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Abstract—With the advancement of precision agriculture,
efficient and accurate weed detection has emerged as a pivotal
task in modern crop management. Current weed detection
methods face dual challenges: inadequate extraction of detailed
features and edge information, coupled with the necessity for
real-time performance. To address these issues, this paper pro-
poses a lightweight multi-scale weed detection model based on
YOLOv11n (You-only-look-once-11). Our approach incorporates
three innovative components: (1) A fast-gated lightweight unit
combined with C3K2 to enhance local and global interaction
capabilities of weed features. (2) An adaptive hierarchical feature
fusion network based on HSFPN, which improves the extraction
of weed edge information. (3) A lightweight group convolution
detection head module that captures multi-scale feature details
while maintaining a lightweight structure. Experimental valida-
tion on two public datasets, CottonWeedDet3 and CottonWeed2,
demonstrates that our model achieves an mAP50 improvement of
2.5% on CottonWeedDet3 and 1.9% on CottonWeed2 compared
to YOLOvl11n, with a 37% reduction in parameters and a 26 %
decrease in computational effort.
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I. INTRODUCTION

Modern agriculture faces numerous challenges that hinder
productivity and sustainable development. Weeds are a major
threat, directly impacting crop yield and food security. Weeds
compete with crops for light, water, and soil nutrients, spread-
ing diseases and pests, significantly reducing crop yield, and
causing economic losses [1-2]. Selective herbicides and man-
ual weeding are the two major weed management techniques
used today; the former entails evenly applying herbicides
throughout fields. This method results in significant waste, as
most herbicides are sprayed on crops or bare soil, rather than
directly on the weeds. Additionally, excessive herbicide use
harms the ecosystem. Manual weeding, on the other hand,
is costly and difficult to scale for large-scale agricultural
operations.

With the development of Al technology, precision agricul-
ture offers a solution to these problems [3-4], with the key first
step being the accurate and rapid detection of weed locations
[5]. Therefore, in-depth research on weed detection technology
is crucial for the development of precision agriculture, con-
tributing to the future efficiency, precision, and sustainability
of farming.

Early weed detection methods were mostly based on ma-
chine learning, such as Kumar and Prema’s [6] Wrapped Curve
Transform Angle Texture Pattern extraction method, which
improved weed identification accuracy in fields. Sujaritha et al.

[7] proposed a circular leaf pattern extraction method based on
morphological operations, combined with rotational invariance
and wavelet decomposition, enabling automatic weed and
crop recognition and efficient removal in sugarcane fields.
However, these methods struggle to handle challenges such as
the complexity of field environments, weed species diversity,
and lighting changes, resulting in poor detection performance
and instability, which limits their application in diverse envi-
ronments. In contrast, deep learning uses convolutional neural
networks to extract both global and local features of weeds,
compensating for the shortcomings of machine learning in
feature extraction. As a result, deep learning-based weed
detection has become the mainstream method.

While deep learning-based methods outperform machine
learning in terms of accuracy, they struggle to meet the
lightweight requirements of edge devices, making weed detec-
tion on edge devices a new direction in object detection. This
study faces challenges such as high similarity between weed
species, occlusion issues affecting detection accuracy, and
the deployment limitations of edge devices. To address these
challenges, this paper proposes the LMS-YOLOIlIn weed
detection method based on YOLO11n. The main contributions
of the LMS-YOLOI11n model are as follows:

1) To meet the demands of detail extraction and real-
time performance in weed detection, this paper proposes
the lightweight multi-scale feature extraction module
FastGLU, combined with CGLU’s convolutional gating
mechanism and FasterNet’s lightweight characteristics. It
extracts key channel information through partial convolu-
tion (PConv) and uses CGLU to enhance the interaction
between local and global features, reducing computational
costs while achieving efficient and diverse feature extrac-
tion.

2) To address the challenge of weed edge information
extraction, this paper designs the adaptive hierarchical
feature fusion network (AHFPN). By combining the ideas
of HSFPN and PAN, the feature fusion mechanism is
improved to enhance sensitivity and capability in edge
information extraction, optimize the interaction and fu-
sion of multi-scale features, and improve adaptability to
weed diversity and various growth stages, while reducing
computational burden.

3) To meet the real-time requirements of weed detection,
this paper introduces the lightweight group convolution
detection head (LGCD) module. By incorporating group
convolution into the position regression branch, the com-
putational load and parameter count are significantly
reduced, and kernel size optimization improves the ability
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to capture multi-level feature details, balancing feature
extraction richness with model efficiency to meet the
deployment requirements of edge devices.

This paper has the following structure: Section II exam-
ines the state of domestic and international weed detection
research; Section III provides further details about the LMS-
YOLOI In.approach; experiments in Section IV confirm the
model’s generalization performance; and a summary of the
work and recommendations for future research are provided
in Section V.

