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Abstract—The advancement of Artificial Intelligence (AI), in
particular Deep Learning (DL), has made it possible to interpret
gathered data more quickly and effectively in this new digital
era. To draw attention to development advancements in deep
learning across many industries. Agriculture has been one of
the most affected areas in recent advancements of the current
globalized world agriculture plays a vital role and makes signifi-
cant contributions. Over the years, agriculture has faced several
difficulties in meeting the growing demands of the global people,
which has creased over the last 50 years. Different forecasts have
been made regarding this extraordinary population expansion
which is expected to grasp almost 9 billion persons worldwide
by 2050. More than a century ago, different technologies were
brought into agriculture to solve issues related to crop cultivation.
Many mechanical technologies are accessible today, and they
are evolving at an amazing rate. To support their demands
and help them optimize their crop yields based on data and
task automation need innovative techniques to aid farmers. This
will transform the agricultural industry into a new dimension.
Therefore, this study’s primary goal was to present a thorough
summary of the most current developments based on research
interconnected with the digitization of agriculture for crop yields
including fruit counting, crop management, water management,
weed identification, soil management, seed categorization, disease
detection, yield forecasting and harvesting of yields based on
Artificial Intelligence Techniques.
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I. INTRODUCTION

Because of the population, the agriculture sector has to
meet a wide range of food needs along with social, environ-
mental and economic factors like the lack of workers, water,
biodiversity, and land degradation [1]. Since the seasons are
hard to predict and the environment is harsh, there are now
a number of limits on its growth. For agricultural business
growth, it is important to find new methods that will last.

Farmers’ understanding of field management has changed
by using cutting-edge technologies like robots, drones and
sensors on farm equipment. Scientists who study data and
farming are getting ideas from these new technologies to make
better analytical tools and methods for managing fields and
dealing with problems more correctly [2]. Today’s technology
makes it hard to make sure that everyone has access to a
steady supply of high-quality food without putting natural
environments at risk. To meet and support farmers’ needs help
to get the most out of their farming by automating tasks and
data.

New developments in uses based on Artificial Intelligence
(AD) had a big effect in this area [3]. They have made a big

difference in the progress of computer vision, ML(Machine
Learning) and DL(Deep Learning) methods for building auto-
mated and reliable systems. But Agriculturalists still confront
formidable challenges in making affordable, scalable, and
ecologically sound solutions to the world’s food crisis a reality,
despite recent advances. This emphasizes the significance of
studies that cover both the theoretical and practical aspects of
incorporating technological advances into actual agricultural
systems.

As a result, this study main goal is to give an in-depth
overview on the latest advances in Al research that has to do
with digitizing agriculture for crop yields. To identify existing
gaps in the current review of Digitizing agriculture includes
fruit counting, crop management, water management, weed
identification, soil management, seed categorization, disease
detection, yield forecasting, and harvesting of yields.

II. DIGITIZING AGRICULTURE CROP YIELDS USING Al
TECHNIQUES

A. Fruit Counting

A vital component of the world economy is the fruit
business. Food security, economic growth, nutritional diversity,
processing, shipping and retail are just a few companies that
benefit from it, and millions of farmers rely on it for income.
Fruits have high vitamin, mineral, fiber and antioxidant content
and plays a vital part in healthy diet. As per the FAOSTAT
report fruit industry is in the rise worldwide. Producing ap-
proximately 909.644 million metric tons of fruits in 2023, the
world continued its growing trend in food output, accounting
for 19% of total food production. Maintaining accuracy and
efficiency in huge fields or orchards becomes increasingly
challenging when the volume of agriculture increases, ren-
dering manual counting impracticable defined by Pathan and
Rehman [4]. Manual fruit counting can be challenging in
outdoor settings due to weather factors including rain and
low vision as explained by Hunt and Doraiswamy [S]. The
spatial coverage of manual counting is limited since people
can’t physically inspect every portion of a crop. It also makes
coping with different crop architectures more difficult as it
makes it harder to address differences in fruit size, shape,
or distribution. The consistency and comparability of the data
could be compromised due to inconsistent counting techniques
caused by the absence of established counting standards.

Fruits calculating or counting flower thickness on images
using Computer Vision (CV) algorithms is a commonly used
method for autonomous yield estimation. There are two main
types of CV-based approaches to estimating agricultural yields:
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(1) methods that focus on specific regions or areas, and (2)
methods that rely on counting. An automated method for
estimating crop production in apple farms was created by
Wang et al. [6] using stereo cameras. To lessen the impact
of the erratic daylight lighting, they took the photos at night.
An in-field cotton recognition system was created by Li et
al. [7] using region-based semantic image segmentation. Joint
maize tassel and crop segmentation was accomplished by Lu
et al. [8] using region based color modelling. Yield estimation
approaches based on counting have received surprisingly little
attention, in comparison to methods based on regions [9].
Estimating the quantity of apples harvested in fields with
natural light was done by Linker et al. [10] using color
photographs. There were a lot of false positives because of the
problems with direct light and color saturation. A technique
for apple fruit segmentation [21] from video utilizing backdrop
modelling was developed by Tabb et al. [11].

Counting problems demand one to reason about the total
occurrences of an object in a scene, as opposed to the usual pic-
ture classification procedure that aims to identify the existence
or nonexistence of an object. Multiple real-world applications
encounter the counting problem: counting cells in microscopic
imaginings, counting wildlife in aerial photos [12], counting
fish [13], and crowd monitoring [14] in surveillance systems.
Kim et al. [15] presented a system that uses a fixed-shot camera
to recognize and follow moving subjects. To improve loss
optimization during learning, Lempitsky et al. [16] presented a
novel supervised learning structure for pictorial object counting
jobs that considers MESA distance. The authors Giuffrida et
al. [17] put forward a method for leaf counting that relies on
learning in plants that grow in rosette sets. They connected
image-based descriptors learned unsupervisedly to leaf counts
using a supervised regression model. The present method
of estimating production, which involves workers physically
counting fruits or flowers, is impractical for vast fields due
to its high cost and time requirements. Here, a practical
answer is provided via robotic agriculture-based automatic
yield estimation.

