(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

Eagle Framework: An Automatic Parallelism Tuning
Architecture for Semantic Reasoners

Haifa Ali Al-Hebshi', Muhammad Ahtisham Aslam?, Kawther Saeedi®
Information Systems Departmen-Faculty of Computing and Information Technology, King Abdulaziz University
Jeddah, 21589, Saudi Arabial'3
Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, Berlin, 10589, Germany?

Abstract—Parallel semantic reasoners use parallel architec-
tures to improve the efficiency of reasoning tasks. Studies in
semantic reasoning rely on manual tuning to configure the degree
of parallelism. However, manual tuning becomes increasingly
challenging as ontologies become massive and complex. Studies
in related fields have developed automatic tuning frameworks
using optimization search methods. Although these methods offer
performance gains, reducing search time and space size is still
an open problem. This study aims to bridge the gap in semantic
reasoning and the problem in existing search methods. To achieve
these aims, we propose Eagle Framework (EF), an innovative au-
tomatic tuning framework designed to improve the performance
of parallel semantic reasoners. EF automatically configures the
degree of parallelism and calculates the performance data. It
incorporates a novel search space and algorithm, inspired by
the AVL tree, that efficiently identifies the optimal degree of
parallelism. In a case study, EF completed the tuning processes
in seconds to a few minutes, achieving performance gains up
to 65 times faster than common search methods. The reliability
findings, with ICC scores ranging from 0.90 to 0.99, confirmed
the consistency of the performance data calculated by EF. The
regression analysis revealed the effectiveness of EF in identifying
the factors that affect reasoning scalability, with the conclusion
that the size of the ontology is the dominant factor. The study
underscores the need for adaptive approaches to tune the degree
of parallelism based on the size of the ontology.

Keywords—Automatic tuning; parallel semantic reasoning; per-
formance optimization; ontology; high-performance computing

I. INTRODUCTION

In today’s digital landscape, machines use ontologies,
structured knowledge representations, to process and infer
information across domains, forming a larger knowledge base
known as Linked Open Data (LOD) [1]. Ontologies are es-
sential for applications such as the semantic web, artificial
intelligence, and data-driven decision-making [2], enabling
machines to derive insights from complex relationships [3].
However, as ontologies grow in size and complexity, especially
with the rise of the Internet of Things (IoT) and social net-
works, reasoning over these vast knowledge graphs becomes
challenging [4]. Traditional semantic reasoners, which use
sequential processing, struggle to scale with the growing size
of ontologies, leading to significant delays in driving inferences

(4], [5].

Fortunately, parallel reasoning systems have emerged,
leveraging multicore and distributed computing technologies to
improve efficiency [6]. These systems divide reasoning tasks
into smaller units, allowing concurrent processing between
multiple computing cores or nodes, thus improving speed and

performance [7]. Despite these improvements, the rapid growth
of data from IoT systems and social networks continues to add
complexity to the reasoning process, demanding more scal-
able and efficient solutions [8]. Therefore, optimizing parallel
reasoning systems to successfully manage performance while
addressing the increasing complexity of ontologies is a major
challenge for researchers.

Numerous automatic tuning approaches have shown sig-
nificant improvements in different application areas, such as
hyperparameter tuning to optimize machine learning models
[9], [10], big data analytics systems [11], [12], and parallel
programs [13], [14]. These approaches varied in their strategies
and techniques. Optimization search methods have shown
accurate results in finding optimal solutions compared to
other approaches. However, studies have reported a significant
challenge in reducing search time as search space increases.

Linking these challenges in the areas of semantic reasoning
and optimization, we present the Eagle Framework (EF), an
advanced modular and extensible tool to optimize the perfor-
mance of parallel reasoning systems. EF automatically gen-
erates parallelism configurations, recording performance data,
and identifying the optimal degree of parallelism. Operating
as a black-box solution on top of existing parallel semantic
engines, EF relieves researchers and developers of the time-
consuming process of manual tuning. A key innovation of
EF is its novel search algorithm, which integrates an AVL
tree with a priority queue, enabling efficient exploration for
the optimal thread configuration. EF is implemented in Java,
ensuring compatibility with a wide range of operating systems
and server environments. In addition, EF saves performance
data in CSV format and high-resolution line charts for data
visualization. In general, EF significantly streamlines the opti-
mization process, ensuring optimal performance and offering
valuable time efficiency for researchers to develop scalable and
advanced parallel reasoning systems.

In addition to proposing a tuning framework, this study
includes a comprehensive case study, in which we validate
the performance and reliability of our framework, as well as
its effectiveness in optimizing parallel reasoners. We utilized
multiple statistical methods through the assessment process,
but a key method is introducing the Interclass Correlation
Coefficient (ICC) for the reliability analysis. We will explain
how we applied the Interclass Correlation Coefficient (ICC) to
evaluate the reliability of tuning systems. To the best of our
knowledge, ICC has not been used in evaluating automatic
tuning.

www.ijacsa.thesai.org

1310 | Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

The remainder of this study is organized as follows. Section
II provides a comprehensive review, highlighting the gaps in
the existing literature. Section III presents the conceptual and
technical design of the EF architecture. Section IV details
the case study that evaluates EF from the perspectives of
performance, reliability, and effectiveness. Section V presents
the findings of the study. Section VI discusses the findings and
insights derived from this study. Finally, Section VII concludes
the study.

II. BACKGROUND AND RELATED WORK

In this section, we provide a brief review of existing work
to highlight the gaps in the literature on semantic reasoning and
optimization. This review begins with the challenges of manual
tuning presented in the context of semantic reasoning. Then,
we provide an overview of the automatic tuning approaches
commonly applied in other domains. We review related works
with existing optimization methods. For each section of this
review, we grouped studies based on the tuning approach or
optimization method.

A. Challenges in Tuning Parallel Semantic Reasoners

Semantic reasoning is critical in applications that require
logical consistency and explainability, such as medical, bioin-
formatics, and law. However, the development of parallel
semantic reasoning systems has been less active in the last
ten years, and most of these systems have been abandoned
and no longer maintained [15]. Research studies in semantic
reasoning implemented manual tuning to adjust the degree
of parallelism. Examples of these studies are [6], [16], [17].
Although these studies did not explicitly state the drawbacks of
manual tuning approaches in their research results, recent stud-
ies highlighted the challenges of computational complexity and
performance in automated reasoning [18] [19]. Reasoning tasks
use algorithms that require extensive computations and re-
source allocation [20]. These scalability challenges are further
complicated by the increase in ontology sizes and hierarchies
that require intensive computation. Although parallel semantic
reasoners leverage multicore and distributed architectures to
tackle scalability issues, without automatic tuning strategies,
reasoning scalability remains challenging. The Table I provides
a comparison of various approaches based on different factors
and parameters.

B. Overview of Automatic Tuning Approaches

This section reviews recent studies on optimizing parallel
systems. It classifies them into six approaches, following the
categorization by Herodotou et al. [21], and discusses the
advantages, limitations, and methods for each approach.

1) Search-based approach: The search-based approach
systematically searches for the optimal solution through ex-
periments, improving performance and resource efficiency.
Although this approach is reliable for identifying the optimal
or near-optimal solution, it can be computationally expensive
for large systems. Van Werkhoven introduced an automatic
framework that integrated various optimization search, includ-
ing simulated annealing and particle swarm optimization, to
optimize GPU kernels in OpenCL and CUDA [22].

Vol. 16, No. 1, 2025

2) Rule-based approach: The rule-based approach uses
predefined guidelines and domain expertise to guide tuning
decisions, offering simplicity and fast execution. It works well
in predictable environments where the behavior of the system
follows established patterns. However, its lack of flexibility
limits its effectiveness in complex or dynamic workloads.
Schwarzrock et al. applied this approach to enhance per-
formance and energy efficiency in NUMA systems. Their
focus was on optimizing thread-to-core mapping, memory page
mapping, and thread throttling [23].

