 

D. Big Data Arrangement 

Big data arrangement is a key component of the data 
management process, which involves structuring and 
organizing enormous amounts of data to facilitate effective 
analysis, storage, and retrieval. For clustering and pattern 
recognition tasks in data analysis and deep learning, ensemble 
DBSCAN (Density-Based Spatial Clustering of Applications 
with Noise) and Improved Spectral Clustering can be 
particularly beneficial. Combining DBSCAN with Spectral 
Clustering can take advantage of each technique's advantages 
as each approach has advantages and disadvantages of its own. 
The proposed method achieves improved noise handling, 
improved cluster separation, scalability, merging local and 
global information, handling variable cluster Densities, and 
more while combining the methodologies. 

1) DBSCAN clustering algorithm: DBSCAN, a popular 

density-based clustering technique, can locate several clusters 

based on the predicted density distribution. It can detect shaped 

clusters and does not require prior knowledge of the cluster 

size. The following examples show the core concept of 

DBSCAN. DBSCAN collects all points in the neighbourhood 

of a random, unvisited point called p, while p is the initial 

location and r is the neighbourhood's maximal radius. The 

minimal number of units needed to generate a dense zone is 

called the density threshold MinPts. If MinPts points or more 

are nearby, point p is a core point. All of the points in p, ϵ-

neighbourhood are put into an identical cluster if p is the centre 

point together with all of the other points in p. DBSCAN locates 

all density-reachable points. It includes them in the same cluster 

for every point in the cluster. If point q is densely accessible 

from other core points but has a smaller neighbourhood than 

MinPts, it is also a border point that belongs to the cluster. An 

isolated or noisy point cannot be reached from any other point. 

Using consecutive cluster extraction, DBSCAN completes the 

clustering procedure. A finalized cluster is created by iterating 
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this procedure till no more density-reachable spots are 

discovered. The three categories that DBSCAN uses to 

categorize a set of points are noise, low-density boundary 

points, and high-density core points. The following are three 

different types of points' definitions. 

2) Initialization of the variables: In K-DBSCAN, the HS is 

optimized to get the best clustering parameters. Thus, "Eps" and 

"Minpts," the two clustering parameters for input, have been 

utilized as the HS's decision variables, correspondingly. Given 

that the set of data is split into categories that are considered as 

K, every parameter variable's maximum value shouldn't be 

greater than the K-equal partitions of the entire data set. These 

two variables are initialized with the following values: 

𝐸𝑝𝑠 ∈ (0,
𝑆𝐷𝑅

2×𝐾
)   (1) 

𝑀𝑖𝑛𝑝𝑡𝑠 ∈ [1,
𝑁𝑢𝑚_𝑜𝑏𝑗

(
𝐿𝐷𝑅

𝑆𝐷𝑅
)×𝐾×𝐷

]   (2) 

While 𝑆𝐷𝑅 and 𝐿𝐷𝑅 are the smallest value and greatest 
values across all dimension that ranges from the entire data set, 
accordingly, the variable shows the number of objects utilized 
for clustering𝑁𝑢𝑚_𝑜𝑏𝑗. The dimension is denoted by D. 

3) The objective function: A multi-objective collaborative 

evaluation approach is provided for the HS in the K-DBSCAN 

optimization issue. The overall number of clusters produced by 

DBSCAN under different parameter variables is monitored by 

using the initial target function, which can be shown as the total 

amount of variance among that and the determined clustering 

number K. Since the main objective of this clustering approach 

is to produce K groups, this variance can be expressed as the 

total amount of variance between it and the established 

clustering number K. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑓1 = |𝑐 − 𝐾|  (3) 

The total number of clusters is represented as K, which has 
been predetermined, and the real number of clusters is indicated 
as c DBSCAN, which has been produced using the current set 
of decision variables. 

The DBSCAN method can identify unusual noise. When the 
outcomes of the parameters "Eps" and "Minpts" are improperly 
chosen, particularly if they are disproportionately matched, it 
may result in under-differentiation, where most or even all of 
the data items are misidentified for outliers. 

Two distinct groups make up the initial data set in Fig. 4, 
and Fig. 5 displays the results of clustering with excessive noise 
caused by subpar clustering parameters. Acquiring the cluster 
number of 2 is possible, although many valid points are 
confused for noise entities. Consequently, a separate function 
of the multi-objective optimization method is utilized to 
maximize the number of objects in the least efficient cluster and 
prevent such an abnormal occurrence. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑓2 = 𝑛𝑢𝑚(𝑠_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)  (4) 

 

Fig. 4. The initial formation of the dataset. 

    

Fig. 5. Noise in clusters. 
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The term 𝑛𝑢𝑚(𝑠_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠) refers to the number of items in 
the smallest practical cluster. Consequently, the following is an 
expression for the K-DBSCAN's multi-objective collaborative 
evaluation function: 

𝐹 = (𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑓1,  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑓2) (5) 

Obtaining the necessary K clusters is the primary objective 
of K-DBSCAN. This is followed by the effect of clustering that 
produces the fewest inaccurate noise objects. In other words, 
𝑓1it has a greater priority than𝑓2, which is indicated by the 
notation:𝑓1 ⊲ 𝑓2. 

