
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

304 | P a g e  

www.ijacsa.thesai.org 

Machine Learning-Based Fifth-Generation Network 

Traffic Prediction Using Federated Learning 

Mohamed Abdelkarim Nimir Harir1, Edwin Ataro2,Clement Temaneh Nyah3 

Electrical Engineering (Telecommunication option), Pan African University Institute of Basic Sciences Technology and 

Innovation (PAUSTI), Nairobi, Kenya1 

School of Electrical and Electronic Engineering, Technical University of Kenya, Nairobi, Kenya2 

Electrical and Computer Engineering, University of Namibia, Windhoek, Namibia3 
 

 

Abstract—The rapid development and advancement of 5G 

technologies and smart devices are associated with faster data 

transmission rates, reduced latency, more network capacity, and 

more dependability over 4G networks. However, the networks are 

also more complex due to the diverse range of applications and 

technologies, massive device connectivity, and dynamic network 

conditions. The dynamic and complex nature of the 5G networks 

requires advanced and accurate traffic prediction methods to 

optimize resource allocation, enhance the quality of service, and 

improve network performance. Hence, there is a growing demand 

for training methods to generate high-quality predictions capable 

of generalizing to new data across various parties. Traditional 

methods typically involve gathering data from multiple base 

stations, transmitting it to a central server, and performing 

machine learning operations on the collected data. This work 

suggests a hybrid model of Long Short Term Memory (LSTM), 

Gated Recurrent Unit (GRU), and federated learning applied to 

5G network traffic prediction. The model is assessed on one-step 

predictions, comparing its performance with standalone LSTM 

and GRU models within a federated learning environment. In 

evaluating the predictive performance of the proposed federated 

learning architecture compared to centralized learning, the 

federated learning approach results in lower Root Mean Square 

error (RMSE) and Mean Absolute Errors (MAE) and a 2.25 

percent better Coefficient of Determination (R squared). 
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I. INTRODUCTION 

As witnessed the evolution of communication networks into 
the 5G era, the demand for high-speed, low-latency connectivity 
is growing exponentially. The development of 5G networks also 
increases data rates and complexity due to various services and 
multiplexed device connections; this makes network resource 
management of a 5G network a complicated task because of the 
diverse nature of network traffic conditions. The growth in the 
number of users and devices is increasing traffic exponentially, 
causing congestion in the network from many angles [1]. 

Due to most devices now being connected, the conventional 
4G networks cannot meet the current demand. The advantages 
that the 5G network can provide are becoming more visible as 
its scope continues to expand. Compared to their 4G 
counterparts, 5G networks provide faster data transmission, 
reduced delay, expanded coverage, and greater reliability. 

Managing 5G networks as they evolve and become more 
complicated is now one of the greatest difficulties with 
developing them. One critical element of this management is 
predicting network traffic, which has advanced greatly through 
machine learning techniques [1], [2]. 

With new elements such as millimeter waves, massive 
MIMO (Multiple Input, Multiple Output), and network slicing, 
5G networks are much more sophisticated than their 
predecessors. This complexity requires sophisticated traffic 
control methods. Moreover, the various services of 5G, such as 
enhanced mobile broadband (eMBB), massive machine-type 
communication (mMTC), and ultra-reliable low-latency 
communication (URLLC) [3], imply different traffic dynamics 
that require prediction and control. 

 The huge increase in the number of devices connected leads 
to an increase in the volume of mobile traffic and adds stress to 
the system to cope with the volume of data [4]. Ericsson expects 
5G subscriptions projected at approximately 610 million by the 
end of 2023, meaning that about one-fifth of all mobile 
subscriptions worldwide would be 5G [5]. The research 
predicted demand growth will increase to approximately 5.3 
billion 5G subscriptions by 2029 [6]. 

5G networks allow the implementation of edge computing, 
which brings computation and data storage close to the network 
edge. By processing data at the edge, latency-sensitive 
applications might achieve lower network utilization levels 
while enjoying greater speeds, security, and privacy [7]. 

Network traffic forecasting was based on statistical models. 
Techniques such as time series analysis, regression analysis, and 
Markov models have been employed to forecast network 
behavior by leveraging historical traffic data. Time series 
models such as the Autoregressive Integrated Moving Average 
(ARIMA) are effective tools in identifying seasonal trends and 
irregular patterns in data over periods [8]. They make it possible 
to determine traffic cycles that could be predicted at intervals of 
a day, week, or even a month. Regression models, e.g., linear, 
polynomial, and multiple regression analysis, can explain such 
relations as the time of day, human activity, and external factors 
such as weather. Besides this, these models are good at 
understanding relationships influencing traffic volume. 

Markov models such as the Hidden Markov Models (HMM) 
and the Markov Chain Monte Carlo (MCMC), on the other hand, 
apply a probabilistic technique to estimate different stages of the 
network, thus market appeal and ability to offer better traffic 
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prediction because of considering the stochasticity of the 
network traffic [8], [9]. Some of these traditional models have 
also been used for forecasting traffic. 

