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Abstract—After the COVID-19 pandemic, the global economy 

began to recover. However, stock market fluctuations continue to 

affect economic stability, making accurate predictions essential. 

This study proposes an Improved Whale Optimization Algorithm 

(IWOA) to optimize the parameters of the Long Short-Term 

Memory (LSTM) model, thereby enhancing stock index 

predictions. The IWOA improves upon the traditional Whale 

Optimization Algorithm (WOA) by integrating logistic chaotic 

mapping to increase population diversity and prevent premature 

convergence. Additionally, it incorporates a dynamic adjustment 

mechanism to balance global exploration and local exploitation, 

thus boosting optimization performance. Experiments conducted 

on five representative global stock indices demonstrate that the 

IWOA-LSTM model achieves higher accuracy and reliability 

compared to WOA-LSTM, LSTM, and RNN models. This 

highlights its value in predicting complex time-series data and 

supporting financial decision-making during economic recovery. 

Keywords—Long short-term memory network; chaotic 

mapping; dynamic adjustment mechanism; improved whale 

optimization algorithm; financial time series forecasting 

I. INTRODUCTION 

Stock market indices are published by stock exchanges or 
financial institutions and are important financial indicators that 
reflect market fluctuations. These indices directly affect 
investor sentiment and decision-making and serve as key 
references for investors. Given the significant impact of stock 
market movements on the global economy, predicting these 
movements has been a top priority for researchers and 
investors. Their goal is to develop effective investment 
strategies and reduce risk. Despite the passage of time, the 
complex patterns and return metrics that emerge in the stock 
market within the framework of unsupervised automated 
prediction remain difficult to predict accurately. This 
underscores the critical need for a progressive predictive 
approach that combines human expertise with advanced 
technological capabilities to improve the accuracy and 
reliability of stock and economic forecasts [1]. 

In recent decades, the adoption of machine learning 
techniques and metaheuristic algorithms in financial time series 
forecasting has attracted significant attention. Conventional 
neural networks, such as Recurrent Neural Networks (RNNs), 
have been shown to be effective in capturing complex 
fluctuations in the stock market. Chen et al. introduced a deep 
learning prediction model based on RNN, which integrates 
social media news content (sentiment and topic features) with 

technical indicators to strengthen the predictive accuracy of 
stock market volatility [2]. Haromainy et al. utilized a genetic 
algorithm-optimized RNN model to predict stock trends for 
stock prices, demonstrating its ability to capture nonlinear 
features in stock market data [3]. Additionally, Zhao et al. 
incorporated fuzzy logic with RNN to improve stock market 
volatility prediction [4]. 

Despite the advantages of RNN models, prediction 
accuracy remains limited due to the high nonlinearity and 
chaotic nature of the stock market. As deep learning continues 
to grow, LSTM network, known for its superior time series 
processing capabilities, has become a prominent research 
focus. Abdul Quadir et al. utilized the LSTM algorithm to 
analyze normalized time series data, addressing the vanishing 
gradient issue observed in simpler RNN and determining the 
relationship between historical and future values [5]. In the 
medical field, Academician Zhong Nanshan's team utilized an 
LSTM-based recurrent neural network to study and predict the 
peaks and sizes of COVID-19 [6]. In the domain of energy 
consumption forecasting, LSTM-based methods have 
demonstrated outstanding predictive performance [7]. Notably, 
in the research area of financial time series forecasting, LSTM 
has shown remarkable predictive performance. Li et al. further 
validated the potential of LSTM in capturing complex stock 
price patterns and improving prediction accuracy [8]. Singh et 
al. combined Convolutional Neural Networks (CNN) with 
LSTM to propose a hybrid model for Indian stock portfolio 
management, which outperformed traditional models [9]. 

However, LSTM networks also face challenges, such as 
susceptibility to overfitting, sensitivity to hyperparameter 
selection, and the risk of falling into local optima, which can 
limit prediction accuracy [10]. Hyperparameter selection in 
LSTM models typically relies on manual experience, which 
significantly impacts model performance. To address these 
issues, metaheuristic optimization algorithms have been 
extensively utilized for hyperparameter optimization [11–13]. 
For example, Zhang et al. applied Particle Swarm Optimization 
(PSO) to optimize LSTM hyperparameters for predicting short-
term fluctuations in the highest prices of U.S. stocks, 
demonstrating the superiority of the optimized LSTM model 
[14]. However, the PSO method is prone to slow convergence 
and inefficiency in high-dimensional spaces, particularly in 
multimodal optimization problems or complex search spaces, 
leading to local optima and reduced operational efficiency [15]. 
In response to these challenges, several studies have explored 
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the integration of the Whale Optimization Algorithm (WOA) 
with deep learning models. Xin et al. combined the WOA with 
the LSTM model to predict the stock market, achieving 
significant improvements in forecasting accuracy [16]. Hasan 
enhanced the convergence mechanism of WOA and applied it 
to the optimization of time-series prediction models, yielding 
excellent results in temperature and humidity forecasting [17]. 

Inspired by the aforementioned studies, this paper proposes 
a novel approach that integrates an Improved Whale 
Optimization Algorithm (IWOA) with LSTM networks. IWOA 
enhances population diversity and reduces the risk of 
premature convergence by incorporating chaotic mapping. 
Additionally, it features an adaptive factor mechanism that 
dynamically balances exploration and exploitation during the 
optimization process, leading to improved efficiency and 
accuracy. By leveraging IWOA’s robust optimization 
capabilities, the hyperparameters of the LSTM model are fine-
tuned more effectively, enabling the model to better capture the 
complexity of nonlinear and chaotic patterns in financial time 
series. 

