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Abstract—In recent years, there has been increasing interest 

in intelligent optimization algorithms, such as the Whale 

Optimization Algorithm (WOA). Initially proposed for 

continuous domains, WOA mimics the hunting behavior of 

humpback whales and has been adapted for discrete domains 

through modifications. This paper presents a novel discrete 

Whale Optimization Algorithm approach, integrating the 

strengths of population-based and local-search algorithms for 

addressing the examination timetabling problem, a significant 

challenge many educational institutions face. This problem 

remains an active area of research and, to the authors' 

knowledge, has not been adequately addressed by the WOA 

algorithm. The method was evaluated using real-world data from 

the first semester of 2023/2024 for faculties at the Universiti of 

Sarawak, Malaysia. The problem incorporates standard and 

faculty-specified constraints commonly encountered in real-

world scenarios, accommodating online and physical 

assessments. These constraints include resource utilization, exam 

spread, splitting exams for shared and non-shared rooms, and 

period preferences, effectively addressing the diverse 

requirements of faculties. The proposed method begins by 

generating an initial solution using a constructive heuristic. Then, 

several search methods were employed for comparison during 

the improvement phase, including three Variable Neighborhood 

Descent (VND) variations and two modified WOA algorithms 

employing five distinct neighborhoods. These methods have been 

rigorously tested and compared against proprietary heuristic-

based software and manual methods. Among all approaches, the 

WOA integrated with the iterative threshold-based VND 

approach outperforms the others. Furthermore, a comparative 

analysis of the current decentralized approach, decentralized 

with re-optimization, and centralized approaches underscores 

the advantages of centralized scheduling in enhancing 

performance and adaptability. 

Keywords—Examination timetabling; discrete whale 

optimization algorithm; variable neighborhood descent; 

capacitated; decentralized 

I. INTRODUCTION 

Educational timetabling involves assigning specific times 
to resources, events, and spaces while adhering to a predefined 
set of hard constraints and optimizing soft constraints. 
Resources typically encompass lecturers, teachers, students, 
administrative staff, or specialized equipment. Events may 
include lectures, classes, exams, or other academic activities. 

Spaces refer to physical locations such as lecture halls, 
classrooms, or exam rooms. 

Numerous formulations have been proposed for this 
problem, with the two most notable being the uncapacitated 
formulation introduced by [1] and the capacitated formulation 
featured as Exam 1 in the Second International Timetabling 
Competition, discussed by [2]. This study addresses a 
capacitated formulation of a real-world faculty exam 
timetabling problem (ETP) at the Universiti of Sarawak, 
Malaysia (UNIMAS). This problem stands out due to its 
unique combination of two approaches: online exam 
scheduling, which solely considers designated periods without 
considering physical room allocation, and physical exam 
scheduling, which involves assigning each exam to a specific 
period and room. Both exam scheduling strategies aim to 
prevent conflicts and optimize exam spacing, but the latter 
necessitates meeting room allocation constraints, such as 
dividing or sharing spaces. 

Since ETP is an NP-complete decision problem [3], diverse 
approaches have been employed to address it. According to a 
recent study [4], there are six types of solution methods in the 
ETP. These are mathematical optimization, matheuristics, 
heuristics, metaheuristics, hyper-heuristics, and hybrid 
approaches. The survey found that metaheuristics had been the 
approach most employed over the past 12 years. 

Metaheuristics generally outperform exact search methods, 
as the latter often involves generating all possible solutions, 
which can be computationally intensive. Metaheuristic 
algorithms can be broadly divided into two categories: 
population-based algorithms, which emphasize exploration, 
and single-solution-based algorithms, which focus on 
exploitation. Effective metaheuristic design requires balancing 
two criteria: diversification, which involves exploring the 
search space broadly, and intensification, which focuses on 
refining and exploiting the most promising solutions [5]. 

An effective way to balance exploration and exploitation is 
by using a hybrid approach that integrates various techniques 
to enhance the performance of search algorithms. In this study, 
we introduce and design a novel hybrid method that combines 
the recently developed Whale Optimization Algorithm (WOA) 
with local search techniques to solve a real-world ETP. The 
following outline summarizes the main contributions of this 
work. 
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 Discrete WOA algorithm: A solution methodology that 
combines the WOA algorithm with local search 
methods is developed. This approach performs better 
than other VND variants in optimizing exam 
timetabling. 

