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Abstract—In the field of visual camouflage, generating a high-

quality background image that seamlessly blends with complex 

foreground objects and diverse background environments is a 

critical task. When dealing with such complex scenes, the existing 

techniques have insufficient foreground feature extraction, 

resulting in insufficient fusion of the generated background image 

with the foreground objects, making it difficult to achieve the 

desired camouflage effect. In order to solve this problem and 

achieve the goal of higher quality visual camouflage effect, this 

paper proposes a new foreground feature-guided camouflage 

image generation method (Object Enhancement Module - 

Diffusion Refinement , OEM-DR), which generates camouflage 

images by enhancing the foreground features to guide the 

background. The method firstly designs a new object 

enhancement module to optimize the attention mechanism of the 

model, and eliminates the attention weights that have less 

influence on the output through pruning strategy, so that the 

model focuses more on the key features of the foreground objects, 

and thus guides the generation of the background more effectively. 

Second, a novel detail optimization framework based on diffusion 

strategy is constructed, which maintains the integrity of the global 

structure of the image while performing fine optimization 

processing on the local details of the image. In experiments on 

standard camouflaged image datasets, the proposed method in this 

study achieves significant improvement in both FID (Fréchet 

Inception Distance) and KID (Kullback-Leibler Divergence) 

evaluation metrics, which verifies the feasibility of the method. 

This suggests that by strengthening foreground features and detail 

optimization, the fusion between background images and 

foreground objects can be effectively improved to achieve higher 

quality visual camouflage effects. 

Keywords—Camouflage image; foreground features; object 

enhancement; detail optimization 

I. INTRODUCTION 

In the field of visual perception, camouflage image 
generation is a challenging task that aims at generating 
background images that can skillfully mask foreground objects 
for visual concealment. This technique plays an important role 
in several practical application areas such as pest detection, 
healthcare [2], and autonomous driving [8]. With the 
advancement of computer vision techniques, especially in the 
fields of style migration [9], image editing [10] and image 
generation [11], new ideas have been provided to address the 
challenges of camouflage image generation. The Poisson image 
editing method proposed by Di Martino et al. [10] brought 
innovations in the field of image editing by allowing researchers 
to work with the image in a natural and intuitive manner content. 
The pioneering work of Chu et al. [12] on camouflage image 

generation demonstrated how to generate hard-to-detect images 
by mimicking the camouflage mechanisms of natural organisms. 
The work of Huang and Belongie [9] further advanced the 
development of style-migration techniques, which allow us to 
change the style of an image to fit different contexts while 
keeping its content intact. Zhang et al. [13] proposed generating 
camouflaged images that can blend in with complex 
backgrounds by learning a large amount of natural image data. 
Li et al. [14] further proposed a camouflaged image generation 
network that does not require specific positional information. 
The work of Zheng et al. [15] provides a new solution for high 
fidelity image complementation by bridging global contextual 
interactions. Lugmayr et al. [16] provided a new idea for 
background complementation of camouflaged images by using 
denoising diffusion probabilistic model for image restoration. 

However, despite the many advancements in existing 
technologies, several key issues remain. Firstly, most methods 
rely on manually selected backgrounds, which not only limits 
the diversity of generated samples but also significantly 
increases the cost of data collection. Secondly, these methods 
may perform poorly in complex and variable environments, as 
they often depend heavily on the precise extraction of 
background and foreground features. The LAKE-RED model 
[17], although innovative in generating camouflage images by 
fusing training backgrounds with extracted foreground features, 
may face challenges in complex or changing environments due 
to its reliance on precise feature extraction. 

To address these issues, this study proposes a new object 
enhancement strategy. Inspired by the work of Dhariwal P et al. 
[19], this study utilizes weight sparsification and pruning to 
enhance the model's understanding and learning of deep features 
of target objects. This strategy aims to reduce dependence on 
precise feature extraction and improve the model's adaptability 
in complex environments. 

Furthermore, camouflage images often lack detail 
optimization during generation, which can weaken their 
camouflage effect. Unnatural transitions in texture, color, or 
edge areas may reduce their concealment. To solve this, inspired 
by the work of Yang L et al. [18], this study designs a method to 
enhance the model's feature expression ability using non-zero 
weights after diffusion pruning, optimizing the connection 
between foreground and background to improve the quality of 
camouflage images. 