II. METHODS 

A. LSTM 

In the early stages of time series forecasting, recurrent 
neural networks (RNNs) gained widespread use due to their 
capability to process sequential data. Unlike traditional 
feedforward neural networks (e.g., backpropagation neural 
networks, BPNN), which propagate signals in a single 
direction, RNNs introduce weighted connections between 
hidden layer neurons. This architecture enables the output of 
hidden layer neurons at each time step to depend on 
information from the previous time step, allowing the network 
to effectively capture temporal dependencies. By incorporating 
both feedforward and internal feedback connections, RNNs 
exhibit dynamic temporal behavior that influences their 
internal states. However, in practice, the hidden state of an 
RNN at each time step is determined by both the hidden layer 
values from the previous time step and the input values at the 
current time step, which restricts its ability to retain long-term 
memory [18]. 

To overcome the limitations of traditional RNNs, Graves 
extended the Long Short-Term Memory (LSTM) neural 
network, which effectively addresses these challenges [19]. 
LSTM replaces the hidden layer nodes of standard RNNs with 
specialized memory units, allowing the network to better retain 
and manage temporal information, particularly for modeling 
long-term dependencies. The core component of LSTM is the 
cell state, which functions as a channel for transmitting 
information across the network. LSTM introduces input, forget, 
and output gates to enhance the functionality of global memory 
cells. These gates regulate the retention, updating, or 
discarding of information at each time step, enabling the 
network to efficiently learn long-term dependencies. Fig. 1 
illustrates the architecture of the LSTM model. 

The structure of LSTM is highly efficient in managing 
long-term relationships within time series data, especially 
when events are delayed. In LSTM, three gates regulate the 
cell state, each employing a Sigmoid activation function and 

pointwise multiplication. The Sigmoid output, ranging from 0 
to 1, determines how much information passes through: a value 
of 0 indicates complete "blocking," while a value of 1 signifies 
full "pass-through." This gating mechanism enables LSTM to 
efficiently retain and propagate long-term dependency 
information in time series data. The workflow of the LSTM 
network is described by the following equations. 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖) (1) 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓) (2) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜) (3) 

Ĉ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∗ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐) (4) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ Ĉ𝑡 (5) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6) 

In Eq. (1) to Eq. (6), W refers to the weight vectors, while b 
denotes the bias terms. 

 
Fig. 1. Structure of LSTM. 

B. WOA 

The Whale Optimization Algorithm (WOA) is a novel 
swarm intelligence method inspired by the bubble net foraging 
strategy of humpback whales. This algorithm demonstrates 
superior performance compared to traditional optimization 
approaches. WOA simulates this behavior through two main 
search strategies: exploration and exploitation. During 
exploration, whales move randomly in search of prey, while in 
the exploitation phase, they navigate toward the prey in a spiral 
pattern to find the optimal solution. The algorithm uses a series 
of mathematical equations to simulate these behaviors, 
enabling it to effectively search for optimal solutions in 
complex and high-dimensional spaces [20]. In WOA, each 
candidate solution corresponds to a position within the search 
space, and the algorithm optimizes the objective function by 
mimicking the whale's hunting behavior. The algorithm 
operates through three main phases [21]. 

1) Encircling prey: When a whale detects the position of 

its prey, it adjusts its position based on the current best 

solution. During this process, the whale moves closer to the 

optimal solution by a certain proportion. The position of the 

whale is updated as described in Eq. (7). 
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{

𝐷 = |𝐶 ∙ 𝑋∗(𝑡) − 𝑋(𝑡)|

𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴 ∙ 𝐷
A = 2𝑎 ∙ 𝑟 − 𝑎

C = 2 ∙ 𝑟

 (7) 

In Eq. (7),  𝐷  represents the distance between the whale 
individual and its prey. t represents the iteration number;  A 
and C are coefficient vectors; X and  𝑋∗  and are the current 
whale position and the current best whale position; 𝑎 decreases 
linearly from 2 to 0 during the iteration; r is a random number 
in the range [0, 1]. 

2) Bubble-net attacking: There are two mechanisms 

designed for Bubble-net attacking: shrinking encircling 

mechanism and spiral updating position. 

a) Shrinking encircling mechanism: This mechanism is 

implemented using the parameters in Eq. (7). During the 

iterations, the behavior is achieved by linearly decreasing the 

value of a from 2 to 0, while A fluctuates within the range [−a, 

a]. When A is a random value between [−1, 1], the whale's 

position is updated to lie somewhere between its original 

position and the current optimal position. 

b) Spiral updating position: Initially, the distance 

between the whale and its prey is calculated. Then, a spiral 

equation is derived to simulate the whale's spiral movement, 

the specific equation is as follows. 

{
𝐷 = |𝑋∗(𝑡) − 𝑋(𝑡)|

𝑋(𝑡 + 1) = 𝐷 ∙ 𝑒𝑏𝑙 ∙ 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋∗(𝑡)
  (8) 

In Eq. (8),  𝑏  is the spiral shape constant;  𝑙  is a random 
value within the range [-1, 1]. 

When the whale approaches the prey, its behaviors of 
shrinking encircling and spiral position updating occur 
simultaneously. To simulate this bubble-net attack, it is 
assumed that the humpback whale has a 50% chance of 
performing either shrinking encircling or spiral position 
updating. X(t+1) is shown in Eq. (9). 

𝑋(𝑡 + 1) = {
𝑋∗(𝑡) − 𝐴 ∙ 𝐷                 𝑝 < 0.5

𝐷 ∙ 𝑒𝑏𝑙 ∙ 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋∗(𝑡)     𝑃 ≥ 0.5           
(9) 

In Eq. (9), p is a random number in the range [0, 1]. 

