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Abstract—Object detection based on drone platforms is a
valuable yet challenging research field. Although general ob-
ject detection networks based on deep learning have achieved
breakthroughs in natural scenes, drone images in urban environ-
ments often exhibit characteristics such as a high proportion of
small objects, dense distribution, and significant scale variations,
posing significant challenges for accurate detection. To address
these issues, this paper proposes a dual-branch object detection
algorithm based on YOLOv8 improvements. Firstly, an auxiliary
branch is constructed by extending the YOLOv8 backbone to
aggregate high-level semantic information within the network,
enhancing the feature extraction capability. Secondly, a Multi-
Branch Feature Enhancement (MBFE) module is designed to
enrich the feature representation of small objects and enhance
the correlation of local features. Third, Spatial-to-Depth Convo-
lution (SPDConv) is utilized to mitigate the loss of small object
information during downsampling, preserving more small object
feature information. Finally, a dual-branch feature pyramid is
designed for feature fusion to accommodate the dual-branch
input. Experimental results on the VisDrone benchmark dataset
demonstrate that DBYOLOv8 outperforms state-of-the-art object
detection methods. Our proposed DBYOLOv8s achieve mAP@0.5
of 49.3% and mAP@0.5:0.95 of 30.4%, which are 2.8% and 1.5%
higher than YOLOv9e, respectively.
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YOLOv8

I. INTRODUCTION

With the development of hardware and artificial intel-
ligence, drones have been gradually applied to intelligent
transportation, agricultural monitoring, fire rescue and other
fields. In urban traffic monitoring and urban combat missions,
UAVs (unmanned aerial vehicle) play an important role by
virtue of their advantages such as fast flight speed, high degree
of freedom, broad vision and strong adaptability. However,
the streets in the city scene have the characteristics of traffic
congestion, dense people, and a wide variety of targets. In
addition, due to the high-altitude flight of UAV, objects in
UAV images are often too small in size and contain limited
feature information, which makes it difficult for the network to
extract effective features and easy to be lost in the propagation
process across the feature layer [1]. In addition, the size of
similar objects varies so much that it is difficult for universal
object detection methods to effectively locate and identify
these objects [2].

Uav object detection is one of the branches of general target
detection. According to the processing flow, the target detec-
tion algorithm can be divided into two stages and one stage.
The two-stage algorithm is characterized by generating a series

of regions of interest, and then classifying and regressing these
regions. Its advantage is that the two-stage detection algorithm
is more detailed, resulting in higher detection accuracy. The
disadvantage is that the inference speed is slower than that
of single-stage algorithms. The two-stage representative algo-
rithms include Faster R-CNN [3] and Mask R-CNN [4]. The
single-stage algorithm extracts the feature information of the
target by convolutional neural network, generates the candidate
frame, and classifies and locates the target. This detection
method consumes less computer resources during inference,
and UAV target detection is usually improved based on single-
stage algorithm. Single-stage representative algorithms include
SSD [5] and YOLO series [6]. YOLOv8 is a commonly used
single-phase detection framework, which is often used for
various object detection tasks [7]. Its advantage is that the
framework is mature, the externally adapted function library
is more common, and a variety of inference accuracy im-
provement tools can be used directly. However, the objects in
UAV images often have problems such as small size, complex
background environment, and dense area overlap, which limits
the ability of the frame to detect small objects. Secondly, the
framework is still weak in detecting similar objects at different
scales. Therefore, it is necessary to improve the YOLOv8
algorithm to make it suitable for UAV small object detection.

This paper presents a dual-branch small object detection
algorithm based on YOLOv8. Firstly, a composite strategy
is used to construct auxiliary branches, and the multi-layer
semantic information is comprehensively utilized to improve
the feature extraction capability of the framework. Second, a
multi-branch feature enhancement module is designed, which
uses convolution check of different sizes for parallel pro-
cessing of small object feature information to improve the
representation ability of object feature information. In addition,
SPDConv can effectively reduce the loss of feature information
in the transmission process, which is very effective for small
object detection. When it is embedded in the shallow detection
branch of the network, the false detection problem can be well
improved. Finally, a dual-branch feature pyramid is constructed
to deal with the multi-scale change of the target. Experimental
results show that the proposed algorithm greatly improves
the performance of object detection and can better cope with
the requirements of different tasks on model size. Our main
improvements and advantages are as follows:

• C2f module is used to construct auxiliary branch,
which aggregate multi-high-level semantic informa-
tion and enhance the feature extraction ability of small
objects. SPDConv [13] is used to alleviate the loss of
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feature information in the downsampling process.