However, with the growth of the networks, the weaknesses 
of these models are becoming more of a concern. In most cases, 
these models obtrude the linearity, which, along with the 
inability to manage high dimensional data, high rate of change 
in patterns of networks, or manage an anomaly, which is not a 
common phenomenon in the network [9]. This highlights the 
requirement for more sophisticated predictive models. Today, 
machine learning (ML) methods are believed to help deal with 
the complexities of 5G traffic, especially concerning the 
predictive aspect. Unlike traditional models, ML models can 
handle large volumes of datasets, capture nonlinear 
relationships, and learn and update to changes occurring in real-
time. 

The advantage of machine learning models is that they can 
discover intersectional structures or relationships that can be 
captured through conventional statistical means such as models 
by training generally on large datasets [10]. For instance, deep 
learning models such as Recurrent Neural Networks (RNNs) 
and long short-term memory (LSTM) appreciate recognizing 
sequential information in a given network traffic data frame rate, 
improving precision forecast along the time scale. Similarly, 
incentive-based resource allocation has been demonstrated to 
integrate across existing resource conditions by learning sub-
network policies with dynamic structures [11]. 

Federated learning (FL) is projected as one of the many 
machine learning paradigms appropriate for 5G networks. 
Federated learning is a novel approach for training models 
without needing a central server to host raw data on devices [12]. 
This is highly timely in the case of fifth-generation networks 
(5G), as data privacy and security are critical owing to the 
potential proliferation of personal gadgets and the IoT. 
Federated Learning helps model training with privacy, 
bandwidth, and data constraints by leveraging edge devices in a 
distributed manner. 

FL advancements enable privacy and more efficient model 
training, as the processing of network traffic data can occur at 
the edge of the network [13], [14]. This paper studies how 
predictive machine learning models based on federated learning 
can be employed to predict traffic in 5G networks. 

The structure of the paper is as follows: Section II reviews 
the related work, while Section III outlines the architectures of 
the prediction methods. Section IV delves into the prediction 
methodology. The experimental results are presented in Section 
V, and the paper concludes in Section VI. 

II. RELATED WORK 

Advancements in 5G networks have made efficiently 
managing their dynamic and complex nature challenging. One 
possible solution to the above is predicting the network traffic 
on such a network, which is steadily receiving support in the 
form of machine learning advances. 

The author in study [15], through network Internet traffic 
analysis and forecasting of input traffic flow parameters to the 
model, developed a 5G network traffic prediction model that 

utilizes recurrent neural networks in their paper. They have 
employed Gated Recurrent Units (GRU) and (LSTM) to obtain 
a balance between optimality and viability. Such networks have 
acquired short-term traffic predictions since feature engineering 
was introduced to the model to reduce generalization errors and 
manage missing and corrupted data. Still, there is a need for 
more research on machine learning application techniques for 
network management and control in traditional distributed 
architectures. 

In study [1], this paper presents a lightweight hybrid 
attention deep learning model for traffic prediction in 5G 
networks. The model integrates depthwise separable 
convolution with channel and spatial attention techniques to 
lower prediction costs. With its capacity to conserve computing 
resources, the model exhibits promise for use in integrated 
sensing, communication, and computation applications. The 
temporal and spatial properties of 5G network traffic data are 
revealed through data analysis, and the suggested model 
effectively addresses accuracy and complexity concerns using 
feature extraction and prediction capabilities. 

To improve its prediction capabilities for 5G cellular 
network traffic flow, the authors in study [4] propose a deep 
learning model based on a Bidirectional Long Short-Term 
Memory (BiLSTM) architecture with hyperparameter 
optimization. The stated model demonstrates better prediction 
accuracy and shorter running time. Thus, it is helpful for real-
time applications even though the authors did not discuss the 
practical limitations of deploying the model. The focus is on 
possible future research related to resource allocation schemes 
and IoT cloud architectures. Generally, the findings of the 
suggested Deep Learning Mobile Traffic Flow Prediction 
(DLMTFP) technique are encouraging for developing mobile 
traffic prediction in 5G networks. 

In study [16], this paper proposes a Deep-Broad Learning 
System (DBLS) for traffic flow prediction in 5G cellular 
wireless networks. It explains that DBLS is suitable for 5G 
networks because it integrates deep representative and broad 
learning to provide accurate prediction while keeping the 
running time low. They showed that DBLS is more accurate and 
efficient than conventional deep neural networks. It is observed 
that enhancing the reasonable amounts of enhancement nodes 
adaptively can enhance the efficiency of the DBLS model and 
hence lead to high penetration prediction. 

