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Abstract—Reinforcement Learning (RL) has become a 

rapidly advancing field inside Artificial Intelligence (AI) and self-

sufficient structures, revolutionizing the manner in which 

machines analyze and make selections. Over the past few years, 

RL has advanced notably with the improvement of more 

sophisticated algorithms and methodologies that address 

increasingly complicated actual-world troubles. This progress 

has been driven by using enhancements in computational power, 

the availability of big datasets, and improvements in machine -

getting strategies, permitting RL to address challenges across a 

wide range of industries, from robotics and autonomous driving 

system to healthcare and finance. The effect of RL is evident in 

its capacity to optimize selection-making procedures in unsure 

and dynamic environments. By getting to know from interactions 

with the environment, RL agents can make decisions that 

maximize lengthy-time period rewards, adapting to converting 

situations and enhancing over time. This adaptability has made 

RL an invaluable tool in situations wherein traditional 

approaches fall brief, especially in complicated, excessive-

dimensional spaces and behind-schedule remarks. This review 

aims to offer radical information about the current nation of RL, 

highlighting its interdisciplinary contributions and how it shapes 

the destiny of AI and autonomous technologies. It discusses how 

RL affects improvements in robotics, natural language 

processing, and recreation while exploring its deployment's 

ethical and practical demanding situations. Additionally, it 

examines key research from numerous fields that have 
contributed to RL's development. 
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I. INTRODUCTION 

Machine Learning (ML) is primarily categorized into three 
main types, which are Supervised Learning, Unsupervised 
Learning, and Reinforcement Learning (RL) [1, 2]. The 
primary goal of RL is to allow machines to acquire knowledge 
beyond the constraints of supervised and unsupervised learning 
paradigms [3]. RL commonly employs a reward function as a 
training mechanism for agents tasked with specific objectives 
[4]. Unlike other ML paradigms that rely on labeled datasets, 
RL derives knowledge through direct interaction with the 
environment [5]. To make the RL result more effective, it is 

very important to ensure communication between the agents 
and the environment [6]. 

Historically, RL has evolved from early work in behavioral 
psychology and control theory to become a fundamental tool in 
artificial intelligence and robotics. The foundational work of 
Kaelbling et al. (1996) and subsequent advances such as deep 
Q-networks from Mnih et al. (2015) have set the foundation for 
developments of RL in future [4, 7]. Hence, nowadays RL 
research ranges from autonomous robots to complex decision-
making systems. For example, RL is able to play an important 
role in improving robot autonomy and flexibility, especially in 
tasks like manipulation and navigation [8]. In addition, RL has 
proven valuable in enhancing autonomous vehicle control, 
improving safety and optimizing transportation systems [9, 10] 
The application of RL is not only limited to robotics, but also 
been applied in the semiconductor industry, where it can 
optimize processes such as physical design routing [11, 12]. 

In recent years, the combination of reinforcement learning 
and deep learning, which is also known as deep reinforcement 
learning (DRL) [13, 14, 15]. DRL has driven to breakthroughs 
in solving high-dimensional problems, especially in game-
playing AI such as Alpha Go and autonomous systems [16, 
17]. In addition, emerging trends nowadays include multi-agent 
reinforcement learning (MARL) which multiple agents learn 
and collaborate in a shared environment and also healthcare 
applications, where RL able to shows promise in personalized 
medicine and treatment planning [18, 19]. 

Furthermore, current RL research is more likely to focus on 
improving sample efficiency, safety, and scalability for real-
world applications. It is very important to investigate new ways 
to integrate Reinforcement Learning with other machine 
learning paradigms to produce more adaptive and generalizable 
AI systems. This review will explore the development of RL, 
classification of RL method, and highlight its modern 
applications and future research directions. Moreover, this 
review also will discuss the research contributions from 
various fields to describe the current state of Reinforcement 
Learning and its potential to drive innovation in artificial 
intelligence and autonomous systems. The applications of RL 
are shown in Fig. 1. 
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Fig. 1. Applications of reinforcement learning. 

In this review, we have a look at the speedy improvement 
of RL and its developing applicability to complex, actual 
global troubles. We begin by exploring the evolution of RL 
techniques, from foundational strategies to advanced strategies 
consisting of Deep Reinforcement Learning and multi-agent 
systems. It also categorizes RL techniques, distinguishing 
between model-unfastened and model-based totally tactics, and 
highlights their respective strengths and barriers. Furthermore, 
we cover various RL programs across numerous domain 
names, including self-sustaining structures, robotics, 
healthcare, and synthetic intelligence. This exploration aims to 
offer a comprehensive understanding of the contemporary state 
of RL, its interdisciplinary contributions, and its potential to 
pressure destiny innovations in AI and self-reliant 
technologies. 

II. EMERGING TRENDS OF REINFORCEMENT LEARNING 

EVOLUTION 

The evolution of Reinforcement Learning (RL) is based in 
multiple foundational fields, which include behavioral 
psychology, trial-and-error learning, optimal control theory and 
dynamic programming. These parallel developments have 
provided the foundation for modern RL and shaping its 
principles and algorithms. 

A. Behavioural Psychology and Trial-and-Error Learning 

The earliest roots of Reinforcement Learning (RL) can be 
traced to behavioral psychology, specifically the works of 
Edward Thorndike and B.F. Skinner before the timeframe of 
1960s [20, 21, 22]. Thorndike's Law of Effect introduced the 
concept of learning from the consequences of actions, where 
actions followed by satisfying outcomes are more likely to be 
repeated [20, 23]. This was the basis for trial-and-error 
learning, which is one of the important aspects of RL, where an 
agent explores different actions and adapts its behavior based 
on rewards or punishment. Furthermore, B.F. Skinner 
demonstrated that operant behavior can be shaped through 
reinforcement mechanisms, which highlighted the importance 
of rewards and punishments in learning [24]. This 
psychological perspective shows the foundation for how RL 
agents learn to optimize their actions by maximizing rewards 
or minimizing punishment. 