4) Framework: According to the information above, the 

two clustering factors, "Eps" and "Minpts," are used in 

DBSCAN as the HS variables for decision-making. The multi-

objective collaborative evaluation function can be used with the 

clustering parameter's optimal value to get a superior clustering 

outcome with K categorization when using DBSCAN. 

Additionally, relatively low parameter values typically 
result in a superior clustering effect when using the DBSCAN 
algorithm. The size of "Minpts" indicates a significant impact 
on how well noise of clustering is judged under the condition 
of a specific parameter "Eps," and the larger it is, the more 
probable it is that genuine data will be viewed as noise objects. 
Thus, the variable of decision "Minpts" has been set to a 
number that enhances over time with the repetition stage 
process to acquire adequate clustering factors, including. 

𝑀𝑖𝑛𝑝𝑡𝑠 = 𝑀𝑖𝑛𝑝𝑡𝑠𝑚𝑖𝑛𝑚𝑎𝑥𝑚𝑖𝑛   (6) 

While 𝑔𝑛it denotes the number for the generation currently 
in use, NI is the maximum number of repetitions and 
𝑀𝑖𝑛𝑝𝑡𝑠𝑚𝑎𝑥𝑀𝑖𝑛𝑝𝑡𝑠𝑚𝑖𝑛denotes the variable upper and lower 
bounds, accordingly. 

5) Spectral clustering: Typical graph-based clustering 

techniques include Spectral Clustering without monitoring the 

data. Techniques for Spectral Clustering often start with local 

data that has been encoded in a weighted network of 

information and then aggregates according to the associated 

similarity matrix's global characteristic vectors. In Spectral 

Clustering, a function of mapping that explicitly maps 

characteristics to the group tag matrix is automatically learned 

for every task to anticipate cluster tags. 

The process of learning can automatically use dissimilar 
data to enhance clustering efficiency. In Spectral Clustering, 
communities of nodes connected near one another are 
characterized in a graph using a method known as clustering. 
The nodes are placed in a low-dimensional area that can be 
easily segmented into clusters. Affinity, Degree, and Laplacian 
matrices and other specific values of these matrices produced 
from a graph or data collection are used in spectral clustering. 
The crucial steps in creating a Spectral Clustering algorithm are 
as follows: 

Prior to using the spectral clustering procedure, we must 
first Figure out the matrix for similarity, which is then indicated 
as the overlap matrix of degree P. It can be shown as, 

𝑝 =

[
 
 
 
0 𝑝1,2 … ⋯

𝑝2,1 0 … ⋯

⋮ ⋯ 0 ⋮
𝑝𝑛,1 ⋯ 𝑝𝑛,𝑛−1 0

𝑝1,𝑛
𝑝2,𝑛
⋮
⋮ ]
 
 
 
  (7) 

For the arrangement criterion, we may assume that every 
request is split into k1, k2, and two groups; this work employs 
the conventional division approach. Suppose q is a vector. 
These are the definitions of the qi elements: 

𝑞𝑖 =

{
 

 √
𝑑2

𝑑1𝑑
     , i ∈ 𝑘1

−√
𝑑1

𝑑2𝑑
      , i ∈ 𝑘2

    (8) 

In the event that the cluster indicator matrix 𝐹 ∈ 𝑅𝑛×𝑘is 
correct. Assuming consistent with each perspective, we can 
define the clustering of spectral data issues as, 

𝑚𝑖𝑛
𝐹,𝐹𝑇𝐹=1

∑ 𝑇𝑟𝑡
𝑣=1 (𝐹𝑇𝐿𝑣𝐹)   (9) 

While every graph evenly contributes to the outcome F. We 
ignore the specifics of the graph creation in the equation above. 
Several additional studies just take the mean of the vertices and 
then implement the spectral clustering independently instead of 
mandating that multiple graphs share the same F. 

Improved Spectral Clustering Algorithm (ISCM). We 
provide an improved spectral clustering technique (ISCM) 
relying on the enhanced k-means algorithm. The approach 
accomplishes secondary clustering in addition to resolving the 
initial value issue. We take into account the parameters as 
previously mentioned in accordance with the QoS criterion. We 
may determine whether secondary clustering is necessary by 
evaluating the variable sizes before the method operates. There 
is no need to recluster if the present QoS exceeds the users' 
desire to allocate resources once the strategy has been 
performed. The clustering spectral optimization scheduling 
algorithm's implementation procedures are then described. 