Nowadays, Al is playing a bigger part in fruit counting
as it provides more precise and efficient answers for farming.
Automating fruit counting in fields is possible with the usage of
Al technologies, especially CV and ML. DL algorithms allows
for automated interpretation of captured images or films. Based
on visual features like size, shape, texture and color these
systems are able to recognize and tally fruits developed by
Koirala and Zhang [18]. DL algorithms have been taught
to recognize and quantify fruits in images. These algorithms
include Convolutional Neural Networks (CNNs) with massive
datasets these models gradually get more accurate results by
Sa et al. [19]. According to Wang et al. [24] Al is used
in combination of LiDAR and 3D imagery to make three-
dimensional fruit count estimates. A more precise evaluation
of the distribution and volume of fruit can be achieved with
this method. The author also explained that the method can
be used for vast agricultutal fields. According to Anand et
al. and Kumar et al. [20] this combination enables thorough
counting and monitoring through effective aerial surveys of
vast agricultural fields. Adapting it to different orchard settings
and fruit varieties is a breeze. These systems may be adjusted
to various situations, which means they can be used with a
variety of crops. Methods for counting objects using deep
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learning have recently become more prominent. Seguiet al.
[19] investigated the use of CNN for the job of counting
instances of an interest notion. A system for microscopy cell
counting was created by Xie et al. [22] using a convolutional
regression network. Using deep CNN, Zhang et al. [23] created
a framework for cross-scene crowd counting. So far as we are
aware, no studies have addressed the topic of deep simulated
learning fruit counting. All of the counting algorithms that
have included deep learning have focused on object detection
and subsequent counting of those instances.

B. Water Management

From legislators to end users, everyone involved in water
usage and management is worried about the impending water
scarcity. The opinions of many shareholders or a shortage
of revised strategies and plans to increase efficacy can make
it difficult to execute any freshwater conservation strategy
Marston & Cai, [25]. These concerns about effective fresh-
water management are of particular importance in agriculture,
where they may help alleviate sustainability and environmental
concerns while also cutting expenses for farmers. According
to Salmoral et al. [26], public institutions and lawmakers play
a crucial role in this context, specifically under the EU’s
Common Agricultural Policy (CAP).

Actually, circa the agricultural sector drew around 70% of
the world’s water. In the Asian and African regions (81%), as
well as in Oceania (65%), this is a very pertinent subject. This
issue warrants particular attention in southern countries, while
it is not as serious in European and American countries (25%
and 48%, respectively) Aquastat [27]. Several stakeholders,
including farmers, must be involved in the planning and
execution of any strategy or plan to improve water efficiency
on farms for it to be effective.

According to Koscielniak et al. [28], Nazari et al. [29] the
agricultural sector of the European Union relies on proper wa-
ter management, so it’s important to shed light on these factors.
Several factors influence the efficiency of water management
in irrigation methods. These elements include pertaining to the
environmental, social, technical, legal, and political aspects.
In view of Castanedo et al. [30], such settings, considerations
such as the depth of application and modified drainage systems
may be important. Agricultural methods including energy
usage and soil management strategies are interdependent on ir-
rigation practices Lee et al. [31]. Surface irrigation agricultural
output, and soil yields Kim et al. [32] are three areas where
irrigation practices can substantially affect water management
efficiency. The morphology and spatial circulation of roots
from perpetual crops Deng et al. [33] and economic indices of
farms Kumar et al. [34] are also affected.

Regardless, irrigation technology and methods have ad-
vanced, allowing farmers more leeway in their decisions and
options Roth et al. [35]. Nonetheless, there is always room
for improvement in this area van Steenbergen et al. [36]. The
selection of water-efficient cultivars in the turf business is
another important consideration Githinji et al. [37]. In this
context, effective strategies for managing water resources are
crucial.

According to Preite et al. [38], 4.0 technologies are being
considered as a possible result to enhance the agricultural
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sector’s sustainability. These technologies include blockchain,
the Internet of Things (IoT), DL algorithms, ML and other
computer applications. The simple, scalable automation that
predictive algorithms offer makes them ideal for a 4.0 scenario
that spans many different fields Mazzei & Ramjattan [39].
Meshram et al. [41], Liakos et al. [40], and others have grouped
the machine learning methods used in agriculture into three
distinct phases: before, during, and after harvesting. The first
set of applications included topics related to irrigation, with
identification of water scarcity, prediction of water demand,
and scheduling of irrigation. Conventional irrigation schedul-
ing takes a set period into account while ignoring the fact
that environmental and plant variables can vary. In particular,
water scarcity identification processes thermal infrared images,
weather, and soil data to assess stem water potential, drought
stress and plant water gratified.

According to Zhou et al. [41], the models mostly used in
this scenario were gradient-boosted random forests, decision
trees and CNN. Using support vector machines, gradient-
boosting, artificial neural networks and decision trees algo-
rithms, reference evapotranspiration, soil moisture contented
and sap flow possessions were estimated using multispectral
and thermal imageries in conjunction with meteorological and
soil data. By analyzing sensor data, the authors of Corell et
al. [42] present an outline for irrigation that compares three
regression models to find optimal irrigation amount for olive
farming. The emergent degree days, water provided to plants,
and evapotranspiration rate were used in a fuzzy decision
support system to evaluate appropriate irrigation quantity for
corn, kiwi, and potato crops Giusti & Marsili-Libelli [43]. In
order to give watering suggestions for lemon trees, Navarro-
Hellin et al. [44] utilized an adaptive neural fuzzy inference
system in conjunction with a partial least-square regression
to analyze evapotranspiration, soil moisture and humidity.
Chandrappa et al. [45] use DL algorithms (Long Short-Term
Memory) and ML techniques (Support Vector Regression and
Linear Regression) to evaluate soil moisture changes in depth
and time. Against this backdrop, a multi-depth link between
wind speed and soil moisture was brought to light. By training
an artificial neural network to use data from soil sensors
and meteorological stations to calculate the optimal irrigation
period, a 20% reduction in water use was accomplished by
Gu et al. [46]. Kavya et al. [47] have investigated the use
of Al for short-term water demand prediction. In particular,
using both univariate and multivariate time series assessed the
prediction ability of deep learning and machine learning. While
the multivariate scenario also took weather into account, the
univariate series was applied just to the flow meter data. A
probabilistic framework was created by Srivastava et al. [48]
to ascertain irrigation methods using three distinct parameters:
leaf area index, soil moisture, and evapotranspiration. These
indicators show water deficiency in the soil, water stress in
crops, and the water demand, in that order. Here they utilized a
Recurrent Artificial Neural Network (long short-term memory)
to make predictions, and employed a random forest regression
to find good predictors for each parameter. The last step
was compared the expected and actual numbers to tweak the
resulting weights.