II. RELATED WORK

Object detection methods can be broadly categorized into
single-stage and two-stage models. Two-stage detection models
generate candidate regions quickly and refine them in a second
processing stage. Typical models include RCNN [8] and Fast-
RCNN [9]. Zhang [10] and colleagues successfully detected
weeds and soybeans in complex backdrops by optimizing the
Faster R-CNN method with VGG19-CBAM as the backbone
network, achieving successful detection of soybeans and weeds
in complex backgrounds. Ozcan et al. [11] compared the
performance of single-stage and two-stage CNN models in pre-
cision agriculture and found that Faster R-CNN Inception v2
offers higher accuracy. However, when training and inference
time are critical, the SSD MobileNet v2 model significantly
improves accuracy with increased training data. Li et al. [12]
proposed an improved Faster R-CNN model for automatic
detection of hydroponic lettuce seedlings, achieving an accu-
racy of 86.2% through enhancement techniques, outperforming
models like RetinaNet, SSD, Cascade RCNN, and FCOS.
Although two-stage detection methods are generally more
accurate than single-stage methods, they require significant
computational resources, making them difficult to deploy on
mobile devices. Moreover, the longer detection time limits their
ability to meet detection in real-time requirements.

Due to the limitations of two-stage detection, there is
growing interest in single-stage detection methods, exemplified
by SSD [13] and YOLO [14-18]. Unlike two-stage methods,
single-stage detection integrates region proposal, classification,
and regression into a single network, significantly improving
speed and efficiency. Chen et al. [19] proposed the YOLO-
sesame model, an improved YOLOvV4 variant that incorporates
Local Importance Pooling (LIP) and SE modules to enhance
feature extraction. The model also uses an Adaptive Spatial
Feature Fusion (ASFF) structure to optimize the detection of
objects of varying sizes, improving both real-time performance
and accuracy in sesame field weed detection. Hong et al. [20]
presented an enhanced YOLOVS algorithm for effective aspara-
gus identification in intricate settings. The model incorporates
Coordinate Attention (CA) in the backbone network to em-
phasize growth features of asparagus and replaces PANet with
BiFPN to enhance feature propagation and reuse, significantly
improving support for intelligent mechanical harvesting under
various weather conditions. A network of convolutional neuron
models called RIC-Net, which combines residual structures
with Inception, was proposed by Zhao et al. [21]. The model
replaces MLP layers with 1D convolutions for optimized
feature detection and integrates CBAM modules with weighted
operations to highlight diseased areas, improving classification
accuracy for leaf diseases in maize, potatoes, and tomatoes.
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Song et al. [22] developed an improved YOLOvVS algorithm
by replacing the backbone with MobileNetv2 to reduce model
complexity. ECANet attention mechanisms were introduced to
enhance detailed feature extraction for soybean leaves, and
CIOU_Loss + DIOU_NMS was used to improve accuracy and
robustness, particularly for dense occlusion and small object
detection in precision agriculture spraying. Zhang et al. [23]
proposed CCCS-YOLO, an improved YOLOvS5-based algo-
rithm. The model integrates Faster_Block into YOLOv5s’s C3
module to create C3_Faster, simplifying the network structure
and enhancing detection. It improves the convolutional block in
the head for better target-background differentiation, replaces
the neck’s upsampling module with the lightweight CARAFE
module for small object detection and contextual informa-
tion fusion, and uses Soft-NMS-EloU to enhance detection
accuracy in dense scenarios. Guo et al. [24] proposed LW-
YOLOVS8n, a lightweight weed detection model. The model in-
tegrates SERMAttention with SE and SRM modules to capture
global information, incorporates lightweight Context Guided
Blocks in C2f layers to enhance local and contextual feature
learning, and introduces an improved BiFPN network in the
neck for weighted multi-scale feature fusion. This method
is appropriate for edge devices with limited resources as it
lowers parameters and complexity while preserving excellent
detection accuracy. Fan et al. [25] presented YOLO-WDNet, a
model for lightweight weed identification. It replaces CSP-
Darknet53 with ShuffleNet v2 as the backbone to reduce
parameters and complexity, designs a Parallel Hybrid Attention
Mechanism (PHAM) to focus on regions of interest, improves
BiFPN in the neck for multi-scale and overlapping plant
feature recognition, and proposes an EIOU loss function to
enhance detection accuracy in dense scenarios.

Despite significant advancements, a gap persists in the de-
velopment of single-stage detection models that combine high
accuracy with sufficient lightness and efficiency for deploy-
ment on resource-limited edge devices. The work presented in
this paper endeavors to address this gap by introducing a novel,
lightweight single-stage detection model. This model integrates
advanced convolutional gating mechanisms, optimized feature
fusion strategies, and a streamlined detection head leveraging
grouped convolutions, all tailored to elevate detection accuracy
and efficiency specifically within agricultural applications.

III. METHODOLOGY
A. YOLOII Principle

YOLOL11, the latest model in the YOLO series, was
released by Ultralytics in 2024. Based on structural complexity
and size, YOLOI11 is available in five versions: YOLOI11n,
YOLOI11s, YOLO11m, YOLO11l, and YOLO11x.YOLO11n,
the version with the smallest computational and parameter
requirements, is designed for weed detection scenarios that
demand real-time performance and limited computational re-
sources. Therefore, this study selects YOLO1 1n as the baseline
model.YOLOI11n consists of three main components: Back-
bone, Neck, and Head. The Backbone replaces the C2f module
from YOLOv8 with the latest C3K2 module, significantly
improving feature extraction efficiency. The Neck continues to
use the FPN+PAN structure for feature fusion, while the Head
incorporates depthwise separable convolutions, significantly
reducing computation and parameter requirements. Although
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Fig. 1. Structure of LMS-YOLO11n.