According to study [17], the study proposes to predict the 
traffic of the 5G network and its challenges, owing to the 
diversity and heterogeneous nature of the 5G traffic. To address 
these problems, a Smoothed Long Short-Term Memory 
(SLSTM) model is proposed to enhance prediction accuracy. 
Adjustments are made to the number of layers and hidden units 
based on the prediction accuracy, and seasonal time is based on 
the time series modeling techniques used to smooth the output 
sequences. This article recommends further research on other 
factors influencing 5G traffic to make it more applicable in 
practice. 

In study [18], the study engages numerous cross-domain big 
data resources to construct a spatiotemporal cross-domain neural 
network model (STC-N) that enables deep learning in wireless 
cellular network regional traffic prediction. The method consists 
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of the integration of feature fusion, multi-domain data 
integration, timestamp-based modeling, and spatiotemporal 
correlations. The paper also discusses a cross-domain transfer 
learning approach for improved prediction performance in 
traffic generation. 

It focuses on how cross-domain datasets interact within the 
prediction model and how it affects the accuracy of the 
prediction. Nevertheless, the analysis of different kinds and 
volumes of cross-domain datasets, their synthesis, and 
association effects on wireless cellular traffic prediction 
accuracy deserves further attention. Although the reporting in 
this paper concerns the effect of many cross-domain datasets on 
prediction accuracy, there is scope for investigating the best 
combination and weighting of this dataset. 

Paper in study [19] describes a novel method of estimating 
the traffic flow in cellular networks utilizing counters that 
monitor the performance of LTE radio frequency signals. It 
investigates a range of machine learning models that can 
forecast traffic in the network depending on time. It 
demonstrates that while ensembles such as Gradient Boosting 
produce the most accurate predictions and spend longer training 
time, linear models operate faster but depend on preprocessing. 
The analysis identifies the importance of having a large volume 
of good quality data necessary to train machine learning models 
and speaks to the challenges of deployment and solutions 
whereby autoML may be utilized during retraining, 
regularization, and feature engineering. 

In study [20], this paper considers the issues of mobile 
network forecasting as applied in a distributed manner, 
specifically with forecasting traffic for base stations and 5G 
networks overall. It evaluates different aspects of the centralized 
and federated learning model, pointing out the strengths of 
federated learning for better generalization metrics, economies 
of computational resources, and less carbon dioxide emission. It 
also highlights the role of model aggregation algorithms and 
data preprocessing methods in improving the predictive power 
of the models. The models, which include LSTM and GRU, are 
quite effective in federated learning scenarios. 

The research presented in the paper [21] investigates the 
efficiency of energy usage in augmented deep-learning model 
architecture. It discusses federated traffic prediction 
mechanisms for cellular networks for optimal energy usage. It 
shows how the difference in the region affects the performance 
of a wide variety of models, such as Transformer and Length 
short-term memory-based models. The results demonstrate that 
while complicated models are more demanding in energy, the 
expectation is also a high increase in accuracy. This study seeks 
to raise the understanding of Distributed AI Technologies’ 
environmental impacts and their pose threats to communication 
systems. It advocates the merits of incorporating sustainability 
factors into model selection. 

In study [22], the paper discusses the problems of 
implementing FL in vehicular IoT systems, such as variable 
mobility, limits to communication capability, and risks of non-
IID data in combination with the management of resources. 
Working issues in FL for autonomous driving, intelligent 
transport systems, and resource-sharing developments are 
elaborated. The authors define the areas for further explorations, 

increasing FL advanced paradigms: scaling up and security on 
the background of the complex vehicular IoT scenarios. 

III. PREDICTION METHOD ARCHITECTURES 

A. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is a relatively 
sophisticated variant of the Recurrent Neural Network (RNN) 
model commonly employed in research today. One of the key 
aspects LSTM networks address is the long-range dependencies 
in sequential data, which results in higher performance in many 
practical applications [23]. Some use cases where LSTM 
networks have been highly successful include language 
translation, voice detection, and forecasting. This explains the 
popularity of LSTM networks in multiple applications and their 
efficiency in deep learning frameworks directed toward time 
series data. They encode the RNN memory with three gates 
alongside cell states, allowing the network to keep and erase 
information when necessary. 

In the standard arrangement, an LSTM block consists of four 
extra layers and a hidden state in an RNN. Variables include Cell 
state (Ct), input gate (it), output gate (ot), and forget gate (ft). 
Each layer performs a specific operation on the others depending 
on how the information is created from the training data [24]. 
Fig. 1 shows the structure of LSTM. 

 

Fig. 1. Architecture of Long Short-Term Memory (LSTM) [23]. 

The memory of LSTM network networks is represented by 
the cell state, which is essential to LSTMs. The cell state process 
resembles a production line or conveyor belt. Except for a few 
linear interactions like addition and multiplication, the 
parameter information flows directly across the chain. These 
interactions determine the status of the information. The 
information will continue to flow without modifications if no 
interactions exist. Through the gates, which permit optional 
information to pass through, the LSTM block modifies or adds 
information to the cell state [24]. 