• Multi-branch Feature Enhancement Module (MBFE)
is designed to extract small object feature information
by using parallel branches of different convolution
kernel sizes, which can realize the diversification of
small objects feature information expression.

• Dual-branch feature pyramid network (DBFPN) is
established for cross-layer connection with YOLOv8
backbone to compensate for information loss caused
by feature information transformation.

The structure of this paper is as follows: In Section II, we
will briefly introduce our related work to improve the thinking.
In Section III, we take a detailed look at the dual-branch
YOLOv8 framework. In Section IV, we conduct experiments
on a classical drone dataset and provide a detailed analysis of
the results. In Section V, we analyze the existing shortcomings
and the continued exploration of future work.

II. RELATED WORK

In object detection, the size of the object can be divided
into absolute scale and relative scale according to the defini-
tion. In the definition of relative scale [8], usually the relative
area of all object instances in the same category, that is, the
median ratio of the boundary box area to the image area is
between 0.08% and 0.58%. However, the way to define small
objects based on absolute scale is more widely used, and the
MS COCO dataset [9] defines small targets as those with
a resolution less than 32 pixels by 32 pixels. The existing
methods to solve the small object detection of UAVs can be
classified into three categories: (1) By enhancing the feature
information of small objects, the network can locate the objects
more clearly. (2) Improve the detection accuracy of small
objects by improving the ability of network feature extraction.
(3) Adopt multi-scale detection strategies to deal with small
objects of different sizes.

To improve the ability of network feature extraction, Liang
et al. [10]. proposed CBNetV2 network, which uses shallow
network to aggregate different high-level semantic information,
aiming to enhance the comprehensive application of feature
texture features by the model. In addition, they demonstrated
experimentally that small objects can be detected more effi-
ciently when shallow features are aggregated only with feature
layers higher than this one. This work pioneered the concept
of composite backbone networks. Wang et al[11]. proposed
Yolov9, the representative of YOLO series, and designed a
Programmable Gradient Information (PGI), which uses the
characteristics of reversible architecture to retain more input
information, thereby reducing the loss of small target feature
information. In this framework, the composite backbone net-
work is also constructed. Yan et al. [12]. propose an HCB
network that includes a detail extraction backbone (DEB)
designed with a smaller acceptance field to better capture
details of small objects. This design enhances feature repre-
sentation without compromising spatial information. However,
the above method only uses a single strategy, and because
more parameters are often introduced in order to obtain more
gradient information, the computational complexity increases
and the practical application is limited.

For the enhancement of small object feature information,
the detection accuracy of the network can be improved by
improving the feature representation of the network for small
object and reducing the problem of the loss of small object
feature information. Zhang et al. [13]. developed a feature
enhancement module specifically for aerial image detection,
using the improved FFM module to further capture the context
information of small objects, thereby improving the detection
accuracy. Raja et al. [14]. designed a step-free convolution
to solve the problem of information loss caused by different
interpolation calculations for small objects through this lossless
downsampling method, thus improving the network’s ability
to perceive small objects. However, the improved method has
been proved by experiments that the network pays too much
attention to texture information when applied equally in each
feature layer, which leads to the decrease of detection accuracy.

In order to cope with targets of different sizes, Tsung et al.
[15]. proposed the concept of feature pyramid. By connecting
shallow texture information and high semantic information
from top to bottom, the object feature information of each
detection layer is enriched. On this basis, Liu et al. [16]. added
a new bottom-up path that preserves more detailed information,
which is also effective for multi-scale small objects. Tan et al.
[17]. used a weighted feature fusion mechanism to give each
input feature path a learnable weight, allowing the network
to automatically adjust the importance of each path, thus
making more efficient use of feature information. By removing
invalid nodes and reusing features, the computational cost is
reduced, making it suitable for resource-constrained devices.
However, the processing method of feature pyramid is only
suitable for a single backbone, and for multi-branch networks,
the conventional feature pyramid will dilute the target feature
information in the concatenation operation.