In the following sections of this paper, the study will be 
explored in depth. The related work in Section II will review and 
analyze the technologies and methods involved in this study, 
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clarifying its position and value in the field of camouflage image 
generation. The OEM-DR in Section III will detail the proposed 
new method, including the design and implementation of the 
object enhancement strategy, and how non-zero weights after 
diffusion pruning enhance the model's feature expression. The 
experiments in Section IV will design and conduct a series of 
experiments to verify the effectiveness and performance of the 
proposed method, including comparative and ablation 
experiments with existing methods. Finally, the conclusion in 
Section V will summarize the main achievements and 
contributions of this study, discuss existing limitations, and 
suggest directions for future work. 

II. RELATED WORK 

A. Camouflage Image Generation 

The goal of camouflage image generation is to create images 
of target objects that blend highly with the background and are 
difficult to detect. Early methods mainly relied on image 
processing techniques. For example, Chu et al. [12] hid the 
target by inserting similar textures and colors through image 
editing. Although these methods could achieve basic 
camouflage, the quality and diversity of the generated images 
were limited. With the development of deep learning, methods 
based on deep generative models have become mainstream. 
Zhang et al. [13] proposed a deep camouflage image generation 
model that learns complex camouflage patterns and generates 
more realistic images. Li et al. [14] developed a camouflage 
generation network without location information, which 
automatically learns the relationship between the target and the 
background, thereby improving the quality of the generated 
images. In the latest research, Zhao et al. [17] introduced the 
LAKE-RED method, which combines latent background 
knowledge retrieval with diffusion models to generate high-
fidelity and diverse camouflage images. Yang et al. [18] 
provided a comprehensive review of diffusion models, covering 
their applications in camouflage image generation and other 
fields, offering valuable references for research. These 
advancements indicate that deep learning, especially diffusion 
models, holds great potential in camouflage image generation. 
Future research can further explore their combination with 
camouflage tasks to generate higher quality and more diverse 
camouflage images. 

B. Data Augmentation 

Data augmentation is crucial for enhancing the performance 
of deep learning models, especially when the number of samples 
is limited. It improves the model's generalization ability by 
generating more training samples. In the tasks of camouflage 
image detection and segmentation, data augmentation is 
particularly important because it is difficult to obtain 
camouflage images and their patterns are diverse. Fan et al. [1] 
enhanced the data by randomly inserting camouflage targets, 
which is a simple but effective way to improve detection 
performance. Le et al. [4] explored data augmentation in their 
Anabranch network, such as random cropping and rotation, but 
mainly focused on geometric transformations and simple 
editing, which had limited enhancement of the diversity of 

camouflage patterns. The development of diffusion models has 
brought new ideas to data augmentation. Dhariwal and Nichol 
[19] proposed an image synthesis method based on diffusion 
models, which generates high-quality images and performs 
excellently in multiple tasks, providing a new direction for 
camouflage image generation and data augmentation. 
Binkowski et al. [20] improved the MMD GAN training 
method, enhancing the quality and diversity of the generated 
images. Heusel et al. [21] introduced a two-time-scale update 
rule for GAN training, proving that it converges to a local Nash 
equilibrium, providing theoretical support for the training of 
generative models. These studies show that combining advanced 
generative models such as diffusion models with the task of 
camouflage image generation can generate richer and more 
diverse training data. Future research can further explore this 
combination to improve the performance of camouflage image 
detection and segmentation models. 

III. OEM-DR MODEL 

A. An Overview of the Proposed Framework 

As shown in Fig. 1, the OEM-DR model starts from low-
level image feature extraction and highlights important details 
in the image through the object enhancement module, which 
introduces sparsity to optimize the weight distribution, and then 
employs a pruning strategy to reduce the computational burden. 
The detail optimization module further enhances the image 
quality, which facilitates the fusion and generalization of the 
model to new data while retaining key information through the 
diffusion process. Finally, the model performance is tuned and 
optimized through the computation of the loss function. The 
specific details of these steps are elaborated in this section. 