3) Search for prey: At this phase, the whale population 

performs global exploration. When |A| > 1, the whale 

population ceases to adjust its position according to the 

current optimal solution. Instead, the position is updated based 

on a randomly selected whale, with the goal of expanding the 

search range and seeking the optimal solution to maintain 

population diversity. Therefore, only a small modification to 

Eq. (7) is needed to obtain the mathematical model for this 

stage. 

{
𝐷 = |𝐶 ∙ 𝑋𝑟𝑎𝑛𝑑 − 𝑋(𝑡)|

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 − 𝐴 ∙ 𝐷
 (10) 

In Eq. (10),  𝑋𝑟𝑎𝑛𝑑  represents the position of a randomly 
selected whale. 

WOA achieves a balance between local and global 
exploration through its three primary operations, thereby 

enhancing global search capabilities and mitigating the 
premature convergence problem commonly encountered in 
traditional optimization algorithms. As a result, WOA 
demonstrates superior performance in solving complex 
optimization problems [22]. 

III. PROPOSED IWOA-LSTM PREDICTION MODEL 

A. IWOA-LSTM Model 

The performance of an LSTM network is highly influenced 
by the selection of appropriate hyperparameters. However, 
traditional hyperparameter tuning methods often rely on 
manual expertise, which may not ensure optimal results across 
diverse scenarios [23]. To address this issue, this research 
proposes an improved Whale Optimization Algorithm (IWOA) 
integrated with the LSTM model to automate the 
hyperparameter optimization process. 

IWOA combines Whale Optimization with Logistic Chaos 
Mapping to improve population diversity during initialization 
and prevent premature convergence to local optima, providing 
a more effective starting point for the optimization process. 
Additionally, IWOA incorporates a dynamic adjustment 
mechanism based on fitness variations, enabling the automatic 
fine-tuning of the mutation factor. This mechanism enhances 
the algorithm's global search capability and increases 
optimization efficiency. 

In the IWOA-LSTM model, IWOA optimizes key LSTM 
hyperparameters, including the number of hidden units and the 
learning rate. By balancing global exploration and local 
exploitation, IWOA accelerates convergence and fine-tunes 
LSTM parameters, ultimately improving prediction accuracy. 
This approach minimizes manual intervention, enhancing the 
adaptability and performance of the LSTM network. 

B. Chaotic Map Initialization 

In WOA, the initialization of the population is a crucial 
factor that influences the optimization performance. Traditional 
random initialization can result in an uneven distribution of 
initial solutions, potentially reducing the algorithm's efficiency. 
To address this challenge, chaotic mapping is employed to 
adjust the control parameters of WOA, thereby improving the 
balance between exploration and exploitation. This technique 
enhances the algorithm's global convergence rate by generating 
a more dispersed and diversified initial population, thus 
reducing the likelihood of premature convergence to local 
optima. 

In this study, chaotic mapping is introduced during the 
initialization phase of WOA, specifically utilizing the logistic 
chaotic mapping proposed by Prasad [24] and Yousri [25]. 
This mapping exhibits both random and deterministic 
characteristics, which facilitates the adjustment of WOA's 
control parameters. The initialization equation for chaotic 
mapping is as follows. 

𝑥𝑖,𝑗 = 𝑥𝑖,𝑗 ∗ (𝑏𝑗 − 𝑎𝑗) + 𝑎𝑗  (11) 

In Eq. (11), 𝑥𝑖,𝑗 represents the position of the i-th whale in 

the j-th dimension.  𝑎𝑗 and 𝑏𝑗 denote the boundaries of the j-th 

dimensional space. The initialized 𝑥𝑖,𝑗  is generated using the 
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Logistic chaotic mapping, and its iteration equation is as 
follows. 

𝑥 = 𝑟 ∗ 𝑥 ∗ (1 − 𝑥) (12) 

In Eq. (12), 𝑟  is the control parameter. In this study, its 
value is set to 4. This initialization method ensures the 
diversity of the population distribution, providing a strong 
starting point for subsequent iterations. 

C. Dynamic Adjustment Mechanism 

In the optimization process of WOA, applying an 
appropriate mutation operation after each individual's position 
update significantly enhances the algorithm's global search 
capability [26]. The mutation factor plays a pivotal role in this 
process. By dynamically adjusting the mutation factor based on 
changes in fitness and iteration step size, the algorithm 
effectively balances global exploration and local exploitation, 
thereby improving both convergence efficiency and solution 
accuracy. 

To enable the dynamic adjustment of the mutation factor, 
this study proposes a fitness-based adjustment mechanism. 
This mechanism takes into account the current range of fitness 
changes, the step size, and the global optimal fitness value. By 
modulating the mutation factor, the algorithm achieves 
enhanced diversity and convergence performance. The 
dynamic adjustment factor is mathematically defined in Eq. 
(13). 

𝜇𝑡 = 𝜇𝑡−1 ∗ (1 + 𝛽 ∗
|𝑓𝑡−𝑓𝑡−1|

𝑓𝑚𝑎𝑥

+ 𝛾 ∗ √|𝑓𝑡−𝑓𝑡−1| − 𝛼 ∗
𝑡

𝑇
) (13)

 
 

In Eq. (13), 𝜇𝑡  represents the adjustment factor for the 
current iteration, while  𝜇𝑡−1  is the adjustment factor for the 
previous iteration. 𝑓𝑡  and 𝑓𝑡−1  are the fitness values for the 
current and previous iterations, respectively. 𝛽 , 𝛾 , and 𝛼  are 
hyperparameters that control the update of the adjustment 
factor. These parameters are used to measure the linear and 
nonlinear weights of the fitness change, as well as the effect of 
the time step size. In this study, they are set to 0.1, 0.2, and 
0.05, respectively. 𝑡 is the current iteration number, and T is 
the maximum number of iterations. 𝜇𝑡 is constrained within the 
range (0, 1). 