Although the existing improvement methods have contin-
uously improved the UAV target detection performance, the
existing network architecture is still difficult to achieve high
precision and multi-task adaptation, especially for the dense
area detection problem in the urban scene, and it is urgent to
further improve the detection accuracy. Therefore, a variety
of improvement methods should be comprehensively used to
enhance the detection ability of the detection network for UAV
images.

III. DBYOLOV8 ALGORITHM

A. Overview of YOLOv8

YOLOv8 is an object detection framework based on single-
stage deep learning. Compared with the existing version of
YOLO series, YOLOv8 can adjust the size of the model by
adjusting the scale factor to adapt to different task require-
ments. Compared to YOLOv10 [18] and YOLOv11, YOLOv8
framework is more mature and has many existing tools to assist
reasoning. YOLOv8 network structure is mainly divided into
three parts: (1) Backbone network for extracting object feature
information. (2) Processing multi-scale features of the feature
pyramid pool layer. (3) The detection head of the classification
object type information. Fig. 1 shows the schematic diagram
of the YOLOv8 algorithm framework. The backbone network
extracts the feature information of the object by using the
convolution layer of step by step downsampling. The excellent
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feature extraction ability is the basis of realizing the high-
precision object detection algorithm. Path Aggregation-FPN
(PAFPN) structure is introduced into the neck structure, and the
feature mapping of different scales is combined to enhance the
ability of the algorithm to recognize objects of different sizes.
The head layer is the main decoupling head structure, which
separates the classification and detection head, and becomes
the Anchor-Free detection scheme. The YOLOv8 algorithm is
widely used in many fields (for example, agricultural inspec-
tion, UAV object detection and autonomous driving). However,

Fig. 1. Simplified diagram of YOLOv8 network structure.

the performance of the baseline YOLOv8 is not optimal, and
there is no targeted design for small objects. In addition,
YOLOv8 does not fully combine shallow features and deep
features, so that the feature information of small targets is
seriously lost in the process of feature transmission. Therefore,
the general object detection algorithm framework YOLOv8
is not suitable for small object detection tasks of UAVs. In
order to meet the higher task requirements of UAVs for object
detection algorithms, it is necessary to improve the existing
algorithms by task driving.

B. Overall Structure of the Optimized DBYOLOv8 Network

In the improved dual-branch YOLOv8 object detection
algorithm, taking YOLOv8 as the benchmark model, three
aspects of backbone network structure, feature enhancement
module and multi-scale feature fusion are optimized and
improved. Fig. 2 shows the optimized two-branch YOLOv8
backbone network structure. In the feature extraction stage,
this paper designed an auxiliary branch to aggregate the target

features of different feature layers. Inspired by the auxiliary
branch constructed by CBNet and YOLOV9, the auxiliary
branch based on YOLOv8 structure was constructed by using
C2F module, which can adjust the size of the model. Based on
this method, the constructed DBYOLOv8 model can adapt to
the model size requirements of different tasks, and the DBY-
OLOv8 network model is smaller at the same level of detection
accuracy. Feature layer scales the feature map to a fixed size
by interpolation, and the small object feature information will
be lost in the process of transferring between feature layers.
By introducing SPDConv in the shallow layer of the trunk
and branches, the problem of small object information loss
is alleviated by splitting and reassembling. In addition, EMA
[19] module with parallel structure and CBLinear structure are
combined to extract small object feature information through
different receptive fields of parallel branches. This combi-
nation forms MBFE module, does not introduce additional
parameters, diversifies the small target feature information,
and enhances the generalization ability of the model. The
double branch feature pyramid is improved based on BiFPN.
By fusing the two-branch feature input with feature weighting,
the structure can fuse multi-scale features in the neck network
and enhance the model’s ability to recognize targets of various
sizes and shapes.

C. Auxiliary Branch

In the process of feature extraction, the feature information
of small objects is lost or offset to a certain extent with the
reduction of the feature map size and the calculation method
of interpolation. It constitutes a unique phenomenon, shallow
feature is close to the input layer and contains richer texture
information, while the deep feature has a larger receptive
field and contains more semantic information after multiple
convolution. The integrated use of shallow and deep feature
can effectively improve the network detection performance
[20].