Aly et al. [49] used a super learning ensemble to predict
the evapotranspiration with limited meteorological data. They
achieved good accuracy by utilizing additional tree regression,
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k-nearest neighbour, support vector regression, and AdaBoost
regression. Yong et al. [50] also noted the latter difficulty as
the primary obstacle to evapotranspiration rate prediction and
proposed a hybrid neuro-fuzzy inference method to overcome
it. Adnan et al. [51] examined practicality of hybrid support
vector regression models from this angle. These models in-
tegrate ML methods with optimization meta-heuristic algo-
rithms, such as Particle Whale Optimization, Swarm Optimiza-
tion, Differential Evolution, and Covariance Matrix Adaptation
Evolution Approach. By integrating ML and feature engineer-
ing, Povazanova et al. [52] enhanced prediction accuracy for
reference evapotranspiration estimation, shedding light on the
efficacy and generalizability of the suggested models. Using
a variety of machine learning algorithms including k-nearest
neighbors, support vector machine, decision tree, and multilin-
ear regression the authors of Youssef et al. [53] demonstrated
how to estimate reference evapotranspiration with an accuracy
close to 99%.

C. Crop Management

One of the most significant parts of agriculture has always
been crop production management. In order to feed both cattle
and humans, crop production is crucial. Throughout human
agrarian history, one of the key objectives is to upsurge the
economic efficacy of farming. To ensure consistently high-
quality output, agricultural production sites should undergo
routine inspections and implement all required crop production
strategies. Because farmers invest time and energy into each
visit, the crop’s price tag reflects that. As a result of farmers’
obsession with crop monitoring and evaluation, smart agri-
culture has emerged as a critical tool. Although digitalization
will have a greater effect on wide-area communication net-
works that include rapid data transmission, it permeates most
areas of engineering [54]. Cultivating field crops, producing
vegetables, and fruit are all part of crop production, which is
a subset of agriculture [55]. “Smart farming” refers to a new
paradigm that maximizes agricultural output with the help of
cutting-edge information technology [56] with advancements
in Al, automation, and connectivity, farmers can effectively
monitor different procedures and provide targeted treatments
for cultivation using robots that are superhumanly efficient.

These tasks only require a set of guidelines based on
mathematics or logic because to derive valuable correlations
from data, machine learning makes use of learning rules like
supervised learning, unsupervised learning, hybrid learning
and reinforced learning [57].

These features allow deep learning networks to potentially
uncover hidden structures in data that is neither labeled nor
structured. A major improvement over previous methods,
deep learning networks are able to extract features with little
to no human intervention. The proliferation of high-speed
wireless transmission networks led to dramatic increase in
consumer demand for such services [58]. When comparing
Deep Anomaly to region-based convolution neural networks
(RCNN), the former is superior for human detection at 45-90
meters [59]. This method can detect anomalies and generate
uniform field characteristics. In this article, learned about the
DL classification of land cover and crop kinds using remote
sensing data [60]. Traditional fully linked MLPs and random
forests were compared to CNN. We talk about how to use
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visual sensor data to train self-learning CNN to identify diverse
types of plants [61].Offers automatic weed detection in UAV
photos of line crops using deep learning with unsupervised data
labeling [62]. Use of convolutional neural networks (CNNs) on
unsupervised training datasets will provide fully autonomous
weed detection. Incorporating a deep residual neural network
onto a mobile capturing equipment allowed for the introduc-
tion of a crop disease classification system. Thorough testing
enhanced the precision of the balancing process. 0.78 to 0.8
[63] is the range.

To diagnose mildew disease on millet crop photos, a deep
neural network with transfer learning is employed [64]. The
fl-score was 91.75%, recall was 94.50%, precision was 90.0%,
and accuracy was 95% in the experiments. A deep convolu-
tional neural network was employed to estimate agricultural
yields using NDVI and RGB data acquired by UAVs [65]. In
terms of CNN performance, RGB images beat NDVI images.
In terms of critical characteristics, low-altitude remote sensing-
based images and CNN architecture for rice grain production
were considered [66]. During the ripening stage, Deep CNN
performed significantly improved and was stable. Researchers
have looked at a deep learning-based multi-temporal crop
classification system [67]. DL models LTSM and ConvlD
were compared to XGBoost, SVM, and RF parameters. The
development of a new crop vision collection that makes
use of deep learning classification and accurate agricultural
recognition has also been accomplished [68]. On agricultural
datasets, his proposed algorithm achieved a 99.81% accuracy
rate, surpassing VGG, DenseNet, ResNet, SqueeztNet, and
Inception. Recognizing and differentiating crops in soil is
made possible by deep learning technology [69]. Information
is derived from a digital surface model with a high level of
resolution. For the purpose of crop pest classification, auto-
matic feature extraction is used in conjunction with transfer
learning approaches involving convolutional neural networks
[70]. The most accurate datasets are Xiel, NBAUR, and Xie2,
with respective accuracies of 94.47%, 96.75%, and 95.9%.

D. Soil Management

For the vast majority of creatures, the soil is the food
web, providing them with the mineral resources they need to
survive. When soils are well-managed, plants do not suffer
from mineral element deficiencies or toxicities, and the right
minerals make it into the food chain. Crop yield, ecological
stability, and human well-being are all impacted by poor soil
management in some way.