B. Object Enhancement Based on Sparse Pruning 

In order to address the model's deficiency in object 
information learning, an object enhancement module is designed 
in this study. The purpose of this module is to deepen the model's 
understanding and learning of deep features of the target object 
through refined feature selection and enhancement. This study 
aims to further encode the object features through this 
enhancement module to achieve deeper understanding of 
foreground feature information in images. The working 
mechanism of this module is explained in detail in the following 
section, and its structure is detailed in Fig. 2. 

In the forward propagation process of the model, the deep 

representation of foreground features gf is extracted by a 

multilayer perceptron (MLP). the pre-trained background 
embedding matrix is subsequently transposed and the batch 
dimension is increased in order to obtain the background 
embedding vector C. The query vector q is obtained by applying 

a linear transformation layer to gf .C is used as the key k and 

the value v. The similarity matrix mS is computed by using the 

einsum function for querying q and key k. matrix mS , which is 

computed as follows: 

 ( , )m einsum q kS                         (1) 
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Fig. 1. OEM-DR model framework. 

In this paper, we quantify sparsity by calculating the 

attentional weight of mS  and subsequently determining the 

pruning threshold. The 1L  norm 1nl  and 
2L  norm 2nl  of the 

attention weight matrix A are computed with the following 
equations: 
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Where ia  is the i -th element in the attention weight matrix 

A and n is the total number of elements. 

The sparsity ratio R is defined as follows: 
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Where   is a negligible positive number added to prevent 

division by zero. 

A Boolean mask P is generated using the sparse ratio R. 
Each element of this mask is determined by the condition: 
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The initial pruning is accomplished by setting the elements 
of A for which P is F to zero through the product operation, as 
follows: 

 p A A P                                 (6) 
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Fig. 2. Object enhancement module structure diagram. 

Further, the 1L  norm 1pA  of the pruned attention weight 

pA  is calculated using Eq. (2) and the pruning threshold pT  for 

each attention head is determined by the pruning ratio rP  as 

follows: 

 1max( )AP pM A                          (7) 

 p AP r T M P                             (8) 

APM  in Eq. (7) represents the maximum value of the 

computed 1L  norm on the last dimension of the weight matrix 

pA . 
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The pruned weight matrix 
aS  is then obtained by 

generating a Boolean mask using the pruning threshold pT  

through the operations of Eq. (5) and Eq. (6), and then the 

elements of pA Ap below pT  are set to zero through the 

product operation in order to complete the pruning process. 

C. Diffusion-based Detail Optimizer 

In order to cope with the performance degradation caused by 
performing pruning, this study adds the DR module after 
pruning. the purpose of the DR module is to maintain or even 
improve the predictive performance of the model after pruning, 
and to enhance the generalization ability of the model to ensure 
the model's adaptability and accuracy to new data. 

Referring to Fig. 3, the input to the DR module is the pruned 

weight matrix 
aS . The influence of the non-zero weights 

retained after pruning is spread to the adjacent zero-weight 
regions through an iterative process, with a view to maintaining 
or even enhancing the generalization capability of the model 
while reducing the complexity of the model. The details of the 
operation are described below. 

I

Sa

Mask

Weight 

Diffusion

Sd

+

SA
New 

Background

L1 L2

Loss 

Function  
Fig. 3. Diffusion optimizer structure diagram. 

First, a Boolean mask M is initialized to identify the location 

of the non-zero weights in 
aS . This mask is obtained by 

comparing 
aS  with zero, where the non-zero element 

corresponds to a mask value of Ture. 

Next, I iterations are executed, and in each iteration the 
following steps are performed: 

First M is shifted one position to the right along the last 

dimension (feature dimension) to obtain the new mask nM . 

This step simulates the process of diffusion of non-zero weights 
to the right along the feature dimension. 

Next, the update of the weights is computed as follows: 

 (1 (1 ))d a n    S S D M              (9) 

D is a factor between 0 and 1 used to adjust the magnitude 
of the weight update. 

The calculated update is then applied to 
aS  and the updated 

weights are: 

 
A d a S S S                            (10) 

Finally, a non-negative constraint is imposed to ensure that 
all weight values are non-negative. After I iterations, the post-

diffusion weight matrix AS  is obtained. 