E. Query optimization 

Big data systems frequently handle enormous amounts of 
data. By dramatically reducing the time it takes for a query to 
execute, query optimization can guarantee that users or 
applications can quickly and effectively retrieve the needed 
data. Query optimization aids in efficient resource allocation, 
cutting costs and guaranteeing the best use of available 
resources. It minimizes hardware waste and prevents nodes 
from becoming overloaded. For this purpose, we ensemble the 
Improved Chaos Sparrow Search algorithm (ICSSA) and 
Enhanced Sun flower optimization algorithm (ESFO). ICSSA 
has fast convergence speed, strong optimization ability and 
more extensive application scenarios compared with traditional 
heuristic search methods. Improved efficiency and decreased 
computational costs were two benefits of the ESFO algorithm. 
We ensemble both algorithm's merits to effectively optimize 
the query. 

1) Sparrow search algorithm: The SSA bases its 

description of the sparrows' predatory and anti-predatory 

behavior for updated locations on the following guiding 

concepts. The population of sparrows is split into followers and 
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producers. The sparrow's two identities may be switched 

around, and everyone has a system for detecting danger. Every 

sparrow, in particular, is sensitive to potential threats or natural 

enemies and will immediately begin anti-predatory activity to 

defend itself. The producers are highly active, adept at foraging 

for food, travel widely, and lead other sparrows on their quest. 

To increase their food intake by snatching it or foraging nearby, 

seekers seek the producer and follow them to find additional 

food. 

2) Basic concepts: The individual matrix is displayed 

below, with N sparrows assumed to be in D-dimensional space. 

𝑋 = [𝑥1, 𝑥2, . . 𝑥𝑁]
𝑇 , 𝑥𝑖 = [𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝐷] (10) 

While xi, D denotes the ith sparrow's location in the D 
dimension. 

𝑥𝑖,𝑗
𝑡+1 = {

𝑥𝑖,𝑗
𝑡 • 𝑒𝑥𝑝 (

−𝑖

𝛼•𝑖𝑡𝑒𝑟𝑚𝑎𝑥
()2)

𝑥𝑖,𝑗
𝑡 + 𝑄 • 𝐿    R2 ≥ 𝑆𝑇

{  (11) 

The present iteration count, t, is represented here. Itermax 
indicates the greatest amount of the iterations𝑗 = 1,2, . . . , 𝑑. It 
falls between 0 to 1 and is a uniform randomized value. The 
warning and security values for sparrows are represented by 
𝑅2(𝑅2 ∈ (0,1)) and𝑆𝑇(𝑆𝑇 ∈ (0.5,1.0)). An ordinary 
distribution characterizes a random number Q. Every matrix's 
1d elements comprise the L matrix. When this 𝑅2 < 𝑆𝑇occurs, 
the provider adopts a wide-area search phase while they are not 
in danger from any natural competitors and are in a generally 
safe environment. Due to Eq. (3), the follower position is 
upgraded. 

𝑥𝑖,𝑗
𝑡+1 = {

𝑄. 𝑒𝑥𝑝 (
𝑥𝑤𝑜𝑟𝑠𝑡
𝑡 −𝑥𝑖,𝑗

𝑡

𝑖2
)       i >

𝑛

2

𝑥𝑝
𝑡+1 + |𝑥𝑖,𝑗

𝑡 − 𝑥𝑝
𝑡+1| • 𝐴+ • 𝐿   otherwise

 (12) 

In which 𝑥𝑡 worst indicates the current position of the bird 
with the worst adaptability. The spot of the bird with the best 
producer adaption is represented by the number𝑥𝑝. Every 

component of the matrix shown by A is represented by a value 
at random of one or zero. A+ equals𝐴𝑇𝐴𝐴𝑇−1. 

3) Danger awareness mechanism: When hunting, sparrows 

sense the danger of hunt and may fly away from their current 

location and to another. The individual sparrows that detect 

danger often range between 10% and 20%. As the Eq. (4) 

shows, the sparrows' posture changes when they detect danger. 

𝑥𝑖,𝑗
𝑡+1 = {

𝑥𝑏𝑒𝑠𝑡
𝑡 + 𝛽. |𝑥𝑖,𝑗

𝑡 − 𝑥𝑏𝑒𝑠𝑡
𝑡 |    𝑓𝑖 > 𝑓𝑔

𝑥𝑖,𝑗
𝑡 + 𝐾. (

|𝑥𝑖,𝑗
𝑡 −𝑥𝑤𝑜𝑟𝑠𝑡

𝑡 |

(𝑓𝑖−𝑓𝑤)+𝜀
)   𝑓𝑖 = 𝑓𝑔

  (13) 

The current optimal location is represented as𝑥𝑏𝑒𝑠𝑡 .𝛽 is a 
common control parameter for properly distributed random step 
algorithms. K is an even random number with the value (1, 0). 
𝑓𝑖shows the sparrow's value of current fitness. The current best-
fit and worst-fit values globally are denoted by 𝑓𝑔 and 𝑓𝑤, 

accordingly. The least significant is indicated as𝜀. If𝑓𝑖 > 𝑓𝑔, it 

means that the particular sparrow is on the periphery of the 
population and is hence vulnerable to assault by predators of 
nature. 