B. Optimal Control Theory 

During the mid-20th century, there were major advances in 
optimal control theory, especially in the field of engineering 
[25]. Control theory usually focuses on designing controllers 
that can guide dynamic systems to perform specific tasks in an 
optimal manner. The Bellman equations which were proposed 
by Richard Bellman in 1957 became central to this optimal 
control framework [26], [27], [28]. This work on dynamic 
programming provided a way to decompose complex decision 
problems into simpler subproblems, which enables the 
computation of optimal policies in environments with known 
dynamics and become a foundation for RL. Hence, Richard 
Bellman's work directly influenced by introducing the concept 
of a value function and estimates the expected future reward of 
being in a particular state and taking a particular action. This 
concept is basic for the RL algorithms such as Q-learning and 
value iteration [29]. 

C. Dynamic Programming and Modern Developments 

From the foundation of Bellman's dynamic programming as 
mentioned, Ronald Howard introduced Markov decision 
processes (MDP) which is a mathematical framework for 
modeling decisions in environments where outcomes are 
partially random and partially controlled by the decision maker 
[30]. The formalization of MDP set the foundation for modern 
RL algorithms, as it represents the interaction between an agent 
and its environment, where the agent seeks to maximize a 
cumulative reward over time, positive rewards are awarded for 
favorable actions, while negative rewards or punishments are 
assigned for undesirable actions. These reward mechanisms are 
used as evaluative feedback and enable the agent to assess its 
actions within a specific state and learn from accumulated 
experiences. However, dynamic programming methods require 
information or knowledge of the dynamics of the environment, 
this disadvantage limits its applicability to real world problems. 
This gap flattens the way for RL techniques. For example, the 
model-free learning which will be discussed in next section, 
where an agent can learn optimal policies directly from 
interactions with the environment without required the 
knowledge of its dynamics. 

Around the 1980s, RL emerged as a distinct field. For 
example, Sutton introduced temporal difference (TD) learning 
which is one of the key innovations that enabled agents to learn 
value functions from incomplete trajectories, rather than 
waiting until the end of an episode [31]. Furthermore, Watkins 
further advanced RL by allowing agents to directly learn 
action-value functions without the requirement for explicit 
models of the environment [32]. 

D. Deep Reinforcement Learning (DRL) Revolution 

In the 2010s, the combination of Deep Learning (DL) and 
Reinforcement Learning (RL) which is known as Deep 
Reinforcement Learning (DRL) revolutionized the field again. 
In 2015, Google DeepMind researchers introduced the Deep Q 
Network (DQN) in 2015, which enabled reinforcement 
learning agents to handle complex tasks such as Atari 2600 
games by using deep neural networks to approximate value 
functions [4]. This research highlighted the scalability of RL in 
higher dimensional state spaces and lead to major 
achievements such as the success of AlphaGo, which defeated 
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the one of the world champions of Go Lee Se-dol by using a 
combination of RL and DL [33]. 

E. Emerging Trends and Future Directions 

Recent trends in Reinforcement Learning (RL) focus on 
improving sample efficiency, safety and scalability for real-
world applications [34, 35]. New RL techniques such as Multi-
agent Reinforcement Learning (MARL), hierarchical 
reinforcement learning and transfer learning are being explored 
to solve the issue of complex multi-agent environments where 
multiple agents learn collaboratively at the same time [18, 36, 
37, 38]. In addition, RL can also be applied in more 
applications in different areas such as robotics, healthcare, 
finance and autonomous systems. The timeline of key 
evolution in RL development is shown in Fig. 2. 

 

Fig. 2. Timeline of key evolution in RL development. 

III. TAXONOMY AND CRITERIA OF REINFORCEMENT 

LEARNING 

Reinforcement Learning (RL) techniques are primarily 
classified into Model-Based and Model-Free approaches within 
the framework of Markov Decision Processes (MDP). Model-
based RL is further categorized into Given-the-Model and 
Learn-the-Model techniques. Meanwhile, Model-Free RL is 
subdivided into on-policy and off-policy approaches, which are 
discussed in the subsequent sections. In addition, value-based 
and policy-based approaches also have been discussed in this 
paper. The overview of RL classification is shown in Fig. 3. 

 

Fig. 3. Overview of reinforcement learning classification. 

A. Model-based and Model-Free 

Reinforcement Learning (RL) typically demands a 
substantial amount of data to attain satisfactory performance 
levels. This section will primarily focus on two types of RL 
algorithms which include model-free and model-based [39, 
40]. Generally, model-free RL algorithms are considered as a 
direct approach, while model-based RL algorithms are viewed 
as an indirect method [41]. 

Model-free RL algorithms aim to learn a policy or value 

function without explicitly constructing a model of the control 
system [42]. In contrast, model-based RL algorithms not only 
learn a value and policy function but also simultaneously 
construct an explicit model of the system [7]. There are two 
well-known model-free RL algorithms which are Q-Learning 
and Deep Q-Networks (DQN), where the agent learns value 
functions that estimate the expected cumulative rewards for 
each action in each state [4, 43, 44]. Based on the research 
conducted by Atkeson and Santamaria, a comparative study 
was undertaken using a linear double integrator movement task 
to assess data efficiency, the research findings indicate that the 
model-based RL algorithms surpass the model-free RL 
algorithms in terms of data efficiency [45]. 

In addition, the model-free RL algorithms do not train a 
model of the environment and aim to directly assign values to 
states or state-action [46, 47]. The agent directly interacts with 
the environment and enhances its performance based on the 
collected samples through exploration. It is easier to implement 
as they do not require explicit modeling of the environment but 
might be a problem that is hard to learn. However, model-free 
RL algorithms are usually hard to implement in real-world 
scenarios due to the time consumption and the cost [48]. This 
model-based RL is usually more suitable for large, complex 
environments but suffers from sample inefficiency as the agent 
learns only through interactions with the environment. 