In the second step, 1L  and 
2L  regularization losses are 

introduced to process the new background nP  obtained after 

training with the features aT  of the target image as a way to 

achieve fine tuning of the model complexity. The new 

foreground image nP  is generated in the following way: in the 

background region identified by the mask, this paper replaces 

the original foreground f with the background feature AS ; while 

in the foreground region, f is kept unchanged. Thus, the updated 

foreground image nP  is obtained. The 1L  and 
2L  

regularization losses operate as follows: 

The 1L  loss measures the error by calculating the absolute 

value of the difference between the predicted value and the 
target value, and its mathematical expression is shown below: 
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The
2L  loss measures the error by calculating the square of 

the difference between the predicted value and the target value, 
the mathematical expression of which is shown below: 
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The iw denotes the actual value of the i -th image, a

iw
T

 

denotes the target value of the i -th image, and 1  and 2

denote the weights occupied by the two losses, respectively. 

The 1L  and 
2L  losses are combined into the total loss 

according to certain weights to realize the joint control of model 
complexity. The combined total loss function is defined as: 

 
1 2L L L                                    (13) 

The main role of 1L  and 
2L  losses is to prevent model 

overfitting and improve model generalization. Specifically, the 

1L  loss helps with feature selection, while the 
2L  loss helps 

with parameter stability. 
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IV. EXPERIMENT 

A. Datasets 

Following the research on covert object detection (COD) [3], 
this paper uses 4040 real images (3040 from the COD10K [1] 
dataset and 1000 from the CAMO [26] dataset) to train the 
model. To validate the generation performance, this study 
collects image-mask pairs from different domains and constructs 
a test dataset consisting of three subsets: covert objects (CO), 
salient objects (SO) and general objects (GO) [17]. In CO, there 
are 6473 image pairs from CAMO [4], COD10K [1] and NC4K 
[5]. We then randomly selected 6473 images from well-known 
salient target detection datasets (e.g., DUTS [6], DUT-OMRON 
[7], etc.) and segmentation datasets to evaluate the performance 
of the model on open domain data. 

B. Evaluation Metrics and Parameter Setting 

Following the good practices of AIGC and COD, the 
InceptionNet-based metrics FID [20] and KID [17] are chosen 
in this paper to measure the quality of the generated covert 
images. Once the image features have been extracted via 
InceptionNet, the distance between them is calculated to indicate 
the level of similarity between the model output and the target 
dataset. Unlike normal images, well-synthesized covert images 
should not contain easily recognizable objects, and extracting 
discriminative features is more challenging. A lower value of 
FID [2] indicates that the generated image is more similar to the 
real image in terms of visual features, which usually implies a 
better generation. KID [21] by kernel method is able to capture 
more sensitively the differences between the generated image 
and the real image, especially in terms of image detailed 
features. A lower value of KID [21] indicates that the quality of 
the generated image is closer to the real image. 

In this paper, we use a latent diffusion model, pre-trained on 
a restoration task as an initialization. The model was designed to 
handle images and masks of size 512 × 512 and compressed to 
a potential space of 128 × 128 × 3 using the pre-trained VQ-
VAE. During the training process, the focus is on improving the 
model's understanding and learning of the deep features of the 
target object through object augmentation and regularized 
diffusion strategies, and does not fine-tune the autoencoder and 

decoder components. The existing conditions are optimized and 
enhanced by the modules proposed in this paper. Parameter 
optimizations, such as initialization, data enhancement, and 
batch size, are set similar to the original paper. Finally, the 
model generates the artifact images and resizes them to align 
with the original input. This paper uses PyTorch for all 
experiments and a GeForce RTX 4060ti GPU for all 
experiments. 

C. Comparison and Analysis of Model Results 

To verify the effectiveness of the OEM-DR model, this 
paper selects the following nine models for comparison: The AB 
model [9] achieves seamless image region blending based on the 
Poisson equation, enabling the source image to naturally blend 
into the target background. The AdaIN model [12] rapidly 
accomplishes real-time arbitrary style transfer through adaptive 
instance normalization technology, converting the style while 
maintaining the image content unchanged. In the field of 
camouflage image generation, the CI model [11] imitates the 
camouflage mechanism of natural organisms to generate images 
that are difficult to detect; the DCI model [13] and LCGNet 
model [14] utilize deep learning to generate camouflage images 
that blend with complex backgrounds, with LCGNet being more 
flexible as it does not require specific location information; the 
LAKE-RED model [17] combines potential background 
knowledge retrieval with diffusion models to enhance the 
quality of camouflage images. In addition, the TFill model [15] 
achieves high-fidelity image completion by bridging global 
context interaction, while the RePaint-L model [16] performs 
image restoration based on denoising diffusion probabilistic 
models, generating content for missing areas. The LDM model 
[10] proposes a high-resolution image synthesis method based 
on latent diffusion models, promoting the development of high-
quality image generation technology. 