3) Machine learning approach: The machine learning ap-
proach employs models, such as regression and neural net-
works, to predict optimal configurations by learning from
historical data, capturing complex relationships for improved
tuning accuracy. When trained on quality data, these models
can achieve near-optimal configurations without exhaustive
searches. However, they require substantial data and computa-
tional resources, and accuracy is dependent on data quality.
Fan et al. used a random forest model to optimize query
performance in databases by predicting optimal degrees of
parallelism [24].

4) Adaptive approach: The adaptive approach dynamically
tunes parameters in real-time, adjusting to workload changes,
making it ideal for dynamic environments where static tuning
fails. It can achieve near-optimal configurations quickly with-
out exhaustive searches, though it may introduce overhead and
struggle with stability in highly volatile conditions. Vogel et al.
proposed reactive self-adaptive strategies to control parallelism
in stream processing systems, allowing real-time adjustments
without the need to restart applications [25].

5) Cost modeling approach: Cost modeling estimates re-
source costs, such as memory and CPU usage, for different
tuning configurations, helping to avoid costly trial runs. It
provides fast and moderately accurate estimations; however,
its limitations lie in the accuracy of the model as it may not
capture all the dynamics and interactions in the real world.
This limits its ability to find optimal configurations in complex
environments. Siddiqui et al. introduced a machine learning-
enhanced framework to improve the accuracy of cost modeling
in big data systems [26].

6) Simulation-based approach: The simulation-based ap-
proach models the behavior of the system in a simulated
environment to predict optimal settings without affecting live
performance. This is especially useful for difficult-to-test
scenarios, offering reliable approximations if the simulation
models are accurate. However, accuracy depends on model
fidelity and detailed simulations can be resource-intensive.
Liu et al. developed HSim, a Hadoop simulator for modeling
various performance parameters in cloud computing [27] .

C. Existing Optimization Search Methods

Among the six approaches previously discussed, we were
particularly motivated by the reliability of search-based meth-
ods in finding optimal solutions. This section focuses on
studies that implement these search-based methods. Currently,
search methods are applied in system optimization in related
domains, big data, machine learning, and high performance
computing. These studies provide valuable insights that inform
the design of our solution for optimizing parallel reasoning
performance.

www.ijacsa.thesai.org

1311 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 1, 2025

TABLE 1. SUMMARY OF COMMON PARALLELISM TUNING APPROACHES

Approach Search-based Rule-based Machine Learning | Adaptive Cost Modeling Simulation-based
Methods Search algorithms. | Based on heuristics. | Data-driven predic- | Real-time dynamic | Cost estimation | System behavior
tions adjustments. models. simulation.

Advantages | High-quality Simple, fast deci- | Adapts to changing | Real-time tuning. Guides resource de- | Tests without real-
solutions. sions. conditions cisions. world impact.

Drawbacks | Expensive comput- | Expert knowledge | Large data needed, | Struggles with un- | May overestimate | Expensive comput-
ing costs. required. Slow training. expected changes. real-world factors. | ing costs.

Domain Large, complex sys- | Simple, predictable | Learning from his- | Workloads that | Resource- Expensive or risky
tems. systems. tory. change. constrained systems. | scenarios.

Data Size Moderate to large. | Small to moderate. | Large. Small to medium. Small to medium. Large.

1) Grid Search (GS): GS is an optimization method that
systematically explores all possible parameter combinations to
determine the optimal one. However, this exhaustive approach
is computationally expensive, particularly for high-dimensional
search spaces [28].

Recent studies have demonstrated the potential of GS in
optimizing systems in various domains. For example, George
and Sumathi applied GS to optimize a random forest classifier
for sentiment analysis, leading to improved accuracy [29].
Similarly, Priyadarshini and Cotton used GS to tune a deep
neural network model for sentiment analysis, achieving an
accuracy above 96%, which outperformed several baseline
models [30]. In the big data domain, Chen et al. incorporated
GS into their system to optimize MapReduce performance
on Hadoop clusters, identifying optimal configurations to
minimize running times [31]. In a similar study, Sewal and
Singh compared GS with other optimization methods such
as Evolutionary Optimization and Random Search to fine-
tune Apache Spark. They found that GS was effective in
reducing execution times by 23.24%. [32]. These studies are
examples among others that utilize determinism in GS to
enhance performance in areas like machine learning and big
data systems.

2) Hill Climbing (HC): HC is a simple and efficient local
search algorithm that iteratively improves an initial solution
by exploring neighboring options. However, it may get stuck
in local optima, reducing the chances of finding the global.

Recent studies have highlighted the effectiveness of HC
in various fields. For example, Sivakumar and Mangalam
introduced a technique to improve adaptive cruise control
systems in automated vehicles, using a combination of search
methods, including HC, to optimize vehicle parameters, im-
proving safety and fuel efficiency [33]. Zeng et al. employed
a simple HC method with machine learning techniques to
optimize parallelism in Parallel Nesting Transactional Memory
(PN-TM) systems, achieving faster convergence and higher ac-
curacy compared to other optimization methods [34]. Pradhan
et al. applied HC to optimize a CNN model for classifying
COVID-19 from chest X-ray images, improving its perfor-
mance metrics and outperforming other hybrid techniques [35].
These studies are among several that demonstrate HC as a
versatile and effective optimization method to improve system
performance in diverse domains, from automated vehicles to
machine learning and medical image classification.

3) Simulated Annealing (SA): SA is a probabilistic opti-
mization algorithm that explores various solutions, including
the worst ones to escape local optima. SA is widely used
method for many optimization problems due to its adaptability
and capability to navigate rugged search spaces [36]. However,
it can be computationally intensive, sensitive to parameter
choices, and slow to converge.

Recent studies demonstrate the adaptability and effective-
ness of SA in finding optimal solutions for complex optimiza-
tion problems. A study by Rasch et al. utilized SA within their
Auto-Tuning Framework (ATF) to optimize interdependent
parameters in parallel programs, using the chain of trees
and coordinate search spaces to enhance multidimensional
exploration and improve tuning efficiency [7]. Giilcii and Kusg
introduced the multi-objective simulated annealing algorithm
for optimizing hyperparameters in convolutional neural net-
works, balancing classification accuracy and computational
complexity, and achieving superior results compared to tra-
ditional SA [37]. Similarly, Abdel-Basset et al. combined SA
with Harris Hawks Optimization to enhance feature selection
for classification tasks, using SA to escape local optima and
explore better feature subsets effectively [38]. These stud-
ies highlight the effectiveness of SA, both as a standalone
algorithm and within hybrid frameworks, in solving diverse
optimization problems across fields.

4) Random Search (RS): Random Search (RS) is a simple
algorithm that explores a search space by randomly sampling
points and updating the best solution found. Although its
simplicity and ability for global exploration, it lacks efficiency
in high-dimensional spaces.

Recent studies underscore the role of RS as a simple and
effective optimization method in different applications. A study
by Willemsen et al. proposed a standardized benchmarking
methodology for evaluating automatic tuning frameworks. This
methodology integrates RS as a baseline for benchmarking
optimization algorithms [39]. A similar study by Deligkaris
used RS as a baseline method to benchmark evobpso, an algo-
rithm based on particle swarm optimization, against 12 related
methods and models. The benchmark results demonstrated the
effectiveness of RS in the search for neural architectures [40].
Hosseini et al. employed RS in optimizing 10 hyperparame-
ters of Long Short-Term Memory (LSTM) networks used in
rainfall-runoff modeling, resulting in highly precise predictions
for hourly stream-flow and water levels in Spain’s Basque
Country [41]. Despite the advancement of more sophisticated

www.ijacsa.thesai.org

1312 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

methods, these studies highlight the effectiveness of RS as a
baseline or complementary method in advanced optimization
methods.

D. Limitations and Research Gaps

Section II-A presented studies on parallel reasoning, which
currently rely on manual tuning for optimization and scalability
analysis. As research labs, governmental sectors, and universi-
ties continue to develop ontologies, the need for scalable and
efficient reasoners has increased. Furthermore, the substantial
efficiency and accuracy of automatic tuning reported in studies
applied in other domains, such as machine learning and big
data, highlight that the lack of automatic tuning application in
semantic reasoning is a considerable gap. To the best of our
knowledge, the application of automatic tuning in semantic
reasoning has not been explored. Therefore, addressing this
gap is the main objective of this study.