 Decentralized faculty exam timetabling: We propose a 
novel model that accommodates the preferences of 
multiple faculties with contradictory constraints, 
accounts for varied exam types, and ensures a more 
inclusive and flexible scheduling framework. 

 Utilization of real-world data: The proposed discrete 
WOA approach is validated using real-world data, 
showcasing its robustness and practical relevance across 
various educational settings. 

The paper is structured as follows: Section II presents a 
review of related works, followed by Section III, which 
outlines the problem description. Section IV discusses the 
original WOA, other applied methods and neighborhood 
structures. Section V details the algorithms of the proposed 
discrete WOA approaches. Section VI presents the 
experimental results, and Section VII compares the centralized 
and decentralized approaches. Lastly, Section VIII provides the 
conclusion of the study. 

II. RELATED WORK 

Real-world exam timetabling constraints are categorized 
into four main types [4]: exam-related, period-related, room-
related, and invigilator-related. Real-world scenarios more 
commonly give rise to the capacitated formulation of ETPs, 
treating room capacities as adhered-to constraints. The 
constraints on room usage can vary significantly across 
problem formulations, ranging from limits on the number of 
exams allowed per room to considerations of individual room 
capacities and overall seating availability. Some studies extend 
this by considering the total seating capacity across all rooms 
within a time slot and the capacities of individual rooms [6–8]. 
In such cases, several exams may be assigned in the same room 
without restrictions on the number of exams if the total room 
capacity is sufficient to accommodate all the students requiring 
seating. 

Dammak et al. [9] proposed a heuristic algorithm that 
modeled the exam-room assignment problem, allowing 
multiple exams in a single room. In contrast, other studies have 
also explored the possibility of scheduling multiple exams in a 
single room [10, 11]. Other room-related constraints studied 
include the distance between exam halls [12, 13], the allocation 
of exams across multiple rooms [12, 14] and assigning specific 
exams to designated rooms. We incorporate all these 
constraints—one exam per room, multiple exams per room, 
splitting exams across multiple rooms, and distance between 
rooms for split exams—into our approach on a faculty-specific 
basis. 

Researchers have recently designed many intelligent 
algorithms, such as the Archimedes optimization algorithm 
[15], Fire Hawks algorithm [16], and WOA, to address various 
optimization challenges. Notably, the WOA, a swarm 
intelligence-based approach [17], models the hunting strategies 

of humpback whales, mimicking their collective feeding 
behavior. Recent studies have enriched the growing literature 
by highlighting its successful practical applications and 
reporting enhanced results and performance [18]. Additionally, 
research suggests that WOA surpasses other optimization 
algorithms concerning global search capabilities and 
convergence speed [19]. The WOA offers several advantages, 
including simplicity of operation, minimal control parameters, 
and a robust capability to avoid local optima. These attributes 
have inspired researchers to employ WOA to address diverse 
practical challenges. 

Although the WOA was originally developed for 
continuous problems, several studies have explored the use of 
the WOA for discrete optimization problems, including the 
knapsack problem [20, 21], feature selection [22–24], and 
workshop scheduling [25–27]. The primary strength of the 
WOA lies in its ability to maintain a balance between 
exploration and exploitation throughout the iterative process. 
While WOA has shown promise in various optimization 
problems across multiple domains, to the best of our 
knowledge, its application to real-world exam timetabling 
remains unexplored. 

Hence, this study bridges this gap by adapting the WOA 
approach to meet the specific needs of our real-world ETP, 
offering a novel solution for discrete optimization in 
educational scheduling. Since WOA was originally designed 
for continuous optimization tasks, it relies on continuous 
updates to individual positions, making it unsuitable for 
discrete scheduling problems like exam timetabling. To 
overcome this limitation, we propose a modified discrete 
WOA, incorporating discrete updating strategies to tailor the 
algorithm to the discrete nature of timetabling. The real-world 
experimentation outlined in the following sections 
demonstrates its effectiveness in addressing practical exam 
timetabling while fulfilling institutional constraints. 

III. PROBLEM DEFINITION 

This paper presents a solution method for the ETP at 
UNIMAS. Specifically, we study the decentralized ETP within 
the Faculty of Economics and Business (FEB) and the Faculty 
of Computer Science and Information Technology (FCSIT). 
The data on students within the faculties has been collected and 
analyzed to evaluate the proposed solution algorithm. 

