
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

49 | P a g e

www.ijacsa.thesai.org

Control Interface for Multi-User Video Games with

Hand or Head Gestures in Directional Key-Based

Games

Oscar Ramirez-Valdez, César Baluarte-Araya, Rodrigo Castillo-Lazo, Italo Ccoscco-Alvis,

Alexander Valdiviezo-Tovar, Alexander Villafuerte-Quispe, Dylan Zuñiga-Huraca

Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú

Abstract—This paper describes the development and

implementation of a hand or head gesture-based control interface

for video games, enhanced for games that use directional keys. The

objective is to develop an adaptive control system for a multiplayer

video game that allows users to choose between the use of

traditional directional keys or a gesture-based interface. The

methodology used follows the Cross-Industry Standard Process

for Data Mining (CRISP-DM) development model, which allows a

structured integration of analysis, design, implementation and

evaluation steps. Technologies such as OpenCV, MediaPipe and

deep learning algorithms are used, translating hand movements

into directional commands in real time. In addition, the system

integrates a client-server architecture based on Node.js that

supports multiple users, enabling an immersive gaming experience

on PC and mobile platforms. The results highlight the accuracy of

the system and its potential to improve accessibility, especially for

users with motor disabilities by using their hands or head

movements to control the directional keys. Concluding that the

control interface for multi-user video games provides the

necessary support to gamers in performing the task, promoting

accessibility in the entertainment environment.

Keywords—Control interface; video games; artificial vision;

gesture-based interface; directional commands; human-computer

interaction; deep learning algorithms; accessibility; real-time;

pattern recognition

I. INTRODUCTION

Gesture interaction has revolutionised the gaming
experience [13], eliminating the dependence on traditional
keyboards and controls. This paper presents an interface that
allows video games [36] to be controlled by hand movements,
using computer vision [3] and real-time pattern recognition. The
solution aims to improve immersion and accessibility, especially
for users with motor disabilities, promoting their integration in
recreational and therapeutic activities.

The interface employs gesture detection algorithms and a
robust client-server system, compatible with PC and mobile
devices, providing an inclusive experience. As a result, a gesture
recognition system was designed and developed to replace the
directional keys, allowing precise and fluid control in real time.
In addition, it supports multiple users with individual network
configurations and in-game character selection. Developed in
Unity, the game integrates traditional and gesture controls,
adapting to both PC and mobile.

It is concluded that this interface is viable, offering an
accessible alternative for controlling video games through hand
gestures or head movements, broadening access to
entertainment and promoting inclusion.

II. THEORETICAL FRAMEWORK

A. Gesture-based Control Interfaces and Games

Gesture-based control interfaces have revolutionised the
way users interact with devices and computer systems [9],
opening the door to immersive and intuitive experiences. In the
context of video games, these interfaces allow the user to control
game elements through body gestures, specifically hand
movements. The advantages of this approach include greater
immersion and accessibility [23], as it allows play without the
need for traditional controls such as keyboards or controllers. To
achieve this, advanced gesture recognition [1] and computer
vision technologies are used to interpret the user's movements
and translate them into real-time actions.

B. Artificial Vision and Gesture Recognition

Artificial vision is a discipline that allows machines to
process and interpret the visual world. This technology uses
image processing algorithms and automatic learning techniques
to identify objects, gestures and patterns in real time [10] [15].
In hand gesture recognition, a sub-area of machine vision, it
allows the detection and analysis of specific hand movements to
control interactive applications [12]. In the context of this
project, libraries such as OpenCV and MediaPipe are
fundamental to capture images of hands, identify key points
(such as articulations and fingers) and translate this data into
control actions for games based on directional keys.

C. Real Time Pattern Recognition

Real-time pattern recognition is key to achieving smooth [2]
[11] and accurate interaction in gesture-based interfaces. Real-
time recognition systems allow capturing and processing images
in a fraction of a second, detecting movements instantaneously.
The ability to process gestures in real time is especially relevant
for video game applications [25], where any delay can affect the
user experience [6] and decrease the effectiveness of the control.
To implement this functionality, fast image processing
techniques and movement detection and analysis algorithms,
optimised to operate on common devices such as webcams, are
employed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

50 | P a g e

www.ijacsa.thesai.org

D. Image Processing Technologies and Benchmark points

Models

Reference point models are essential to accurately recognise
the position of fingers and hands. These models identify key
points on the hands and, using deep learning techniques, detect
specific gestures, such as left, right, up or down movements.
These points help determine the orientation and height of the
hands, which are essential for translating gestures into
commands in the videogame. The precision of these models
depends on the quality of the camera and the capacity of the
algorithms to quickly process the images.

E. Gesture Control of Video Games: Benefits and Challenges

Gesture control of video games [7] has significant benefits,
including greater immersion and accessibility for users with
motor limitations. It also allows for a more natural and direct
gaming experience, eliminating the need for additional control
devices. However, there are also challenges, such as the need for
recognition algorithms that work accurately in varied
environments and lighting conditions. Also, minimising the
delay [18] between capturing the gesture and executing the
command in the game is critical to ensure a satisfactory
experience.