Table I shows the comparison of experimental results of 
various models on the dataset. Compared with the AB, CI, 
AdaIN, DCI, LCCNet models, which realize the camouflage 
effect by fusing the background with the foreground, EM-DR 
guides the background generation according to the features of 
the foreground, so that the generated image background is closer 
to the foreground and the foreground is more hidden.

TABLE I. COMPARISON OF EXPERIMENTAL RESULTS IN VARIOUS MODELS 

Methods Input 
Camouflaged Objects Salient Objects General Objects Overall 

FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ 

Image 

Blending 

AB [9] F +B 117.11 0.0645 126.78 0.0614 133.89 0.0645 120.2 0.0623 

CI [11] F +B 124.49 0.0662 136.3 0.738 137.19 0.0713 128.5 0.0693 

AdaIN [12] F +B 125.16 0.0721 133.2 0.0702 136.93 0.0714 126.9 0.0703 

DCI [13] F +B 130.21 0.0689 134.92 0.0665 137.99 0.069 130.5 0.0673 

LCGNet [14] F +B 129.8 0.0504 136.24 0.0597 132.64 0.0548 129.9 0.055 

Image 

Inpainting 

TFill [15] F 63.74 0.0336 96.91 0.0453 122.44 0.0747 80.39 0.0438 

LDM [10] F 58.65 0.038 107.38 0.0524 129.04 0.0748 84.48 0.0488 

RePaint-L [16] F 76.8 0.0459 114.96 0.0497 136.18 0.0686 96.14 0.0498 

LAKE-RED[17] F 39.55 0.0212 88.7 0.0428 102.67 0.0625 64.27 0.0355 

Ours F 37.44 0.0181 86.9 0.0387 100.48 0.0581 61.52 0.0311 
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Compared with TFill and LDM models, EM-DR strengthens 
the feature screening of foreground features, mainly in its ability 
to refine and optimize, which gives it an advantage in preserving 
the details of important foreground objects in the image. TFill 
and LDM, on the other hand, while having their advantages in 
texture synthesis and learning-based approaches, may require 
additional tuning or optimization to better handle foreground 
features in specific cases. Compared to the benchmark model 
LAKE-RED, EM-DR achieves significant improvements in all 
metrics, further demonstrating its ability to adequately enhance 
foreground features when generating camouflaged images, thus 
providing foreground camouflage effects. 

Compared with the baseline model on the CO dataset, the 
FID metrics improved by 5.3% and the KID metrics improved 
by 14.6%, on the SO model, the FID metrics improved by 2% 
and the KID metrics improved by 9.5%, on the GO model, the 
FID metrics improved by 2.1% and the KID metrics improved 
by 7%, and on the whole the FID metrics improved by 4.3% and 
the KID metrics improved by 12.3%. by 4.3% for FID and 12.3% 
for KID. These improvements indicate that the EM-DR model 
shows better performance in the task of generating camouflage 
images, and the improvements in FID and KID metrics indicate 
that the images generated by the new model are closer to the real 
images in terms of visual and statistical properties. 

D. Ablation Study 

In order to verify the impact of the object enhancement 
module and diffusion optimizer mentioned in this paper on the 
model performance, ablation experiments are conducted on 
datasets containing CO, SO and GO, and the results are 
summarized in Table II. 

TABLE II. ABLATION STUDY RESULTS 

Methods OEM DR 

CO 
FID↓ 37.67 37.77 

KID↓ 0.0183 0.0187 

SO 
FID↓ 85.85 87.92 

KID↓ 0.0381 0.0391 

GO 
FID↓ 102.07 102.57 

KID↓ 0.0599 0.0599 

Overall 
FID↓ 61.73 62.51 

KID↓ 0.0313 0.0317 

First, the OEM module is individually validated in this paper. 
Compared with the LAKE-RED model, OEM achieves 
significant improvement in both FID and KID, especially on the 
SO dataset. This indicates that OEM not only makes the 
camouflage images generated on hidden objects as well as 
ordinary objects close to the real image in terms of enhanced 
foreground features, but also generates camouflage images on 
salient objects even closer to the real image. 