The studies reviewed in Section II-C noted the advances
gained from applying search optimization methods. However,
they also noted significant limitations of these optimization
methods (see Table II). For GS, though it is exhaustive and
guaranteed to find the optimal solution, it is computationally
expensive, especially in multidimensional spaces where the
time increases exponentially with increase in the search space.
On the other hand, HC, SA, and RS offer greater efficiency and
scalability; however, they are limited by several drawbacks,
such as risks of local optima, stochastic behavior, and incom-
plete search space exploration. These limitations underscore
the trade-off between time complexity and the guarantee of
identifying the optimal solution, and this trade-off is strongly
correlated with search space size. As noted by Krestinskaya
et al., optimizing search time for large search spaces remains
a critical gap and an open research challenge in optimization
[42]. Therefore, the second objective of this study is to address
the complexity of search time by designing a deterministic
algorithm and a tree-based search space that aims to guarantee
finding the optimal solution in efficient time.

TABLE II. SUMMARY OF SEARCH OPTIMIZATION METHODS

Aspect Grid Hill Simulated An- Random
Search Climbing nealing Search
Exploration Global Local Global (with Global (with
refinement) random
sampling)
Efficiency Very Low High Medium Low
Dimensional Poor Poor Good Good
Scalability
Risk of Local No High Low No
Optima
Best Use Case Small Small Large spaces Large spaces
spaces spaces
Time o(n*) O(k-n) | Ok -n) O(k - n)
Complexity

III. EAGLE FRAMEWORK (EF)

This section presents the architectural and algorithmic
design of EF. Before diving into architectural design, we
provide an overview of the EF multi-layered system, where the
EF resides in the middle layer. This overview is essential for

Vol. 16, No. 1, 2025

understanding the interoperability and portability of EF, which
allows it to function with various parallel reasoning systems
on different platforms. Following the system overview, we will
explore the architectural details of EF from both mathematical
and algorithmic perspectives.

A. System Overview

EF is a modular architecture that operates within a mul-
tilayered system, where EF occupies one layer alongside a
parallel reasoner. The abstraction view of the EF system
consists of five layers, as depicted in Fig. 1.

The first layer is the Command Line Interface (CLI), which
accepts parameter values to set automation parameters and
is responsible for displaying output results. The second layer
represents the main contribution of this study, where EF and
the parallel semantic reasoner are positioned. EF comprises
one main algorithm and three auxiliary algorithms: Thread
Controller, Speedup Calculator, and Parallelism Optimizer.
The third layer is the java runtime environment, which serves
as a bridge between the EF implementation and the operating
system. This middle layer provides the resources needed to
compile and execute EF classes on any machine. The fourth
layer is the operating system, which abstracts physical hard-
ware and manages system resources. The final layer is the
hardware, which represents the physical components of the
machine, such as memory and the CPU. The next section
focuses on the second layer, detailing the EF architectural
components and their interactions with the other layers.

B. EF Architecture

EF architecture consists of a main algorithm and auxiliary
algorithms. The main algorithm represents the core architecture
of the EF and the interface that manages the connection
between the CLI layer, the parallel reasoner, and the auxiliary
algorithms. The auxiliary algorithms help the main algorithm
in the tuning process by adjusting the thread count, calculating
the speedup factor, and identifying the optimal thread count.
Fig. 2 presents a flow chart for the EF architecture. The
following sections provide an in-depth explanation of the
functionality of each algorithm within the EF architecture.

1) The Main algorithm: As shown in Fig. 2, the main
algorithm comprises five phases: automation setup, sequential
reasoning, parallelism tuning, optimization, and output format-
ting.

a) Phase 1: Automation setup: The main algorithm
starts by accepting three parameter values from the CLI layer:
the path to the ontology file (p), the scale difference (d),
which defines the incremental scale used to calculate thread
configurations, and the maximum thread count (m), which
serves as a threshold to limit the generation of additional
configurations. Based on these parameters, the number of
thread configurations is proportional to the values of d and
m. Additionally, it creates a tree (A) to use in the search for
the optimal thread count (o), and a list (L) to store performance
data. It also sets the thread count (n) and speedup factor (s)
to the seed value of 1.

www.ijacsa.thesai.org

1313 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

User

Output results Input

Command Line Interface (CLI) |

configurations

<&
<

I
Results configurations

Eagle Framework

Parallel Reasoner |

Main Algorithm |

Reasoning time

Ly |

Thread Controller | | Speedup Calculator | |Para|lelism Optimizer|

) v

Java Runtime Environment (JRE) ‘

1 v

Operating System (OS)

1 v

Hardware |

Fig. 1. EF System overview.

b) Phase 2: Sequential reasoning: In this phase, the
main algorithm runs the parallel reasoner, runReasoner (p,
n), sequentially using one thread. Then, the main algorithm
saves sequential reasoning time in a variable named Ti,.
Since EF does not perform parallel reasoning at this phase, the
speedup factor remains 1. Consequently, the main algorithm
inserts the values of n and s in A and adds them with T, to
L.

¢) Phase 3: Parallelism tuning: This phase represents
the core automation provided by EF. The main algorithm starts
the automation by checking whether n does not exceed m.
This step is essential to limit the EF from generating more
configurations. If n is less than or equal to m, the main
algorithm passes n and d in a call to the Thread Controller
ctrlThreads (n, d). After receiving the new n value
from the Thread Controller, the main algorithm passes n with p
in a call to the reasoner and stores the parallel reasoning time
in a variable named 7),q,. Subsequently, the main algorithm
sends T, and Ty, in a call to the Speedup Calculator,
calcSpeedup (Tseq, Tper), to find the ratio and save it
in s. Finally, the main algorithm performs the necessary
operations to store performance data in A and L.

d) Phase 4: Optimization: In this phase, the main
algorithm passes A in a call to the Parallelism Optimizer,
optParallelism(A), which searches for o in A. Once
o is identified, the main algorithm prints o on the console.
The parallelism tree and optimizer will be explained compre-
hensively in Section III-B4.

e) Phase 5: Output formatting: This phase is the final
stage in EF, where performance data L are formatted into a
comma separated value file (CSV). This format was chosen
for its compatibility with most statistical analysis and database
systems, which allows direct processing by analysis tools. In
addition, a line chart is generated to illustrate the relationship

between each thread count and the associated reasoning time.

2) Thread controller: This section explains the algorithm
of Thread Controller, denoted as ctrlThreads (n, d),
designed to create thread configurations. Building on rec-
ommendation by Huang et al. [43], who recommended em-
ploying sampling strategies for generating configurations, this
algorithm generates thread configurations systemically using
a specified scale difference, d. To prevent incorrect input,
we added a conditional statement that verifies the value of
d entered by the user. If d is assigned a negative number or
zero, the Thread Controller sets d to the seed value of 1 and
recalculates n accordingly. Otherwise, the Thread Controller
computes the new n based on the provided value of d.

Definition 1. Ler n be a thread configuration and d be the
scale difference. The Thread Controller calculates is defined
as:

n—+1
n+d

ifd<0

if d>0 M

ctriThreads(n,d) = {

3) Speedup calculator: Speedup is a common metric
that is used to assess performance improvements in sys-
tems running on parallel computing architectures. To mea-
sure speedup, we designed Speedup Calculator, denoted as
calcSpeedup (Tseq, Tper), an algorithm that calculates
the speedup factor as the ratio between the execution time for
sequential reasoning and the time taken for parallel reasoning.
Since most reasoners record reasoning times in milliseconds,
we took account of scenarios where executing the reasoner on
massively parallel computing resources results in reasoning
times in fraction of a millisecond rounded to zero (i.e. in
nanoseconds). To handle this, the Speedup Calculator first
checks if the value of T}, is non-zero. If this condition is

www.ijacsa.thesai.org

1314 |Page

Start

/ - Phase 1
Automation Setting

N\

Initialize variables
n=1, s=1

/ Phase 2 \
Sequential Reasoning

| | Ty ~runReasoner (p, n)| |

| Insert n, s in A |

v

\| Addn, s, T, to L |/

|
|
|
—
|
|
|
|

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 1, 2025

v

| |s = calcSpeedup(T.,,, T,,)

| Insert n, s in 4 |

v

—| Addn, s, Ty, 10 L | /

Fig. 2. EF Architecture.