YOLOI11n is the most lightweight version, its computational
complexity remains 6.3GFLOPs, and its parameter size is
2.58MB, which still poses challenges for real-time detection
and edge computing deployment.

B. Lightweight Multi-Scale Weed Detection Model

In deep learning-based weed detection tasks, the scale and
complexity of the model directly determine its practical effec-
tiveness. Although YOLOI11 surpasses many mainstream ob-
ject detection models in speed, it contains significant redundant
features. These redundant features are primarily generated by
convolutional computations in the backbone network, consum-
ing substantial computational resources, increasing complexity,
and reducing inference speed. Additionally, the similar textures
of crop seedlings and weeds, coupled with multi-scale features,
make YOLOI11 less effective at extracting features under com-
plex lighting conditions. To address the need for lightweight
models and real-time detection, while enhancing the extraction
of fine-grained weed features and edge information, this study
proposes the LMS-YOLO1lIln model based on YOLOI1l1n.
LMS-YOLOI 1n integrates the C3K2_FCGLU module into the
YOLOI11n framework to replace the original C3K2 module,
enabling more efficient weed feature extraction. Furthermore,
by introducing the AHFPN designed based on HSFPN [26],
the neck network is optimized to improve the recognition and
fusion of multi-scale overlapping plant features. Finally, the
LGCD module, based on grouped convolution [27], is used
to refine the Head, enhancing multi-scale information capture
while reducing parameters and computation. Fig. 1 displays the
LMS-YOLO11n structure with an input picture size of 640 x
640 x 3.
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Fig. 2. Structure of CGLU, PConv and FastGLU.

C. C2f _FastGLU

To address the requirements for detail extraction and
real-time processing in weed detection, this paper proposes
a Fast Gated Lightweight Unit (FastGLU), as shown in Fig. 2.
FastGLU captures fine-grained feature information, enhancing
the model’s ability to perceive image details, expand the recep-
tive field, and extract local features. Additionally, it excels in
optimizing multi-channel information usage, reducing param-
eters and computational costs, maintaining gradient flow, and
enhancing spatial feature extraction. This allows the model to
efficiently handle weeds of varying sizes and shapes. FasterNet
[28] introduced the concept of Partial Convolution.PConv is
a convolutional method designed to improve data processing
efficiency and reduce memory overhead. It applies standard
convolutions to a subset of input channels to effectively extract
spatial features while omitting convolutions on other chan-
nels, thereby reducing computational and memory demands.
Specifically, it selects the first and last consecutive ¢, channels
as representatives of the input feature map, assuming the
input and output feature maps have the same number of
channels. This design not only simplifies computation but also
optimizes memory access efficiency, enabling effective feature
representation. By applying convolutions only to a subset of
input channels to extract spatial features while ignoring others,
its computational complexity is defined in Eq. (1).

Feomy =h x w x k? x ¢2

ey

FPConv:hXUJXk2XCI2;

In this equation, h and w represent the height and width
of the feature map, k£ denotes the kernel size, ¢ is the number
of input feature map channels, and ¢, represents the selected
input channels used for spatial feature extraction in the PConv
operation. In this study, c, is set to 1/4 of ¢, reducing the
computational cost of PConv to just 1/16 that of a standard
convolution.
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Bottleneck C3K C3K_FastGLU C3K2 C3K2_FastGLU

Fig. 3. (a) Bottleneck; (b) C3K; (c) C3K_FastGLU; (d) C3K2; (e)
C3K2_FastGLU structure.

The Faster Block accelerates network processing by re-
ducing computational and memory access demands. Its struc-
ture consists of a PConv layer followed by two pointwise
convolution (PWConv) layers. However, the Faster Block has
a limited receptive field, and PConv processes only part of the
channel information, which hinders fine-grained weed feature
extraction. The Gated Linear Unit (GLU) is an activation
mechanism designed to enhance the extraction of complex
features, initially used in language processing and sequence
modeling tasks. Currently, GLU [29] has evolved into several
variants, including the Gated Recurrent Unit, Depthwise Sep-
arable GLU, FFN with SE module, and Convolutional Gated
Linear Unit [30]. In this study, CGLU is integrated into PConv
to enhance fine-grained local feature extraction and optimize
the interaction between local and global feature information.
CGLU first employs two parallel 1x1 convolutions for per-
channel control, with one feature map further processed by a
3x3 depthwise separable convolution to capture local features.
These features are then fed into the Gated Linear Unit. A
portion of the features is activated by the GELU function to
serve as a gating signal, which multiplies with another feature
set to enable channel attention control, enhancing feature
selection and emphasis.