According to Dickson et al. [72] and Bhaskar et al. [71]
soil categorization opens up numerous sectors including soil
improvement, crop management, land consolidation and more.
Physiological factors assessed from real-time field models
are the most important criteria for soil identification. Root
development, plant emergence rate, water penetration, and crop
production are all affected by physical variables such as tem-
perature and moisture, which affect the formation of particles
and pores. Chemical features including pH, organic carbon,
and the nitrogen, phosphorus, potassium (NPK) parameters
dictate the accessibility of nutrients, the existence of other
species, and the motility of pollutants. The various components
that make up soil include clay, sand, peat, silt, and loam. Soil
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particles in the target zone consist mostly of sand, clay, and
silt, with very little peat and loam.

It is considerably more challenging to keep these soils suit-
able for farming. Soils like laterite, which are mostly composed
of rock deposits from hot climates, are abundant in iron and
aluminum. Soils with large concentrations of iron oxides, such
as laterite, have a reddish hue [72]. Almost all laterites have a
rusty-red hue because to the significant iron oxide content. Soil
surface formation is guaranteed by periodic rainfall and sunny
seasons. The crops are adequately nourished by this soil type.
The southern Indian subcontinent is a significant producer
of the rice variety Oryzasativa. Rice is a staple crop and a
source of income for many farmers in the area surrounding the
exploration location. Milling, visual, culinary, and nutritional
qualities are all part of what makes rice grain quality. It
is widely recognized that the root’s balanced qualities are
closely related to grain quality in rice. Root morphological and
physiological features impact rice vegetative growth and grain
satisfying, which in turn affects grain quality. The features
that were researched and described and are applicable to the
exploration site, which consists primarily of clay and laterite
soil.

A methodology for digital soil mapping was created by
Behrens et al. [73] using Artificial Neural Networks (ANNs).
This methodology is able to predict soil units in a test
area in Rhineland, Germany, Palatinate. Grinand et al. [74]
developed a classification tree-based method for predicting soil
distribution at an unexplored location by using a soil-landscape
pattern obtained from a soil map. Soil datasets and exploration
site data should be collected as part of the proper method for
soil classification at the exploration site. After that, the datasets
should be pre-processed. Finally, models should be trained
using Deep Neural Network and Machine Learning techniques,
and the soil should be classified into four distinct groups. They
rely on accurate soil detection to help with nutrient supply to
the field, which in turn increases crop production. It’s also
crucial for their livelihood to determine what kind of weeds
will grow from the soil so that they can eradicate them.

E. Weed Identification

One of the most important things that can influence crop
yield is weed control. Khan et al. [75] found that weeds
can reduce crop output and production quality by competing
with crops for water, fertilizer, light, growing space and other
nutrients. Insects and diseases that harm crops could also
call this place home. A study found that weed suppression
resulted in a 13.2% annual loss of crop production enough
to feed one billion people for a year Yuan et al. [76]. A key
component of crop management and ensuring food security is
weed control. Manual weeding, chemical weeding, biological
weeding, mechanical weeding, etc. are all common weed
management strategies Stepanovic et al. [78], Marx et al. [77],
Morin [80], Kunz et al. [79], Andert [81].

The best method for controlling weeds in the field is to
do it by hand. The high cost and labor intensity, however,
make it impractical for cultivation on a broad scale. Because
it doesn’t harm non-target organisms much, biological weeding
is eco-friendly and safe, but it takes a lengthy time to restore
ecosystem afterward. The majority of weeds are eliminated
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with chemical weed killers, which is the most popular method
of weed control. However, other problems, including chemical
residues, weed resistance, and environmental contamination,
have resulted from the excessive use of herbicides. The study
found that in different farmland systems, 513 biotypes of 267
weed species have become resistant to 21 different herbicides
Heap, [82]. Therefore, it will be crucial to use technologies
like detailed spraying or mechanical weed management on
individual weeds in order to prevent the over-application of
herbicide.

Automatic mechanical weeding is becoming more popular
as a result of the organic farming movement Cordill and Grift
[83]. It prevented needless tillage, which saved gasoline, and
allowed for weed management without chemical input. Never-
theless, intelligent mechanical weeding has faced significant
challenges because to the low accuracy of weed detection
and the resulting unforeseen harm to the plant-soil system
Gasparovi¢ et al. [85], Swain et al. [84]. So, it’s critical to
make weed detection more precise in the fields.

So using Al models like SVM, decision tree, a random
forest algorithm, and KNN classifiers are some of traditional
Al methods that have been utilized in weed identification
research. It is expected that these algorithms will employ
intricate manual craftsmanship to extract weed image color,
texture, form spectrum, and other attributes. As a result, the
weed image extraction was lacking or features were obscured,
it would be impossible to differentiate between weed species
that are otherwise comparable. Image processing technology
was utilized by traditional weed detection algorithms to extract
characteristics of weeds, crops, and backgrounds from images.
A model that uses wavelet texture information to differentiate
sugar beets from weeds was presented by Bakhshipour et al.
[86]. A total of fourteen of the fifty-two texture features were
chosen using principal component analysis. Despite numerous
occlusions and overlapping leaves, it proved wavelet texture
features might accurately differentiate among crops and weeds.
Only crops and weeds with clearly distinct pixel values in
the RGB matrix or other parameter matrices derived from
it could be identified by the color feature-based models. In
most cases, the color feature was utilized in conjunction with
other features; for instance, Kazmi et al. [87] suggested a
technique that combined surface color with edge form to detect
leaves and integrate vegetation indices. With a precision of
99.07%, the vegetation index was combined with regional
characteristics. It was challenging to differentiate between
weed species using traditional image processing approaches,
even if same methods could differentiate between crops and
weeds.