The forget gate eliminates data no longer needed in the cell 
state. The gate receives two inputs, xt (the input at that specific 
moment) and ht-1 (the output of the previous cell), which are 
multiplied by weight matrices before bias is added. After being 
run through an activation function, the output is binary. When 
the output for a particular cell state is 0, the information is lost, 
and when the output is 1, it is saved for later use [25]. The nodal 
output equations of the LSTM are expressed as follows. 

  𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (1) 

  𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)   (2) 
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  𝐶𝑡
~ = tan ℎ (𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)   (3) 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡
~   (4) 

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (5) 

 ℎ𝑡 = 𝑜𝑡 ∗ tan ℎ(𝑐𝑡)   (6) 

These equations describe how an LSTM unit works, 
distinguishing it from simple RNN, with several gates 
controlling information flow. The forget gate ft in (1) determines 
what portion of the previous cell state Ct−1 should be preserved, 
and the input gate it in Eq. (2) identifies how much new 
information from the current input xt and previously hidden state 
ht−1 is added to the cell state. The candidate cell state Ct˜ in Eq. 
(3) is determined with a tanh function. The new cell state Ct 
combines the old cell state and the new information added, as 
shown in Eq. (4). The output gate ot in Eq. (5) controls how much 
of the updated cell state Ct is passed on to the hidden state ht, 
influencing the output at this time step. The hidden state ht in Eq. 
(6) is finally computed, where the output gate ot is applied to the 
tanh of the new cell state, passing it on to the next time step, thus 
helping the LSTM keep long-term dependencies in sequential 
data. 

Various parameters guide the internal mechanism of the 
network. Wf, Wi, Wc, and Wo are the weight matrices multiplied 
by the forget gate, input gate, candidate cell state, and output 
gate, respectively, and they are used for both the previous hidden 
state, ht−1, and current input xt. Similarly, bf, bi, bc, and bo are the 
biases related to these gates and states, added to the product sum 
of the inputs to bias the output. The sigmoid function σ is 
employed in the forget gate ft, input gate it, and output gate ot to 
compress values between 0 and 1, indicating how much 
influence they should have (how much to forget, retain, and 
output, respectively). 

B. Gated Recurrent Unit (GRU) 

GRU employs a gating mechanism to regulate the 
information passing through the network. The gates in LSTM 
determine which information to keep and which to discard at 
every step, enabling the network to learn long-range 
dependencies better. The GRU has two main components: the 
update and the reset gates. 

The update gate decides how much new information to write 
to the memory now, and the reset gate decides how much old 
information to forget. The basic idea of GRU is that the network 
hidden state will be updated only by selecting time steps using 
gating mechanisms. The gates control what information joins 
and leaves the network. The GRU has two gating mechanisms: 
reset gate and update gate. The update gate specifies the 
proportion of the new input to add to the hidden state, and the 
reset gate specifies the extent to which the previous hidden state 
should be erased. The GRU output is computed based on the 
updated hidden state [23]. The architecture is shown in Fig. 2. 

The update gate calculation is the first step in a GRU. It uses 
the current input and the previous hidden state to decide how 
much to update the previous hidden state; the sigmoid is used 
here [24]. Here are the GRU nodal output equations. 

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)  (7) 

  𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)  (8) 

 

Fig. 2. Architecture of Gated Recurrent Unit (GRU) [23]. 

 ℎ𝑡
~ = tan ℎ (𝑊ℎ ∙ [𝑟 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ)    (9) 

 ℎ𝑡 = 𝑧𝑡 ∗ ℎ𝑡−1 + (1 − 𝑧𝑡) ∗ ℎ𝑡
~     (10) 

The GRU equations have several parameters that dictate how 
certain elements within the input data behave over the time 
steps. Where update gate zt defined in Eq. (7), uses weights Wz, 
biases bz, previously hidden state ht−1, and current input xt to 
determine how much of the past hidden state will pass to the next 
step. In the same way, Eq. (8) also applies a reset gate rt, which 
uses weights Wr, biases br, and a combined ht−1 and xt to decide 
how much to "forget" of the past for computing the hidden state 
of the candidate [26]. 

The candidate hidden state ht˜ is calculated from weights Wh, 
biases bh, reset gate rt applied to ht−1 and current input xt, 
processed with the tannh function as shown in Eq. (9): Finally, 
the new hidden state ht in Eq. (10) is expressed as a weighted 
sum of the candidate hidden state ht˜(scaled by 1 − zt) and the 
previous hidden state ht-1 (scaled by zt). The weights Wz, Wr, and 
Wh and the biases bz, br, and bh are learned during training and 
determine how inputs are decoded past and current information 
at each time step to adjust and combine the input information 
[27]. 

IV. PROPOSED METHOD DESCRIPTION 

A. LSTM+GRU Parallel Network 

In the proposed parallel hybrid model, the same input is 
applied to both LSTM and GRU layers. This enables the model 
to capture two different temporal representations 
simultaneously. This is especially beneficial because it 
combines the strengths of both architectures; thus, while the 
LSTM capability fortifies long-term dependencies, GRU 
computational efficiency and faster convergence make it an 
essential strength for more robust feature extraction in time 
series prediction tasks. 