The advantage of a model-based RL algorithm includes its 
ability to predict future states and rewards through the explicit 
modelling of the environment [48, 49]. This will help the agent 
in making better planning and incorporating strategies like pure 
planning and expert iterations [50]. In model-based RL, the 
agent can simulate possible scenarios and plan its actions 
accordingly. However, model-based RL algorithms come with 
few disadvantages. One of the major challenges of model-
based RL is that the model often depends on the accuracy of 
the transition model, it means that inaccurate models can lead 
to domain shift and poor performance [49, 51, 52, 53]. For 
model-based RL, developing and maintaining an accurate 
model of the environment can be complex and resource-
intensive. Besides, the learned models may be inaccurate in 
practical scenarios, introducing bias in estimation [51]. When 
policy estimation and improvement are based on a biased 
model, the resulting policies may prove ineffective or even 
collapse when applied in the real environment. Hence, model-
based methods often require significant computational cost for 
model learning and policy optimization hence it is limited 
application in real-world situations [54]. Lastly, model-based 
RL algorithms have the capacity to predict unexpected actions 
and states, which also provides a more controlled learning 
process. 

In summary, model-free RL algorithms learn through 
exploration, whereas model-based RL algorithms learn by 
simulating scenarios [41]. The slight difference between 
model-based RL and model-free is shown in Fig. 4. In addition, 
the summary of the distinctions between Model-Based and 
Model-Free Reinforcement Learning (RL) algorithms is also 
shown in Table I. 
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Fig. 4. Difference between model-based and model-free RL. 

TABLE I.  SUMMARY OF THE DISTINCTIONS BETWEEN MODEL-BASED 

AND MODEL-FREE RL ALGORITHMS 

Category Model-Based Model-Free 

Learning Type Indirect method Direct method 

Objective 

Learns value, and policy 

functions and constructs an 

explicit model of the 

system 

Learns policy or value 

function without explicit 

model construction 

Data Efficiency 
Outperforms in terms of 

data efficiency 

May demand substantial 

data for satisfactory 

performance 

Implementation 

Challenging in real-world 

scenarios due to complexity 

and cost 

Easier implementation, no 

explicit modelling required 

Environment 

Interaction 

Predict future states and 

rewards through explicit 

environment modelling 

Direct interaction, enhances 

performance through 

exploration 

Challenges 

Complex model 

construction may introduce 

bias for learned models 

Hard to learn complex 

problems in real-world 

scenarios 

Applicability to 

Real World 

Balancing model accuracy 

and real-world complexity 

is a significant challenge 

Hard to implement due to 

time and cost constraints  

B. Model-based: Given the Model and Learn the Model 

The algorithms that use models are called model-based 
methods. In model-based Reinforcement Learning (RL), given-
the-model and learn-the-model are two main types of 
approaches [48]. One of the examples of the given-the-model 
is the AlphaGo algorithm [16]. In this algorithm, AlphaGo is 
explicitly learned the rules of the board game and can be 
described using coding or computer language. Then, the 
transitions and rewards are known to the agent, which allows 
for the evaluation of different strategies through trial and error 
to get optimal results and iteratively improve the policy. This 
approach shows that a pre-determined model of the 
environment to guide the learning process and enhance the 
decision-making. For another example, the Monte Carlo Tree 
Search (MCTS) algorithm can be using a given model to 
simulate possible future states and evaluate action sequences 
for optimal planning [55]. 

Moreover, an example of the "learn the model" category in 
model-based Reinforcement Learning is the World Models 
algorithm [56]. One of the examples for learn the model 
approach is DreamerV2 [57]. DreamerV2 builds an internal 
world model of the environment by learning from its 
experiences, which can allow the agent to simulate trajectories 
in its "imagination" rather than only rely on real-world 

interactions. This can cause the agent to explore and learn 
optimal policies more efficiently, as it can try out different 
actions and observe hypothetical outcomes within its model, 
thus significantly reducing the need for real-world samples. 
Another example is Probabilistic Ensembles with Trajectory 
Sampling (PETS), which use the models to predict possible 
future states with uncertainties included [58]. PETS uses these 
learned dynamics to perform planning and action selection then 
helping the agent to handle uncertainty and make more robust 
decisions in those unpredictable environments. This approach 
allows the agent to improve sample efficiency by using 
imagined rollouts for planning while adapting to changes in 
real-world scenarios. The comparison of “Given-the-Model" 
and "Learn-the-Model" in model-based RL is shown in Table 
II. 

TABLE II.  COMPARISON BETWEEN "GIVEN THE MODEL" AND "LEARN THE 

MODEL" 

Category Given the Model Learn the Model 

Learning Type 
Uses an explicitly specified 

model of the environment 

Learns a model of the 

environment from gathered 
data 

Decision-

Making 

Enhances decision-making 

through trial and error 

Optimizes policies by 

leveraging insights from 
the model 

Advantages 

1. Allows for the evaluation 

of different strategies 

2. Facilitates iterative 
improvement of the policy 

1. Adapts to complex and 

unknown environments  

2. Can generalize to 
various scenarios 

Disadvantages 

1. Require explicit 

specification of the 

environment 

2. Limited adaptability with 
unforeseen changes 

1. Require extensive data 

for accurate model learning 

2. Complexity in training 

and interpreting the learned 
model 

C. Model-Free: On-Policy and Off-Policy 

Model-free Reinforcement Learning (RL) is typically 
categorized into on-policy and off-policy approaches [48, 41]. 
The on-policy approach strives to enhance and learn through 
the policy itself which is used for decision-making [59]. For 
the on-policy approach, the agent itself interacts with the 
environment, and the policy to interact with the environment 
and the improved policy remain the same. According to Singh 
et al.'s (2000) study, this policy algorithm could be more 
stringent because the updating of the value function is 
contingent on the experiences gained from implementing the 
policy [60]. 

On the other hand, the off-policy approach aims to improve 
a policy that is different from the one that is used to generate 
the data [48]. Unlike the on-policy approach, the off-policy 
approach does not require the same agent that interacts with the 
environment. The experiences of other agents interacting with 
the environment can also be utilized to enhance the policy. 
When the agent learns the behavior in one way is called the 
target policy, while when it is learned using data generated by 
another policy is known as the behavior policy [61]. In 
addition, the agent learns from data generated by a behavior 
policy that might be explored more widely than the target 
policy, which allows for more efficient learning. This 
flexibility allows for more diverse data sources to contribute to 
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the policy improvement process. In Fakoor et al. (2020) 
research, it is noted that off-policy methods encounter bias 
issues as the data from an outdated policy differs from the 
current policy, making it unsuitable to update the current 
policy's value function using old data [62]. On the other hand, 
on-policy methods avoid bias but may face variance 
challenges, tending to be more data-efficient as they focus on 
the current samples. 