Secondly, the DR module is individually validated in this 
paper. Compared to the LAKE-RED model, DR also achieves 
significant improvement in both FID and KID but lacks in SO 
dataset compared to the OEM module. 

In summary, the OEM and DR modules show excellent 
advantages in the camouflage image generation task, effectively 
improving the model performance. 

E. Example of Analysis 

In order to visualize the improvement of the OEM-DR 
model mentioned in this paper compared to the benchmark 
model LAKE-RED, several examples are selected for 
visualization. 

LAKE-RED OEM-DRMask Foreground

LAKE-RED OEM-DRMask Foreground

LAKE-RED OEM-DRMask Foreground

LAKE-RED OEM-DRMask Foreground

LAKE-RED OEM-DRMask Foreground

LAKE-RED OEM-DRMask Foreground

 
Fig. 4. OEM-DR Model visualization examples. 

Fig. 4 visualizes the performance of the OEM-DR model 
proposed in this study compared with other benchmark models 
in generating camouflaged images. The figure groups the images 
according to different model sources: Fig. 4 (a) and 4 (b) are 
generated by the CO model, Fig. 4 (c) and 4 (d) by the SO model, 
while Fig. 4 (e) and 4 (f) are from the GO model. Taking the 
toad in Fig. 4 (a) as an example, the image generated by the 
OEM-DR model shows a more natural fusion between the 
background and the foreground, and the details of the 
background are optimized so that the foreground objects do not 
appear to be abrupt, which achieves a better camouflage effect 
visually. Similarly, in Fig. 4 (f), although the camouflaged 
objects are not completely hidden, the OEM-DR model still 
demonstrates its advantages in improving the overall image 
quality. The comprehensive comparison results show that the 
OEM-DR model has a significant advantage in generating 
images that contribute to effective camouflage, and is able to 
generate high-quality camouflage images that are more natural 
and rich in details. 

Since both image generation quality and camouflage 
effectiveness need to be perceived by humans, this paper 
conducts a user study to obtain subjective judgments on the 
generation results. In this paper, 10 researchers in AI related 
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fields are invited to judge which of the images in Fig. 4 are not 
easily detectable. According to the judgment results except Fig. 
4 (b) all others are considered to be less detectable in the 
foreground in the images generated by OEM-DR, which fully 
demonstrates the quality of OEM-DR in image generation and 
the effectiveness of the camouflage effect. 

F. Discussion 

In this study, the OEM-DR model significantly enhanced the 

performance of camouflage image generation through the object 

enhancement module and the diffusion optimizer. Compared 

with various existing models, OEM-DR excelled in terms of FID 

and KID metrics, particularly when dealing with salient objects. 

Although the model has the limitation of high computational 

resource demands, this is expected to be overcome in the future 

through algorithm optimization and hardware acceleration. The 

OEM-DR model provides a new perspective and methodology 

for the field of camouflage image generation, holding broad 

prospects for application. 

V. CONCLUSION 

In this paper, an innovative camouflage image generation 
method based on sparse pruning and weight diffusion is 
proposed. First, a new object enhancement module is designed, 
which effectively improves the extraction of key features in the 
foreground by the model, and thus significantly improves the 
authenticity of the camouflage image generation. Second, a 
detail optimization module based on the weight diffusion 
strategy is constructed, which improves the quality of the 
generated images by optimizing the background image 
generation process. In the experiments on CO, SO and GO 
datasets, this paper demonstrates excellent performance. Future 
research in camouflage visual perception will be continued to 
further propose feasible solutions. 

However, it is worth noting that although this study has 

achieved certain results in the field of camouflage image 

generation, it faces the challenge of balancing computational 

complexity and efficiency during the implementation of the 

weight diffusion strategy. In future research work, this study will 

be committed to optimizing the adaptive weight diffusion 

strategy, dynamically adjusting the diffusion parameters 

according to the training progress of the model and the unique 

characteristics of the dataset. The exploration and optimization 

in this direction are aimed at promoting the continuous progress 

and development of camouflage image generation technology. 
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