The input data processed through the LSTM and GRU 
branches come out as outputs from these branches. The outputs 
are then concatenated to form a combined feature representation 
[27]. After passing through dense layers, the final prediction is 
based on this combined representation. Fig. 3 shows the 
structure of the parallel hybrid model LSTM+GRU. 
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Fig. 3. Architecture of parallel hybrid model of LSTM+GRU. 

As shown in Fig. 3, the model architecture consists of an 
input layer that receives the 5G traffic input data. The input is 
fed into both the LSTM and GRU paths simultaneously. Here, 
the LSTM (Long Short-Term Memory) network can capture 
long-term dependencies in time series data, which is important 
for identifying trends and patterns in 5G over long periods. 
However, the GRU (Gated Recurrent Unit) path takes the same 
input with fewer, faster-to-train steps in the architecture, 
allowing for efficient short-term dependency capture [27], [28]. 
Though both networks are good at processing sequential data, 
both contain different complementary strengths, such as LSTM 
being a long-term memory network and GRU being a memory-
efficient network with fewer parameters. 

As illustrated in Fig. 3, after processing the input via LSTM 
and GRU paths, the outputs are concatenated (as shown by the 
circle in Fig. 3). This merging step is performed to combine the 
information learned by the LSTM and GRU networks. This 
concatenated output is fed through a dense layer, and this layer 
helps further process the combined feature representation 
extracted from the LSTM and GRU branches [28]. Finally, the 
dense layer is connected to the output layer, which provides the 
model prediction. 

B. Federated Learning 

Federated learning is an advanced machine learning 
approach that enables decentralized model training without 
sharing raw data between multiple devices or nodes. It is suitable 
for privacy-preserving scenarios, such as 5G network traffic 
prediction [20]. 

In a centralized learning setting, data brought in from 
different sources, such as base stations or user devices, would be 
aggregated in one place during model training, which can raise 
concerns about the privacy and security of data. With federation 
learning, each device or node learns a model based on its data at 
each device or node, and only the changes in the model (such as 
the weights or the gradients) are sent to the central server [21]. 
Afterward, this central server employs these updates to enhance 
the performance of the global model. Furthermore, in the context 
of 5G network traffic prediction, federated learning allows 
individual base stations or edge devices in the network to 
collaborate on training a predictive model without exchanging 
their raw traffic data. This keeps the users and network-sensitive 
data secure while providing realistic traffic pattern predictions 
[12]. 

In 5G networks, federated learning presents a valuable 
approach due to the large geographical distribution of data from 
numerous devices. Through the distributed learning of models 
locally trained on diverse data, federated learning can also 
improve the prediction about network congestion, traffic 

demand, and resource allocation for a particular network in the 
future while maintaining data privacy and low communication 
overhead in the network [21], [22]. Fig. 4 shows a round of the 
federated learning process. 

The federated learning process involves multiple clients or 
base stations (BS) and a central server, as shown in Fig. 4. In 
step 1, the central server sends the global model to all clients. 
Step 2: Clients then update their local models by locally training 
the model with their private data. In step 3, clients return updated 
model parameters to the server (aggregator) without sharing raw 
data. These local model updates are then sent to a central server, 
which uses an aggregation function (that is, namely Federated 
Averaging) to aggregate these local model updates to produce 
an updated global model in Step 4. After updating the model, it 
repeatedly redistributes the new model to the clients for more 
training iterations. In this decentralized manner, clients update 
the global model in a privacy-preserving way by sending model 
updates rather than datasets. 

 

Fig. 4. Federated learning process [20]. 

Federated Averaging (FedAvg) is widely used due to its 
simplicity and effectiveness in handling non-iid (non-identically 
distributed) data across clients. This is common in real-world 
scenarios where different devices may have access to diverse 
datasets [12]. FedAvg also minimizes the communication 
overhead by reducing the frequency of interactions between the 
clients and the central server, making it well-suited for 
distributed environments. 

C. Implementation of the LSTM+GRU Hybrid Model 

The flowchart in Fig. 5 illustrates the steps in implementing 
and evaluating a hybrid LSTM+GRU model for predicting 5G 
network traffic, including data preparation, model training, and 
model testing. 

1) Data preprocessing: This stage addresses various data 

quality issues, such as outliers, missing values, and data splits. 

Missing values were handled based on the percentage of 

missing data in each feature. Features with more than 50% 

missing values were removed, while those with less than 50% 

were imputed using the mean of the column. 
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Outliers were managed using the Interquartile Range (IQR) 
capping method, which can limit the impact of extreme values 
and improve model robustness. 

The data was split into training and testing sets with three 
different ratios (80:20, 85:15, and 90:10). In this study, the 90:10 
ratio was used as it provided the best results. The 90-10 splits 
mean we used 90% of the data to train the model and 10% to test 
it. This ensures that most of the data is used for model training 
and that a different portion is set aside to evaluate it. 