Inspired by CBNetV2, the PGI proposed by YOLOv9
framework builds its auxiliary branch by combining multilevel
high-level feature information with shallow feature, hoping to
enhance the feature representation capability of the backbone.
However, the RepNSCPELAN module is designed to capture

Fig. 2. Our improved DBYOLOv8 feature extraction structure.
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Fig. 3. Multi branch feature enhancement module.

a richer flow of gradient information, which in turn greatly
increases the number of model parameters.And it can not
adjust the size of its model through scaling factors, making
it difficult to adapt to the needs of multiple tasks. In order
to improve the feature extraction ability of the framework for
small objects without increasing the model size, we built a
similar auxiliary branch based on YOLOv8 framework. We
use the C2f module to obtain the feature gradient information
and the scaling factor to adjust the size of the model to adapt
to the task requirements of different platforms.

D. Multi-branch Feature Enhancement Module

The feature information of small objects in UAV images
in urban scenes is less, but the background information is
complex. Background will seriously affect the extraction of
object feature information, which leads to confusion in the
transfer process of feature information, thus affecting the
performance of the detector.To alleviate this problem, YOLOv9
uses the CBLinear module to process the feature information
extracted from the backbone. However, CBLinear module uses
the full connection layer to process feature information, which
is not friendly for small objects. And it is easy to dilute the
feature information of small objects in the process of feature
flow, resulting in a certain degree of feature extraction ability
loss [21]. Based on the above problems, we design the MBFE
module to diversify the small object feature representation.

Channel or spatial attention have been shown to be remark-
ably effective in producing more recognizable feature represen-
tations in various computer vision tasks. In order to diversify
the feature information of small objects, we introduced EMA
attention mechanism. This mechanism employs multi-branch
feature extraction operations, where feature maps are processed
in parallel through 1×1 and 3×3 branches. By leveraging
different receptive fields, it captures the feature information
of small objects and further aggregates the output features of
these parallel branches through cross-dimensional interactions
to capture pixel-level pairwise relationships.Subsequently, op-
erations such as channel number adjustment and segmentation
are performed to obtain a list of multiple output feature
maps, which are suitable for subsequent feature aggregation

requirements. The designed MBFE module is illustrated in Fig.
3.

E. SPDConv Module

SPDConv proposed by Sunkara et al. is a lossless down-
sampling method specifically designed for low-resolution im-
ages and small objects. Traditional downsampling techniques,
such as strided convolutions and pooling layers, often result
in the loss of fine-grained information when dealing with low-
resolution images or small objects. To address this issue, SPD-
Conv introduces a lossless downsampling method to segment
the input image and splicing the input image in the channel
dimension so as to retain the input image feature information.
After this operation, the convolution layer with stride=0 is
used for feature extraction, and the fine-grained details of the
image are retained because the size of the feature map is not
changed. This approach significantly mitigates the problem of
small object loss during the feature extraction phase. We only
applied SPDConv during the initial downsampling stages, as
deeper features, after multiple convolution operations, have
already become highly ambiguous in terms of small object
location information. Using SPDConv for downsampling at
these deeper stages could negatively impact the detection
network [22]. The specific addition location is illustrated in
Fig. 1.

F. Dual-branch Feature Pyramid Module

BiFPN removes connection layers that are not intended
for fusion and employs a bidirectional weighted strategy to
update gradients. Our designed DBFPN is based on BiFPN and
is adapted for a dual-branch backbone design. Although the
auxiliary branch is constructed based on the yolov8 backbone,
after multiple convolutional operations, there is a slight devia-
tion in the mapping of small object feature information and the
original image object information. Therefore, incorporating the
main branch feature layer information during the construction
of the feature pyramid is beneficial for comprehensively uti-
lizing the feature extraction capabilities of both branches. For
small object feature information, we have added a P2 detection
layer and, considering the need to control the number of
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Fig. 4. Dual branch feature pyramid module.

parameters, removed the P5 detection layer [23]. Our designed
DBFPN is illustrated in Fig. 4.

IV. EXPERIMENTAL VALIDATION AND ANALYSIS

A. Dataset Analysis

In this study, the VisDrone2019 [24] drone object detection
dataset, which can represent urban scenes, was used to test
the detection performance of DBYOLOv8 on various types
of small objects in drone images. The dataset comprises
6,471 images for training and 548 images for validation, with
annotations for 10 types of objects, including pedestrians,
cars, motorcycles, and others. An analysis of the training set
revealed that small objects constitute approximately 60% of the
dataset based on their relative scale. Specifically, the dataset
categorizes objects as follows: extremely small (es) objects
with a length*width in the range [0, 144], relatively small
(rs) objects with dimensions in the range [144, 400] pixels,
and generally small (gs) objects with sizes in the range [400,
1024] pixels [25]. Given that the dataset was collected using
a drone platform, it is particularly well-suited for assessing
the performance of the DBYOLOv8 model in detecting small
objects from a drone’s perspective. Examples of target statistics
are shown in Fig. 5.