The problem definitions are as follows: 

 The exams will take place over two weeks. 

 Each day is divided into two blocks. 

 Exams have varying durations, such as 120, 150, and 
180 minutes. 

 If assigning an exam to a single room within a timeslot 
is not feasible, the exam must be split across multiple 
rooms. 

 The exam day reserved for pre-assigned common 
courses should not be used for other exams. 

 The exams include online exams conducted via an 
online platform and physical exams held in rooms. 
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 Online exams must be assigned to a predesignated slot. 

 Shared or non-shared exam rooms will depend on each 
faculty's specific practices. 

 There are two types of exam rooms: exam halls and 
faculty-owned exam rooms. 

 Exam halls vary in availability based on the schedule 
set by the Centre, which range in size from medium to 
large. 

 Faculty-owned exam rooms are consistently available 
for faculty exams and are typically small-sized. 

The hard constraints are: 

 H1: Each student may attend only one exam at any 
given time. 

 H2: Each exam can only be scheduled once within the 
exam period. 

 H3: The exam period must not exceed the designated 
days. 

 H4: Rooms must be able to accommodate all students 
taking an exam during each timeslot. 

 H5: Rooms can only be shared if the faculty permits; 
otherwise, no sharing is allowed. 

The soft constraints include: 

 S1: Minimize the number of rooms utilized. 

 S2: Minimize proximity costs to ensure adequate time 
gaps between exams. 

 S3: Minimize the splitting of exams across different 
areas or rooms. 

 S4: Minimize violations of exams assigned to preferred 
timeslots. 

A solution that violates soft constraints is not considered 
infeasible; this allows for defining specific objective values for 
each soft constraint. Consequently, the objective function f 
aims to minimize the total soft constraint violations, directing 
the optimization process toward reducing their overall impact. 
The end user typically determines the weights assigned to 
different types of soft conflicts. However, this study 
standardizes the weights by assigning fixed values: 1 for S1, 
S2, S3, and 2 for S4 to ensure reproducibility. 

IV. METHODS 

A. Constructive Heuristic Method 

The proposed algorithm starts by generating initial feasible 
solutions, using a constructive heuristic method as the starting 
point. The process begins with assigning prioritized exams to 
their preferred time slots, followed by the allocation of online 
exams and, finally, the allocation of physical exams. We use a 
best-fit strategy for room allocation, choosing the smallest 
room that fits, minimizing room splits, and allocating several 
exams to the same room whenever feasible. The algorithm 
continues to allocate exams to rooms and periods while 

ensuring compliance with hard constraints and adhering to the 
soft constraint of preferred slot assignments. 

B. The Original WOA 

The WOA is a recently developed swarm intelligence 
optimization algorithm commonly used to solve optimization 
and classical engineering problems. When whales locate prey, 
they swim in a spiral toward it while encircling and foraging 
using a bubble net. This process involves three hunting 
strategies: shrinking and attacking with a bubble-net attack, 
encircling prey, and randomly searching for prey. The first two 
strategies guide exploitation, while exploration is supported by 
the third within the WOA. 

We present the mathematical model for each phase below, 
employing a uniform distribution to generate random numbers 
in the equations. In the following equations, t signifies the 
current iteration, x refers to the position vector, and MaxIter 
indicates the maximum number of permitted iterations. 

1) Exploitation phase – encircling prey: Humpback 

whales employ strategies described by the mathematical 

models in Eq. (1) and Eq. (2) to encircle and hunt their prey. 

As per Eq. (2), acting as search agents, whales adjust their 

positions relative to the prey—the current optimal solution, x. 

The coefficient vectors C and A, calculated using Eq. (3) and 

Eq. (4), adjust the search area to determine the whale's 

position relative to its prey. In both phases, the value of a 

decreases linearly from 2 to 0, while the vector r exhibits a 

uniform distribution within the interval [0,1]. 