One of the examples of an on-policy approach is SARSA 
State-Action-Reward-State-Action (SARSA) [41, 48]. In the 
SARSA algorithm, an action is selected based on the current 
policy and executed. Then, the data is utilized to update the 
current policy. In the on-policy setting, the policy that interacts 
with the environment is the same as the updated policy, which 
ensures consistency between the policy used during interaction 
and the one that is improved. The SARSA update function is 
shown below:  

Q{S(t),A(t)} ← Q{S(t),A(t)} +  α[Q{S(t + 1), A(t + 1)} −
Q{S(t),A(t)}    (1) 

In this equation, 

 𝑄{𝑆(𝑡), 𝐴(𝑡)}  represents the Q-value for the state 
action pair at time 𝑡 

 𝛼 is the learning rate 

 𝑄{𝑆(𝑡 + 1), 𝐴(𝑡 + 1)} is the Q value for the next state 
action pair at time 𝑡 + 1 

This updated function shows how SARSA adjusts the Q-
values based on the observed rewards and transitions, which 
also continues to refine the policy in an on-policy manner. In 
the off-policy category, one of the examples is Q-learning, 
which employs the max operation and a greedy policy when 
selecting actions [41, 43, 48]. In addition, Q-learning involves 
updating a policy that interacts with the environment and the 
updated policy which is not necessarily the same as the policy 
used during interaction. 

The Q-learning update function is shown below: 

𝑄{𝑆(𝑡),𝐴(𝑡)} ← 𝑄{𝑆(𝑡), 𝐴(𝑡)} +  𝛼[𝑅(𝑡 + 1) +
𝛾𝑚𝑎𝑥

𝛼
𝑄{𝑆(𝑡 + 1), 𝐴(𝑡 + 1)} − 𝑄{𝑆(𝑡), 𝐴(𝑡)}  (2) 

In this equation, 

 𝑄{𝑆(𝑡), 𝐴(𝑡)}  represents the Q-value for the state 
action pair at time 𝑡 

 𝛼 is the learning rate 

 𝑅(𝑡 + 1) is the reward at time 𝑡 + 1 

 𝛾 is the discount reward 

 𝑚𝑎𝑥
𝛼

𝑄{𝑆(𝑡 + 1), 𝐴(𝑡 + 1)}  is the maximum Q value 

for the next state S(t+1) 

The function above also reflects how Q-learning iteratively 
refines the Q values based on the observed rewards and 
transitions and improves the policy over time. The comparison 
between "On-Policy" and "Off-Policy" in model-free RL is 
shown in Table III. 

TABLE III.  SUMMARY OF THE COMPARISON BETWEEN "ON-POLICY" AND 

"OFF-POLICY" 

Category Given the Model Learn the Model 

Learning Type 

The agent learns through 

the policy used for 

decision-making. 

Aims to improve a policy 

different from the data-

generating policy. 

Environment 

Interaction 

The agent interacts with the 

environment using the 

policy. 

Doesn't require the same 

agent to interact and data 

from other agents can be 

used (shared). 

Consistency 

The policy used during 

interaction and improved 

policy are the same. 

Involves a target policy 

(learned) and a behavior 

policy (data-generating). 

Flexibility 
Limited by the exploration 

of the current policy. 

Learns from data generated 

by a behavior policy that 

may be explored more 

widely. 

D. Value-based Approach and Policy-based Approach 

The value-based approach typically involves learning the 
value function through methods such as Temporal difference 
(TD) learning, Q-Learning, or Deep Q-Network (DQN) [63, 
64, 65, 66]. This technique aims to identify the optimal action 
to take and the action under this approach tends to be 
deterministic, such that they are chosen with a clear 
understanding of consequences. The value function operates by 
working backward from the target state and attributing rewards 
to the preceding state. This approach can be helped in the 
selection of only one action that leads towards achieving the 
desired outcome and closer to the goal [65]. In summary, it 
involves a strategic evaluation of the value of actions to make 
informed decisions and optimize the learning process. 

In contrast to the value-based approach, the policy-based 
approach focuses on learning the conditional probability π of a 
policy through techniques such as the policy gradient method 
[67]. Instead of obtaining a value function like mentioned 
above, this approach directly determines the policy. Due to the 
stochastic action probability, the policy-based approach is 
more suitable for the application with large and continuous 
action [65]. At the same time, action selection becomes 
probabilistic with actions chosen based on their likelihood of 
efficiently reaching the desired outcome as dictated by the 
learned policy. 

IV. THE ADVANCEMENT OF REINFORCEMENT LEARNING 

APPROACHES 

In recent years, Reinforcement Learning (RL) has been 
improving with a fast pace and developed advanced 
approaches for increasingly complex problems in the real 
world. This review would like to focus on Deep Reinforcement 
Learning, Hierarchical Reinforcement Learning, Multi-Agent 
Reinforcement Learning and Hybrid Model Based 
Reinforcement Learning. These approaches have expanded the 
range of high dimensional RL applications, multi-agent 
applications, hierarchical decision-making applications and 
optimal policies or strategies by a combination of model based 
and model free methods. 
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A. Deep Reinforcement Learning (DRL) 

Deep Reinforcement Learning (DRL) combines 
Reinforcement Learning (RL) and deep learning to enable 
agents to learn optimal policies for decision-making tasks 
through trial and error [14, 15, 68, 69]. The DRL is known for 
utilizing the principle of RL with the theory of deep learning to 
facilitating those automatic extractions of features from the 
input and benefits for in the fields such as robotic, autonomous 
driving and video games [14, 70, 71].  