After each position update, to boost the algorithm's global 
exploration capability, this study introduces a mutation 
operation based on the dynamic adjustment factor. After 
calculating the dynamic adjustment factor 𝜇𝑡 , a normal 
distribution random disturbance N(0,1) is applied to fine-tune 
the individual positions. This disturbance operation not only 
enhances population diversity but also effectively prevents 
individuals from getting trapped in local optima, especially in 
the later stages of optimization. The specific position update 
equation is presented in Eq. (14). 

𝑥𝑖,𝑗(𝑡 + 1) = 𝑥𝑖,𝑗(𝑡 + 1) + 𝜇𝑡 ∗ 𝑁(0,1) (14) 

This operation enhances the algorithm's ability to avoid 
local optima by introducing random disturbances, especially 
during the later stages of population convergence or 
optimization. The dynamic adjustment factor integrates fitness 
differences with a square root term, significantly increasing the 

variation intensity during the early stages of optimization, 
when fitness differences are more pronounced. This approach 
introduces greater randomness into the search process, 
fostering a more thorough exploration of the global solution 
space. 

As iterations progress, the influence of the adjustment 
factor is gradually reduced through a time attenuation 
mechanism, enabling the algorithm to transition from global 
exploration to local exploitation. This shift allows the 
algorithm to focus on refining the solution, thereby improving 
optimization accuracy. 

Furthermore, the recursive calculation of the dynamic 
adjustment factor relies on the value from the previous 
generation. This design ensures smoother variation intensity, 
preventing abrupt fluctuations during the optimization process 
and maintaining stability. With this adaptive adjustment 
mechanism, the algorithm can adjust its search strategy in real-
time based on changes in fitness, enabling it to maintain robust 
global search capabilities while avoiding premature 
convergence. Ultimately, this improves both optimization 
efficiency and solution quality. 

D. The Construction Steps of IWOA-LSTM  

This study employs the IWOA to optimize the LSTM 
neural network for predicting financial time series. Fig. 2 
illustrates the overall process, with the steps detailed below: 

 

Fig. 2. Flowchart of IWOA-LSTM. 
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Step 1: Data preprocessing. Normalize the original time 
series data adopting Min-Max scaling to bring it into the [0, 1], 
then partition the data into training and test sets. 

Step 2: Initialize IWOA and LSTM parameters. For IWOA, 
set the population size, search space boundaries (for LSTM’s 
hidden units and learning rate), maximum iterations, and 
dynamic adjustment parameters (β, γ, α). Use the logistic map 
for chaotic initialization to enhance population diversity. For 
the LSTM model, set the initial parameters to ensure smooth 
optimization. 

Step 3: Train and optimize the LSTM model using IWOA 
by minimizing the mean squared error (MSE) through iterative 
updates. Evaluate the fitness of each whale in the swarm, 
identifying the best fitness values for both individual whales 
and the global solution. Use IWOA’s position update formula 
and dynamic adjustment factor to refine whale positions, 
balancing global exploration and local exploitation. Continue 
the process until the maximum iteration threshold is reached or 
the global fitness threshold is achieved. 

Step 4: Apply the fine-tuned LSTM model to the test data 
to validate its prediction capabilities. 

Step 5: Evaluate the prediction performance by applying 
the optimized LSTM model to forecast the financial time series 
data. The results are then measured against five performance 
indicators to evaluate the model's accuracy and effectiveness. 

IV. EXPERIMENTS  

All programming works are implemented in the Python 3.9 
environment. The computational experiments are performed on 
a system featuring a 12th Gen Intel(R) Core(TM) i5-1235U 
CPU, 16 GB of RAM, and operating on Windows 10. 

A. Dataset 

This study selected five globally representative stock 
indices as research subjects: the S&P 500 Index (Code: 
^GSPC), Dow Jones Industrial Average (Code: ^DJI), FTSE 
100 Index (Code: ^FTSE), Nasdaq Composite (Code: ^IXIC), 
and Shanghai Composite Index (Code: 000001.SS). These 
indices represent major economies in the Americas, Europe, 

and Asia, providing comprehensive insights into the global 
capital market. 

Specifically, the S&P 500 Index and the Dow Jones 
Industrial Average represent the U.S. capital market 
comprehensively. The S&P 500 Index includes 500 companies 
with the largest market capitalizations and significant industry 
representation, providing a broad view of the market. In 
contrast, the Dow Jones Industrial Average Index focuses on 
30 prominent companies, often referred to as blue-chip stocks, 
representing major sectors of the U.S. economy. The FTSE 100 
Index reflects the performance of the largest British companies 
by market capitalization and serves as a key benchmark for the 
European market. The Nasdaq Composite Index, heavily 
weighted by technology stocks, highlights global trends in 
technological innovation and growth. Lastly, the Shanghai 
Composite Index is a vital indicator of mainland China's capital 
market, encompassing all listed stocks on the Shanghai Stock 
Exchange. 