In order to verify the generalization of our proposed
method, a comparative test was also performed on our AI-TOD
dataset [26]. AI-TOD dataset is a representative dataset for the
detection of tiny objects in aerial images. The dataset contains
28,036 images labeled with a total of 700,621 instances across
eight categories (aircraft, Bridges, tanks, ships, swimming
pools, vehicles, people, windmills). Compared with other aerial
image datasets of the same type, the average size of the object
in this dataset is 12.8 pixels, which is much smaller than the
object instances in other datasets. Therefore, it is a good way
to evaluate the model’s perception of small scale objects.

B. Experimental Condition and Assessment Metrics

The experiment was trained and verified on the research
group server. The hardware system consists of the following
parts: Intel i9 series 13th generation processor I9-13900KF,
RTX4090 (24G) graphics card, 64G memory. The software

system uses Ubuntu22.04 operating system, and uses Pytorch
framework to realize all the algorithms running and improving.
For comparison with other algorithms, the input image is set
to 640 × 640 pixels and the epoch is set to 200 rounds. The
other Settings are the default Settings for the YOLOv8 project
provided by the ultralytics team.

To evaluate the algorithm’s detection performance on ob-
jects in drone images, precision (P), recall (R), mAP@50 and
mAP@50:95 were used as evaluation indexes. True positive
(TP), false negative (FN), false positive (FP) and true negative
(TN) were used as anchor frame positioning quality evaluation.
Precision Indicates the percentage of the predicted positive
samples that are actually positive. The calculation formula is:

precision =
TP

TP + FP
(1)

Recall indicates the proportion of the actual number of positive
samples in the total positive samples in which the prediction
result is positive. The calculation formula is:

precall =
TP

TP + FN
(2)

AP is the Average Precision, which is simply to average
the precision value on the PR curve. For the pr curve, we use
the integral to calculate. The calculation formula is:

AP =

∫ 1

0

p(r)dr (3)

mAP is an evaluation index associated with Intersection
over Union (IoU), which averages the detection accuracy of
all categories. When loU is set to 0.5, it is usually used as
an evaluation index of the detection accuracy of the universal
target. mAP@50:95 indicates the mAP with the IoU threshold
ranging from 0.5 to 0.95 and the step size of 0.05. Then the
average value is obtained. It can also reflect the performance
difference of detection algorithms for objects at different
scales.

C. Ablation Study

To validate the detection capability of our proposed model
for small objects, we constructed auxiliary branches on the
basis of the YOLOv8s model, incorporating the SPDconv
module, MBFE module, and DBFPN module to build the
DBYOLOv8s model. We set the image size to 1280x1280,
which is close to the original image size and better reflects
the object detection performance of our model on this dataset.
The ablation experiment results are shown in Table I. Under
the same parameter settings, our method significantly improves
the object detection capability for drone images.

1) Effect of auxiliary branches: Small objects occupy a
high proportion in drone images and contain limited feature in-
formation. To enhance the backbone’s ability to extract features
from small targets, we constructed an auxiliary branch using
the SPDConv module, CBFuse module, and C2f module. By
aggregating high-level semantic information from layers not
lower than the current one, we enriched the feature information
of small targets. Compared to the baseline model, the results
for mAP@0.5 and mAP@0.5:0.95 improved by 4.7% and
3.5%, respectively.
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Fig. 5. VisDrone train dataset.

TABLE I. ABLATION STUDY

Baseline Auxiliary Branch DBFPN SPDConv MBFE mAP@50(%) mAP@50:95(%) Params
✓ 56.3 35.4 10.6
✓ ✓ 61.0 38.9 20.2
✓ ✓ ✓ 61.0 39.0 23.3
✓ ✓ ✓ ✓ 61.7 39.5 24.0
✓ ✓ ✓ ✓ ✓ 62.1 39.9 24.0

2) Effect of DBFPN module: We understand that the fea-
ture information after multiple convolutions differs from the
original feature information. Moreover, the flow of feature
information across layers can result in some information
loss. Therefore, our proposed DBFPN integrates dual-branch
feature information through skip connections, which improves
mAP@0.5:0.95 by 0.1%.