The primary structure of the C3K2 module in YOLO11
Fig. 3(d) is based on the C3K module. The C3K module
Fig. 3(b) consists of standard convolutions and Bottleneck
units. The Bottleneck unit Fig. (3a) is composed of CBS
modules.CBS is a fundamental convolutional unit comprising
convolution operations, batch normalization, and an activation
function. The proposed C3K2_FastGLU module Fig. (3e)
replaces the C3K module in C3K2 with C3K_FastGLU.The
backbone network faces several bottleneck issues. Introduc-
ing C3K2_FastGLU effectively reduces computational cost,
significantly improves multi-scale feature extraction, allevi-
ates information transmission bottlenecks, and maintains ef-
ficient feature representation and generalization in lightweight
designs. Therefore, in the YOLOI1n backbone, the C3K2
modules in the P2, P3, P4, and P5 layers are replaced with
C3K2_FastGLU.

D. AHFPN

To meet the deployment requirements of weed detection
on edge devices, this study uses HSFPN to fuse extracted
features. HSFPN consists of a Channel Attention (CA) module
and a Semantic Feature Fusion (SFF) module, as illustrated in
Fig. 4.
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The Channel Attention (CA) module applies average
pooling and max pooling to each channel’s features, extracting
the most relevant and average information for each channel.
The pooled average and maximum results are combined, and
the Sigmoid function calculates the weight for each channel.
Finally, the weights are multiplied by the corresponding feature
maps to filter redundant data. Additionally, a 1x1 convolution
is used to adjust channel dimensions to 256, ensuring compat-
ibility across different scales.

The Semantic Feature Fusion (SFF) module employs
weights from higher-level characteristics to selectively inte-
grate key semantic data derived from lower-level character-
istics. The process includes: 1) applying a 3x3 transposed
convolution with a stride of 2 to process higher-level features;
2) aligning the transposed higher-level features’ dimensions
with those of the lower-level features by the use of bilinear
interpolation;3) employing the CA module to convert higher-
level features into weights; and 4) combining the optimized
lower-level features with higher-level characteristics to im-
prove the depiction of aspects. The specific definition is given
in Eq. (2):

Jatt = BL(T — Conv( frign))

@)

fout = flow * CA(fatt) + fatt

Include among these frign € ROXHXW =g €

REXH1xWi1 {5 the number of channels, H and W are

the height and width of the feature map, BL is the bilinear
interpolation, and 7' is the transposed convolution.

However, HSFPN has limited capability in perceiving
edge information, making it difficult to distinguish between
early-stage weed growth and crops. To address this, we propose
an Adaptive Hierarchical Feature Fusion Network (AHFPN),
which significantly enhances the model’s ability to handle
multi-scale weed targets and enriches feature representations
to improve detection accuracy across different weed growth
stages. This module combines the concepts of HSFPN and
PAN [31], with improvements tailored to different weed tar-
gets. The main process includes:

1) Adding a Conv2d layer to the P4 output to enhance the
extraction of high-level semantic information.

2) The output of the PS5 layer undergoes CA and a 1x1
Conv2d operation to extract key channel information and
adjust weights.

3) The processed high-level features are weighted, multi-
plied by previously fused features, and then added to-
gether.

4) Finally, the fused features pass through the C3k2 module
to further enhance feature extraction, resulting in more
refined high-level semantic features.

E. LGCD

The detection head in YOLO11 identifies object locations
and categories from the feature map. The process is as follows:
In the position regression branch, two standard convolutions
are used for feature fusion, followed by a convolution layer
for location prediction; In the classification branch, depthwise
separable convolutions [32] are used for feature fusion, fol-
lowed by pointwise convolutions for channel-wise information
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Fig. 4. HSFPN structure and diagram of CA and SFF modules.
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interaction. Finally, a convolution layer performs classification
prediction, with a Softmax activation function generating cat-
egory probabilities. Although YOLOI11 is significantly lighter
compared to previous YOLO models, it still does not fully
meet the real-time and multi-scale requirements for weed
detection. Therefore, we propose the lightweight Grouped
Convolution Detection Head module, as shown in Fig. 5.

The LGCD module is based on the concept of grouped
convolutions, which improves the YOLOI11 detection head.
In this study, we replace the first two standard convolutions
in the position regression branch of the YOLO11n detection
head with grouped convolutions to reduce computation and
parameter count, achieving the model. To minimize feature
loss, we modify the kernel of the second grouped convolution
to 5x5, ensuring lightweight while extracting multi-scale weed
features and improving detection accuracy.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Datasets

CottonWeedDet3 [33] contains 848 RGB images cap-
tured in cotton fields in the southern United States, covering
three common weed categories: Carpetweed, Morningglory,
and Palmer Amaranth. The images capture various angles
and natural lighting conditions, ensuring the dataset’s diver-
sity and relevance for application. The dataset construction
process includes image acquisition, preprocessing, bounding
box annotation, data cleaning, format conversion, and data
augmentation. Experts manually annotated the images using
the SuperAnnotate platform and converted them to the VIA
format for further use. To improve data quality, low-quality
annotations and out-of-focus areas smaller than 200x200 pixels
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were cleaned, and erroneous labels were corrected. The final
dataset contains 848 images and 1,532 bounding boxes, split
into training, validation, and test sets in a 7:1:2 ratio. Fig. 6
shows an example image of the CottonWeedDet3 dataset.

o

Fig. 6. Example plot of CottonWeedDet3 dataset.