The experimental data is obtained from 
https://finance.yahoo.com/ and spans a period of 10 years, from 
October 23, 2014, to October 21, 2024. This timeframe 
encompasses significant global economic events, including the 
financial crisis triggered by the COVID-19 pandemic in 2020, 
subsequent recovery phases, and various national policy 
adjustments, which resulted in substantial market fluctuations. 
The dataset includes daily recorded basic information, 
providing a solid foundation for model training and testing. 
These data facilitate the assessment of the model's adaptability 
and robustness within a complex and volatile market 
environment. In addition, to verify the predictive ability of the 
model when external factors (e.g., macroeconomic indicators, 
social sentiment) are not introduced, the experimental design 
uses only historical price data for prediction. This design 
highlights the model's intrinsic performance in financial time 
series analysis, avoids interference from external variables, and 
objectively evaluates the performance of IWOA-LSTM in 
volatile market environments. The historical trends of the five 
stock indices are shown in Fig. 3. The detailed statistical 
analysis of the closing prices for each stock index is presented 
in Table I. 

 

Fig. 3. Historical closing price charts for five stock indices. 
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TABLE I.  DESCRIPTIVE STATISTICS OF STOCK CLOSING PRICES 

Name Count Max Min Range Mean Std Kurtosis Skewness 
Normality Test 

Statistic 

Normality Test P-

Value 

^GSPC 2515 5864.67 1829.08 4035.59 3280.57 1035.14 -0.88 0.49 403.10 0.00 

^DJI 2515 43275.91 15660.18 27615.73 27194.68 7082.78 -1.12 0.13 1129.42 0.00 

^FTSE 2524 8445.80 4993.90 3451.90 7109.40 601.09 -0.02 -0.49 92.50 0.00 

^IXIC 2515 18647.45 4266.84 14380.61 9573.88 3959.34 -1.11 0.41 1101.31 0.00 

000001.SS 2427 5166.35 2290.44 2875.91 3183.23 349.92 5.52 1.45 782.03 0.00 
 

From Fig. 3 and Table I, it is evident that the closing prices 
of these five stock indices (^GSPC, ^DJI, ^FTSE, ^IXIC, and 
000001.SS) exhibit obvious nonlinear characteristics and high 
volatility, with the price trends showing irregularity and 
substantial noise. For example, the fluctuation range of ^DJI 
index is as high as 27615.73, which is significantly higher than 
that of the other indices, indicating extreme volatility. 
Although some trend changes are observed in the data, the 
overall price fluctuation demonstrates strong uncertainty, and 
the fluctuation pattern cannot be simply summarized as a linear 
relationship. The price fluctuations of these indices are 
influenced by a variety of complex factors, displaying both 
randomness and nonlinear characteristics. Traditional linear 
models struggle to effectively capture these intricate dynamics. 

Conventional forecasting approaches face significant 
limitations in addressing the nonlinear and complex nature of 
stock market data, particularly in highly volatile time series. 
These methods, based on linear assumptions, are inadequate 
for capturing long-term dependencies and nonlinear trends. To 
overcome these challenges, this study employs the LSTM 
model, which excels at handling complex time series data due 
to its unique architecture and memory mechanism. By 
capturing long-term dependencies and nonlinear patterns, 
LSTM outperforms traditional methods, offering improved 
prediction accuracy and stability in the face of noise and 
complexity in stock market data. 

B. Data Preprocessing 

Data preprocessing is a critical component of data analysis, 
as it significantly influences model performance and prediction 
accuracy. In this study, the raw stock index data are cleaned to 
eliminate null and duplicate values, ensuring the integrity and 
reliability of the dataset. Subsequently, the Min-Max 
normalization technique is applied to scale the daily closing 
prices to the range [0, 1]. This normalization step mitigates the 
impact of varying data dimensions on model training. The 
equation used for normalization is in Eq. (15). 

𝑥𝑖 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (15) 

In Eq. (15),  𝑥𝑖  denotes the normalized data, while 𝑥𝑚𝑎𝑥  
and 𝑥𝑚𝑖𝑛  represent the maximum and minimum value in the 
financial time series, respectively. 

After the prediction is completed, the prediction results 
need to be transformed using inverse normalization. The 
inverse normalization equation is in Eq. (16). 

𝑥 = (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) 𝑥𝑖 + 𝑥𝑚𝑖𝑛 (16) 

We prepare the data and normalize it to ensure uniform 
scaling and provide a stable input for the mode training.  

C. Evaluation Metrics 

Measuring prediction accuracy is a multifaceted task, and 
no single evaluation metric applies universally across different 
application scenarios. To comprehensively assess the model's 
prediction performance, this study employs five widely used 
evaluation metrics: Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), Mean Absolute Percentage Error 
(MAPE), Coefficient of Determination (R²), and Explained 
Variance Score (EVS). 

These evaluation metrics can be classified into error 
measures and fitting measures. Error measures, including 
RMSE, MAE, and MAPE, primarily assess the differences 
between predicted and actual values. Fitting measures, 
including R² and EVS, evaluate the model's fit. Specifically, 
the closer the R² value is to 1, the better the model's fit, while 
the closer the EVS value is to 1, the stronger the model’s 
ability to explain the data. These five metrics together offer a 
comprehensive and accurate reflection of the model's 
prediction accuracy and fitting ability. The five evaluation 
metrics are expressed by the following equations: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 (17) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (18) 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|

𝑛

𝑖=1

 (19) 

𝑅² = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

 (20) 

𝐸𝑉𝑆 = 1 −
𝑉𝑎𝑟(𝑦𝑖 − 𝑦̂𝑖)

𝑉𝑎𝑟(𝑦)
 (21) 

Among them, 𝑦𝑖  stands for the true value, 𝑦̂𝑖 represents the 
predicted value, 𝑦̅𝑖  denotes the mean of the financial time 
series, and 𝑉𝑎𝑟 () refers to the variance. 