3) Effect of SPDConv module: Small objects may ex-
perience varying degrees of feature information loss during
the downsampling process due to differences in interpolation
methods. As mentioned above, SPDConv can alleviate the
issue of feature information loss caused by downsampling
in low-resolution images. However, if SPDConv is uniformly
applied to replace every downsampling step, it can negatively
impact detection performance. This is because, in deeper layers
of the network, small objects have less feature information,
and the feature information of larger objects is diluted by
SPDConv, leading to missed detections. We conducted three
sets of experiments: one with SPDConv added to all layers, one
with SPDConv added only in the shallow layers, and one with
SPDConv added only in the deep layers. The detector achieved
the best performance when SPDConv was added only in the
shallow layers, as verified by the experiments shown in Table
II.

4) Effect of MBFE module: The feature information of
small objects is processed through parallel branches, allowing

the extraction of target information using convolution kernels
of different sizes. This method of enhancing small object fea-
tures effectively diversifies the representation of small object
feature information, thereby enhancing the network’s feature
extraction capabilities. Compared to the CBlinear module that
solely employs fully connected layers, this approach improves
mAP@0.5 and mAP@0.5:0.95 by 0.4% without introducing
additional parameters.

TABLE II. COMPARISON RESULT OF DIFFERENT SPDCONV ADDITION
POSITIONS ON THEVISDRONE2019 VALIDATION DATASETS. THE BEST

RESULT IS HIGHLIGHTED IN BOLD

Method mAP@50(%) mAP@50:95(%)
P1− >P3 61.1 39.2
P3− >P5 60.1 38.4
P1− >P5 60.9 39.0

D. Comparison with State-of-the-Arts

Due to the varying size constraints for tasks across different
platforms, we designed two DBYOLOv8 models of different
sizes based on the YOLOv8s and L models. The scaling factors
for the DBYOLOv8s model are [0.35, 0.50], while those for
the DBYOLOv8L model are [1.00, 1.00]. We compared DBY-
OLOv8 with other widely used object detection algorithms
(primarily the s and l models of various object detection
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TABLE III. COMPARISON RESULTS OF DIFFERENT OBJECT DETECTORS ON THEVISDRONE2019 VALIDATION DATASETS. THE BEST RESULT IS
HIGHLIGHTED IN BOLD

Method Inputsize mAP@50(%) mAP@50:95(%) Params(M) FLOPs(G)
RetinaNet[27] 1333*800 39.3 21.8 - 524.95
Faster-RCNN 1333*800 43.6 24.8 - 322.25

YOLOv5-s[28] 640*640 32.2 17.5 7.2 16.5
TPHYOLOv5-s[29] 640*640 37.4 21.7 - -

YOLOv8-s 640*640 37.3 22.1 11.1 28.5
Drone-YOLO[30] 640*640 44.3 - 10.9 -

yolov10s 640*640 41.2 24.8 8.0 24.5
YOLOv11s 640*640 41.6 25.2 9.4 21.3

HIC-YOLO[31] 640*640 44.3 26.0 - -
YOLOv5-l 640*640 42.9 26.3 46.5 109.1
YOLOv8l 640*640 43.7 26.7 43.6 165.4

TPHYOLOv5-l 640*640 41.8 24.0 - -
YOLOv8-x 640*640 44.3 27.2 68.2 258.5
YOLOv9e 640*640 46.5 28.9 57.3 189.0

DBYOLOv8-s 640*640 49.3 30.4 24.0 119.8
DBYOLOv8-l 640*640 54.4 34.3 175.7 877.0

frameworks). The results, as shown in Table III, indicate that
DBYOLOv8 achieved the best and second-best results in terms
of mAP. Compared to YOLOv8l and YOLOv9e, DBYOLOv8s
achieved higher mAP5@50:95 values by 3.7% and 1.5%,
respectively, but with significantly fewer parameters. DBY-
OLOv8 demonstrated superior performance in small object
detection compared to other methods, and the experimental
results confirm the competitive advantage and effectiveness of
this approach.