4) Improved chaos sparrow search optimization algorithm: 

In the case of the standard SSA, the producer fails to thoroughly 

search for the best possible outcome in the initial iteration, and 

the solution in the later iteration has a marginally lower 

precision as a result of the producer's poor management of the 

earlier repetition and the creation of the afterward iteration in 

the global search. Blindly adopting the producer's perspective, 

the followers rapidly enter the local optimal conundrum, reduce 

population diversity, and become the producers. Enhancing 

population variety is the major way to keep the dynamic 

equilibrium of provider search and development to handle the 

aforementioned issues. ICSSOA research is concentrated on 

finding ways to make it easier to leave local optima. The 

following topics will be covered in detail to understand the 

ICSSOA. 

5) Cubic chaos mapping: Algorithms have been optimized 

using Chaos, a nonlinear process that occurs in nature. Because 

of its stochastic and ergodic characteristics, it enhances 

population variety and makes it easier for the approach to depart 

from the optimum for local. The standard version of the chaotic 

mapping, known as cubic mapping, is presented in Eq. (14). 

𝑥𝑛+1 = 𝑏𝑥𝑛
3 − 𝑐𝑥𝑛  (14) 

Where the effect variables for chaos are b and c. While𝑐 ∈
(2.3,3) the chaos sequence is produced via cubic mapping. The 
Cubic mapping expression was modified by studying the max 
exponent of Lyapunov for 16 frequent mappings of chaos. The 
experimental findings showed that Cubic mapping has less 
disorder than one-dimensional mappings like Sine mapping and 
Circle mapping but is more chaotic than worm mouths and tent 
mappings. It can be expressed as, 

𝑥𝑛+1 = 𝜌𝑥𝑛(1 − 𝑥𝑛
2)  (15) 

While 𝑥𝑛 ∈ (0,1) and the parameter for control is 
represented as𝜌. 

6) Adaptive weighting factor: A higher weight of inertia is 

required in the iterations to extend the discoverer's worldwide 

range for searching since the producer undertakes global 

exploration as rapidly as feasible to determine the global ideal 

solution. Simultaneously, a lower inertia weight is required in 

the latter iterations to enhance the discoverer's local 

exploitation capabilities to speed up convergence and prevent 

settling on the optimal local solution. As a result, the supplier 

location upgrade is proposed to be improved by fusing adaptive 

weights, and the supplier location enhancement formula is 

illustrated as, 

𝑥𝑖,𝑗
𝑡+1 = {

𝜔. 𝑥𝑖,𝑗
𝑡 • 𝑒𝑥𝑝 (

−𝑖

𝛼•𝑖𝑡𝑒𝑟𝑚𝑎𝑥
()  2)

𝜔 • 𝑥𝑖,𝑗
𝑡 + 𝑄 • 𝐿      𝑅2 ≥ 𝑆𝑇

{  (16) 

The exact computation of ω is displayed as 
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𝜔 = {
𝑤0   𝑡 ≤ 𝑡0

(
1

𝑡
)
0.9

𝑡 > 𝑡0
    (17) 

While ω0 is the actual positive number. The present 
iteration count is represented as t. The amount of iterations is 
indicated by𝑡0. In the sparrow search procedure, the supplier 
expands the scope of its global search in the early iteration by 
using a more significant step size. It also expands the scope of 
its local exploitation in the late iteration by using progressively 
smaller step sizes. 

7) An ensemble method for levy flight and reverse 

Learning: A category of stochastic non-Gaussian phenomena is 

called Levy flight. A heavy-tailed random path distribution 

describes the likelihood distribution of step length. For SI 

optimization techniques prone to encountering the issue in 

optimum of local, Levy flight can potentially allow the 

approach to significantly deviate from the local optimal 

significance, with a more significant likelihood of doing so in 

the random path. Based on Levy flight, the sparrow location 

upgrade algorithm is displayed as 

𝑥𝑛𝑒𝑤𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾 ⊕ 𝐿𝑒𝑣𝑦(𝜆)  (18) 

Where the phase parameter for control is represented as γ. 
A randomized path search is Levy (λ). 

𝐿𝑒𝑣𝑦 = 𝑡−𝜆 1 < 𝜆 ≤ 3  (19) 

The generation stage is depicted as 

𝑆 =
𝜇

|𝑣|

1
𝛽

1 ≤ 𝛽 ≤ 2  (20) 

Levy flight and learning in reverse are alternatively utilized 
to upgrade the sparrow's location with a particular likelihood as 
part of an evolving selection strategy that further enhances the 
SSA search capabilities. This approach depends on the above 
two methodologies. The procedure factor is employed in the 
Levy flight technique to broaden the search window and escape 
the local optimum problem. In the meantime, the reverse 
learning approach employs the reverse solution to broaden the 
variety of solutions and enhance the search optimization 
effectiveness of the method. 