D  |C ∙ x* (t)  x (t)|    

x (t 1)  x* (t)  A ∙ D           

2ara 

Cr 

2) Exploitation phase – bubble-net attacking: The 

shrinking, encircling behavior is governed by Eq. (5), while 

the position of a neighboring search agent is determined using 

a spiral equation as described in Eq. (6). D' denotes the 

distance from the i-th whale to the optimal solution, with b 

defining the shape of the logarithmic spiral and l being a 

random value within the range [-1, 1]. 

a  t ∙ (2 MaxIter) 

x (t 1)  D' ∙ ebl ∙ cos(2πl) x* (t) 

3) Exploration phase – searching for prey: For 

exploration, a random search agent is selected to guide the 

process, as mathematically represented by Eq. (7) and Eq. (8). 

Vector A contains random values exceeding one or falling 

below -1, while xrand represents a randomly chosen whale from 

the population. 

D  |C ∙ xrand  x | 

x (t 1)  | xrand  A ∙ D | 
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Algorithm 1 delineates pseudocode for the original WOA, 
which starts by generating an initial population and evaluating 
it with a fitness function. During each iteration, a random value 
determines the update of a solution's position using either Eq. 
(2), Eq. (8), or Eq. (6) methods. The system returns the best 
solution x* upon meeting the termination criteria. 

Algorithm 1: Original WOA  

Generate initial population xi for 𝑖 = 1, 2, … , 𝑛 

Compute each solution’s fitness 

Set the best search solution x*  

t = 0  

While (t  MaxIter) do 

 For each solution do 

  Update C, A, p, a, and l 

  If p < 0.5 then 

   If |A| < 1 then 

    Update the current solution's position by (2) 

   Else  

    Update the current solution's position by (8) 

   End If 

  Else 

   Update the current solution's position by (5) 

  End If 

 End For 

 Verify if any solution goes beyond the search space and amend it 

 Compute each solution’s fitness 

 t = t + 1 

 Update x* if a better solution is found 

End While 

return x* 
 

C. Variable Neighborhood Descent 

Exploring a single neighborhood structure may result in 
finding a local optimum specific to that structure, but this is 
unlikely to be the global optimum. Conversely, identifying a 
solution that serves as a local optimum across multiple 
neighborhood structures enhances the likelihood of reaching 
the global optimum. This principle forms the foundation of the 
VND method. Specifically, a VND algorithm is employed to 
refine the solutions. VND is a deterministic variation of the 
Variable Neighborhood Descent framework initially proposed 
by [28]. It has been widely adopted as a local search method in 
numerous metaheuristics and implemented in diverse forms 
[29]. During its process, VND systematically explores different 
neighborhoods of a given solution to enhance its quality. 

Algorithm 2 provides the pseudocode for the VND. The 
algorithm explores the neighborhood structures defined by the 
operators Nk, where 1 ≤ k ≤ kmax, following a predefined order. 
LocalSearch(x, Nk) indicates that a local search is performed 

using the current neighborhood Nk, starting from solution x. 
The first-improvement strategy is applied to all neighborhood 
structures, as described in Subsection D. Specifically, when an 
improved solution is found within a specific neighborhood, the 
corresponding move is made, and the next neighborhood 
structure is explored. This procedure repeats until the 
maximum iteration limit is reached. 

VND can employ various rules to transition between 
neighborhoods on its list and adopt diverse strategies to explore 
each. This flexibility gives rise to multiple VND variants, 
including Basic Sequential VND (BVND), Cyclic VND, Pipe 
VND (PVND), and Nested VND. These variants may utilize 
either the first-improvement or best-improvement search 
strategies. Algorithms 3 and 4 outline the neighborhood change 
procedure for both BVND and PVND, respectively. For the 
former, if a better candidate solution is found within a given 
neighborhood structure, the search resumes in the initial 
neighborhood structure based on the specified order. 
Otherwise, the search continues in the next neighborhood 
structure. For the latter, if the current solution improves within 
a particular neighborhood, exploration continues within that 
neighborhood. 

Algorithm 2: Variable Neighborhood Descent 

Procedure VND (x, N) 

While (t  MaxIter) do 

 stop = false 

 k = 1 

 x' = x 

 While (k kmax) 

  x'' = LocalSearch (x, Nk) 

  neighborhood_change (x, x'', k) 

 End While 

End While 

return x' 
 
 

Algorithm 3: Sequential Neighborhood Change for BVND 

Procedure Sequential_neighborhood_change (x, x', k) 

If f (x') < f (x)  then 

 x = x' 

 k = 1 

Else 

 k = k + 1 

End  
 
 

Algorithm 4: Pipe Neighborhood Change for PVND 

Procedure Pipe_neighborhood_change (x, x', k) 

If f (x') < f (x)  then 

 x = x' 

Else 

 k = k + 1 

End  
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D. Neighborhood Structure 

The five types of neighborhood structures are implemented 
and described in the following: 

 Kick: Assign exam 𝑒1to the period currently designated 
to exam 𝑒2, then reassign exam 𝑒2 to a different period 
from the available options. The room for both exams 
may be available within the designated period. 