To improve weed detection, deep learning networks can
generate abstract high-level properties instead of the low-level
attributes used by traditional machine vision networks, such
as color, shape, and texture. The present target identification
models have, as is well-known, benefited from deep learning’s
increased accuracy and generalizability. A few examples of
popular target detection networks are the YOLO model, Faster
R-CNN, and Single Shot Detector Redmon et al. [88], Ren et
al. [89], Quan et al. [90]. Using a total of 10,413 pictures,
Dyrmann et al. [91] employed CNN to distinguish 22 distinct
plant species. The weed species with the most picture resources
had the highest classification accuracy, according to the results.
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Therefore, there needs to be enough datasets for deep learning-
based weed identification.

The author Hinton et al. [92] proposal highlighted the deep
and highly-connected topology of DL networks, which led
to the idea of deep learning being introduced. The dataset
is trained by Deep learning has been demonstrating strong
accuracy and resilience in image identification as of late. To
be more specific, ImageNet a massive multi-variety dataset
with 3.2 million images demonstrated the significance of large-
scale datasets in enhancing the identification accurateness of
the models trained with DL methods by Russakovsky et al.
[93]. Unfortunately, dataset for training deep learning weed
identification models have very tiny scales in both the number
of images and the type of weeds.

FE. Seed Categorization

Farmers and food processors alike are understandably
worried about seed segregation in mixed cropping. Farmers and
agro-industries also have the difficult challenge of classifying
and packing seeds according to their quality. Additionally, the
conventional methods of seed separation after thrashing like
sieving, hand-picking, etc. are laborious and time-consuming.
Therefore, seed segregation must be automated.

For that AI methods play an important role in yield
prediction [94], improvement of image contrast [95], illness
categorization[96], etc. inspired each of the study [97] in
order to broaden the scope in seed categorization according to
variety, size, they are of high quality. Using SVM, the authors
of [98] were able to categorization of normal and broken maize
kernels [99]. The SVM classifier achieved a 95.6% success
rate for healthy and an 80.6% success rate for the process
of identifying damaged or defective seeds, an error rate of
about 19% was noted. Researchers [100], [101], and [102]
continued this line of inquiry by classifying four different types
of maize seeds using models based on SVM, K-means and
DCNN. They used the DCNN and claimed a perfect training
accuracy rate based strategy. However, when measuring the
model’s efficacy on the testing dataset, a significant amount of
incorrect classifications was found in relation to a single corn
category.

In addition, the researchers [103] automated the process
of inspecting maize kernels by utilizing ML and DL models’
capabilities. For kernel separation, they utilized k-means clus-
tering. In order to distinguish between kernels that were flawed
and those that were not, they used a number of models, includ-
ing ResNet, VGGNet, and AlexNet. Outperforming VGGNet
and AlexNet, the ResNet model achieved an accurateness of
98.2%. The writers in [104] also distinguished between healthy
and malformed corn seeds using SVM, AlexNet, VGG-19, and
GoogleNet. The GoogleNet model had the highest accuracy
rate of 95% out of all of these models. In order to classify
and test seeds, the following works [105] employ ML and
DL algorithms effectively. In order to distinguish between
haploid and diploid seeds, detect seed coating, distinguish
between common maize seed and silage seed for animal feed,
and identify defective from non-defective seeds, they utilized
Convolutional Neural Network (CNN) classifiers. Sunflower
seed identification was accomplished by the authors [106]
using DL models. By utilizing optimization procedures, they
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successfully circumvent the issue of overfitting. It was asserted
by the authors that the optimized GoogleNet model attained
a 95% accuracy rate. Unlike a large lot, however, the model
calls for human involvement to arrange the seeds.

When training the model, the authors also took into ac-
count just one perspective on seeds. Consequently, by training
the model on numerous perspectives of seeds, there is a
chance to enhance its robustness and reliability. In order to
incredulous the obstacles stated in the previous study, the
authors in [107] took into account the entire soybean seed
surface. They achieved a 98.87% success rate by using a
circumrotating method for full surface detection. When applied
to the dataset that included defective seeds, the MobileNet
model enhanced the classification accuracy. In addition, the
technique for identifying soybean seeds was suggested by
the authors in [108]. To demonstrate the effect of transfer
learning, they used pre-trained CNN models such as AlexNet,
Xception, ResNetl8, Inception-v3, DenseNet201, and NAS-
NetLarge. With a reported accuracy of 97.2%, the authors
asserted that NASNetLarge was the most accurate model.
Using morphological and textural characteristics of seeds, the
authors of [109] extended the use of ML models for weed
detection by applying the naive Bayes algorithm [110]. The
model’s accuracy on the grayscale and monochrome photos
was 98%, according to the research. Colored images, however,
show a marked decline in accuracy.

G. Yield Forecasting

Predicting how much food will be harvested from a spe-
cific plot of land is known as Crop Yield Prediction (CYP).
Businesses, governments, and farmers all rely on it to help
them make educated decisions on agricultural output. The var-
ied temperature, topography, temporal dependencies inherent
inyields and farming techniques across India make accurate
crop yield forecast a difficult undertaking. Nonetheless, one
can anticipate crop production based on a number of criteria,
such as: Outside conditions: When it comes to determining
harvest success, the weather is a major player. When it comes
to plant growth, factors like rainfall, temperature and humidity
are important. Crop yield is also prejudiced by the soil’s type
and fertility. To account for these aspects and anticipate crop
yield, one might utilize crop yield prediction models. These
models can use machine learning, statistical methods, or a mix
of the two.

Consequently, better approaches for assessing and mod-
elling agricultural data are required to enhance crop yield
forecast and management.Using ML algorithms and proximate
sensing, Farhat Abbas et al. [111] established a CYP system.
In order to conduct training, four datasets that are available
to the public were gathered: PE-2017, PE-2018, NB-2017,
and NB-2018. In order to forecast agricultural output, the
gathered data were fed into machine learning models such
k-nearest neighbor (KNN), support vector regression (SVR),
linear regression (LR), and elastic net (EN). With a smaller
Root Mean Square Error (RMSE) than competing techniques,
the SVR outperformed them on all four datasets. Martin Ku-
radusenge et al. [112], introduced many ML models in order to
improve the system’s performance, the Irish potato and maize
datasets were first collected and pre-processing activities, such
as removing null values and determining association, were
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executed. Afterwards, three ML models SVM, Random Forest
(RF) and Polynomial Regression (PR) were used to classify
the pre-processed data for CYP. When it came to forecasting
potato and maize crop yields, the RF model outperformed
the SVM and PR models, with RMSEs of 510.8 and 129.9,
respectively, on the datasets that were examined.