To construct the input data for the LSTM model, this study 
employs sliding window method for time series and evaluates 
the impact of different time step settings on model's 
effectiveness. Specifically, the sliding window method uses 
fixed time steps to extract sequential features from stock data. 
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Four different time step settings are tested: 10, 20, 30, and 60. 
The MSE and training time of the model are calculated for 
each setting. 

The closing price data are divided into training and test sets 
based on an 80:20 ratio, using various time step configurations 
(time_steps = 10, 20, 30, and 60). The LSTM model is trained 
on the training set and generates predictions for the test set. For 
each time step configuration, the training time (in seconds) and 
the MSE on the test set are recorded. Table II presents an 
overview of the experimental results. 

TABLE II.  IMPACT OF LSTM TIME STEP ON PREDICTION PERFORMANCE 

Time Steps MSE Training Time (s) 

10 0.000463 9.974107 

20 0.000577 12.020250 

30 0.000701 13.437092 

60 0.000464 20.137358 

The experimental results reveal significant variations in 
both the MSE and the training duration of the model across 
different time step configurations. Specifically, when the time 
step is 10 days, the MSE of the model is 0.000463, and the 
training time is approximately 9.97 seconds. When the time 
step is increased to 60 days, the MSE slightly increases to 
0.000464, while the training time rises significantly to about 
20.14 seconds. Although the MSE at 60 days is similar to that 
at 10 days, the longer training time notably affects 
computational efficiency. Therefore, considering the need to 
balance prediction accuracy with computational efficiency, a 
10-day time step is selected as the optimal configuration. 

Next, the IWOA algorithm is applied to optimize the 
number of LSTM units and the learning rate. By leveraging 
IWOA, the model can dynamically fine-tune these 
hyperparameters, enhancing both prediction accuracy and 
computational efficiency. To evaluate the effectiveness of 
IWOA optimization, this study compares it with other popular 
models, including WOA-LSTM, LSTM, and RNN. Table III 
shows the models compared in this study and their parameters. 

TABLE III.  MODELS COMPARED IN THIS RESEARCH 

Model Description of model parameters 

IWOA-LSTM time_steps=10，epochs=50，batch_size=32，population_size=5，units∈ [10, 100]，learning_rate∈ [0.0001, 0.01] 

WOA-LSTM time_steps=10，epochs=50，batch_size=32，population_size=5，units∈ [10, 100]，learning_rate∈ [0.0001, 0.01] 

LSTM time_steps=10，units=50, learning_rate=0.001，epochs=50，Dropout=0.2， batch_size=32 

RNN time_steps=10，units=50, learning_rate=0.001，epochs=50，Dropout=0.2， batch_size=32 
 

D. S&P500 Forecasting 

This study first selects the S&P 500 index (^GSPC) as the 
target for prediction. The dataset contains 2,515 records, 
spanning from October 23, 2014, to October 21, 2024, with 
daily closing prices. For model training, a retrospective period 
of 10 days is used, meaning that the closing prices from the 
past 10 days are employed in the prediction process. To 
thoroughly assess the prediction performance of each model, 
this study adopts five different evaluation indicators. Each 
model is evaluated based on these five indicators, with the best 
performance metrics marked in bold. The prediction 
comparison results for the various models on the S&P 500 
index are presented in Table IV. 

TABLE IV.  COMPARISON RESULTS OF PREDICTIONS BETWEEN VARIOUS 

MODELS OF ^GSPC 

Model RMSE MAE MAPE R2 EVS 

IWOA-LSTM 48.1826 37.8081 0.9377% 0.9935 0.9936 

WOA-LSTM 55.6435 44.2542 0.9638% 0.9913 0.9916 

LSTM 70.4543 55.8142 1.2216% 0.9860 0.9863 

RNN 93.7222 76.6777 1.5764% 0.9752 0.9869 

As observed from the results in Table IV, the effectiveness 
of the IWOA-LSTM model is significantly superior to that of 
the other models across all evaluation metrics. Specifically, the 
IWOA-LSTM model outperforms WOA-LSTM in RMSE, 
MAE, MAPE, R², and EVS by 13.41%, 14.57%, 0.03%, 0.22%, 
and 0.20%, respectively. Furthermore, IWOA-LSTM shows 

improvements over the LSTM model by 31.61%, 32.26%, 
0.28%, 0.76%, and 0.74%, and is 48.59%, 50.69%, 0.64%, 
1.88%, and 0.68% better than the RNN model in the same 
metrics. 

In addition to evaluating prediction accuracy, this study 
also investigates the computational efficiency of the IWOA-
LSTM model by comparing its runtime performance with that 
of the standard WOA during hyperparameter optimization and 
model training. Fig. 4 presents the comparison of their runtime 
performance. 

 
Fig. 4. Runtime comparison. 
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Fig. 4 compares the optimization and training times of the 
IWOA-LSTM and WOA-LSTM models, highlighting the 
performance differences. The optimization time for IWOA-
LSTM is 152.58 seconds, while WOA-LSTM takes 181.02 
seconds, indicating that IWOA-LSTM is more efficient in 
parameter optimization. This improvement is attributed to the 
use of logistic chaotic mapping and a dynamic adjustment 
factor mechanism, which enhance search precision and reduce 
unnecessary iterations. For training time, IWOA-LSTM takes 
9.01 seconds, while WOA-LSTM takes 9.87 seconds. 
Although the difference is small, IWOA-LSTM shows a slight 
advantage, proving that improved optimization efficiency does 
not slow down the training process. The results show that 
IWOA-LSTM improves operational efficiency while 
maintaining predictive performance and is able to converge on 
complex datasets relatively quickly. 