 Swap: Exchange the periods of two exams, while their 
rooms may be swapped or assigned to different rooms. 

 Shift: Move an exam to a different period and/or 
room(s).  

 Reallocate: Move an exam assigned to a shared room to 
an unoccupied one. 

 Compact: Relocate an exam to a shared room during the 
same period. 

Swap, Shift, and Kick are moves related to both period and 
room assignments, whereas Reallocate and Compact focus 
specifically on room-related adjustments with contradictory 
objectives. Reallocate aims to address room-sharing 
preferences, especially in cases where certain faculties prohibit 
sharing. In contrast, Compact, which applies to most faculties, 
aims to reduce the number of rooms utilized, thereby 
encouraging room sharing. The neighborhood structure is set to 
N = {Swap, Shift, Kick, Reallocate} for faculty exam 
timetabling where shared exam rooms are prohibited. 
Otherwise, the neighborhood structure is set to N = {Swap, 
Shift, Kick, Compact}. 

V. PROPOSED APPROACH 

This study proposes two algorithms: one based on the 
PVND algorithm and the other on WOA. Subsection A 
describes the first algorithm, Iterative Threshold-based 
Variable Neighborhood Descent (ITVND), while Subsection B 
presents the second algorithm, the modified discrete WOA. 

A. Iterative Threshold-based Variable Neighborhood Descent 

We propose a variant of the classic PVND, ITVND, with 
the pseudocode presented in Algorithm 5. The threshold-based 
pipe neighborhood change procedure is outlined in Algorithm 
6. The ITVND algorithm incorporates a control parameter, the 
objective function threshold cT, and an input parameter, the 
iteration count L. We initially assign the objective value of the 
starting solution to cT. The iteration count increments in steps 
of L, and at every L-th iteration (cT mod  L = 0), cT is updated 
to the current cost. The algorithm accepts all improving or 
sideways moves with an objective value below cT.  

The algorithm explores the solution space using multiple 
neighborhood structures, where the neighborhood structure Nk 
is defined for k =1…, kmax. The core concept of ITVND is to 
maintain the objective value threshold across L iterations for 
various neighborhood structures. It permits accepting inferior 
solutions within the objective value threshold, introducing a 
more flexible acceptance condition, which slows the current 
cost reduction and prolongs the time needed to reach 
convergence. 

Algorithm 5: Iterative Threshold-based Pipe Variable 
Neighborhood Descent 
Procedure ITVND (x, N) 

t = 0  

While (t  MaxIter) do 

 k = 1 

 x' = x 

 While (k kmax) 

  x'' = LocalSearch (x, Nk) 

  Threshold_pipe_neighborhood_change (x, x'', k, cT) 

 End While 

 If (t mod L = 0) then 

  cT = f (x) 

 End If 

 t = t + 1 

End While 

return x' 
 
 

Algorithm 6: Threshold Pipe Neighborhood Change  

Procedure Threshold-based_pipe_neighborhood_change (x, x', k, cT) 

If f (x') < cT or f (x') < f (x) then 

 x = x' 

Else 

 k = k + 1 

End  
 
 

B. Discrete Whale Optimization Algorithm 

As whales adjust their positions within a continuous 
domain using specific equations and operators, the original 
WOA becomes unsuitable for tasks like timetabling, which 
exhibit discrete characteristics. While the classical WOA 
algorithm relies on whale interactions to solve optimization 
problems, its simple neighborhood structure and limited 
disturbance tend to trap it in local optima. To address this 
problem, we replaced these equations and operators with a 
local search mechanism. The proposed modified discrete WOA 
approach considers two methods: (1) WOA-VD and (2) WOA-
IVD. As shown in Algorithm 7, the process begins with a set of 
solutions generated using a constructive heuristic, then 
iteratively refined throughout the search process. 