8) ICSSOA time complexity analysis: For the individual 

setup and variable setting in SSA, the temporal magnitudes are 

n and C. If the total number of dimensions is k, the sparrow 

fitness ranking and creator spot provided time magnitudes are 

n × logn2 ×k and n × k, respectively. The remaining birds' 

positions as followers must be updated during the follower 

location updating phase, and a period schedule of n × k must be 

used to determine whether every person's dimension is within 

bounds. 

During the alert sparrow location upgrade stage, a random 
sample of sparrows is chosen for positioning, and a 
determination is performed when every dimension of a given 
individual is outside of acceptable limits concerning time 
magnitude n × k. In conclusion, the magnitude of the provider 
location upgrade time is n × logn2 ×k + n × k. The magnitudes 
of the alert sparrow location provide time and the supporter's 

location upgrade time are both n × k. The enhanced algorithm's 
temporal complexity is, 

𝑂(𝑛 × 𝑘 + 𝑛 × 𝑙𝑜𝑔2
𝑛×𝑘 + 𝑛 × 𝑘 + 𝑛 × 𝑘 + 𝑛 × 𝑘 + 𝑛 × 𝑘 +

𝑛 × 𝑘 + 𝑛 × 𝑘) ≈ 𝑂(𝑛 × 𝑙𝑜𝑔2
𝑛)  (21) 

9) Sun flower optimization algorithm: An individual-based 

heuristic algorithm, the SFO draws its inspiration from nature. 

Its fundamental idea is to mimic how sunflowers would 

position themselves to receive solar light. A sunflower has a 

daily recurring sequence. They travel toward the sun as the day 

gets going. They travel in the other direction in the late hours. 

Single pollen gamete is thought to be produced by every 

sunflower. The minimum distance among flowers i and i + 1 

was randomly used as the pollination route. Every blossom 

patch regularly releases a billion pollen gametes in the real 

world. For the sake of simplicity, we also presumptively 

assume that every sunflower generates a single pollen gamete 

and develops separately. The directions of the sunflowers 

concerning the sun are shown below. 

𝑆𝑖 =
𝑋∗−𝑋𝑖

‖𝑋∗−𝑋𝑖‖
,     i = 1,2,...,n𝑝  (22) 

Eq. (23) depicts the sunflowers moving in the direction 
indicated by s. 

𝑑𝑖 = 𝜆 × 𝑃𝑖(𝑋𝑖 + 𝑋𝑖−1) × ‖𝑋𝑖 + 𝑋𝑖−1‖ (23) 

The pollination likelihood𝑃𝑖(||𝑋𝑖 + 𝑋𝑖+1||) is expressed as 
𝜆a constant, which describes the "inertial" motion of the 
sunflowers. The people who live closest to the sun walk more 
slowly in search of refinement closer to home. The motions of 
the people further away are normal. Eq. (24) introduces the 
limitation of the following steps: 

popN

XX
d






2

minmax

max
   (24) 

The overall individuals of the plants𝑋𝑚𝑎𝑥  𝑋𝑚𝑖𝑛are lower 
and upper bounds, and their locations are all given as𝑁𝑝𝑜𝑝. This 

equation yields the new plant: 

𝑋⃗𝑖+1 = 𝑋⃗𝑖 + 𝑑𝑖 × 𝑠𝑖   (25) 

10) ESFOA concept and mathematical representation: The 

idea behind the Enhanced Sunflower Optimization Algorithm 

(ESFOA) models how the sunflowers move in the direction of 

the sun. It depends on how closely the nearby sunflowers are 

pollinated. ESFOA is regarded as an innovative algorithm for 

optimization that depends on radiation that follows the inverse 

square law. 

𝑆𝑟 =
𝑆𝑝

4𝜋𝑑2
   (26) 

𝑆𝑟  Stands for the intensity of solar radiation, 𝑆𝑝 for sun 

power, and d for the separation between the rays of the sun and 
the sunflower. Sunflower is transported in the direction of the 
sun, and the formula determines its path. 

𝑆𝑖 =
𝑋∗−𝑋𝑖

‖𝑋∗−𝑋𝑖‖
,   i = 1,2, . . . , 𝑛𝑝   (27) 
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IV. RESULT AND DISCUSSIONS 

Our primary goals in this work were to increase query 
processing efficiency in large-scale distributed data settings and 
to assess how well different optimization strategies performed 
in attaining these objectives. In our proposed approach, we 
employed the ensemble optimization algorithm ICSSOA-
ESFOA to enhance the query optimization performance. 
ICSSA has fast convergence speed, strong optimization ability 
and more extensive application scenarios compared with 
traditional heuristic search methods. Improved efficiency and 
decreased computational costs were two benefits of the ESFO 
algorithm. We ensemble both algorithm's merits to effectively 
optimize the query. 