The CottonWeed2 [34] dataset contains 570 images,
labeled into two categories: weeds and cotton. The weed
category includes various plants, such as Wormwood, Common
Sunflower, Chicory, Caltrop, Ginkgo, Castor Bean, Crabgrass,
False Sea Purslane, and Amaranthus, reflecting the diversity
of weed species. This diversity provides rich and complex
samples for model training. Using digital cameras or cell-
phones, the photos were taken from actual cotton fields in
India and stored in.jpg format, which makes them extremely
useful. To standardize data processing and adapt to model
input, all images were resized to 416 x 416 pixels. This
processing method facilitates model handling while reducing
computational complexity. The dataset is divided into training,
validation, and test sets in a 6:2:2 ratio. Fig. 7 shows an
example image of the CottonWeed?2 dataset.

Fig. 7. Example plot of CottonWeed2 dataset.

The CottonWeedDet12 dataset [35], collected at Mis-
sissippi State University Research Farm, includes 5,648 im-
ages and 9,370 bounding box annotations of 12 cotton weed
species. Captured under natural light between February and
October 2021 using smartphones or handheld cameras, the
dataset spans diverse growth stages, lighting, weather, and field
conditions to ensure complexity and diversity. The dataset was
re-divided using a custom script into training, validation, and
test sets at a 7:1:2 ratio. Fig. 8 presents example images from
the public CottonWeedDet12 dataset.

Fig. 8. Example plot of CottonWeedDet12 dataset.

B. Experimental Configuration

The experiment was conducted on a Windows 11 oper-
ating system. The model architecture includes Python 3.8.19,
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PyTorch 2.1.1, and TorchVision 0.16.1, with PyCharm as the
integrated development environment. The CPU is an Intel i5-
12400F, and the GPU is an Nvidia GeForce RTX 4060Ti
(16GB) with 4352 CUDA cores, running CUDA version 12.1.

C. Experimental Parameter Setting and Evaluation Indicators

The model was trained for 300 epochs with a batch size
of 8. The AdamW optimizer was used, with an initial learning
rate of 0.01 and a momentum of 0.937. The input image size
was 640x640. Multiple evaluation metrics were used to assess
the effectiveness of this study, including Precision (P), Recall
(R), Mean Average Precision (mAP), Parameters (Params),
and Giga Floating Point Operations per Second (GFLOPs).
The model’s recognition performance was measured using
IOU thresholds of 0.50 and 0.50:0.95. Params were used
to measure the model’s parameter count, and GFLOPs were
used to measure its computational complexity. The specific
definition is given in Eq. (3)-(8):

Precision =TP/(TP + FP) 3)
Recall =TP/(TP + FN) “4)
1
AP = / Precision(Recall)dR (5)
0
N
mAP =Y APi/N (6)

i=1

GFlops = 0O (Z K2+ C? | % C;i+ Zm2 * Ci) (7

i=1 i=1

Params = O (Z MZx K2 %Gy * 01:) (®)

i=1

TP represents genuine positives, F'P represents false
positives, and F'N represents false negatives. Precision and
Recall refer to the Precision-Recall curve. N represents the
number of defects. O represents the constant order, K repre-
sents the kernel size, C' represents the number of channels, M
represents the input image size, and ¢ represents the number
of iterations.

D. Ablation Experiments

1) CottonWeedDet3 ablation experiments: To evaluate the
performance of the LMS-YOLO11n model in weed detection,
ablation experiments were conducted on the CottonWeedDet3
dataset, testing the C3K2_FastGLU, AHFPN, and LGCD
modules separately. The results of the ablation experiments are
shown in Table I. Compared to the baseline model YOLOI11n,
LMS-YOLO11n improves mAP50 by 2.5%, while reducing
computational load and parameter count by 26% and 37%,
respectively.
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First, the optimization of C3K2 is discussed. By in-
tegrating the FastGLU designed in this study with C3K2,
mAP50 increased by 0.9, while both computational load and
parameter count were reduced by 6%. This suggests that the
C3K2_FastGLU module enhances the model’s ability to extract
both local and global features of weeds.

Next, the improvement in the NECK section is discussed.
After applying the designed AHFPN feature fusion module,
mAP50 increased by 0.4%, while computational load de-
creased by 11% and parameter count by 26%. This demon-
strates the effectiveness of the AHFPN module in enhancing
weed edge features.

In the detection head, after applying the group
convolution-based LGCD module, mAP50 increased by 2.3%,
while computational load decreased by 17% and parameter
count by 11%. This demonstrates that the LGCD module im-
proves the detailed capture of multi-scale feature information,
achieving an optimized balance between feature extraction
diversity and model computational efficiency.