During the exploitation phase, the modified discrete WOA 
algorithm updates individual solutions using information from 
the best current solution. When probability p is less than 0.5, 
the algorithm utilizes local search with an improvement 
criterion, accepting a new solution only if it enhances the 
current solution's fitness, thereby supplanting Eq. (2). If p is 
equal to or greater than 0.5, PVND is chosen as a local search 
method to improve the solution in WOA-VD algorithm. In 
contrast, the ITVND local search method is used in the WOA-
IVD algorithm to compare the effectiveness of the VND 
variation during the search process. Both methods replace Eq. 
(5) and take advantage of its ability to search for a larger area 
by changing neighborhoods in a planned way. 

During exploration, local search with a threshold-based 
acceptance criterion replaces Eq. (8). A new candidate solution 
is accepted if its objective value falls below a dynamically 
updated cost bound. This approach helps explore the search 
space more effectively by mitigating the effects of premature 
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convergence and promoting broader exploration outside the 
immediate neighborhood of the current optimal solution. 

Algorithm 7: Discrete WOA-VD 

Generate initial population xi for 𝑖 = 1, 2, … , 𝑛 

Compute each solution’s objective value 

Initialize the best search solution x*  

t = 0  

While (t  MaxIter) do 

 For each solution individual do 

  Update a, A, C, l and p 

  If p < 0.5 then 

   If |A| < 1 then 

    Generate new candidate x'         

    If f (x') < f (x) then 

     x = x' 

    End If 

   Else  

    Generate new candidate x'         

    If f (x') < cBound then 

     x = x' 

    End If 

    If (t mod L = 0) then 

     cBound = f (x) cT = f (x) 

    End If 

   End If 

  Else 

   Apply PVND (x, N) to improve x         

  End If 

   

 End For 

 Calculate each solution’s objective value 

 t = t + 1 

 Update x* if a better solution is found 

End While 

return x* 
 

Our search method is based on local search and leverages 
the following characteristics: 

 Termination Criterion: A fixed number of iterations as 
the termination criterion ensures that the algorithm's 
runtime remains consistent and independent of other 
parameters. 

 Search Space: The search space is restricted to the 
feasible region, which only includes scheduling that 
fully satisfies all constraints, such as precedence and 
conflict avoidance. 

VI. EXPERIMENTS 

A. Experimental Settings 

The experiment is conducted on a computer with Windows 
11, equipped with an Intel® Core™ i7 processor, 16.0 GB of 
memory, and an integrated graphics card. We built the 
algorithms presented using IntelliJ IDEA, the Integrated 
Development Environment (IDE), and Java, specifically JDK 

1.8, as the programming language. Table I presents the 
characteristics of the datasets collected from two faculties. 
These datasets specifically pertain to the first semester of the 
2023/2024 academic year. 

TABLE I. CHARACTERISTICS OF DATASETS FROM TWO FACULTIES 

Description 
Dataset  

FCSIT FEB 

No. of enrolment 2,837 7,035 

No. of students 1,026 2,011 

No. of exams 31 55 

Exam range per student 1 to 5 1 to 8 

Conflict density 0.234 0.182 

Exam Types Online & Physical Physical 

Total exam period 12 days  12 days 

Average Shared Hall Usage 

per Timeslot 
1.8 3.1 

Faculty-Owned Exam 

Room Count 
10 6 

Scheduling method Manually arranged Proprietary System 

To evaluate the performance of our proposed algorithms, 
we compared them against other methods and the existing 
scheduling method, which generates the current solution. The 
five include three variations of VND: BVND, PVND, and 
ITVND, along with two variations of WOA: WOA-VD and 
WOA-IVD. For each of these algorithms, we conducted 30 
independent runs per dataset. 

B. Experimental Results 

Table II below presents the descriptive statistics for the 
three employed algorithms compared to the existing scheduling 
method based on 30 runs. The bold formatting indicates the 
best values achieved by all the methods. We conducted all 
statistical analyses using SPSS version 29. 