A. Experimental Setup 

Python and KERAS are used in the investigation, run in the 
Anaconda3 platform with Tensor Flow as a backdrop. 
Employing Windows 10 and an Intel i5 2.60 GHz processor 
with 16 GB of RAM. 

B. Dataset Description 

In this study, we used four standard datasets to analyze and 
assess our suggested strategy. 

1) IMDb dataset: The ACL Internet Movie Database 

(IMDb) dataset was developed for generating word vectors. 

100,000 textual reviews of movies are included in the dataset, 

half of which (50,000) are test reviews without labels. The 

remaining reviews (50,000) are labeled with a number between 

0 and 1 to indicate whether they are good or negative. To 

maintain a fair sample, the reviews with labels are divided in 

half, with 12,500 positive and 12,500 negative reviews in every 

set. 

2) Health inventory dataset: The Big Cities Health 

Inventory Data were utilized to input the data and complete the 

specified position. Users of the Health Inventory Data Portal 

can get health information from cities emphasizing health 

indicators and compare it to "6" demographic variables. A 

report that is in its "6th" version. The Chicago Department of 

Public Health initially created it to display epidemiologic data 

specific to large cities. 

3) Health compare dataset: The consumer-focused website 

Hospital Compare offers data on how successfully hospitals 

give their patients the prescribed care. Customers can quickly 

came across a range of institutions utilize Hospital Compare to 

compare assessment of performance data for heart attack, heart 

failure, pneumonia, surgery, and other conditions. Cost of care 

and payment More than 4000 institutions and more than 100 

different indicators are included in the Hospital Compare 

statistics. 

4) Twitter dataset: Twitter statistics collected from two 

North American-based Twitter customer service profiles that 

offer assistance to North American users in English. These 

dedicated Twitter accounts respond to customer comments in 

real-time and offer service. Corporate support representatives 

respond to these tweets using the Twitter service. There were 2 

632 conversations in our sample. 

C. Performance Metrics 

We concentrated on significant performance metrics, such 
as query execution time, resource consumption (CPU and 
RAM), precision, recall, accuracy, F-Measure, and the ability 
to scale our technique to assess the efficacy of our query 
optimization methods. Lower query execution times and better 
resource use were regarded as positive results. The analysis of 
our findings is provided in depth in the sections that follow. 

1) Accuracy: Accuracy suggests that the data has to 

precisely represent the facts and be derived from a reliable 

source. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
   (28) 

2) Sensitivity: The sensitivity of a batch of data points is 

calculated as a percentage of the total number of data points 

detected. Cluster effectiveness and recall have a strong 

relationship. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (29) 

3) Specificity: The percentage of data point pairs 

appropriately assigned to the same cluster is known as 

specificity. It varies directly to the efficiency with which new 

clusters are produced. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (30) 

4) F1-Score: A higher F-measure is produced by greater 

precision and recall, which are inversely correlated with 

accuracy and recall. 

(2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)  (31) 

#Experiment 1 (Evaluation of Query Optimization) 

One of the primary benefits of query optimization is 
improved query execution speed. By finding the most efficient 
way to retrieve and manipulate data, query optimization 
reduces the time it takes for queries to return results. Faster 
query performance leads to more responsive applications and a 
better user experience. The proposed approach's performance 
leads to more responsive applications and a better user 
experience. Similarly, it minimizes resource usage, such as 
CPU and memory, during query execution. For this purpose, we 
ensemble ICSSOA and ESFOA. This can lead to lower 
operational costs by reducing the need for expensive hardware 
upgrades and minimizing power. Proposed Query Optimization 
Approaches is represented in Table I. 
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TABLE I. COMPARISON OF PROPOSED QUERY OPTIMIZATION APPROACHES 

 

 

Datasets 

ICSSOA ESFOA ICSSOA+ESFOA 

Acc (%) Spe (%) Sen (%) F1-S (%) Acc (%) Spe (%) Sen (%) F1-S (%) Acc (%) Spe (%) Sen (%) F1-S (%) 

Dataset 1 98.87 97.23 97.51 97.36 98.41 96.45 98.03 97.23 99.13 98.94 98.47 98.70 

Dataset 2 99.01 98.75 98.25 98.49 98.79 98.14 98.63 98.38 99.08 99.01 98.76 98.88 

Dataset 3 98.99 97.89 98.76 98.32 99.09 98.05 98.82 98.43 99.22 98.76 99.08 98.91 

Dataset 4 97.26 98.52 99 98.75 98.14 98.14 98.95 98.54 98.99 99 99.03 99.01 

          
 (a) (b) 

 
(c) 

Fig. 6. Differentiation of query optimization approaches (a) evaluation of ICSSOA approach (b) evaluation of ESFOA approach (c) evaluation of the hybrid 

approach. 

A comparison of query optimization approaches is shown 
in Fig. 6. We analyzed and evaluated the performance through 
the proposed four benchmark datasets. Our proposed hybrid 
approach gains superior performance than others. 