 

Fig. 5. Flowchart of modeling LSTM+GRU model for 5G network traffic 

prediction. 

2) LSTM+GRU modeling: The hybrid LSTM-GRU model 

was implemented in Python and supported by TensorFlow 

libraries (i.e., Keras and TensorFlow Federated) using a Google 

Colab platform. The model had an LSTM layer of 128 units, 

then a GRU layer with the same number of units, and ReLU as 

an activation function. These layers were used in parallel (i.e., 

passed to an add() function). After that, the added output passes 

through a Dense layer with 64 units and ReLU activation. 

Finally, a Dense layer with 1 unit was added for the output. The 

Adam optimizer with a learning rate of 0.001 was used to 

optimize the model, and L1 and L2 regularizers (set to 0.05) 

were applied for overfitting prevention. The model was trained 

for 90 epochs with a batch size of 64. 

3) Federated training LSTM+GRU model: The server 

starts the computation in federated training, and clients (base 

stations) join as participants. A subset of these clients are 

selected to receive the current global model from the server and 

use their local data to train [20], [21]. Once local training is 

done, the clients send the updated models and historical data 

(loss values and evaluation metrics) to the server. The server 

then aggregates the locally trained models, updates the global 

model, and repeats the process for several federated rounds, as 

shown in Fig. 4. Hybrid models combining LSTM and GRU 

have been proposed before [27], [28]. To the best of our 

knowledge, this work is the first to implement a parallel 

LSTM+GRU network and training using federated learning for 

time series prediction. The study created a flexible framework 

to make it more realistic for network traffic prediction 

scenarios. After the model is trained, it is tested on the held-out 

testing data to see how well it predicts 5G network traffic. This 

step checks how well the LSTM+GRU model can predict the 

traffic. 

4) Hyperparameter optimization: Hyperparameter tuning 

is an important part of neural network development and is 

usually done through trial. Table I shows the model-specific 

hyperparameters. 

TABLE I. MODEL HYPERPARAMETERS 

LSTM, GRU LSTM+GRU 

Activation: ReLU 

Output layer: linear activation 
No. of units: 128 

Dense layer: 64 units  

Optimizer: Adam 
Regularizer L1, L2: 0.06 

Learning rate: 0.001 

Drop out: 0.4 
Local Epochs: 3 

Batch size: 64 

Federated rounds: 10 

Activation: ReLU for both branches 

Output layer: linear activation 
No. of units: 128 for both branches 

Dense layer: 64 units 

Optimizer: Adam 
Regularizer L1, L2: 0.05 

Learning rate: 0.001 

Dropout: 0.2 
Local Epochs: 3 

Batch size: 64 

Federated rounds:10 

A validation run was done for each model to finalize the 
hyperparameters that gave the best performance and fit before 
training the final model. The training data was split 90-10 for 
validation during the validation process. Keras search is used for 
hyperparameter optimization to get the parameters shown in 
Table I. 

5) Evaluation metrics: To evaluate and analyze the 

network model prediction results, the evaluation metrics used 

are the Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), and Coefficient of Determination (R2). The 

corresponding mathematical formulas are presented in Eq. 

(11,12,13). RMSE in Eq. (11) is particularly effective at 

measuring the model dispersion, where a lower RMSE 

indicates a higher concentration level and greater accuracy. 

MAE in Eq. (12), measures the absolute differences between 
the predicted and actual results by taking the absolute values and 
then calculating the mean. A lower MAE signifies a smaller 
prediction error. R-squared in Eq. (13) is widely used as an 
optimal measure for assessing linear regression models, as it 
translates the prediction accuracy into a value between 0 and 1, 
offering an intuitive representation of the model accuracy [29]. 
When the model fit is ideal, the R-squared value approaches 1. 

RMSE =  √
1

n
∑ (𝑓𝑖 − 𝑦𝑖)2n

i=1  (11) 
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  MAE =  
1

n
∑ |fi − yi|

n
i=1   (12) 

R2 = 1 −
∑ (yi−fi)2n

i=1

∑ (yi−y̅)2n
i=1

    (13) 

V. EXPERIMENTAL RESULTS 

A. Dataset Description 

The paper uses a 5G trace dataset from an Irish mobile 
telecommunication operator, as outlined in study [30]. It 
considers file downloading in a dynamic environment and uses 
the Download traffic bandwidth data produced from file 
downloads in a dynamic environment as the target variable. The 
data samples are aggregated for different days of the 
experimental period. 