TABLE II. COMPARISON BETWEEN DIFFERENT METHODS 

Dataset Method Slot Best Mean Worst Std Dev 

FCSIT 

Manual 12 55.6    

BVND 8 50.4 53.7 57.3 1.97 

PVND 8 50.1 53.1 56.3 1.48 

ITVND 8 49.4 51.6 54.7 1.41 

WOA-VD 8 49.9 52.9 57.8 2.09 

WOA-IVD 8 48.7 51.2 53.7 1.28 

FEB 

Proprietary 

System 
12 148.6    

BVND 12 131.8 134.6 138.3 1.77 

PVND 12 132.2 134.7 137.0 1.24 

ITVND 12 130.3 132.4 134.6 1.22 

WOA-VD 12 131.0 132.9 135.3 1.13 

WOA-IVD 12 129.9 131.9 133.6 1.04 
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For the FCSIT dataset, Table II shows that WOA-IVD 
emerges as the best-performing method among the tested 
methods, with the lowest objective value (48.7) and the lowest 
standard deviation (1.28), demonstrating consistent 
performance. The second-best method is ITVND, which has a 
slightly higher objective value (49.4) but maintains low 
variability (1.41). In contrast, despite its competitive mean 
value, the WOA-VD method has the highest variability (2.09), 
indicating less consistent results than others. 

In comparing the performance of various methods for the 
FEB dataset, all our proposed methods outperform the 
proprietary system [30], which employed two-stage heuristic 
methods across all instances, with a moderate gap. The best-
performing method, WOA-IVD, achieved an average of 131.9 
with a standard deviation 1.04. ITVND followed closely with 
an average value of 132.4 and a standard deviation 1.22. 
However, the results for BVND and PVND are somewhat 
inferior, with some instances where they perform poorly 
compared to the ITVND and WOA models. 

Overall, the results demonstrate that adopting all the VND 
and WOA variation methods reduces exam session and 
objective value compared to the manual approach. The WOA-
IVD method performs the best across both datasets, 
consistently achieving the lowest mean values and 
demonstrating superior efficiency compared to other methods. 
On the other hand, VND tends to perform the worst, showing 
higher values in comparison. 

We conducted a one-way ANOVA analysis of variance, as 
presented in Table III for dataset FCSIT and Table IV for 
dataset FEB, to statistically demonstrate the differences among 
all employed methods, BVND, PVND, ITVND, WOA-VD, 
and WOA-IVD, presented in Table II. The results for both 
datasets indicate a statistically significant difference between 
the tested approaches, with a p-value below 0.001. 

TABLE III. ANOVA FOR FCSIT DATASET OF THE ALGORITHMS 

Source DF 
Sum of 

Squares 

Mean 

Square 
F Signature 

Between 

Groups 

4 132.209 33.052 11.772 <.001 

Within 

Groups 
145 407.131 2.808  

 

Total 149 539.340    

TABLE IV. ANOVA FOR FEB DATASET OF THE ALGORITHMS 

Source DF 
Sum of 

Squares 

Mean 

Square 
F Signature 

Between 

Groups 

4 198.958 49.739 29.289 <.001 

Within 

Groups 
145 246.247 1.698  

 

Total 149 445.204    

Fig. 1 and 2 present the box plots for two datasets 
generated using Tableau software. The lower mean, median, 
and distribution values in both box plots show that WOA-IVD 
is consistently the best method. The fact that its box plot height 
is lower than other algorithms in both datasets further 

demonstrates this. For the FCSIT dataset, as shown in the box 
plot in Fig. 1, WOA-VD performs the worst due to its higher 
spread and maximum values, suggesting poor performance in 
worst-case scenarios. For the FEB dataset, as shown in the box 
plot in Fig. 2, BVND has the largest spread and includes higher 
maximum values, indicating it performs less reliably and worse 
in the worst-case scenarios. The proposed WOA-IVD approach 
effectively balances the objectives of exploration and 
exploitation, as the tested approaches' performance ranks 
BVND, PVND, WOA-VD, ITVND, and WOA-IVD. 

The results highlight the consistent effectiveness of our 
discrete WOA method, achieving an objective value reduction 
of approximately 12.41% for the FCSIT dataset and 12.58% 
for the FEB dataset. This consistency underscores the method's 
reliability and adaptability, making it a practical solution for 
diverse scenarios. However, the proposed discrete modified 
WOA may be constrained by the need to adapt the local search 
method in the WOA model, which is currently tailored to our 
ETP problem instance and might require modification to 
address different problem constraints or domains. 

 

Fig. 1. Box plots of objective values for FCSIT dataset. 

 
Fig. 2. Box plots of objective values for FEB dataset. 