Finally, the effect of the cumulative modules was demon-
strated. First, combining C3K2_FastGLU with AHFPN re-
sulted in a 0.1% increase in mAP50, with computational load
and parameter count decreasing by 0.14% and 32%, respec-
tively. Adding the LGCD module further improved accuracy
by 2.5%, while reducing computational load by 26% and
parameter count by 37% compared to the baseline model.

2) CottonWeed?2 ablation experiments: To validate the
model’s robustness, ablation experiments were conducted on
the CottonWeed2 dataset. The results of the ablation experi-
ments are shown in Table II.

Incorporating C3K2_FastGLU optimized the model’s fea-
ture extraction capabilities. Compared to the baseline model,
mAPS50 increased to 75%, while computation (GFLOPs re-
duced from 6.3 to 5.9) and parameter size (reduced from
2.58 MB to 2.41 MB) decreased. This demonstrates that
C3K2_FastGLU enhanced the model’s ability to perceive fine-
grained weed features and overall contextual information.

The inclusion of AHFPN significantly enhanced feature
fusion capabilities, particularly for detecting multi-scale tar-
gets. Experimental results showed a mAP50 increase to 75.2%,
a 0.7% improvement over the baseline model, with computa-
tion and parameter size reduced to 5.6 GFLOPs and 1.89 MB,
respectively. This indicates that AHFPN optimized the model
structure for selecting and fusing multi-scale features while
maintaining computational efficiency.

LGCD focused on improving the fine-grained modeling
of multi-scale feature information. Although incorporating
this module slightly reduced mAP50 by 0.6%, it decreased
computation and parameter size to 5.4 GFLOPs and 2.28
MB, respectively. This highlights its efficiency in reducing
redundant computations and enhancing contextual feature fu-
sion, making it well-suited for lightweight and edge device
applications.

When C3K2_FastGLU, AHFPN, and LGCD modules
were progressively combined, the model exhibited significant
synergistic performance improvements. With all three modules
combined, the model achieved 79.2% precision, a recall rate of
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TABLE I. COTTONWEEDDET3 ABLATION EXPERIMENT TABLE

YOLO11n C3K2_FastGLU AHFPN LGCD P R mAP50 mAP50-95 GFLOPs Params(MB)
v 85.8 62.4 73.6 58.4 63 2.58
v v 747 68 745 58.1 59 2.41
v v 7138 67 74 578 5.6 19

[ v v 75.1 70.7 75.9 62 54 2.28

| v v v 78.6 68.5 74.6 578 52 173

[ v v v 74 69.4 733 58.3 5 1.78

| v v v v 78.2 69.5 76.1 60 4.6 1.61

72%, a mAP50 of 76.4%, and a mAP50-95 of 51.2%, showing
comprehensive improvements over the baseline model. Addi-
tionally, computation decreased to 4.6 GFLOPs and parameter
size to 1.61 MB, demonstrating excellent lightweight perfor-
mance and resource optimization.

Therefore, by comparing the ablation data from these two
datasets, The LMS-YOLO11n model put out in this work may
effectively extract the edges and fine-grained characteristics of
weeds and meet the needs of deploying in various embedded
weed detection devices with real-time requirements.

E. Comparison Experiments

1) CottonWeedDet3 Comparison Experiments with the
Latest Models: To comprehensively evaluate the advantages
of the proposed LMS-YOLOI11n model, several state-of-the-
art models, including YOLOv3-tiny, YOLOvS5n, YOLOv6n,
YOLOvV7-tiny, YOLOv8n, YOLOv10n, and YOLO11n, were
selected for comparison.The detection performance on the
CottonWeedDet3 dataset is compared in Table III, where
the bolded text indicates the greatest outcomes. Table III
demonstrates that the improved LMS-YOLO11n model out-
performs YOLOV3-tiny, YOLOv5n, YOLOv6n, YOLOV7-tiny,
YOLOv8n, YOLOv10n, and YOLO11n.The LMS-YOLO11n
model achieved a mAP50 of 76.1% and a mAP50-95 of 0.60%
on the CottonWeedDet3 dataset, with a computational load
of 4.6 GFLOPs and a parameter size of 1.61 MB. While
improving accuracy, the model significantly reduced parameter
size and computational load. Although the accuracy(P) slightly
decreased, mAP50 increased by 2.5%, computational load
decreased by 26% and parameter size reduced by 37%.

2) CottonWeed2 Comparison Experiments with the Latest
Models: To further verify the generalization capability of
LMS-YOLO11n, a comparative experiment was conducted on
the CottonWeedDet2 dataset. Table IV presents the comparison
results of the latest models on the CottonWeed2 dataset. The
LMS-YOLO11n model achieved an mAP50 of 76.4%, and
an mAP50-95 of 51.2% on the CottonWeed2 dataset, with a
computational load of 4.6 GFLOPs and a parameter size of
1.61 MB.Compared to YOLOvV3-tiny, YOLOv5n, YOLOv6n,
YOLOvV7-tiny, YOLOv8n, YOLOV10n, and YOLO11n, LMS-
YOLOI1 1n achieved mAP50 improvements of 8%, 3.1%, 3.0%,
1.3%, 3.1%, 8.4%, and 1.9%, respectively. Additionally, the
computational load decreased by 67%, 35%, 60%, 65%, 43%,
28%, and 26%, while the parameter size reduced by 83%,
35%, 61%, 86%, 46%, 21%, and 37%, respectively. These
results demonstrate that LMS-YOLOI11n achieved the best
performance in terms of mAP50, computational load, and
parameter size.