Overall, the results of these experiments on the ^GSPC 
stock index show that the IWOA-LSTM model performs well 
across all evaluation metrics. In addition to its excellent 
performance on these metrics, the IWOA-LSTM model also 
shows an advantage in hyperparameter optimization time 
compared to the original WOA, reflecting an improvement in 
the model's computational efficiency during the optimization 
process. This highlights the effectiveness of optimizing the 
LSTM hyperparameters, which not only leads to more accurate 
predictions but also improves computational efficiency. 

Next, to provide a more intuitive view of the fitting 
performance of each model, the final fitting comparison results 
are presented in Fig. 5 and Fig. 6. 

Fig. 5 demonstrates the fitting results of the ^GSPC index 
prediction based on different models. The curves in the figure 
illustrate the prediction results of the IWOA-LSTM, WOA-
LSTM, LSTM, and RNN models, respectively, and are 
compared with the actual price curves. It can be observed that 
the prediction curves of the IWOA-LSTM model are closest to 
the actual prices, especially in most time intervals, where the 
prediction curves of the IWOA-LSTM almost coincide with 
the actual price curves, showing very high prediction accuracy. 
In contrast, although the WOA-LSTM model also shows 
relatively accurate predictions, the discrepancy between the 
predicted and actual values becomes more pronounced during 
periods of high volatility. Nonetheless, despite slight deviations 
in more volatile markets, the overall performance remains 
robust, suggesting that the model is able to effectively capture 
the general trend. The LSTM and RNN models show relatively 
lower prediction accuracies, especially in regions of high price 
volatility, where the predicted curves of both models deviate 
more from the actual prices. This suggests that the LSTM and 
RNN models are not as effective as the IWOA-LSTM and 
WOA-LSTM models in capturing complex patterns. 

 
Fig. 5. Individual forecasts of four models on the ^GSPC index. 
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Fig. 6. Comparison of forecasts from four models on the ^GSPC index.

The illustration in Fig. 6 shows the forecast results for the 
last 100 days. During this period, the IWOA-LSTM prediction 
curve continues to outperform the other models, especially in 
short-term price fluctuations, where IWOA-LSTM more 
accurately captures the trend of stock prices. In contrast, the 
fitting effect of the RNN model is poor, particularly during 
periods of significant stock price fluctuations, where its 
prediction error is quite noticeable. 

Overall, IWOA-LSTM performs particularly well in the 
^GSPC index prediction task. It is better at capturing the 
complex dynamic patterns in the time series and providing 
high-precision prediction results, which demonstrates its 
advantages in financial time series forecasting. 

To further validate the predictive ability of the IWOA-
LSTM model, this study compares it with other improved 
WOA algorithms proposed by Shao [27] and Guan [28]. Apart 
from the improved algorithms discussed in the paper, all other 
parameter settings are consistent with those used in this study. 
Additionally, this study incorporates PSO-LSTM [29] and GA-
LSTM [30], two advanced swarm intelligence optimization 
models. A comparative analysis is performed to evaluate the 
prediction performance of different optimization methods on 
the ^GSPC index. The comparison of prediction performance 
results is presented in Table V. 

TABLE V.  COMPARISON OF PREDICTION PERFORMANCE OF IWOA-LSTM MODEL AND OTHER IMPROVED LSTM MODEL 

Model Optimization Details RMSE MAE R2 

IWOA-LSTM (Proposed in this study) Logistc chaotic mapping; dynamic adjustment factor mechanism 48.1826 37.8081 0.9935 

IWOA-LSTM [27] Tent chaotic mapping; adaptive weight 57.7395 47.2308 0.9906 

WOA-BiLSTM [28] Whale optimization algorithm optimized Bidirectional LSTM 65.0222 53.2598 0.9881 

PSO-LSTM [29] Particle swarm optimized LSTM 49.1197 38.8116 0.9931 

GA-LSTM [30] Genetic algorithm optimized LSTM 52.7665 42.0509 0.9921 
 

From Table V, the IWOA-LSTM model achieves better 
prediction results compared to other models. With the 
integration of the logistic chaotic map and dynamic adjustment 
mechanism, IWOA-LSTM demonstrates improved prediction 
accuracy and stability. Although the other models have been 
enhanced, their accuracy and effectiveness in predicting 
financial time series do not fully match those of IWOA-LSTM. 
This suggests that IWOA-LSTM offers certain advantages in 
forecasting financial time series. 

E. The Robustness and Reliability Verification 

In order to conduct a deeper validation of the IWOA-
LSTM model's robustness and reliability, this study performs 
experiments on other four famous stock indices: ^DJI, ^FTSE, 

^IXIC, and 000001.SS. The corresponding experimental results 
are presented in Table VI to Table IX and Fig. 7 to Fig. 10. 