 10,974 Samples collected from 2019/12/14/10:16:30 to 
2019/12/17/08:16:23 

 4,106 Samples collected from 2020/01/16/07:26:43 to 
2020/01/12:16:29 

 12,511 Samples collected from 2020/02/13/13:03:24 to 
2020/02/27/20:50:06 

Preprocessing steps were executed to clean and prepare the 
raw data for analysis. The preprocessing steps included feature 
normalization, missing value treatment, outlier treatment, and 
data samples collected on different days aggregated into one 
dataset. The integration finally resulted in 27,591 samples in the 
final dataset. Ten features were selected: GPS coordinates 
(longitude and latitude), timestamp, uplink bitrate, download 
bitrate and its download state, velocity, and several cellular 
signal indicators RSRQ (Reference Signal Received Quality), 
RSRP (Reference Signal Received Power), SNR (Signal-to-
Noise Ratio), and CQI (Channel Quality Indicator). Cellular 
signal indicators are critical as they glimpse the network 
physical layer. For 5G systems, these features are pertinent since 
they correlate to how signal quality affects bandwidth and 
throughput. Velocity and geolocation information permits an 
exploration of how network performance may vary with 
mobility versus location environments; such considerations are 
crucial to many applications in 5G, where users typically move 
around a lot. 

The dataset was gathered from the initial deployment phase 
of 5G, and it includes key performance indicators (KPIs) such 
as throughput, channel conditions, and context-related metrics. 
These metrics remain fundamental to understanding network 
performance, regardless of technological advancements. As 5G 
builds on similar foundational principles, the data provides 
insights that still apply today. 

B. Model Comparison 

This study evaluates the performance of the proposed hybrid 
LSTM+GRU model against standalone LSTM and GRU models 
in the context of 5G network traffic prediction within the 
federated learning framework. Both LSTM and GRU units were 
specifically designed to capture temporal dependencies in 
sequential data; however, LSTM particularly excels in modeling 
long-term behaviors, while GRU gives a computationally 
efficient alternative for short-term dependencies with a simpler 
structure. The hybrid model is the parallel combination of these 

structures, thus permitting richer feature extraction by exploiting 
both strengths. Performance scores of the prediction models for 
5G network traffic are shown in Table II. 

TABLE II. MODELS PERFORMANCE IN 5G NETWORK TRAFFIC 

PREDICTION 

Models/Measures RMSE MAE R2 

LSTM 0.2360 0.3696 0830 

GRU 0.2349 0.3656 0.833 

LSTM+GRU 0.2291 0.3556 0.845 

Table II highlights the superiority of the hybrid LSTM+GRU 
model in predicting 5G network traffic. The hybrid model 
achieved the lowest RMSE of 0.2291 and MAE of 0.3556, 
demonstrating its ability to minimize large and average 
prediction errors effectively. Furthermore, its R² value of 0.845, 
the highest among the models, indicates that it explains 84.5% 
of the variance in the data, making it the most accurate and 
generalized model for capturing both long-term and short-term 
traffic patterns. Although the stand-alone GRU model 
performed better than the LSTM model, the hybrid model 
always gave better results. 

The hybrid model predictive performance is further 
corroborated by visualizations in Fig 6, 7, and 8, where its 
predictions closely align with the actual data, showing minimal 
deviations. This superior accuracy can be attributed to the 
combined architecture of LSTM and GRU. Despite the hybrid 
model superior performance, it is computationally more 
expensive due to its integrated architecture, which increases the 
number of parameters and requires more memory and 
processing power. The training time is also longer, as the model 
must optimize both LSTM and GRU layers. 

However, in scenarios where computational resources are 
available, the hybrid model offers a worthwhile trade-off, as its 
enhanced accuracy and generalization make it ideal for 
applications like network optimization or capacity planning. The 
GRU model is a simpler yet effective alternative for 
environments with resource constraints or needing faster 
prediction. The standalone LSTM model, however, appears less 
suited for 5G traffic prediction due to its lower overall 
performance and difficulty adapting to the data's highly dynamic 
nature. 

 

Fig. 6. Prediction of federated LSTM+GRU on test data. 
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Fig. 7. Prediction of federated GRU on test data. 

 

Fig. 8. Prediction of federated LSTM on test data. 

C. Learning Setting Comparison 

The time conducted an exhaustive set of experiments on the 
5G network traffic dataset to analyze the performance of deep 
learning models with a specific focus on the effectiveness of the 
federated learning framework. The study compared the 
LSTM+GRU hybrid model performance in centralized versus 
federated learning settings. A centralized learning environment 
involves training the model on the complete dataset on a single 
server, while federated learning trains local models at various 
participants (clients) that aggregate after each round. The model 
architecture consistency is maintained across both learning 
environments to achieve comparison equity. The LSTM+GRU 
hybrid model was applied in both scenarios. In the centralized 
learning setup, the model was trained for 90 epochs, letting the 
model traverse the entire dataset 90 times. Ten federated rounds 
and three local epochs on each client were executed for the 
federated learning setup. Since federated learning involves 
multiple clients, the total practical epochs across all clients is 90, 
obtained as (rounds × clients × local epochs). The two results 
obtained under different learning frameworks were compared 
upon completing the experiments, as shown in Table III. 