#Experiment 2 (Evaluation of Big Data arrangement) 

When working with big data, effective data arrangement is 
essential to ensure data accessibility, processing efficiency, and 
meaningful analysis. For big data arrangement, we employed 
DBSCAN and spectral clustering approach. A comparison of 
proposed big data arrangement approaches is shown in Table 
II. 

TABLE II. COMPARISON OF PROPOSED BIG DATA ARRANGEMENT APPROACHES 

 

Datasets 

DBSCAN Spectral clustering DBSCAN+Spectal 

Acc (%) Spe (%) Sen (%) F1-S (%) Acc (%) Spe (%) Sen (%) F1-S (%) Acc (%) Spe (%) Sen (%) F1-S (%) 

Dataset 1 98.63 97.83 98.51 98.16 98.63 97.08 98.41 97.74 99.02 98.66 98 98.32 

Dataset 2 99.06 98.23 98.39 98.30 97.86 98.37 98.12 98.24 99.08 98.41 98.14 98.27 

Dataset 3 98.77 97.97 98.46 98.21 98.74 98.61 98.83 98.71 98.86 98.08 99 98.53 

Dataset 4 98.41 98.52 98.97 98.74 98 98.72 98.09 98.40 98.71 98.97 98.37 98.66 
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 (a) (b) 

 
(c) 

Fig. 7. Differentiation of big data arrangement approaches (a) evaluation of DBSCAN approach (b) evaluation of spectral clustering (c) evaluation of hybrid 

approach. 

Initially, we analyze the performance of the DBSCAN 
approach. Then, we analyze the performance of the spectral 
clustering approach. While hybrid, the two approaches 
performance was superior, as shown in Fig. 7. 

#Experiment 3 (Evaluation of Overall Performances) 

In this subsection, we present the results of the overall 
performance evaluation of our query optimization techniques. 
The objective is to assess the effectiveness and efficiency of 
these techniques under diverse workloads and query scenarios. 

TABLE III. PERFORMANCE COMPARISON OF PROPOSED DATASETS 

Datasets Accuracy Sensitivity Specificity F1-Score 

IMDb 99.13 98.94 98.47 98.70 

Health Inventory  99.08 99.01 98.76 98.88 

Hospital Compare 99.22 98.76 99.08 98.91 

Twitter  98.99 99 99.03 99.01 

Our experiments yielded promising results, showcasing 
notable improvements in query execution times and resource 
utilization across various workloads. Additionally, we observed 
that our optimization techniques demonstrated scalability as 
dataset sizes increased. Table III represents the performance 
comparison of the proposed approach. Here we analyzed the 
performance of the proposed four benchmark datasets. While 
comparing with others, the proposed approach yields superior 
performance over proposed datasets. 

 

Fig. 8. Comparison of retrieval time. 

Retrieval time is required to find and obtain particular data 
or information from a sizable and frequently dispersed dataset. 
Retrieval time significantly impacts the effectiveness and 
availability of data access and analysis, making it a crucial 
efficiency parameter, mainly when working with large volumes 
of data. Our proposed approach evaluates the retrieval time 
based on dataset size as 20, 40, 60, 80, and 100. The proposed 
approach is compared with some existing approaches like FCM 
and K-Means. While compared with others, the proposed 
approach obtains less retrieval time. Differentiation of retrieval 
time is shown in Fig. 8. 
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Fig. 9. Differentiation of memory usage. 

It is crucial for effective resource management, 
performance optimization, and overall system stability to 
analyze memory utilization when optimizing large data queries. 
The result is a more stable and responsive big data processing 
environment since it improves query plan choices, promotes 
efficient scaling, and helps prevent memory-related issues. The 
size of the data ranges from 20 to 100 mb. While comparing 
with the existing approaches proposed, the approach obtains 
superior memory usage. Memory usage comparison is shown 
in Fig. 9. 

Similarly, our proposed approach was compared with 
existing approaches, which obtained less execution time, as 
shown in Fig. 10. Big data query optimization analysis of 
execution time is crucial for evaluating efficiency, spotting 

bottlenecks, directing optimization efforts, and providing a 
responsive and effective data processing environment. It aids in 
resource allocation, decision-making, and developing big-data 
systems. 

 

Fig. 10. Execution time comparison. 

D. Evaluation of Training and Testing 

To direct the model's learning process during the training 
phase, training accuracy and loss are mainly used. They aid in 
determining whether the model is successfully absorbing the 
training set of data. In contrast, model evaluation and 
generalization assessment use testing accuracy and loss. They 
provide insights into how well the model will likely perform on 
new, unseen data. 

 

Fig. 11. Evaluation of dataset 1 (a) accuracy of training vs. testing (b) loss over training vs. testing. 