One of the achievements in DRL was the development of 
Deep Q Network (DQN) by work of Mnih et al. (2015), which 
shows the human level performance on Atari games using raw 
pixel inputs. The DQN uses the convolutional network to 
approximate the Q value function, which trained using variant 
of Q-learning with experience and target network to stabilize 
training [4]. Subsequently, Schulman et al. (2015) have 
introduced the Trust Regio Policy Optimization (TRPO), 
which addressing the not stable and inefficiency of policy 
gradient methods. TRPO ensures monotonic improvement by 
optimizing objective function subject to a trust region 
constraint and make it more stable and reliable training [13, 
72]. Further refinement came with the Proximal Policy 
Optimization (PPO) work by Schuman et al. (2017), which 
simplified the algorithm and enhanced computational 
efficiency by using clipped objective to balance exploration 
and exploitation effectively [73]. Lillicrap et al. (2015) have 
also extended the actor-critic framework to continuous action 
spaces with the Deep Deterministic Policy Gradient (DDPG) 
algorithm. DDPG will employ the actor network to parametrize 
the policy and network to estimate the Q- value function which 
enabling the application of DRL such as robotic control task 
[74]. 

In addition, Kostrikov et al. (2021) proposed the Implicit 
Q-learning (IQL) algorithm, which is an offline Reinforcement 
Learning method that avoids evaluating unseen actions, 
thereby mitigating errors from distributional shift. By 
leveraging state-value functions as random variables and 
conditionally using the expected value of the state, IQL can 
improve the policy without directly querying actions from the 
distribution [75]. On other hand, Chen et al. (2022) have also 
proposed the DreamerV2 algorithm, which builds on the 
Dreamer framework by incorporating discrete latent variables 
and advanced world model. It is also able to demonstrate a 
similar performance on Atari benchmark with efficient 
performance [76]. Sekar et al. (2020) introduced the 
Plan2Explore algorithm, which emphasizes intrinsic 
exploration by using a self-supervised world model to plan for 
expected future novelty, enabling the agent to efficiently 
explore and quickly adapt to multiple downstream tasks [77]. 

In summary, the advancement of DRL has revolutionized 
the fields of RL by enabling the agents to learn from high 
dimensional inputs to perform complex tasks. The new 
algorithms such as DQN, TRPO, PPO, DDPG, IQL, 
DreamerV2 and Plan2Explore have advanced the application 
of RL in different fields including gaming, robotics and 
autonomous systems. As research in DRL continues to focus, 
the efficiency, stability and generalization of RL will have 
further improvement. Fig. 5 provides a schematic illustration of 
DQN and Plan2Explore, presented as a case study in DRL. 

 

Fig. 5. Schematic illustration of Deep Q-Network (DQN) and Plan2Explore. 

[4, 77]. 

B. Hierarchical Reinforcement Learning (HRL) 

Hierarchical Reinforcement Learning (HRL) is one of the 
approaches in Reinforcement Learning fields that able to 
addresses the challenges faced by traditional Reinforcement 
Learning method which include scalability and efficiency with 
the tasks that required long term planning [37, 78, 79]. HRL is 
able to solve these problems by decomposing them into 
hierarchy of subs tasks [37, 80]. The core idea of HRL can be 
described as hierarchical structure where higher level policies 
select sub tasks and lower level policies execute actions to 
achieve the goal of subs task. 

One of the foundational works in HRL is Feudal 
Reinforcement Learning (FRL) by Dayan and Hinton (1992) 
which introduced a hierarchical structure where higher level 
manager set goals for lower level workers [81]. Each 
hierarchical level operates in different temporal and spatial 
resolution, allowing the agent to decompose complex tasks into 
simpler sub-tasks. In addition, another early work in HRL is 
the Options framework introduced by Sutton et al. (1999), this 
framework introduces the concept of options, which 
temporarily extended actions that consists of policy, 
termination conditions and initiation set [82]. These options 
can allow the agents to operate at different time scales and 
make the learning more efficient. Moreover, the more recent 
advancements in HRL include the Hierarchical-DQN (h-DQN) 
framework, which extends the DQN algorithm by 
incorporating hierarchical structure. The h-DQN framework 
consists of meta-controller that selects sub-goals and lower 
level controller which learns to achieve the sub goals using 
DQN, be able to apply to Atari games and navigating 3D 
environments [83]. The Options-Critic architecture by Bacon et 
al. (2017) provides a framework for learning both options and 
policies over options in end-to-end manner, the architecture 
introduces intra-option policy gradient methods to optimize the 
policies within options and termination conditions [84]. 

Furthermore, Vezhnevets et al. (2016) proposed the 
Strategic Attentive Writer (STRAW) framework, which is a 
deep recurrent neural network (RNN) architecture that capable 
learning macro-actions in a Reinforcement Learning setting. 
The model builds an internal plan and partitions it into sub-
sequences then allowing the agent to commit to a plan for a 
period before replanning. This approach allowed the agent to 
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explore and compute efficiently across different tasks [85]. The 
Hierarchical Reinforcement Learning with Off-policy 
correction (HIRO) algorithm introduced by Nachum et al. 
(2018) addresses the challenges of non-stationarity in HRL by 
introducing an off-policy correction mechanism, enabling 
stable and efficient learning of hierarchical policies [79]. Levy 
et al. (2019) introduced the Hierarchical Actor-Critic (HAC) 
algorithm, which extends the actor-critic framework to a 
hierarchical setting by enabling agents to operate at multiple 
levels of abstraction simultaneously [86]. 

Recent developments after 2020 in HRL have further 
expanded, The Hierarchical Variational Autoencoder (HVAE) 
framework introduced by Bai et al. (2023) combines 
probabilistic generative models with deep neural networks to 
learn hierarchical topic representations for multi-view text 
documents. HVAE captures both local and global topical 
information, enabling efficient modelling of complex 
document structures [87]. The Hierarchical Deep 
Reinforcement Learning with Automatic Sub-Goal 
Identification via Computer Vision (HADS) by Liu et al. 
(2021) introduces a sub-goal generation mechanism that adapts 
to the agent’s learning progress, applied to tasks such as game 
manipulation and navigation [88]. The Hierarchical Deep 
Reinforcement Learning with Graph Neural Networks 
(HRLOrch) introduced by Li & Zhu (2021) uses graph neural 
networks to model the hierarchical structure of the 
environment at multiple levels of abstraction [89]. 