Recurrent neural networks and temporal convolutional net-
works are examples of the hybrid DL techniques that Liyun
Gong et al. [113] suggested for CYP. The data was gathered
from many actual tomato-growing greenhouses. Before feeding
the standardized data to the RNN for processing, gathered data
was pre-processed using data normalization. Lastly, TCN was
instructed to process tomato CYP using the RNN’s output. For
the datasets that were collected, the technique outperformed
the similar methods with reduced RMSE. For CYP with
agrarian characteristics, Dhivya Elavarasan and P. M. Durai
Raj Vincent [114] introduced a hybrid method known as
reinforced RF. At first, the system retrieved crop data from the
agricultural dataset and input it into the reinforced RF hybrid
DL model. The relevance of the input data was determined by
the reinforced RF using the reinforcement learning approach
in every internal node. After that, the RF classified crop yield
using the most important variables found by the reinforcement
model. Outperforming state-of-the-art ML models for CYP
including SVM, LR, and KNN, the hybrid technique produced
superior results.

To optimize CYP, Aghila Rajagopal et al. [115] created
a deep-learning approach. After the data was pre-processed,
principal component analysis was used to extract the important
features from the pre-processed dataset. After that, an updated
chicken swarm technique was used to further optimize the
characteristics that were chosen in order to boost the classifier’s
performance. Lastly, a discrete DBN-VGGNet classifier was
used for classification. Outperforming the prior state-of-the-
art models, the system attained a 97% accuracy rate with a
0.01% MSE. For large-scale CYP, Dilli Paudel et al. [116] pro-
posed a set of machine-learning models. Data on agricultural
yields, including results from crop growth simulations, weather
measurements, and yield statistics, were first gathered by the
system from a variety of sources. Preparation for categorization
procedures involved cleaning the acquired data. The classifier
was then fed samples of input data that had undergone feature
design. As for CYP, it made use of ML classifiers such as
SVM, Ridge regression, KNN, and gradient-boosted decision
trees.

H. Disease Detection

Plant diseases are a worldwide threat to food security and
can also have serious personal consequences. The economy
and the security of our food supply depend critically on healthy
crops. A crop’s health can only be gauged by its growth and
leaf condition.

Therefore, by analyzing symptoms seen in leaf images can
learn about many plant illnesses. Every year, farmers can lose a
substantial amount of money due to several plant diseases that
impact vegetables like potatoes, tomatoes, and peppers. Early
blight and late blight are the two varieties of blight. Though a
particular bacterium causes late blight, a fungus causes early
blight. By promptly detecting and efficiently treating these
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diseases, farmers can save both time and money. In the next
twenty-five years, the human population is projected to surpass
9 billion. A 70% upsurge in food production is necessary to
keep up with the continuously increasing demand for food.
Many nations, particularly those with a strong agricultural
economy, face the devastating threat of crop disease.

By extracting data from real time image processing with
ML and DL become prominent tool for plant disease iden-
tification because it will effectively diagnose plant illness by
exploring with computer vision, machine learning approaches
have shown promise by extracting data from real-time image
processing. There has been extensive use of classic ML meth-
ods for plant disease detection, including feature extraction
and classification. Color, texture, and form are some of the
visual attributes that may be extracted using these methods to
train a classifier to distinguish between healthy and sick plants.
Diseases like leaf blotch, powdery mildew and rust as well as
symptoms of diseases caused by abiotic stresses like drought
and nutrient deficiency, have been extensively detected using
these methods Anjna et al. [118], Mohanty et al. [117], Genaev
et al. [119]. However, these methods do not accurately identify
subtle symptoms of diseases or detect diseases in their early
stages. They also have trouble management complicated and
high-resolution images.

By using DL technology like CNNs and DBNs to detect
pests and irregularities in plants. The use of these technolo-
gies to detect and identify lesions from digital pictures has
been yielding encouraging results by Kaur and Sharma [120],
Siddiqua et al. [121], Wang [122]. Deep learning models have
the ability to automatically learn image attributes, allowing
them to detect subtle disease symptoms that could otherwise go
undetected by typical image processing approaches. However,
not all applications can accommodate Deep Learning models
due to their high processing requirements and large amounts
of labelled training data. In order to locate and identify
certain areas of interest in images, like disease symptoms or
plant leaves, CV methods like object detection and semantic
segmentation can be employed Kurmi and Gangwar [123]. By
combining these techniques with ML or DL algorithms, images
can be automatically transformed into patterns or features that
can be used for disease identification and categorization. To
train their models, CV algorithms require massive amounts of
labelled picture data, which means they might not be able to
handle previously discovered diseases.

Image, sensor, and meteorological data, among other mas-
sive datasets, have been subjected to ML and DL-based
analysis in order to uncover patterns and generate forecasts.
Cedric et al. [125], Yoosefzadeh-Najafabadi et al. [124] and
Domingues et al. [126] are just a few examples of ML
algorithms that are actuality used to forecast crop yields,
detect plant diseases and pests and optimize plant growth.
Sladojevic et al. [127], Alzubaidi et al. [128], and Dhaka
et al. [129] all found that DL models, including CNNs and
DBNs, outperformed standard image processing approaches
when it came to plant lesion diagnosis using image analysis
and classification. Compared to more conventional ways, ML
and DL-based methodologies provide many benefits in the
fields of agriculture and botany. These techniques can evaluate
massive amounts of data, automate activities, and improve
accuracy and efficiency.
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1. Harvesting of Yields

Rising food demand due to population growth is the biggest
threat to food security. In order to increase supply, farmers
will need to enhance yields while utilizing the same amount of
land. Technology can help farmers increase production through
agricultural output prediction. For better crop selection and
management during the growing season, decision-makers can
employ CYP a decision-support tool powered by ML and DL.
During the growing season, it may choose which crops to
harvest and how to tend to them.