3) CottonWeedDetl12 Comparison Experiments with the
Latest Models: In this paper, comparison experiments are
also conducted on the CottonWeedDetl2 dataset to further
validate the robustness of the LMS-YOLOI11n model. The
relevant comparison data are shown in Table V. Table V
demonstrates the performance comparison of multiple models
on the CottonWeed12 dataset, and LMS-YOLOI11n stands
out in terms of comprehensive performance. YOLOv3-tiny,
although having a mAP50 of 91.7%, has a computational
and parametric count of 14.3 GFLOPs and 9.52 MB, respec-
tively, which is the model with the highest consumption of
computational resources in the table, restricting its application
on resource-constrained devices.YOLOv5n and YOLOv6n are
optimized in terms of computation volume of 7.1 GFLOPs
and 11.5 GFLOPs and number of parameters of 2.5 MB and
4.15 MB, respectively, but their mAP50 values of 92.5% and
90.7% are slightly lower than that of the LMS-YOLOI 1n.
YOLOv7-tiny’s mAP50 of 92.7% is still high, but its 13.3
GFLOPs of computation and 12.3 MB of parameter count are
similar to that of YOLOvV3-tiny. YOLOvS8n further optimizes
the parameter count and computation with a mAP50 of 92.3%,
with values of 3 MB and 8.1 GFLOPs, respectively, but is
still not as light as that of LMS- YOLOI1n. YOLOv10n
and YOLOI11n, as more advanced models, exhibit mAP50s
of 93% and 93.6%, with their computational and parametric
quantities reduced to 6.4 GFLOPs and 6.3 GFLOPs and 2.04
MB and 2.58 MB, respectively. The LMS-YOLOI11n, with
the minimum computational quantity of 4.6 GFLOPs, and the
LMS-YOLOI1n achieve the same mAP50 as the YOLOI1n
with a minimum number of parameters of 1.62 MB. Taken
together, the LMS-YOLOI11n achieves an optimal balance
between performance, efficiency, and lightness with a mAP50
of 93.6%, several parameters of 1.62 MB, and a computation
volume of 4.6 GFLOPs, making it suitable for complex field
environments and resource-constrained edge device scenarios.

FE. Model Detection Effect and Visualization Analysis

The improved LMS-YOLOI1n demonstrates excellent
detection performance, providing accurate and comprehen-
sive weed recognition under various environmental conditions.
HiResCAM [36] was used to perform visualization analysis on
the CottonWeedDet3 and CottonWeed?2 datasets. In the images,
darker colors indicate higher attention, while lighter colors
represent lower attention, as shown in Fig. 9 and Fig. 10.

Fig. 9 and Fig. 10 show that both LMS-YOLOI11n and
YOLOI11n can identify and locate target areas dominated
by weed structures. However, compared to YOLO11n, LMS-
YOLOI11n reduces false detections and more accurately fo-
cuses on the actual weed shapes. Specifically, YOLOI1n
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TABLE II. COTTONWEED2 ABLATION EXPERIMENT TABLE

YOLO11n C3K2_FastGLU AHFPN LGCD P R mAP50 mAP50-95 GFLOPs Params(MB)
v 80.9 717 745 518 6.3 2.58
v v 814 674 75 50.5 59 2.41
v v 863 66.7 752 511 5.6 1.89

[ v v 76.6 67 73.9 511 54 2.28

| v / v 84.8 643 75 50.1 52 173

[ v v v 914 67 75.1 52.7 5 178

| v / v v 792 72 76.4 512 46 1.61

TABLE III. COMPARISON OF EXPERIMENTAL RESULTS OF DIFFERENT
MODELS ON COTTONWEEDDET3 DATASET

TABLE V. COMPARISON OF EXPERIMENTAL RESULTS OF DIFFERENT
MODELS ON COTTONWEEDDET12 DATASET

P R | mAP50 | mAP50-95 | GFLOPs | Params (MB) P R | mAP50 | mAP50-95 | GFLOPs | Params(MB)
YOLOv3-tiny | 78.7 | 67.4 71.4 523 14.3 9.52 YOLOvV3-tiny | 88.8 | 86.4 | 91.7 80.3 14.3 9.52
YOLOV5n 75.8 | 64.6 70.6 54.9 7.1 2.5 YOLOv5n 90.6 | 86.4 | 92.5 85.3 7.1 2.5
YOLOv6n 76.6 | 70.7 74.2 58.6 11.5 4.15 YOLOvV6n 90.5 | 84.8 90.7 84.1 11.5 4.15
YOLOV7-tiny 85 | 64.5 73.8 58 13.3 12.3 YOLOv7-tiny | 92.3 | 86 92.7 82.1 13.3 12.3
YOLOv8&n 84.2 | 65.9 74.3 58.4 8.1 3 YOLOV8n 922 | 85.8 92.3 85.6 8.1 3
YOLOv10n 74.7 | 65.2 70.5 56.1 6.4 2.04 YOLOV10n 91.3 | 87.6 93 88.2 6.4 2.04
YOLO11n 858 | 62.4 73.6 58.4 6.3 2.58 YOLOLl1n 924 | 86 93.6 87.2 6.3 2.58
LMS-YOLOLIn | 78.2 | 69.5 76.1 60.6 4.6 1.61 LMS-YOLOIIn | 89.6 | 88.9 | 93.6 86.1 4.6 1.62