In summary, HRL has significantly advanced the RL field 
by mainly enabling the agents to decompose complex tasks to 
simpler sub-tasks, hence cause the learning and planning more 
efficiently. The development of HRL frameworks including 
Options framework, FRL, h-DQN, Option-Critic, STRAW, 
HIRO, HAC, HVAE, HADS and HRLOrch, which further 
improves in terms of efficiency, stability and generalization 
capabilities. The schematic illustration of h-DQN, STRAW and 
HRLOrch is shown in Fig. 6. 

 

Fig. 6. Schematic illustration of h-DQN, STRAW and HRLOrch [83, 85, 

89]. 

C. Multi-Agent Reinforcement Learning (MARL) 

Multi-Agent Reinforcement Learning (MARL) is one of 
the specialized areas in Reinforcement Learning (RL) that 
focuses on the environment where multiple agents interact (not 
limited to number of environments), each aiming to optimize 
the performance while considering the presence and actions of 
other agents [18, 90, 91, 92]. Unlike single agent, each agent in 
MARL has its own goal, which may involve cooperation, 
competition or a mix of both, hence the environment is non-
stationary from the perspective of each agent because other 
agents are also learning and changing their policies [93, 94]. 

One of the significant advancements in MARL is the 
Differentiable Inter-Agent Learning (DIAL) algorithm by 
Foerster et al. (2016), which uses differentiable communication 
channels to enable end-to-end training of communication 
policies, allowing agents to learn to communicate more 
effectively [95]. In addition, Lowe et al. (2017) introduced the 
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) 
algorithm, which uses centralized training to gather global 
information while employing decentralized execution for 
deployment. Each agent has its own policy and critic, but the 
critics have access to the global state and actions of all other 
agents during training, making the training process more stable 
and effective [96]. 

For more recent advancements in MARL, Iqbal and Sha 
(2019) introduced the Actor-Attention-Critic (AAC) 
framework, which uses an attention mechanism to focus on 
relevant parts of the environment and other agents’ actions 
[97]. This framework enhances the scalability and performance 
of MARL algorithms in more complex environments. In 
addition, Rashid et al., 2020 proposed the QMIX algorithm, 
which decomposes the joint action-value function into a 
monotonic combination of individual value functions for 
agents, enabling efficient coordination in cooperative tasks 
[98]. Yu et al. (2022) introduced Multi-Agent Proximal Policy 
Optimization (MAPPO), an extension of the PPO algorithm for 
multi-agent settings. MAPPO employs centralized training 
with decentralized execution to address cooperative and 
complex tasks, achieving performance comparable to off-
policy methods like MADDPG [99]. 

Furthermore, Carta et al. (2021) proposed an ensemble 
approach using multiple Deep Q-learning (Multi-DQN) agents 
to enhance stock market forecasting by training several agents 
on the same data and aggregating their decisions [100]. Zhang 
et al. (2022) introduced the Multi-Agent Graph Convolutional 
Reinforcement Learning (MAGC) framework, which employs 
graph neural networks to model the interactions between 
agents. MAGC enables agents to learn and coordinate their 
actions more effectively by capturing the relational structures 
of the environment, and it is applied to tasks such as dynamic 
electric vehicle charging pricing [36]. In summary, the 
development of MARL frameworks including DIAL, 
MADDPG, AAC, QMIX, MAPPO, Multi-DQN and MAGC 
further advanced the field of RL through the multi agent 
systems. Examples of schematic illustrations of Multi-DQN 
and MADDPG are shown in Fig. 7. 
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Fig. 7. Schematic illustration of multi-DQN and MADDPG [96, 100]. 

D. Model-Based Reinforcement Learning (MBRL) 

Model-Based Reinforcement Learning (MBRL) is one of 
the approaches in Reinforcement Learning (RL) field that 
focuses on building models of environment to improve 
learning and decision-making effectiveness for gaming and 
robotic tasks [49, 101, 102]. The difference between model-
based and model-free was discussed in previous section 
Model-Based and Model-Free. The core idea of MBRL is 
mainly decompose the objective into two main component 
which are model learning and planning, model learning 
includes environment’s transition dynamics and reward 
function while planning uses the learned model to simulate 
future reward [102]. 

The Dyna framework that introduced by Sutton (1991) is 
one of the earliest works in MBRL, which integrates model 
learning and planning by combined real world interactions and 
simulated experiences generated by learned model, it allows 
the agent to update policy using real and synthetic data [103]. 
In addition, Delsenroth & Rasmussen (2011) have proposed the 
Probabilistic Inference for Learning Control (PILCO) 
algorithm which is one type of model-based approach that uses 
Gaussian processes to model the environment’s dynamics 
[104]. Nagabandi et al. (2018) introduced a model-based RL 
approach using neural network dynamics (MBRL-NN). This 
method employs deep neural networks to model the 
environment’s transitions and combines them with model 
predictive control (MPC) for planning [105]. 

Furthermore, Ha and Schmidhuber (2018) proposed the 
World Models framework, which learns a compact, latent 
representation of the environment using a Variational 
Autoencoder (VAE) and a Recurrent Neural Network (RNN). 

The agent plans and acts within this learned model, achieving 
good results on tasks in CarRacing-v0 and VizDoom [56]. The 
Probabilistic Ensembles with Trajectory Sampling (PETS) 
algorithm addresses model uncertainty in Model-based 
Reinforcement Learning (MBRL) by using an ensemble of 
probabilistic neural networks to model environment dynamics 
and trajectory sampling to account for uncertainty [58]. 
Moreover, Janner et al. (2019) introduced Model-Based Policy 
Optimization (MBPO), which integrates model-based and 
model-free approaches to improve sample efficiency. MBPO 
utilizes an ensemble of probabilistic neural networks to model 
the environment dynamics and conducts policy optimization 
within this learned model [106]. 