With the use of agricultural yield estimation, farmers may
increase output when weather is good and reduce output loss
when weather is bad. Positive predictions of agricultural output
are affected by a great deal of variables, including farmer
practices, decisions, pesticides, fertilizers, weather, and market
pricing. Climate, area wise production, rainfall, and historical
yield statistics can all be used to make educated guesses about
future crop yields. Al methods has been making strides in
many sectors, including farming, as of late.

In order to predict the harvest used the dataset that in-
cludes the entire cultivated area, the length of the canals,
the average highest temperature and irrigation water sources
like wells and tanks. The researcher created computational
model outperformed alternatives built with Regression Tree,
Lasso, Deep Neural Network and Shallow Neural Network
techniques. The RMSE for dataset validation using forecasted
weather data is 12% of the average yield and 50% of the
standard deviation [130]. Using the following parameters:
minimum/maximum/average temperatures, rainfall, area, pro-
duction and yield, the accuracy was 97.5% from 1998 to 2002
for the Kharif season [131]. Crop production estimates during
the Kharif season in Andhra Pradesh’s Vishakhapatnam district
were the primary focus of the study. Because rainfall has such
a large impact on the yield of Kharif crops, researchers first
employed modular artificial neural networks to predict when
it would rain, and then they used SVR to estimate the yield
of crops based on both area and rainfall. These two methods
were used to increase the harvest productivity.

The research aimed to accomplish four things: first, study
how well the ANN model predicted corn and soybean yields
when weather was bad; second, compare the evolved ANN
model to other multivariate linear regression models; and last,
test how well the model estimated yields at the regional,
state, and local levels. Researchers in India’s Maharashtra state
employed artificial neural networks to compare rice harvests
in different urban areas. They used the Indian government’s
accessible records to compile data for Maharashtra’s 27 dis-
tricts.

This study estimates higher crop yields utilizing ML meth-
ods like KNN, SVR, RF and ANN. The research’s data set
consists of 745 examples; 70% of those cases were randomly
assigned to train the model, while 30% were used for testing
and performance evaluation. Random Forest is found to obtain
the highest level of accuracy in the final analysis of maya
gopal P.S [132]. The study proposes a novel model for soybean
yield prediction using Long-Short Term Memory (LSTM)
satellite data collected in southern Brazil [133]. The main
objective of the study is to evaluate LSTM neural networks,
random forest, and multivariate OLS linear regression for
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their effectiveness [134]. The first stage in using rainfall, land
surface temperature, and vegetation indices as self-determining
variables to forecast soybean data is to find out how soon
the model can reliably expect the yield. All algorithms are
outperformed by Long Short Term Memory for all forecasts
except DOY 16. According to [135], when it comes to DOY
16, multivariate OLS linear regression is the best algorithm.
This study discusses the outcomes of applying a Sequential
Minimal Optimization Classifier. Data from 27 districts in
Maharashtra, India, and the WEKA tool were used to conduct
the experiment. Other strategies perform better than Sequential
minimum optimization, according to the results of the ex-
periment on the same dataset. While Multilayer Perceptron
and BayesNet showed the greatest accuracy and enhanced
quality, sequential minimum optimization showed the worst
accurateness and poor quality [136]. One method that has
been suggested for estimating crop productivity is the use of
Parallel Layer Regression (PLR) and Deep Belief Networks
(DBN:Ss). Pulses, ragi, rice, and cassava are five of Karnataka’s
most important crops that are being studied using a DBN
technique. Each entry in the applicable database is forecasted
by the proposed methodology to produce one of the five
crops. Finally, the experimental results show that the method
has great promise for real-time data and human interaction
validated accurate prediction of agricultural efficiency in terms
of specificity, sensitivity and accuracy [137].

By utilizing a KNN algorithm, a CYP System (CYPS)
is put into place. Yield projections, on the other hand, need
to take into account a number of variables that can affect
the quantity and quality of a farmer’s harvest. In order to
forecast yield production, authors employ precise fields such
as year, crop, area, region, and season. These factors, along
with crop type and production area, have a significant impact
on yield production. Accurate understanding of crop yield
history is necessary for decisions linked to agricultural risk
management [138]]. Rao et al. [139] used two separate met-
rics, entropy and GINI, to compare Random Forest, Decision
Tree Classifier, and KNN. RF has produced the most pre-
cise outcomes, according to the findings. Based on feature
vectors, VGG_19 achieved a good performance of 91.35%
and VGG_16 achieved a good performance of 91.17% [140].
Because of its great efficiency, hydroponics has been suggested
by Vanipriya et al. [141] as a solution to the problem of low
agricultural production in India. Furthermore, it provides a
more environmentally friendly option for soil cultivation. The
economy and agricultural output are two factors that determine
food production [142]].

III. LIMITATIONS AND FUTURE STUDY

Based on the study, the findings of agriculture based on
image processing has a lot of potential to automate and
improve farming tasks with different agriculture farming. For
future comprehensive insights there is a need to enhanced
farming by combining image, IoT, data fusion techniques,
transfer learning and domain adaption and computing tech-
niques. The techniques like DeepLab [143] can be used to
classify plants, detect pests, and analyze soil because it is a
semantic segmentation model for classifying every pixel. The
other method is efficient net [144] which is used to detect
disease, fruit counting and yield prediction effectively because
it is designed to optimize the model and computation. While
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our study mainly highlighted the CNN model mostly because
it can understand the decision making process in farmers to
balance perspective for further refinement. While this review
has different datasets for different farming which highlights
class imbalance, performance scenario for model evaluation,
and comparability. In farming, sustainability is considered as a
main factor for long term viability of the environment through
energy consumption, and electronic waste associated with cost
environment.

However, it isn’t perfect for all jobs because of some
problems. Here’s a look at how these limits affect different
farming tasks:

A. Fruit Counting

1) Occlusions and crossing over: Fruits that are hidden by
leaves or that intersect with other fruits can make it hard to
count or identify them.