TABLE IV. COMPARISON OF EXPERIMENTAL RESULTS OF DIFFERENT
MODELS ON COTTONWEED2 DATASET

P R | mAP50 | mAP50-95 | GFLOPs | Params (MB)

YOLOvV3-tiny | 64.3 | 71.3 68.1 43.0 14.3 9.52
YOLOv5n 83.9 | 66.6 72.7 51.1 7.1 2.5
YOLOv6n 84.5 | 65.7 72.6 512 11.5 4.15
YOLOv7-tiny | 77.6 | 72.1 74.9 452 13.3 123
YOLOvV8n 78.9 | 70.0 73.3 53.1 8.1 3.0
YOLOv10n 83.9 | 59.5 68.0 43.6 6.4 2.04
YOLOIl1n 80.9 | 71.7 74.5 51.8 6.3 2.58
LMS-YOLOl11n | 79.2 | 72.0 76.4 512 4.6 1.61

may be affected by morphological similarities and lighting
variations in complex field environments, leading to scattered
feature capture and reduced target localization accuracy. In
contrast, LMS-YOLOI11n, with its lightweight design and
optimized feature extraction modules, effectively suppresses
environmental noise and significantly enhances target feature
extraction accuracy. It shows a stronger ability to differen-
tiate when weeds and crops have similar morphologies. This
demonstrates the superiority and reliability of LMS-YOLOI11n
for efficient weed detection in complex field scenarios.

YOLO11n
heat map

LMS-YOLO11n
heat map

Fig. 9. Contrasting thermal diagrams before and after CottonWeedDet3
model improvement.

YOLO11n
heat map

LMS-YOLO11n
heat map

Fig. 10. Contrasting thermal diagrams before and after CottonWeed2 model
improvement.

V. CONCLUSION AND FUTURE WORK
A. Conclusion

This study introduces LMS-YOLOlln, a novel
lightweight weed detection network designed for precision
agriculture on edge devices and in complex field environments.
The network leverages innovative structural designs to enhance
detection accuracy and computational efficiency, making it
especially suitable for resource-constrained edge devices.

In the feature extraction phase, LMS-YOLOI 1n replaces
the traditional C3K2 module with the C3K2_FastGLU module,
integrating partial convolution and CGLU mechanisms to ex-
tract fine-grained weed features more effectively. Compared to
traditional convolution methods, FastGLU uses channel-level
weighting to enhance sensitivity to fine details, enabling more
precise differentiation between weeds and crops in complex
field environments. For feature fusion, the study introduces
the Adaptive Hierarchical Feature Pyramid Network (AHFPN),
which optimizes feature selection and fusion to improve multi-
scale weed detection capabilities. AHFPN effectively inte-
grates multi-scale feature maps, enhancing weed detection and
preventing the loss of small-scale target information, thereby
improving detection accuracy. To boost model efficiency,
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LMS-YOLOI1n replaces the traditional detection head with
the lightweight LGCD module. LGCD, designed with group
convolutions, reduces parameter and computation requirements
while maintaining high detection accuracy, making it ideal for
low-power edge devices capable of efficient real-time weed
detection.

LMS-YOLO11ln demonstrates superior performance
across three datasets. On the CottonWeedDet3 dataset, the
model achieved a mAP50 of 76.1%. On CottonWeed2, it
reached 76.4%, while on CottonWeedDetl2, it achieved
93.6%, reducing computation and parameter sizes by 26%
and 37%, in contrast to the baseline model, correspondingly.
These results demonstrate that LMS-YOLOIlIn achieves
high-precision detection in complex environments and is
deployable on edge devices, providing accurate real-time
agricultural monitoring solutions.

B. Future Work

Despite the significant results, the proposed model has
some limitations:

1) Lack of experiments and deployments in real-world agri-
cultural scenarios. Real agricultural environments involve
variations in weed types, densities, and growth states,
requiring further validation of the model’s performance
under these conditions.

2) Detection accuracy for young weeds needs improvement.
The simple morphology and texture of young weeds often
confuse with the background or crops, leading to limited
detection accuracy.

To address these issues, this paper will explore mul-
timodal fusion techniques in future research to solve the
challenges of young weed detection. By fusing different types
of data sources, it can provide richer feature information
for the model and help it recognize young weeds more
accurately. Meanwhile, more field experiments are planned
to be conducted in combination with practical agricultural
application scenarios to test the performance of the model in
different environments, to further improve its adaptability and
accuracy, and to provide more effective solutions for precision
agriculture.
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