TABLE VI.  COMPARISON RESULTS OF PREDICTIONS BETWEEN VARIOUS 

MODELS OF ^DJI 

Model RMSE MAE MAPE R2 EVS 

IWOA-LSTM 344.4983 277.7575 0.7700% 0.9870 0.9888 

WOA-LSTM 436.9144 357.2306 0.9766% 0.9791 0.9829 

LSTM 483.1204 379.3579 1.0572% 0.9744 0.9749 

RNN 632.4826 513.0577 1.3752% 0.9562 0.9732 
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TABLE VII.  COMPARISON RESULTS OF PREDICTIONS BETWEEN VARIOUS 

MODELS OF ^FTSE 

Model RMSE MAE MAPE R2 EVS 

IWOA-LSTM 73.6150 54.8546 0.7112% 0.9502 0.9502 

WOA-LSTM 73.9682 55.0725 0.7130% 0.9497 0.9500 

LSTM 183.0727 157.7665 1.9980% 0.6917 0.8732 

RNN 77.3710 60.2541 0.7754% 0.9449 0.9526 

TABLE VIII.  COMPARISON RESULTS OF PREDICTIONS BETWEEN VARIOUS 

MODELS OF ^IXIC 

Model RMSE MAE MAPE R2 EVS 

IWOA-LSTM 208.4710 167.3047 1.1916% 0.9921 0.9923 

WOA-LSTM 259.5208 211.9485 1.4697% 0.9878 0.9899 

LSTM 324.4165 264.5356 1.8428% 0.9810 0.9836 

RNN 327.8000 260.9647 1.7722% 0.9806 0.4920 

TABLE IX.  COMPARISON RESULTS OF PREDICTIONS BETWEEN VARIOUS 

MODELS OF 000001.SS 

Model RMSE MAE MAPE R2 EVS 

IWOA-LSTM 38.1677 25.8819 0.8397% 0.9371 0.9372 

WOA-LSTM 42.3903 28.5810 0.9294% 0.9224 0.9229 

LSTM 56.3180 37.6384 1.2245% 0.8631 0.8631 

RNN 43.9960 30.4456 0.9893% 0.9164 0.9175 

As shown by the comparison results in Table VI to Table 
IX and Fig. 7 to Fig. 10, the IWOA-LSTM model demonstrates 
superior prediction accuracy and a better fit than other models 
in predicting four different stock indices (^DJI, ^FTSE, ^IXIC, 
and 000001.SS). The IWOA-LSTM model achieves lower 
errors and improved accuracy across multiple evaluation 
metrics (RMSE, MAE, MAPE, R², EVS). In particular, its 
RMSE and MAE values indicate better accuracy compared to 
WOA-LSTM. 

 
Fig. 7. Comparison of forecasts from four models on the ^DJI index. 

 
Fig. 8. Comparison of forecasts from four models on the ^FTSE index. 
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Fig. 9. Comparison of forecasts from four models on the ^IXIC index. 

 

Fig. 10. Comparison of forecasts from four models on the 000001.SS index. 

When compared with the LSTM and RNN models, the 
IWOA-LSTM model shows clear advantages, particularly in 
capturing the volatility of financial markets and the complexity 
of time series data. It demonstrates strong adaptability in the 
^DJI, ^FTSE, and ^IXIC and also performs well in predicting 
the Shanghai Composite Index (000001.SS), with RMSE, 
MAE, and MAPE values lower than those of the other 
comparative models. Overall, the IWOA-LSTM model 
improves prediction accuracy and stability through optimized 
hyperparameter settings, demonstrating strong potential for 
application in financial time series forecasting, particularly in 
stock index prediction. 

V. CONCLUSION 

A novel model integrating the Improved Whale 
Optimization Algorithm (IWOA) with Long Short-Term 
Memory (LSTM) is proposed to enhance the accuracy of stock 

market index forecasting. This model employs chaotic map 
initialization and a dynamic adjustment mechanism to optimize 
the LSTM network’s parameters, thereby improving prediction 
which confirms performance. Chaotic assignment improves the 
global search capability of the algorithm and enables a 
thorough exploration of the solution space. Additionally, the 
dynamic adjustment factor increases WOA efficiency, 
optimizes LSTM hyperparameters, and improves prediction 
accuracy and stability. 

The study focuses on five representative stock market 
indexes (^GSPC, ^DJI, ^FTSE, ^IXIC, and 000001.SS) and 
evaluates the model's performance adopting five essential 
evaluation metrics: RMSE, MAE, MAPE, R², and EVS. These 
metrics comprehensively evaluate the model’s prediction 
ability from the perspectives of error magnitude, absolute and 
relative error, goodness of fit, and variance explained. 
Experimental results show that the IWOA-LSTM model 
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outperforms WOA-LSTM, LSTM and RNN in all five metrics. 
This highlights its superior accuracy, robustness and stability. 

Although this study presents an innovative approach to 
stock index prediction and offers valuable contributions, the 
IWOA-LSTM model has certain limitations. Its performance 
depends heavily on the range of hyperparameter values, which 
need to be set based on empirical experience to ensure optimal 
results. Additionally, although the IWOA-LSTM model 
reduces runtime compared to the traditional WOA algorithm, 
the computational cost remains relatively high. Furthermore, 
the validation is conducted on only five representative stock 
indices, limiting the sample size. 

Future research will focus on expanding the dataset to 
include additional stock indices and broader financial market 
data to assess the model's generalizability and robustness. The 
model will also be applied to other time series tasks, such as 
energy forecasting and medical trend analysis, to evaluate its 
cross-industry adaptability and performance. Additionally, 
advanced optimization techniques, including the integration of 
metaheuristic algorithms and hybrid optimization methods, will 
be explored to enhance feature selection and hyperparameter 
tuning. Modal decomposition methods will be studied to 
decompose and reconstruct time series data, reducing noise and 
improving the model’s ability to detect market fluctuations, 
thereby enhancing prediction accuracy and stability. Further 
research will also explore the correlations between the stock 
market and other financial markets to analyze the potential 
impact of external market fluctuations. Moreover, external 
features, such as macroeconomic indicators and social 
sentiment, will be incorporated to assess their influence on 
predictions and improve the model’s adaptability in complex 
market environments. 
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