TABLE III. PERFORMANCE OF FEDERATED LEARNING AND CENTRALIZED 

IN 5G NETWORK TRAFFIC PREDICTION 

Models/Measures RMSE MAE R2 

Centralized 0.2438 0.3687 0.826 

Federated 0.2291 0.3556 0.845 

Table III highlights a comparative analysis between 
centralized and federated learning in predicting 5G network 
traffic, emphasizing the advantages of federated learning. 
Federated learning achieved a reduced RMSE of 0.2291 and 
MAE of 0.3556, outperforming centralized learning, which 
yielded an RMSE of 0.2438 and MAE of 0.3687. It represents a 
2.25% improvement in accuracy, underscoring the benefits of 
federated learning decentralized architecture. Federated learning 
ability to aggregate knowledge from diverse client models 
trained on local data allows it to capture a wider range of traffic 
patterns. This diversity introduces variations in local models, 
enhancing the global model ability to learn robust and 
generalized representations of network traffic behavior. In 
contrast, centralized learning lacks this diversity, relying on a 
single dataset, which limits its ability to generalize across 
varying traffic conditions. 

One key benefit of federated learning is its scalability and 
privacy-preserving nature. Training models locally and 
aggregating updates at the server level avoids transferring raw 
data, making it an ideal solution for scenarios requiring strict 
data confidentiality, such as 5G networks. However, federated 
learning introduces complexity in synchronizing and 
aggregating models across multiple clients, which can increase 
computational complexity. Despite this, the distributed nature of 
federated learning ensures that the system remains scalable and 
capable of handling the demands of large-scale 5G networks 
while offering improved predictive accuracy. 

Fig. 9 and Fig. 10 provide insights into the model predictions 
under centralized and federated learning setups. Both setups 
show the LSTM+GRU hybrid model performing well across a 
range of bitrate values. However, the performance in regions 
with lower bitrates reveals a notable challenge. The predictive 
accuracy drops near zero bitrates, indicating that the model 
struggles to detect meaningful patterns in this data range. This 
drop in performance is likely due to sparse or noisy data in these 
regions, where signal characteristics are less distinct. Such 
underfitting in low-bitrate areas highlights a common limitation 
in machine learning models when dealing with sparse or low-
intensity data. 

Addressing this challenge would involve strategies such as 
augmenting the training dataset to include more low-bitrate 
cases, ensuring the model encounters these scenarios during 
training. Another approach could involve using specialized 
techniques that enhance the model sensitivity to sparse data 
regions, such as weighted loss functions or regularization 
techniques tailored for imbalanced datasets. These 
enhancements would help mitigate underfitting and improve the 
model robustness, enabling more accurate predictions across the 
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entire bitrate spectrum. By doing so, federated learning could 
further solidify its position as a scalable and effective solution 
for 5G network traffic prediction, particularly when paired with 
architectures like the LSTM+GRU hybrid model that captures 
complex patterns. 

 

Fig. 9. LSTM+GRU model prediction in federated learning. 

 

Fig. 10. LSTM+GRU model prediction in centralized learning. 

D. Data Splitting Comparison 

The preprocessed data was divided into three different ratios 
(80:20, 85:15, and 90:10). The three different ratios were 
compared in federated learning and centralized learning, and the 
ratio 90:10; 90% of the data for training and the remaining 10% 
of the data for the test yielded the best results compared to the 
other two ratios, as shown in Table IV, this experiment 
demonstrated that training on a larger proportion of data allows 
the model to capture more patterns and nuances in the data, 
ultimately leading to a better understanding of the underlying 
structure and relationships. The model can generalize well and 
perform with lower prediction errors. 

TABLE IV. PERFORMANCE OF THE MODEL IN DIFFERENT SPLITS OF THE 

DATASET 

Learning 

Setting 
Federated Learning Centralized Learning 

Test 

Size/Measure 
10% 15% 20% 10% 15% 20% 

RMSE 0.2291 0.3430 0.3553 0.2438 0.3444 0.3471 

MAE 0.3556 0.4309 0.4448 0.3687 0.4363 0.4429 

R2 0.845 0.818 0.805 0.826 0.817 0.811 

VI. CONCLUSION 

Building high-quality traffic prediction models with 
effective generalization is an inherently complex task, given the 
diverse data patterns that characterize 5G network traffic. This 
paper studies the challenge of predicting 5G network traffic 
using a hybrid LSTM+GRU model along with a federated 
learning approach. The hybrid model outperformed the 
standalone LSTM and GRU models, thus proving its capability 
to capture both long- and short-term dependencies within the 
data. At the same time, the federated learning approach adds 
another dimension to privacy by letting the system learn from 
varied data on different clients without compromising data 
privacy. In addition, it produced lower prediction errors with 
better generalization than centralized learning; thus, it would be 
an efficient and scalable solution under resource allocation 
optimization towards network performance enhancement and 
quality-of-service improvement in complex 5G environments 
while preserving data confidentiality. 
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