Optimization

| |o=0ptParallelism(A)| |

e — v
'\ | | Print o to console | |
/
lYes e A
- /""" Phases
| | ”CtrlThrfadS(n’d) | | Output l*fl(f:matting
| | Tpar=runReasoner(p,n) | |

v

| Write CSV file to disk |

v

Create line chart | |

| \
| |
| |
| |
| | | Format L into CSV | | I
| |
| |
| |
| |
| |

L

N

!

met, the calculator proceeds with the division. However, if
T'qr equals zero, the calculator throws an arithmetic exception,
which is treated as “undefined” in arithmetic, and the process
safely halts.

Definition 2. Let T, be the execution time of the sequential
reasoning, and Tyq. be the execution time of the parallel
reasoning. The Speedup Calculator is defined as:

leSpecdup(Tusg; Tyar) = 4 2 e T Tpar =0)
calcSpeedu T par) = 4 T, ;
P Pl seqr Lpa Tour if Tpar # 0

4) Parallelism Tree (PT) and Parallelism Optimizer (PO):
An AVL tree is a self-balanced binary search tree character-
ized by its speed in most operations, including insertion and
searching [44] [45]. We chose the AVL tree to construct the
search space in EF due to its time efficiency, with a worst-
case time complexity of O(logn) for core operations, which
outperforms other data structures to align with the objective of
this study. For clarity, we used Parallelism Tree (PT) to refer
to the tree-based search structure and Parallelism Optimizer
(PO) to refer to the associated optimization algorithm.

PT is a modified version of the AVL tree, where each node
a consists of performance data (s) and its associated thread
configuration (n). In addition, each node has pointers to a left
child (7) and a right child (r). Unlike the AVL tree, PT uses
s as the key to determine the correct position to insert a new
node. In PT, the sequential reasoning node is always the root,
while the parallel reasoning nodes are placed based on their

speedup factor. Algorithm 1 presents the insert procedure for
PT.

Algorithm 1: insert(s, n)
Input: s,n
Output: rebalance(root)
if root = null then
return new Node(s, n)
else
if root.s > s then
root.l < insert(s,n)
else if root.s < s then
root.r < insert(s, n)
else
root.nQueue.add(n)
end if
. end if
return rebalance(root)

R A I e

—_ e e
Rl A

In the initial experiments, we observed that different
thread configurations produced identical speedup factors. Con-
sequently, PT prevents the insertion of nodes with duplicate
speedup. To resolve this issue, we integrated a priority queue
within the PT node structure to store all thread configurations
associated with the same speedup factor. This approach enables
PT to encapsulate each speedup factor with its corresponding
thread configurations in the same node. The priority queue
orders the configurations from the smallest to the largest,
enabling efficient exploration by neglecting the less effective
configurations. In this study, we designed PO to select the

www.ijacsa.thesai.org

1315 | Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

[9]12]13] 14] 15]

Fig. 3. Parallelism tree (PT) in EF where each node contains speedup factor (s) and the associated thread configuration queue (n).

smallest thread configuration as the optimal one, under the
assumption that this configuration achieves the highest speedup
factor and that performance will not improve beyond this point.
Fig. 3 illustrates an example of PT resulting from one tuning
experiment. The red circle denotes the node with the maximum
speedup value, while the blue square indicates the optimal
degree of parallelism PO selects from the thread queue.

Similarly to the AVL tree, PT is ordered and places
the node with the highest speedup factor at the end of its
rightmost path. Therefore, we designed the PO algorithm,
denoted as optParallelism(A), to search for the optimal
configuration only in the rightmost path of the PT. Such an
approach efficiently saves time compared to search in a multi-
dimensional space structure. PO starts the optimization search
by checking whether the root’s right pointer points to NULL.
If so, it returns the root node because it contains the optimal
degree of parallelism. If not, it performs this check recursively
until it finds the node whose right pointer refers to NULL as
the node containing the optimal thread configuration. The PO
algorithm is shown in Algorithm 2.

Algorithm 2: optParallelism(node)

Input: node
Output: node
if node.right == null then
return node
else
return optParallelism(node.right)
end if

AN A A s

IV. EXPERIMENTAL DESIGN AND SETUP

This study aims primarily to evaluate EF in terms of
performance, reliability, and effectiveness in assessing the scal-
ability of parallel reasoners. To achieve this, we conducted our
experiments on a case study on the ELK reasoner, a reasoning
engine specifically designed for OWL2 EL ontologies [16].

ELK is one of the few actively maintained parallel reasoners
for OWL2, as many other reasoners have been discontinued
[15]. Although ELK provides a variety of reasoning services
to support ontology development and querying, our experiment
scope is only on the classification reasoning service.

We conducted the experiments on the Aziz Supercom-
puter, where each node consists of two 12-core processors
(Intel Xeon CPU E5-2695v2, 2.40 GHz) that support Hyper-
Threading Technology, providing a total of 48 logical cores and
a total memory of 256 GB (128 GB per processor). Since ELK
was designed to operate exclusively on shared memory servers
[16] [46], we performed all experiments on a single node. To
maintain the integrity of our results, we secured exclusive ac-
cess to server resources, thereby preventing the interleaving of
jobs which could potentially compromise reasoning time and
speedup factor. Furthermore, we configured the EF parameters
with a scale difference of 1 and set the maximum thread count
to 240 in all experiments. Section V-D1 will explain our choice
of these parameter values.

Our research used a systematic sampling technique to
select the ontologies. First, we downloaded ontologies from
BioPortal ' and OBO Foundry? that support the OWL2 EL
profile. Then, we further classified the ontologies based on
the number of TBox axioms into different sizes, ranging
from tiny to medium. We based our categorization on the
number of TBox axioms since the classification reasoning
service is associated with only TBox axioms. We selected
three ontologies from each size category, resulting in a total
of nine ontologies. Each ontology was examined in a separate
experiment, and each experiment was repeated three times
to ensure reliability, resulting in a cumulative total of 27
experiments. This approach allowed us to ensure a diverse
range of ontologies for our experiments while ensuring that
the samples represented the entire population of OWL2 EL
ontologies.

Thttps://bioportal.bioontology.org/
Zhttps://obofoundry.org/

www.ijacsa.thesai.org

1316 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

V. CASE STUDY: VALIDATING THE PERFORMANCE,
RELIABILITY, AND EFFECTIVENESS OF EF IN TUNING THE
ELK REASONER

ELK is a specialized OWL reasoner that classifies ontolo-
gies in the OWL2 EL profile. It is known for its high per-
formance due to its parallel reasoning and robust optimization
techniques [16]. ELK has expanded its capabilities to include
incremental classification and proof tracing, with optimizations
for handling role composition axioms and rewriting low-
level inferences. These improvements simplify incremental
reasoning, proof generation, and enable automated verification
and ontology debugging.

This case study begins with an assessment of EF from
performance and readability perspectives and ends with an
evaluation of the effectiveness of EF in analyzing the scal-
ability of the reasoning system.

A. Overall Framework Performance

The analysis starts by evaluating the performance of the
EF for the overall tuning process, covering ontology loading,
configuration generation, performance monitoring, and reason-
ing optimization. Table III presents the minimum, maximum,
average and standard deviation of execution times (in seconds)
required for EF to tune and optimize the ELK reasoner.
Execution times range from a few seconds to just under five
minutes.