In recent years, Schrittwieser et al. (2020) proposed 
MuZero, a model-based RL algorithm that learns a model of 
the environment’s dynamics and uses it for planning without 
requiring prior knowledge of the environment. MuZero 
achieves state-of-the-art performance in Atari, Go, chess, and 
shogi, demonstrating the benefits of combining model-based 
planning with model-free learning [107]. Similar with Deep 
Reinforcement Learning (DRL), the DreamerV2, MuZero and 
Plan2Explore algorithm also consider advancement for MBRL 
which expanded the application of MBRL to wider range of 
field. In summary, the introduction of Dyna, PILCO, MBRL-
NN, World Models, PETS, MBPO and MuZero framework 
have advanced the field of RL and improved in terms of 
learning and decision-making. Schematic illustration of PETS 
and MuZero are shown in Fig. 8, which shows how the model 
plans and communicates with environments. The summary and 
comparative analysis of advanced Reinforcement Learning 
(RL) approaches is shown in Table IV. 

 

Fig. 8. Schematic illustration of PETS and MuZero  [58, 107]. 

TABLE IV.  SUMMARY AND COMPARATIVE ANALYSIS OF ADVANCED REINFORCEMENT LEARNING (RL) APPROACHES 

Category Framework Key Contributions Author & Year 

Deep Reinforcement 

Learning (DRL) 
Deep Q Network (DQN) 

Approximates Q-value function using CNN, stabilizes training 

with experience replay and target networks. 
Mnih et al., 2015 

 
Trust Region Policy Optimization 

(TRPO) 
Ensures stable training via trust region constraints. Schulman et al., 2015 

 
Proximal Policy Optimization 

(PPO) 

Simplified policy gradient method with a clipped objective for 

efficiency. 
Schulman et al., 2017 
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Category Framework Key Contributions Author & Year 

 
Deep Deterministic Policy Gradient 

(DDPG) 
Extends actor-critic framework to continuous action spaces. Lillicrap et al., 2015 

 Implicit Q-Learning (IQL) 
Mitigates distributional shift errors in offline RL by using state-

value functions as random variables. 
Kostrikov et al., 2021 

 DreamerV2 
Combines latent variables with world models for efficient 

decision-making. 
Chen et al., 2022 

 Plan2Explore Intrinsic exploration using a self-supervised world model. Sekar et al., 2020 

Hierarchical 

Reinforcement 

Learning (HRL) 

Feudal RL (FRL) 
Hierarchical decomposition of tasks via manager-worker 

relationships. 
Dayan & Hinton, 1992 

 Options Framework 
Temporally extended actions with initiation, termination, and 

policies. 
Sutton et al., 1999 

 Hierarchical DQN (h-DQN) Meta-controller for sub-goals and DQN-based controller. Kulkarni et al., 2016 

 Option-Critic Architecture End-to-end learning of options and intra-option policies. Bacon et al., 2017 

 
Strategic Attentive Writer 

(STRAW) 

Plans macro actions via deep RNNs for efficient exploration and 

computation. 
Vezhnevets et al., 2016 

 

Hierarchical Reinforcement 

learning with Off-policy correction 

(HIRO) 

Off-policy correction for stable hierarchical learning. Nachum et al., 2018 

 Hierarchical Actor-Critic (HAC) Actor-critic framework for multi-level task abstraction. Levy et al., 2019 

 

Hierarchical Deep Reinforcement 

Learning with Automatic Sub-Goal 

Identification via Computer Vision 

(HADS) 

Sub-goal generation via computer vision for dynamic task 

adaptation. 
Liu et al., 2021 

 

Hierarchical Deep Reinforcement 

Learning with Graph Neural 

Networks (HRLOrch) 

Graph neural networks for multi-level environment abstraction. Li & Zhu, 2021 

 
Hierarchical Variational 

Autoencoder (HVAE) 

Combines probabilistic generative models with deep neural 

networks to learn hierarchical topic representation 
Bai et al., 2023 

Multi-Agent 

Reinforcement 

Learning (MARL) 

Differentiable Inter-Agent Learning 

(DIAL) 

End-to-end learning of communication policies via differentiable 

channels. 
Foerster et al., 2016 

 
Multi-Agent Deep Deterministic 

Policy Gradient (MADDPG) 

Centralized training with decentralized execution for multi-agent 

setups. 
Lowe et al., 2017 

 Actor-Attention-Critic (AAC) 
Attention mechanism for focusing on relevant environment and 

agent interactions. 
Iqbal & Sha, 2019 

 QMIX 
Monotonic decomposition of joint action-value for cooperative 

tasks. 
Rashid et al., 2020 

 
Multi-Agent Proximal Policy 

Optimization (MAPPO) 

Extends PPO for multi-agent systems with centralized training 

and decentralized execution. 
Yu et al., 2022 

 
Multiple Deep Q-learning (Multi-

DQN) 

Ensemble of DQN agents for aggregating decisions in 

forecasting tasks. 
Carta et al., 2021 

 
Multi-Agent Graph Convolutional 

Reinforcement Learning (MAGC) 
Graph neural networks for relational multi-agent modelling. Zhang et al., 2022 

Model-Based 

Reinforcement 

Learning (MBRL) 

Dyna 
Combines model learning and planning using real and synthetic 

data. 
Sutton, 1991 

 
Probabilistic Inference for Learning 

Control (PILCO) 
Uses Gaussian processes to model environment dynamics. 

Delsenroth & Rasmussen, 

2011 

 

Model-Based Reinforcement 

Learning using Neural Network 

Dynamics (MBRL-NN) 

Combines neural network-based dynamics with model predictive 

control. 
Nagabandi et al., 2018 

 World Models Latent environment representation via VAE and RNN. Ha & Schmidhuber, 2018 

 
Probabilistic Ensembles with 

Trajectory Sampling (PETS) 

Ensemble probabilistic models with trajectory sampling for 

uncertainty handling. 
Chua et al., 2018 

 
Model-Based Policy Optimization 

(MBPO) 

Combines model-based and model-free approaches for sample 

efficiency. 
Janner et al., 2019 

 MuZero 
Learns environment models and plans without prior knowledge, 

achieving good results in gaming. 
Schrittwieser et al., 2020 

V. CHALLENGES AND ALTERNATIVE SOLUTIONS 

Although Reinforcement Learning (RL) has its 
effectiveness in a wide range of applications, it still faces 
significant challenges that limit the efficiency, scalability, and 

real-world applicability. The main key challenges include 
sample inefficiency, exploration-exploitation dilemma, and 
difficulties with generalization across different tasks and 
environments. Hence, there is much research that proposed 
new approaches to improve the adaptability and efficiency of 
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RL agents such as curiosity-driven exploration, meta-learning, 
and transfer learning. 