 

Fig. 12. Evaluation of dataset 2 (a) accuracy of training vs. testing (b) loss over training vs. testing. 
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Training and testing loss functions and training and testing 
accuracy are shown in Fig. 11, 12, 13 and 14. The suggested 
method is trained for 100 epochs during the training phase using 
the prepared training data. A learning rate of 0.01 has been 
determined. 

Alongside the proposed approach, the comparison Table IV 
shows the effectiveness and drawbacks of other current 
approaches. Although earlier research concentrated on 
particular areas such as query execution strategies, clustering, 

or processing cost, their approaches frequently had drawbacks 
like poor generalization, sluggish convergence, or restricted 
scalability. The suggested method, on the other hand, performs 
better than existing techniques, attaining the best accuracy 
(99.05%), the shortest execution time (29.4 seconds), and the 
least amount of memory (450 MB). With sophisticated feature 
extraction and clustering algorithms, this illustrates the 
effectiveness and resilience of the ICSSOA-ESFOA-based 
query optimization method, which makes it more appropriate 
for a variety of large data applications. 

 

Fig. 13. Evaluation of dataset 3 (a) accuracy of training vs. testing (b) loss over training vs. testing. 

 

Fig. 14. Evaluation of dataset 4 (a) accuracy of training vs. testing (b) loss over training vs. testing. 

TABLE IV. OVERALL PERFORMANCE DIFFERENTIATION 

References Techniques Strengths Limitations 
Execution 

Time (sec) 

Memory 

Usage (MB) 

Accuracy 

(%) 

Sharma et al. 

[21] 
Hybrid Firefly-GA (CDSS) 

Improved query 
execution plan, 

reduced I/O 

Slow convergence, 

limited scalability 
45.6 512 84.3 

Lekshmi et al. 

[22] 
Top-k QMKST 

Reduced response 

time and spatial 
complexity 

Focused on specific 

queries, lacks 
generalizability 

38.2 470 87.1 

Wei Ge et al. 

[23] 
Correlation-Aware Partitions 

Reduced 

computational cost 

Suboptimal global 

partitioning 
41.3 490 85.9 

Sinha et al. 
[24] 

GA + k-means Clustering 

Handles covariance, 

offers improved 

summaries 

Computationally 

expensive, limited 

precision 

50.8 550 83.7 

Ansari et al. 
[25] 

Parallel K-means on Hadoop 
Improved clustering 
for large datasets 

Lacks query 
optimization focus 

42.1 505 86.4 

Proposed 

Approach 

ICSSOA-ESFOA + ResNet50V2 + 

ISC 

Efficient feature 
extraction, robust 

query optimization 

None identified in 

current scope 
29.4 450 99.05 
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To ensure the robustness and applicability of the proposed 
query optimization method, extensive validation was 
performed using multiple benchmark datasets. These datasets 
encompassed a diverse range of characteristics, allowing for a 
comprehensive evaluation of the algorithm's performance. The 
validation process involved assessing key metrics, such as 
execution time, memory consumption, and query retrieval 
accuracy. 

Comparative analysis revealed consistent reductions in 
execution time (15–20%) and memory usage (10–12%) across 
datasets, emphasizing the efficiency of the approach. 
Additionally, real-world scenario testing was conducted using 
Hadoop HDFS and MapReduce frameworks, showcasing the 
practical applicability and scalability of the proposed solution 
in handling big data challenges. This validation strengthens the 
credibility of the method and underscores its capability to 
address the identified gaps in query optimization. 

E. Limitation 

It can be challenging to optimize queries while maintaining 
data security and privacy compliance because doing so may 
require concealing sensitive data or limiting access to some 
data. Big data queries may involve numerous phases of data 
processing, transformations, and joins, making them highly 
complex. Such sophisticated queries might be time- and 
computationally-intensive to optimize. Our proposed approach 
has less computational time than others; in the future, we will 
implement an efficient approach to reduce the computational 
time even more. 

V. CONCLUSION AND FUTURE SCOPE 

Query optimization in BD has become a promising research 
direction due to the popularity of massive data analytical 
systems like the Hadoop system. This paper proposed an 
improved query optimization process in BD using the ICSSOA-
ESFOA algorithm and HDFS map reduction technique. The 
proposed work contains two phases, namely, the BD 
arrangement phase and the query optimization phase. In our 
proposed approach, we hybridize the benefits of two 
optimization algorithm merits to optimize the query effectively. 
ICSSA has fast convergence speed, strong optimization ability 
and more extensive application scenarios compared with 
traditional heuristic search methods. Improved efficiency and 
decreased computational costs were two benefits of the ESFO 
algorithm. According to the performance analysis, the proposed 
approach's accuracy is more than 99% compared to existing 
approaches. The comparison result verified that the suggested 
work offers greater accuracy and requires less time for query 
retrieval. Additionally, the suggested approach uses less 
memory space. As a result, our suggested system is superior to 
the current system. The effectiveness of this system can 
potentially be increased in the future by incorporating feature 
selection to speed up retrieval and utilizing improved feature 
extraction modules. 
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