For tiny ontologies, such as OLATDV, INO, and FBDV,
the tuning process was completed in a few seconds, demon-
strating the framework’s efficiency in quickly exploring thread
configurations. Small-sized ontologies, including PLANA and
PDON, exhibited slightly longer tuning times, ranging from
17 to 28 seconds. In contrast, medium-sized ontologies, such
as OBA, EMAPA, and ORDO, required significantly more
time, with ORDO taking the longest at 4 minutes and 29
seconds. This variation in execution times reflects the influence
of ontology size on EF performance, with larger ontologies
requiring longer durations.

Narrowing the focus from overall framework performance,
the next section presents a detailed comparative analysis of the
EF’s optimization algorithm against baseline search algorithms
commonly used in optimization studies.

B. Parallelism Optimizer vs. Existing Optimization Methods

To evaluate EF’s optimization performance, we compared
its Parallelism Optimizer (PO) with existing search methods
commonly used in optimization studies. Specifically, we com-
pared PO with grid search (GS), hill climbing (HC), simulated
annealing (SA) and random search (RS). To conduct a fair
comparison, we separated PO from the EF architecture. We
used one data set resulted from one tuning experiment for all
the algorithms involved in the comparison. For SA, we set the
initial temperature at 1000 and the cooling rate to 0.95, while
for RS, we set the number of iterations to 100.

A summary of the comparative analysis is shown in Table
IV. The results showed that PO significantly outperforms its
competitors, achieving an average reasoning time of just 0.003
ms. In contrast, the average reasoning times for the other
algorithms were 0.167 ms for GS, 0.090 ms for HC, 0.196 ms

Vol. 16, No. 1, 2025

for SA, and 0.128 ms for RS. This high efficiency is further
demonstrated by the success rate in identifying the optimal
thread configuration. PO perfectly found the optimal thread
configuration in all ten attempts, while both HC and SA failed
in all attempts, and RS succeeded in only three trials.

C. Data Quality and Reliability

In data assessment, we focus on evaluating the quality
of the EF measurements gathered during the tuning process
and the consistency between these measurements. Listing 1
represents a sample console output of the type of variable
data input, missing values, and duplicate rows in the data
collected by the EF. As shown in Listing 1, the data underwent
evaluation included the test ID for referencing purposes, thread
count, reasoning time in milliseconds and in a format of
days, hours, minutes and seconds to ease readability, and
corresponding speedup factor. The assessment showed that
each variable was correctly formatted in a suitable data type. In
addition, it revealed that neither missing values nor duplicate
rows were found in the data, reporting data integrity and
quality.

File: ELK_ORDO_1_240_2.csv

| Variable | Data Types | Missing |
== - - - == | === I
Test Number	object	0
Number of Threads	int64	0
Total Reasoning Time (ms)	inte64	0
Total Reasoning Time (d:h:m:s)	object	0
Speedup Factor	floato4d	0
I	I	

Duplicate Rows:

Listing 1. Sample Console Output For EF’s Data Quality Assessment.

To assess the reliability of the EF, we used the intraclass
correlation coefficient (ICC). We selected ICC over other
statistical methods because our study involves repeated exter-
minates conducted in the same environmental settings. ICC is
a highly precise statistical method that is sensitive to variance
[47]. In addition, ICC can assess both the consistency within
and between configurations. It is widely used in other fields
such as medicine, psychology, biology, and genetics, especially
to evaluate the reliability of measurement tools such as medical
instruments and computer-aided detection (CAD) systems [48].
To our knowledge, this is the first study to use ICC in assessing
the reliability of automatic tuning methods.

Because the speedup factor is a ratio, we applied the ICC
assessment exclusively to the reasoning time. The results of the
reliability analysis for different ontology sizes are presented
in Table V. Each assessment applied the ICC(3,k) model to a
dataset of 720 measurements, calculated as each experiment
repeated three times with 240 measurements per trial. As
shown in Table V, the analysis of nine ontologies revealed high
ICC scores, ranging from 0.789 to 0.992, indicating strong
consistency between measurements. All ontologies showed
statistically significant results (p < 0.001) with narrow confi-
dence intervals, indicating precise measurements. The highest
ICC was observed for INO (0.992), followed by OLATDV
(0.990) and PLANA (0.962). ORDO and PDON also showed
strong ICC scores of 0.951 and 0.932, respectively. However,

www.ijacsa.thesai.org

1317 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 1, 2025

TABLE III. REASONING TIME CALCULATED BY EF IN TUNING ELK REASONER (IN SECONDS)

Ontology TBox Axiom count Ontology Size® Min. Time Max. Time Avg. Time Median Time SD Time
OLATDV 88 Tiny 9.24 12.25 10.377 9.637 1.636
INO 384 Tiny 11.36 11.63 11.491 11.489 0.134
FBDV 646 Tiny 10.17 11.71 11.097 11.413 0.815
PDON 1252 Small 15.86 34.64 28.311 34.433 10.786
PLANA 2755 Small 15.89 18.21 17.071 17.113 1.157
WBPHENOTYPE 4026 Small 36.86 43.34 39.703 38.910 3.316
OBA 17811 Medium 137.06 295.03 194.653 151.877 87.241
EMAPA 23029 Medium 74.49 78.92 77.309 78.518 2.448
ORDO 53861 Medium 233.28 287.40 269.103 286.634 31.029

? Ontology sizes categorized by TBox axiom count: Tiny — fewer than 1,000 axioms; Small — 1,000 to 10,000 axioms; Medium — 10,000

to 100,000 axioms; Large — 100,000 axioms or more.

TABLE IV. BENCHMARKING THE PARALLELISM OPTIMIZER AGAINST
EXISTING OPTIMIZATION SEARCH ALGORITHMS

Algorithm Grid Hill Simulated Random Parallelism
Search Climbing Annealing Search Optimizer

Average Reasoning 0.167 0.090 0.196 0.128 0.003

Time (ms)

Success Rate for 10/10 0/10 0/10 3/10 10/10

Optimal Thread

Identifications (out

of 10)

Time Complexity O(n) O(n) O(n) O(n) O(logn)

TABLE V. RELIABILITY ANALYSIS FOR EF MEASUREMENTS AMONG
DIFFERENT SI1ZES OF ONTOLOGIES

Ontology ICC F P CI95%

OLATDV 0.989824 98.267647 8.143461e-311 [0.99, 0.99]
INO 0.992448 132.417193 0.0 [0.99, 0.99]
FBDV 0.880456 8.365113 3.314461e-85 [0.85, 0.90]
PDON 0932163 14.741265 1.651629¢-130 [0.92, 0.95]
PLANA 0.962178 26.439423 9.941877e-183 [0.95, 0.97]
WBPHENOTYPE 0.789731 4.755818 9.179020e-48 [0.74, 0.83]
OBA 0.883609 8.591758 3.438310e-87 [0.86, 0.91]
EMAPA 0.889079 9.015433 8.344745e-91 [0.86, 0.91]
ORDO 0951172 20.48018 2.327254e-159 [0.94, 0.96]

WBPHENOTYPE, with an ICC score of 0.790 and a 95%
confidence interval of [0.74, 0.83], showed moderate con-
sistency. Although the ICC score for WBPHENOTYPE was
statistically significant, its lower ICC and broader confidence
interval indicated weaker consistency compared to the other
ontologies.

D. EF Effectiveness in Analyzing Reasoning Performance

This section explores the role of EF in helping researchers
with scalability assessments to improve the performance of
parallel semantic reasoners. To validate EF effectiveness, we
performed exploratory and regression analysis.

Before conducting the evaluation, we combined all EF
data resulted from all experiments. Additionally, we added
characteristics information for each ontology, including the
TBox axiom count and size. we performed the necessary pre-
processing and normalization .

1) Exploratory analysis: This section explores the impact
of varying thread configurations and ontology sizes on the
performance of the ELK reasoner. It also examines the re-
lationship between the optimal degree of parallelism and the
total number of logical cores. To examine these relationships,
we define three examination areas:

e Area 1: less than the total of logical cores.
e Area 2: equal to the total of logical cores.

e Area 3: greater than the total of logical cores.