One of the important challenges in RL is sample 
inefficiency as mentioned, where agents require large amount 
of interaction with the environment to learn effective policies. 
For example, in complex tasks such as involving high 
dimensional state space or continuous actions space, RL 
methods usually required more time to converge to optimal 
solutions. For the sample inefficiency challenges, several 
solutions have been proposed. For instance, the work of Janner 
et al. (2019) have proposed an RL algorithm Model-Based 
Policy Optimization (MBPO) which uses short model-
generated rollouts to improve sample efficiency and 
performance as mentioned [106]. In addition, Soft Actor-Critic 
(SAC) which an off-policy actor-critic algorithm based on 
maximum entropy RL can be used to maximize both expected 
reward and entropy, it also able to be enabling agents to learn 
from data collected under different policies [108]. Not only 
that, Deep Q-Networks (DQN) also can be used to store and 
reuse past experiences or learning, this can reduce the need for 
time required and samples in each iteration [13]. 

In addition, one of another challenges in RL are 
exploration-exploitation dilemma, in which an agent must 
balance between exploring new environment then found the 
highest beneficial actions and exploiting known actions that 
produce high rewards. Poor exploration strategies can lead to 
suboptimal strategies, especially in environments where reward 
signals are delayed or require a long time such as in physical 
design. Therefore, several solutions have been proposed for 
solving this issue. One of the solutions is curiosity-driven 
exploration which to explores using curiosity as an intrinsic 
reward signal for agents in environments with sparse or no 
extrinsic rewards which curiosity is defined as the error in 
predicting the consequences of the agent’s actions in a visual 
feature space [109]. In addition, curiosity-driven exploration is 
important for autonomous learning, highlighting various 
algorithmic models that capture different aspects of this 
process [110]. Moreover, entropy regularization also can be 
used to address the exploration-exploitation dilemma by 
introducing f-divergence penalties [111]. These penalties 

ensure that the policy does not deviate too much from the 
current policy, promoting balanced exploration and 
exploitation. By adjusting the divergence function, the agent 
can control the trade-off between exploring new actions and 
exploiting known rewarding actions, this can lead to more 
stable and efficient learning dynamics. 

Furthermore, another challenge is difficulties with 
generalization, where generalization in RL refers to the ability 
of an agent to still perform well in new or unseen environments 
[112, 113]. This is due to RL models often overfitting to 
specific environments during training, leading to a decline in 
performance when faced with new or unseen scenarios. This 
issue is a serious problem for real-world applications such as 
autonomous driving, where the agent is required to handle 
various scenarios under different conditions [115]. In order to 
solve this problem, the model agnostic meta learning (MAML) 
approach can be applied to enable agents more quickly adapt to 
new tasks by learning from distribution of related tasks during 
the training phase [115, 116, 117]. This approach can make the 
agent more robust and adaptable in unfamiliar environments. In 
addition, transfer learning also can be applied to transfer the 
knowledge to another related task to reducing the training data 
needed in new environment [118, 119] This will be more 
useful when the training in the target environment is costly 
such as required more memory space. Moreover, domain 
randomization also can help to improve the generalization 
issue by training the agents in varying the parameters, so that 
the agents can be handle the real-world variability more 
effectively and more adaptable to new, unseen environments 
[120]. 

In summary, the purpose of artificial intelligence (AI) 
including RL is not to replace humans, AI is designed to 
enhance human efficiency and achieve better outcomes. 
Humans are required to treat it as a tool to increase efficiency, 
streamline workflows, and assist in decision-making processes. 
However, it is also very important to ensure that AI 
technologies are applied properly to maximize the potential 
benefits and minimize the risk of misuse or unintended 
consequences. The summary of alternative methods and their 
potential benefits is shown in Table V. 

TABLE V.  SUMMARY OF ALTERNATIVE METHODS AND POTENTIAL BENEFITS 

Alternative Method Challenges Key Feature Potential Benefits 

Model-Based Policy 

Optimization (MBPO)  
Sample Efficiency Use short model-generated rollouts  Increases sample efficiency 

Soft Actor-Critic (SAC) Sample Efficiency 
Agents can learn from data collected under 

different policies  

Maximize both expected reward and entropy and 

purpose to increase sample efficiency 

Curiosity-Driven 

Exploration 

Exploration-

Exploitation Dilemma 
Use intrinsic rewards based on novelty 

Enhances the exploration in sparse reward 

environments 

Entropy Regularization 
Exploration-

Exploitation Dilemma 

Maintains randomness in policy by penalizing 

determinism 
Promotes continued exploration during training 

Meta-Learning Generalization 
Learns to adapt quickly to new tasks from 

experiences 
Improves adaptability and efficiency across tasks  

Transfer Learning Generalization 
Transfers knowledge from one task to another 

task 
Reduces training time and data requirements  

Domain Randomization Generalization Trains in a different of simulated environments  Improves robustness to different of environments  
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VI. CONCLUSION AND OUTLOOK 

In conclusion, the evolutions of Reinforcement Learning 
has successfully impacted the different fields from robotics and 
autonomous driving system, healthcare and finance. The 
integration of RL with different approach can further advanced 
the application, for example the integration of deep learning 
and RL which known as Deep Reinforcement Learning (DRL) 
has improved in solving the high dimensional problem and 
applied in AlphaGo. 

In addition, the focus of RL is mainly improving the 
sample efficiency, safety and scalability for real world 
applications. The innovations in hierarchical Reinforcement 
Learning, transfer learning and domain randomization are 
expected to improve the adaptability and generalizability of RL 
systems. In summary, as increasing more effort in improving 
RL, it will play an important role in artificial intelligence and 
autonomous technologies which will help humans for more 
complex challenges in daily life. 
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