2) Changes in lighting: Sunlight or artificial lighting can
cast shadows and create effects that make it harder to see fruits
and vegetables.

3) Challenges unique to each species: Because fruits come
in many shapes, sizes, and colors, they require very specific
formulas.

4) Environments that change: Moving wind or changes in
the shape of the tree can make it harder to locate the fruit.

B. Water Management

1) Problems with surface reflection: High reflection from
bodies of water or irrigation systems can make it hard to
determine how much water is in an area or how it is distributed.

2) Limitations of resolution: Images from satellites or
drones might not have enough detail for micro-irrigation and
other small-scale water management tasks.

3) Estimating the soil moisture: Indirect methods, like NIR
imaging, might not provide an accurate reading of soil moisture
because dryness on the top can mask the conditions below.

C. Crops Management

1) Changes in growth stages: The appearance of crops
changes significantly over time, so adaptive programs are
needed to monitor them continuously.

2) Problems with the environment: When taking images
outdoors, weather conditions like rain or fog can make it
difficult to see crops.

3) Difference between weeds and crops: It’s challenging to
differentiate between crops and weeds that are grown closely
together because they appear similar.

D. Soil Management

1) Data at the surface level: Image-based methods usually
only show what’s on the surface and don’t reveal things like
nutrient levels or soil compaction.

2) Dependence on indirect indicators: The color and tex-
ture of soil that are inferred from images might not always be
a reliable indicator of its fertility or organic content.
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3) Environmental factors: Changes in light, moisture, or
plant debris can complicate the assessment of soil condition.

E. Weed Identification

1) How they are like crops: Weeds that look like crops in
terms of leaf structure or color can be difficult to tell apart.

2) Lots of plants: 1t’s hard to tell the difference between
weeds and crops in areas with a lot of crops.

3) Changes with the seasons: Weed growth trends change
with the seasons, requiring models to be retrained frequently.

F. Seed Categorization

1) Changes in size and shape: Seeds from the same species
can naturally vary in size, shape, and texture, complicating
classification.

2) Waste and impurities: Misclassification can occur when
images contain trash or damaged seeds.

3) Problems with lighting and contrast: Uneven lighting
can obscure crucial features of a seed necessary for identifica-
tion.

G. Yield Forecasting

1) Complex networks of dependencies: Yield depends on
many factors that are difficult to discern from images alone,
such as weather, soil health, and pest presence.

2) Lack of data: Model accuracy suffers from the absence
of historical image data for certain crops or regions.

3) Problems with spatial resolution: Low-resolution im-
ages might not capture important crop features essential for
accurate predictions.

H. Disease Detection

1) Signs of an early stage: In the early stages of a disease,
subtle changes in the texture or color of leaves might be too
faint for standard image processing to detect.

2) Nutrient deficiencies and other problems: Some diseases
exhibit symptoms that are very similar to those caused by
nutrient deficiencies, which can lead to incorrect diagnoses.

3) Noise in the environment: Dust, water droplets, and
other impurities on plant surfaces can make accurate disease
identification challenging.

1. Harvesting

1) Conditions of the dynamic field: Changing field condi-
tions, such as uneven terrain or variable lighting, complicate
the task for robots to harvest crops using image processing.

2) Produce that is Covered or hidden: Fruits and vegeta-
bles that are fully or partially hidden are difficult to locate and
harvest accurately.

3) Risk of damage: During automated picking, damage can
occur if items are not properly positioned or identified.
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J. General Cons Across Applications

1) Dependence on data quality: Models perform less re-
liably when images are of poor quality, resolutions are not
uniform, and diverse datasets are lacking.

2) Problems with scalability: Real-time processing for
large-scale systems (like entire farms) requires substantial
computational resources.

3) Issues with adaptability: Image processing algorithms
need to be retrained for new crops, regions, or weather
conditions.

4) Hardware limitations: Small-scale farmers may not be
able to afford as many drones, cameras, and other imaging
tools, increasing costs and reducing accessibility.

K. Pros that Apply to All Situations

1) Real-Time monitoring: Imaging and sensors provide up-
to-the-minute information, allowing immediate responses to
changes in the field.

2) Scalability: Data analysis tools can handle large
datasets, making them suitable for both small farms and large-
scale operations.

3) Cost savings: Optimizing resource use reduces expenses
on water, chemicals, and labor.

4) Sustainability: Promotes environmentally friendly prac-
tices by minimizing the use of excessive energy, water, and
chemicals.

5) Precision agriculture: Delivers precise, relevant infor-
mation that increases output and reduces waste.

6) Risk reduction: Predictive models identify potential
risks such as drought, pests, or diseases.

7) Enhanced Decision-Making: Provides valuable insights
based on historical trends, current conditions, and predictive
algorithms.

8) Accessibility: Data analysis tools are accessible to farm-
ers worldwide, even in remote locations, via mobile apps and
cloud-based platforms.

L. Potential Author Bias

e  Potential bias in evaluation and model selection

e Limitations related to Dataset: like data quality, im-
balance, insufficient data

e  Overfitting and generalization of model for different
contexts.

e  Uncertainty in discussion of model prediction.

IV. CONCLUSION

This study details the newest developments in Al research
aimed at digitizing farming to increase food yields. Modern
agriculture has been changed by Al technologies that help
with things like counting fruits and vegetables, managing
water and soil, keeping an eye on crops, identifying weeds,
sorting seeds into groups, predicting yields, finding diseases
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and gathering crops automatically. The results show that Al
has the potential to make farming more accurate, efficient
and environmentally friendly. These new technologies help
farmers make the best use of their resources, do less work by
hand and make decisions based on data, which leads to better
productivity and greater resilience against environmental
problems for 9 billion people living on the planet. By the end
of 2050, using new tools in farming is no longer a choice but
a must because it put a lot of stress on farming systems that
try to meet rising food needs in a way that doesn’t harm the
environment. So it is most important to keep researching and
developing the integration of AI with agriculture for helping
farmers to deal with problems that makes agriculture resilient
and build a healthy future.
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