As mentioned in Section IV , we set the scale difference
to 1 and the maximum thread count to 240. These settings
ensured the gradual increase in thread configurations with
a threshold exceeding the total number of logical cores. In
addition, these settings allowed us to cover all the examination
areas in a single execution. Fig. 4a, 4b, and 4c demonstrate
the scalability of the ELK reasoner with varying ontology
sizes and thread configurations. The red dashed line presents
a reference mark pointing to the 48 logical cores.

In Fig. 4a, processing tiny ontologies OLATDV, INO, and
FBDV displayed optimal performance at around 48 threads,
with OLATDV achieved a speedup factor of 30, followed by
FBDV of 25 and INO of 16. For OLATDV and INO, the
optimal thread configuration was found in Area 1, while for
FBDV the optimal solution was found in the first portion of
Area 3, after which the performance decreased significantly.
Similarly to tiny ontologies, the small ontologies PDON,

www.ijacsa.thesai.org

1318 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Tiny Ontologies

—— OLATDV
INO
— FBDV
~-- Total Logical Cores

Speedup Factor

0 50 100 150 200 250
Number of Threads

(a) Tiny ontologies

Small Ontologies

—— WBPHENOTYPE
PLANA

—— PDON

-~ Total Logical Cores

Speedup Factor

H
0 50 100 150 200 250
Number of Threads

(b) Small ontologies

Medium Size Ontologies

—— ORDO
OBA

—— EMAPA

--- Total Logical Cores

Speedup Factor

0 50 100 150 200 250
Number of Threads

(c) Medium ontologies

Fig. 4. ELK’s Scalability with varying ontology sizes and thread
configurations.

PLANA, and WBPHENOTYPE reached the speed factor of
16, 12, and 6, respectively, with optimal configuration found
in Areas 1 and 3, as shown in Fig. 4b. However, the range
of speedup factors for the small ontologies was narrower than
that of the tiny one, as indicated by the reduced scale of the
speedup axis in Fig. 4b compared to the axis in Fig. 4a.

In Fig. 4a, processing small ontologies like OLATDV, INO,
and FBDV showed optimal performance at approximately 48
threads. Processing OLATDV achieved a speedup factor of
30, FBDV reached 25, and INO managed 16. The best thread

Vol. 16, No. 1, 2025

configuration for OLATDV and INO was in Area 1, while
FBDV’s optimal performance was in the initial part of Area
3, followed by a significant drop. Similarly, small ontologies
PDON, PLANA, and WBPHENOTYPE achieved speed factors
of 16, 12, and 6, respectively, with optimal configurations in
Areas 1 and 3, as shown in Fig. 4b. The speedup range for
small ontologies was narrower compared to tiny ones, reflected
by the smaller scale of the speedup axis in Fig. 4b compared
to Fig. 4a.

Fig. 4c presents notable performance gains for medium-
sized ontologies compared to the small ones, where the average
speedup for processing ORDO and EMAPA achieved factors
between 4 and 5, while performance in processing OBA stabi-
lized at a less speedup factor. Key observations were deduced
from this figure. First, there is a notable decrease in the
range of speedup factors compared to Fig. 4a and 4b. Second,
the optimal thread configurations were identified in Area 1,
indicating that adding more threads did not lead to further
enhancements. Third, the trend line for this category shows
a performance stabilization, suggesting that ELK reasoners
benefits from parallelization in reasoning large ontologies more
than small ones.

2) Regression analysis: In this analysis, we used an Or-
dinary Least Squares (OLS) regression model to quantify the
impact of thread configurations and ontology size, measured
in terms of the TBox axiom count, on the reasoning time.
This model, with standardized predictors, explained 78.4% of
the variance in reasoning time (R? = 0.784), highlighting its
effectiveness in capturing the relationship between predictors
and reasoning time. The results, presented in a 3D scatter
plot shown in Fig. 5, revealed that while the TBox axiom
count significantly affected the time of reasoning (/31 = 0.8855,
p < 0.001), the thread count has a negligible impact (52 =
0.0066, p = 0.512). Furthermore, the model showed a notable
predictive accuracy, with an average Mean Squared Error
(MSE) of 0.2165 and a Root Mean Squared Error (RMSE)
of 0.4653.

VI. DISCUSSION

The rapid expansion of ontologies and the lack of automatic
tuning approaches have poses challenges on advancing parallel
semantic reasoners. In related domains, several sophisticated
tuning frameworks have been developed, applying existing
search methods for optimization. Although existing search
methods presented significant improvements, reducing their
search time is still an active research field. This study ad-
dressed these gaps by proposing an automatic tuning method-
ology with an innovative tree-based search algorithm.

Our case study presented in Section V validated the
performance gains, reliability, and effectiveness of automatic
tuning in optimizing parallel semantic reasoners. Using ELK
reasoner as a case study, our methodology, Eagle Framework
(EF), efficiently completed the entire tuning process, from
ontology loading to final optimization results, in less than
five minutes across 240 thread configurations. Practically, such
efficiency cannot be achieved in manual tuning approaches,
underscoring the importance of applying automatic tuning
methods to optimize the performance of semantic reasoner.
These findings align with the conclusion of Mustafa’s study,

www.ijacsa.thesai.org

1319 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

3D Scatter Plot with Regression Plane

e Data Points

=
o N
Reasoning Time (scaled)

©

o

.0
) 15

Fig. 5. A 3D Scatter plot with regression plane illustrating the relationship
between TBox axiom count, number of threads, and reasoning time.

who also found through his survey study that automatic tuning
ultimately outperforms manual tuning and becomes a crucial
demand for optimizing parallel architectures [49].

We benchmarked our search algorithm, Parallelism Opti-
mizer (PO), against the methods reviewed in Section II-C,
namely: Grid search (GS), hill climb (HC), simulation an-
nealing (SA), and random search (RS). We ensured a fair
comparison by isolating the implementation of PO from other
components in EF, similar to the isolation strategy employed
in [40]. The results demonstrated the superiority of PO over its
counterparts. PO exhibited logarithmic growth in search time
and achieved a perfect success rate in identifying the optimal
degree of parallelism. In contrast, other algorithms showed
linear growth in search time and varying success rates. This
superiority is gained from the deterministic characteristics of
PO combined with the structural design of the Parallelism Tree
(PT) search space. Specifically, the ordering nodes in PT based
on a performance metric (i.e. the speedup factor for this study)
and the queuing mechanism for storing parallelism configura-
tions significantly decreased the search time and reduced tree
size. Compared to the methodology proposed in [7], where
a long chain of trees with a distinct node was used only for
storage purposes, our methodology leveraged the efficiency of
an integration between the tree-based and priority queue in
storage and exploration purposes. However, our methodology
provides efficiency for one-parameter optimization, and multi-
dimensionality is not supported yet.

The analysis in Section V-D investigated the influence of
increasing thread count and ontology size on ELK’s scalability.
For small ontologies, the results showed severe performance
degradation as the number of threads increases. On the other
hand, larger ontologies exhibited a lower speedup factor but
maintained stable performance with the increase in thread

Vol. 16, No. 1, 2025

count. Our findings demonstrate that the ELK reasoner scales
efficiently with larger ontologies using a high degree of par-
allelism, while for small ontologies it performs poorly due to
over-utilization of processing units. These findings emphasize
those in [16], where the authors stated that their ELK reasoner
benefited more from increased parallelism when processing
larger ontologies than smaller ones. In summary, this study
highlights the need for adaptive tuning approaches to develop
efficient and scalable reasoning systems.

This study effectively applied the intraclass correlation
coefficient (ICC) method to analyze the reliability of EF.
This effectiveness was the result of the following conditions.
First, the sample size used in each ICC assessment were
relatively large. Second, the massively parallel resources in
HPC environment led to precise variance in the reasoning time
measurements. Third, the experimental setup ensured exclusive
access to HPC resources, leading to clean results, demon-
strating the robustness of EF. These conditions enabled the
ICC to effectively detect variance in time measurements both
within and between parallelism configurations, contributing to
a narrower confidence interval range. Based on these findings,
we recommend future investigations to explore the viability of
ICC in evaluating tuning results implemented under the same
conditions.