To verify the effectiveness of the proposed method in
identifying complex backgrounds, significant scale differences,
and densely packed small objects, we provide visual examples
of DBYOLOv8s and YOLOv8l in Fig. 6. In the first line
of the image, the vehicles on the far side of the street are
extremely small in size. Carefully examining the red box, it is
clear that YOLOv8l cannot fully recognize these extremely
small objects, while our proposed method also has certain
detection accuracy for extremely small objects. The second line
of images taken by the drone from a low altitude Angle shows
that the green box shows that YOLOv8l missed the target, and
the blue box shows that the method incorrectly identified the
person as a motorcycle. In contrast, our proposed approach
is not affected by these factors. The observations show that
our proposed method shows significant advantages over other
methods in processing images of this nature.

In order to verify the detection ability of the method
for small targets and its generalization on other datasets,
we conducted training and inference experiments on AI-
TOD datasets using the same parameters. Compared with
the mainstream YOLO improved algorithm and DERT im-
proved algorithm, our proposed DBYOLOv8s has undoubtedly
obtained the best detection results. Experimental results are
shown in Table IV. Compared with YOLOv8l, the proposed
algorithm at mAP@50:95 improves by 1.2%. Compared with
other algorithms, our method also has obvious advantages.

Compared with the VisDrone dataset, the AI-TOD dataset has
more small object instances, which indicates that our method
will improve the detection accuracy if there is more sufficient
data support. These results across different datasets underscore
the robustness and effectiveness of the proposed method.

TABLE IV. COMPARISON RESULTS OF DIFFERENT OBJECT DETECTORS
ON AI-TOD VALIDATION DATASETS. THE BEST RESULT IS HIGHLIGHTED

IN BOLD

Method mAP@50(%) mAP@50:95(%)
YOLOv6[32] 42.2 18.4
YOLOv7[33] 49.5 19.7

YOLOv8l 48.4 22.0
RT-DETR 48.9 22.7

YOLOv10b 46.7 21.6
YOLOv9c 45.8 20.3

DBYOLOv8-s 55.2 23.2

V. CONCLUSION

In order to meet the requirements of existing algorithm
frameworks for UAV small object detection, we propose a
dual-branch YOLOv8 small object detection algorithm. Firstly,
we construct auxiliary branches with compound strategy, com-
bine shallow feature information and higher level semantic
information, and increase the feature extraction capability
of detection network for small objects. Second, in order to
enhance the feature representation of small objects, a multi-
branch feature enhancement module is designed to extract
the feature information of small objects in parallel through
features of different convolution kernel sizes. This module
can effectively diversify the representation of small object
feature information and counter the problem of the loss of
feature information in the process of transmission. Third,
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Fig. 6. Comparison of testing results. (a) Original image. (b) YOLOv8l detection results. (c) Our DBYOLOv8s detection results.

we replace the original subsampling with SPDConv in the
shallow layer of the network, and maximize the retention of
object feature information through recombination and splicing
operations, reducing the missing problem caused by the loss
of small and medium-sized object feature information during
the subsampling process. Secondly, in order to deal with the
contact deviation between the feature information and the
original image information caused by multiple convolution, we
construct a dual-branch feature pyramid to comprehensively
use the double-branch feature information to solve the problem
of object scale change in the UAV image. Finally, in addition to
using the VisDrone dataset, we also used the AI-TOD dataset
to evaluate our proposed approach. The effectiveness of our
proposed method is verified by experiments. Compared with
the basic YOLOv8s, the DBYOLOv8s algorithm proposed in
this paper has increased mAP@50 by 12% and mAP@50:95
by 8.3% on the VisDrone dataset, demonstrating excellent
performance compared with other object detection algorithms.
On AI-TOD dataset, experimental results validate the general-
ization of our proposed algorithm, and further prove that our
proposed algorithm has higher detection accuracy for small
objects if there is more sufficient data support. In addition,
the DBYOLOv8l built by us based on YOLOv8l has higher
detection accuracy, but the model is larger, which is suitable
for tasks with higher detection accuracy supported by high-
performance computers. Combined with the existing algorithm
foundation and research direction, our future research will
focus on the following aspects to tackle difficulties: 1. Explore
lightweight technology, reduce model parameters by replacing
lightweight backbone or model pruning technology, so that
the algorithm can be deployed on embedded devices with
low power consumption in the future. 2. Research on small
object loss function positioning technology, so that the model
can improve the positioning accuracy of dense small objects
under complex background. 3. Explore the feature description
of different architectures for small objects, and combine the
dual-branch idea with CNN architecture and Transformer
architecture to further improve the detection accuracy of small
objects.
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