VII. CENTRALIZED AND DECENTRALIZED 

A comparison of centralized and decentralized approaches 
to university exam timetabling during the pandemic was 
conducted by Modirkhorasani and Hoseinpour [31], focusing 
on minimizing costs and ensuring social distancing, with the 
study underscoring the advantages of decentralization. 
Building on this and given that our current practice employs a 
decentralized approach at the faculty level, we intend to 
conduct a similar comparison using our objective function for 
cost evaluation to better align with our specific operational 
context. A comparative analysis is conducted to evaluate the 
effects of three scheduling methods: 
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1) Decentralized approach: the current practice whereby 

faculty schedule their timetables independently. 

2) Centralized approach: All faculty exams are 

scheduled, with resources managed centrally. It employs a 

uniform 12-timeslot structure, ensuring consistency in 

completing exam sessions across datasets. 

3) Decentralized approach with re-optimization: Similar 

to the first approach, only that re-optimization is performed 

after post-resource reallocation. If a faculty’s exam session 

concludes earlier than others, the shared resources are 

reallocated for use by other faculties that take longer exam 

sessions. 

The comparative analysis aims to determine the relative 
impacts of these approaches on scheduling efficiency and 
overall outcomes. The centralized and decentralized 
approaches are compared in Table V, with and without the re-
optimization strategy for the decentralized approach. The 
comparison is made across four soft constraints (S1–S4) based 
on their objective values. The bold formatting indicates the best 
values achieved by the approaches. 

TABLE V. PERFORMANCE OF SCHEDULING UNDER CENTRALIZED AND 

DECENTRALIZED APPROACHES 

Value 

Decentralized 

Centralized Without Re-

optimization 

With Re-

optimization 

S1 92.0 82.3 86.0 

S2 37.2 43.9 19.5 

S3 33.9 25.4 29.1 

S4 16.0 20.4 9.8 

Total 179.3 172.0 144.5 

The decentralized approach with re-optimization has shown 
superior efficiency in resource allocation, as evidenced by its 
lowest values in both S1 and S3, which pertain to room usage 
and splitting. However, it is less effective for other constraints, 
such as S2 and S4, which are related to spread and preferred 
slot, where it performs worse than the decentralized approach 
without re-optimization. While re-optimization enhances 
performance in certain aspects, it may not universally improve 
outcomes across all constraints. Despite this, the centralized 
approach remains the most efficient overall. 

For the decentralized approach, values without re-
optimization are generally higher, indicating that re-
optimization improves efficiency. In contrast, the centralized 
approach consistently produces lower values than both 
decentralized approaches, underscoring its overall efficiency. 
The total objective values further support this trend, with the 
centralized approach achieving the lowest total (144.5), 
followed by the decentralized approach with re-optimization 
(172.0) and without re-optimization (179.3). It shows a 
reduction of approximately 15.9% in the total objective value, 
calculated as (172.0–144.5) / 172.0 × 100. This improvement 
highlights the effectiveness of the centralized approach in 
enhancing the solution's overall quality. However, the 
comparative analysis of centralized and decentralized 

approaches is incomplete, as it encompasses only a limited 
subset of faculties rather than the entire scope, thereby leaving 
this aspect open for further exploration. 

VIII. CONCLUSION 

This study examines decentralized faculty exam 
timetabling to optimize resource allocation and satisfy 
institutional constraints while designing an approach that can 
be adopted across multiple faculties. The ETP under 
consideration accommodates two distinct exam modes and 
formulations within the same timetable. This structure is 
notably different from those commonly found in literature and, 
to our knowledge, has not been previously studied. We propose 
two approaches: ITVND, an improved version of VND, and a 
novel discrete WOA. Specifically, we embedded the different 
local search strategies in the WOA algorithm to ensure they 
work well in the discrete scheduling domain. We used a real-
world dataset to validate the proposed algorithm's practicality, 
highlighting its applicability across various faculties while 
adhering to their specific constraints. Our search methods have 
been rigorously tested and compared internally and against 
proprietary software developed using heuristic and manual 
methods. These comparisons highlight that the discrete WOA 
outperforms other approaches, demonstrating superior 
performance, though it takes slightly longer. While the 
preliminary results provide proof of concept, further 
experimentation with additional examination timetabling 
datasets, such as benchmark sets, could provide valuable 
insights. We consider hybridizing the WOA algorithm with 
other metaheuristic algorithms for future studies. 
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