This study offers significant contributions to revitalizing the
domain of semantic reasoning and expanding existing research
on optimization approaches. However, it was constrained by
the limitations of the ELK reasoner, which operates only on a
shared memory system. Furthermore, the hardware resources
of the experimental environment restricted us from using
massive-size ontologies. Future experimentation is required to
validate the effectiveness of our methodology in optimizing
different semantic reasoners on different computing architec-
tures.

VII. CONCLUSION

As the size and complexity of ontologies expand, particu-
larly with the advent of the Internet of Things and other data-
driven systems, optimizing parallel semantic reasoners has
become a significant challenge. This study proposed the Eagle
Framework (EF), an innovative automatic tuning framework
aimed at helping researchers optimize the performance of
semantic reasoners. EF automatically generates thread config-
urations and effectively records performance data. EF differen-
tiates itself through its modular design and adaptability, operat-
ing as a black-box solution that integrates seamlessly with vari-
ous parallel reasoning engines. By designing a novel tree-based
search algorithm, EF efficiently identifies the optimal number
of threads. EF’s methodology significantly reduces the manual
effort required for tuning parallelism, saving researchers time
and enabling them to focus on higher-level tasks. EF’s ability
lies in writing the performance measurements in CSV files,
making them ready for data analysis. In addition, EF represents
performance data in high-resolution visualization, offering
researchers a comprehensive understanding of how different
configurations impact reasoning efficiency.

Through a case study, this research validated the efficiency
of EF in tuning thread configurations for the ELK reasoner
across varied ontology sizes. Comparative analysis shows that

www.ijacsa.thesai.org

1320 | Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

EF efficiently identifies optimal parallelism, outperforming
existing search algorithms applied in optimization studies.
Furthermore, this study validated the effectiveness of EF in ad-
dressing key research questions commonly discussed in the lit-
erature, such as the relationship between optimal performance
and the full utilization of logical cores and the scalability of
parallel reasoners to increase both processing resources and
ontology size. In addition, this study introduced the application
of the intraclass correlation coefficient (ICC) in assessing the
reliability of performance tuning tools. The findings validated
the consistency of the EF tuning measurements within and
between configurations, suggesting the accuracy of ICC in
assessing the reliability of tuning systems executed on a high-
performance computing architecture.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

M. Lnenicka and J. Komarkova, “Big and open linked data analytics
ecosystem: Theoretical background and essential elements,” Govern-
ment Information Quarterly, vol. 36, pp. 129-144, 1 2019.

M.-C. Valiente and J. Pavén, “Web3-dao: An ontology for decentralized
autonomous organizations,” Journal of Web Semantics, vol. 82, p.
100830, 10 2024. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S1570826824000167

C. Yang, Y. Zheng, X. Tu, R. Ala-Laurinaho, J. Autiosalo, O. Seppinen,
and K. Tammi, “Ontology-based knowledge representation of industrial
production workflow,” Advanced Engineering Informatics, vol. 58, p.
102185, 10 2023.

P. Bonte, F. D. Turck, and F. Ongenae, “Bridging the gap between
expressivity and efficiency in stream reasoning: a structural caching
approach for iot streams,” Knowledge and Information Systems, vol. 64,
pp. 1781-1815, 7 2022.

S. Arslan and O. Unsal, “Efficient thread-to-core mapping alternatives
for application-level redundant multithreading,” Concurrency and Com-
putation: Practice and Experience, vol. 35, 11 2023.

Z. Quan and V. Haarslev, “A parallel computing architecture for
high-performance owl reasoning,” Parallel Computing, vol. 83, pp.
34-46, 4 2019. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S016781911830142X

A. Rasch, R. Schulze, M. Steuwer, and S. Gorlatch, “Efficient
auto-tuning of parallel programs with interdependent tuning parameters
via auto-tuning framework (atf),” ACM Transactions on Architecture
and Code Optimization, vol. 18, pp. 1-26, 3 2021. [Online]. Available:
https://dl.acm.org/doi/10.1145/3427093

M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in
internet of things: Taxonomies and open challenges,” Mobile Networks
and Applications, vol. 24, pp. 796-809, 6 2019.

E. P. Cynthia, S. B. M. Samuri, W. S. Li, E. Ismanto, L. Afriyanti, and
M. L. Arifandy, “Improved machine learning algorithm for heart disease
prediction based on hyperparameter tuning,” in 2023 IEEE International
Conference on Artificial Intelligence in Engineering and Technology
(IICAIET). 1EEE, 9 2023, pp. 176-181.

M. A. Ramadhani, Y. Azhar, and G. W. Wicaksono, “A study on the
implementation of yolov4 algorithm with hyperparameter tuning for
car detection in unmanned aerial vehicle images,” in 2023 11th Inter-

national Conference on Information and Communication Technology
(ICoICT). 1IEEE, 8 2023, pp. 639-644.

G. Cheng, S. Ying, and B. Wang, “Tuning configuration of apache
spark on public clouds by combining multi-objective optimization and
performance prediction model,” Journal of Systems and Software, vol.
180, p. 111028, 10 2021.

D. Nikitopoulou, D. Masouros, S. Xydis, and D. Soudris, “Performance
analysis and auto-tuning for spark in-memory analytics,” in 2021
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2 2021, pp. 76-81.

J. J. Durillo, P. Gschwandtner, K. Kofler, and T. Fahringer, ‘“Multi-
objective region-aware optimization of parallel programs,” Parallel
Computing, vol. 83, pp. 3-21, 4 2019.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Vol. 16, No. 1, 2025

J. B. Fernandes, F. H. S. da Silva, T. Barros, I. A. Assis, and
S. X. de Souza, “Patsma: Parameter auto-tuning for shared memory
algorithms,” SoftwareX, vol. 27, p. 101789, 9 2024.

A. N. Lam, B. Elvesaeter, and F. Martin-Recuerda, “A performance
evaluation of owl 2 dl reasoners using ore 2015 and very large
bio ontologies,” in DMKG2023: Ist International Workshop on
Data Management for Knowledge Graphs, vol. 3443. Technical
University of Aachen, 5 2023, p. 13. [Online]. Available: https:
/ldmkg-workshop.github.io/papers/paper2861.pdf

Y. Kazakov, M. Krotzsch, and F. Simanc¢ik, “The incredible elk,”
Journal of Automated Reasoning, vol. 53, pp. 1-61, 6 2014. [Online].
Available: http://link.springer.com/10.1007/s10817-013-9296-3

G. Santipantakis and G. A. Vouros, “Distributed reasoning with coupled
ontologies: the e-shiq representation framework,” Knowledge and Infor-
mation Systems, vol. 45, no. 2, pp. 491-534, November 2015. [Online].
Available: http://link.springer.com/10.1007/s10115-014-0807-2

T. Wang, Y. Zhu, P. Ye, W. Gong, H. Lu, H. Mo, and F.-Y. Wang,
“A new perspective for computational social systems: Fuzzy modeling
and reasoning for social computing in cpss,” IEEE Transactions on
Computational Social Systems, vol. 11, pp. 101-116, 2 2024.

Y.-B. Kang, S. Krishnaswamy, W. Sawangphol, L. Gao, and Y.-F. Li,
“Understanding and improving ontology reasoning efficiency through
learning and ranking,” Information Systems, vol. 87, p. 101412, 1
2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0306437917306476

S. Borgwardt and R. Pefialoza, “Algorithms for reasoning in very
expressive description logics under infinitely valued godel semantics,”
International Journal of Approximate Reasoning, vol. 83, pp. 60-101,
4 2017.

H. Herodotou, Y. Chen, and J. Lu, “A survey on automatic
parameter tuning for big data processing systems,” ACM Computing
Surveys, vol. 53, pp. 1-37, 3 2021. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3381027

B. van Werkhoven, “Kernel tuner: A search-optimizing gpu code auto-
tuner,” Future Generation Computer Systems, vol. 90, pp. 347-358,
1 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0167739X18313359

J. Schwarzrock, H. M. G. de A. Rocha, A. C. S. Beck, and
A. F. Lorenzon, “Effective exploration of thread throttling and
thread/page mapping on numa systems,” in 2020 I[EEE 22nd
International Conference on High Performance Computing and
Communications; IEEE 18th International Conference on Smart City;
IEEE 6th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). 1EEE, 12 2020, pp. 239-246. [Online].
Available: https://ieeexplore.ieee.org/document/9408014/

Z. Fan, R. Sen, P. Koutris, and A. Albarghouthi, “Automated tuning of
query degree of parallelism via machine learning,” in Proceedings of
the Third International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management. ACM, 6 2020, pp. 1-4. [Online].
Available: https://dl.acm.org/doi/10.1145/3401071.3401656

A. Vogel, D. Griebler, and L. G. Fernandes, “Providing high-level self-
adaptive abstractions for stream parallelism on multicores,” Software:
Practice and Experience, vol. 51, pp. 1194-1217, 6 2021. [Online].
Available: https://onlinelibrary.wiley.com/doi/10.1002/spe.2948

T. Siddiqui, A. Jindal, S. Qiao, H. Patel, and W. Le, “Cost models for
big data query processing: Learning, retrofitting, and our findings,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. ACM, 6 2020, pp. 99-113. [Online]. Available:
https://dl.acm.org/doi/10.1145/3318464.3380584

Y. Liu, M. Li, N. K. Alham, and S. Hammoud, “Hsim: A
mapreduce simulator in enabling cloud computing,” Future Generation
Computer Systems, vol. 29, pp. 300-308, 1 2013. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167739X 11000884

R. Andonie, “Hyperparameter optimization in learning systems,” Jour-
nal of Membrane Computing, vol. 1, pp. 279-291, 12 2019. [Online].
Available: http://link.springer.com/10.1007/s41965-019-00023-0

S. G. C. G and B.Sumathi, “Grid search tuning of hyperparameters in
random forest classifier for customer feedback sentiment prediction,”
International Journal of Advanced Computer Science and Applications,
vol. 11, 2020. [Online]. Available: http://thesai.org/Publications/
ViewPaper?Volume=11\&Issue=9\ &Code=IJACSA\ &SerialNo=20

www.ijacsa.thesai.org

1321 |Page

[30]

[31]

[32]

[33]

[34]

(35]

[36]

(37]

[38]

[39]

(IJACSA) International Journal of Advanced Computer Science and Applications,

I. Priyadarshini and C. Cotton, “A novel Istm—cnn-grid search-
based deep neural network for sentiment analysis,” The Journal
of Supercomputing, vol. 77, pp. 13911-13932, 12 2021. [Online].
Available: https://link.springer.com/10.1007/s11227-021-03838-w

D. Chen, R. Zhang, and R. G. Qiu, “Noninvasive mapreduce
performance tuning using multiple tuning methods on hadoop,” IEEE
Systems Journal, vol. 15, pp. 29062917, 6 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9205847/

P. Sewal and H. Singh, “Algorithmic proficiency in spark configuration
tuning: An empirical study using execution time metrics across varied
workloads,” Procedia Computer Science, vol. 235, pp. 2307-2317,
2024. [Online]. Available: https:/linkinghub.elsevier.com/retrieve/pii/
S$1877050924008950

R. Sivakumar and H. Mangalam, “Ensemble hill climbing optimization
in adaptive cruise control for safe automated vehicle transportation,”
Journal of Supercomputing, vol. 76, pp. 5780-5800, 8 2020.

J. Zeng, P. Romano, J. Barreto, L. Rodrigues, and S. Haridi, “Online
tuning of parallelism degree in parallel nesting transactional memory,”
in Proceedings - 2018 IEEE 32nd International Parallel and Distributed
Processing Symposium, IPDPS 2018. Institute of Electrical and
Electronics Engineers Inc., 8 2018, pp. 474—483.

A. K. Pradhan, D. Mishra, K. Das, M. S. Obaidat, and M. Kumar,
“A covid-19 x-ray image classification model based on an enhanced
convolutional neural network and hill climbing algorithms,” Multimedia
Tools and Applications, vol. 82, pp. 14219-14237, 4 2023. [Online].
Available: https://link.springer.com/10.1007/s11042-022-13826-8

A. Kuznetsov, M. Karpinski, R. Ziubina, S. Kandiy, E. Frontoni,
O. Peliukh, O. Veselska, and R. Kozak, “Generation of nonlinear sub-
stitutions by simulated annealing algorithm,” Information (Switzerland),
vol. 14, 5 2023.

A. Gilcii and Z. Kus, “Multi-objective simulated annealing for
hyper-parameter optimization in convolutional neural networks,” PeerJ
Computer Science, vol. 7, p. €338, 1 2021. [Online]. Available:
https://peerj.com/articles/cs-338

M. Abdel-Basset, W. Ding, and D. El-Shahat, “A hybrid harris hawks
optimization algorithm with simulated annealing for feature selection,”
Artificial Intelligence Review, vol. 54, pp. 593-637, 1 2021. [Online].
Available: https://link.springer.com/10.1007/s10462-020-09860-3

F.-J. Willemsen, R. Schoonhoven, J. Filipovi¢, J. O. Terring, R. van
Nieuwpoort, and B. van Werkhoven, “A methodology for comparing

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

Vol. 16, No. 1, 2025

optimization algorithms for auto-tuning,” Future Generation Computer
Systems, vol. 159, pp. 489-504, 10 2024. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167739X24002498

K. Deligkaris, “Particle swarm optimization and random search for
convolutional neural architecture search,” IEEE Access, vol. 12, pp.
91229-91241, 2024. [Online]. Available: https://ieeexplore.ieee.org/
document/10577981/

F. Hosseini, C. Prieto, and C. Alvarez, “Hyperparameter optimization
of regional hydrological Istms by random search: A case study from
basque country, spain,” Journal of Hydrology, vol. 643, p. 132003,
11 2024. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0022169424013994

O. Krestinskaya, M. E. Fouda, H. Benmeziane, K. E. Maghraoui,
A. Sebastian, W. D. Lu, M. Lanza, H. Li, F. Kurdahi, S. A.
Fahmy, A. Eltawil, and K. N. Salama, “Neural architecture search
for in-memory computing-based deep learning accelerators,” Nature
Reviews Electrical Engineering, vol. 1, pp. 374-390, 5 2024. [Online].
Available: https://www.nature.com/articles/s44287-024-00052-7

C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning
methods for metaheuristics,” IEEE Transactions on Evolutionary
Computation, vol. 24, pp. 201-216, 4 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/8733017/

C. C. Foster, “A generalization of avl trees,” Communications of the
ACM, vol. 16, pp. 513-517, 8 1973.

N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun, “A practical
concurrent binary search tree,” ACM SIGPLAN Notices, vol. 45, pp.
257-268, 5 2010.

G. Antoniou, S. Batsakis, R. Mutharaju, J. Z. Pan, G. Qi, I. Tachmazidis,
J. Urbani, and Z. Zhou, “A survey of large-scale reasoning on the web
of data,” The Knowledge Engineering Review, vol. 33, p. e21, 12 2018.
D. Liljequist, B. Elfving, and K. S. Roaldsen, “Intraclass correlation —
a discussion and demonstration of basic features,” PLOS ONE, vol. 14,
p- 0219854, 7 2019.

H. Kim, C. M. Park, and J. M. Goo, “Test-retest reproducibility of
a deep learning-based automatic detection algorithm for the chest
radiograph,” European Radiology, vol. 30, pp. 2346-2355, 4 2020.

D. Mustafa, “A survey of performance tuning techniques and tools for
parallel applications,” IEEE Access, vol. 10, pp. 1503615055, 2022.
[Online]. Available: https://ieeexplore.ieee.org/document/9698048/

www.ijacsa.thesai.org

1322 |Page