F. Implementation of the Control Interface

The implementation of hand gesture control interface for
video games [7] based on directional keys requires effective
integration [19] of various software and hardware elements. In
this project, a combination of Python libraries is used for the
creation of the graphical user interface [17], camera control and
gesture detection. Tkinter is used to develop the user interface,
allowing custom settings for sensitivity and direction control. In
addition, OpenCV and MediaPipe are employed for processing
the captured images and detecting gestures in real time, as
shown in Fig. 1 and Fig. 2.

Fig. 1. Control interface.

Fig. 2. Control of racing game in unity.

G. Server Implementation

The development of an efficient server is essential to
guarantee real-time communication between players and to
maintain synchronisation during the multiplayer gaming
experience, see Fig. 3. The server implementation was carried
out using modern technologies such as Node.js, which offers a
lightweight and scalable environment, together with libraries
such as Express for HTTP route management and Socket.io for
real-time communication [20].

Fig. 3. Multi-user racing game in Unity.

III. RELATED WORK

The use of computer vision and hand gesture recognition
techniques in video games has been an active area of research.
The research in [31] presented GestureFlow, a novel hand
gesture control system for interactive games that leverages
advanced tools such as OpenCV, Mediapipe and Numpy. The
study in [32] presented a methodology for gesture-based
contactless operations, combining his algorithm with Mediapipe
and OpenCV.

Various studies have focused on the development of game
applications based on hand gestures. Thus, the study in [33]
employed object detection and an artificial neural network for
hand gesture recognition in games, using Python and OpenCV;
also the study in [34] developed a game that interacts with users
through hand gesture movements, using Mediapipe and
Pygame; and the study in [35] explored the use of Mediapipe for
real-time online games, creating a gesture recognition-based
control system using OpenCV and Python.

The integration of hand gestures and voice commands for
immersive gaming has also been studied. In study [36] they
developed a game control system based on hand gesture
recognition using Mediapipe, OpenCV and Python; also study
in [37] reviewed the opportunities of using hand gestures to play
video games, highlighting the use of Mediapipe and OpenCV
for hand tracking and gesture recognition.

In addition, some studies have explored the application of
gesture recognition in rehabilitation and quality of life
improvement. Thus, the study in [38] presented a human body
gesture-controlled gaming application using OpenCV and
Mediapipe; on the other hand, the study in [39] developed a
camera-based real-time motion detection gaming tool for
cervical rehabilitation, employing a convolutional neural
network for hand gesture recognition; also the study [40] used
OpenCV functions and Mediapipe modelling technology for
real-time human movement recognition and interaction in
virtual fitness applications.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

51 | P a g e

www.ijacsa.thesai.org

IV. METHODOLOGY

The methodology used in this work is based on the Cross-
Industry Standard Process for Data Mining (CRISP-DM)
development model, adapted for the context of gesture
recognition and real-time video game control; it includes the
following phases:

Phase 1. Understanding the Business and Defining the
Objective

The principal objective of the project is to design and
implement a control interface for video games that allows users
to control the game using hand gestures or head movements, as
an alternative to traditional directional keys. It is not only to
improve immersion in the game, but also to promote
accessibility for players with motor disabilities.

Phase 2. Data Collection and Preparation

Advanced artificial vision technologies, such as OpenCV
and MediaPipe, are used to capture real-time images of the user's
hand or head gestures via a webcam. This data is then processed
and labelled for gesture detection. The model captures key
points, such as finger articulations, and this data is translated into
commands for directional key control.

Phase 3. Development of the Gesture Recognition Model

Deep learning algorithms are developed and trained to detect
and recognise gestures. Key point reference models are
implemented to map hand movements and translate them into
directions. The algorithms were optimised to achieve a high
degree of accuracy and low latency in real time.

Phase 4. Control Interface System Development and
Implementation

Gesture detection is integrated with a user interface
developed using Tkinter to configure the sensitivity and controls
of the system; the interface also allows for actors selection and
network settings. A client-server system is implemented using
Node.js and Socket.io to ensure real-time communication
between users, and enable a fluently gaming experience.

Phase 5. Integration and Evaluation of the System in
Multiplayer Games

The system is integrated into a multiplayer video game
developed in Unity, which supports the interaction of multiple
players simultaneously. The gesture-based control is evaluated
in terms of accuracy, latency and user experience compared to
traditional control. Tests are conducted in different lighting
conditions and types of movement to ensure the robustness of
the system.

Phase 6. Optimisation and Results

Once the basic system is implemented, the algorithms are
optimised to improve accuracy and minimise latency. The
results of the system are analysed using metrics such as response
time and gesture accuracy, and compared to traditional control
to determine the effectiveness of the interface in multiplayer
games.

This approach ensures a robust solution that not only
responds to user requirements, but also contributes to achieving
accessibility and usability across PC and mobile platforms.

A. Explanation of Control Interface Code

1) Interface configuration and resources: The graphical

user interface (GUI) is created using Python's Tkinter for

interface creation; the necessary libraries are imported to

manage the interface, threads of execution, running local files

and external URLs for Unity-based games [8].

2) Camera and game control: The functions implemented

as start_camera_thread and start_camera_tk_thread are in

charge of starting the camera capture using different control

methods, such as run_virtual_steering and run_virtual_tk, which

are executed in separate threads so as not to block the principal

interface. Both functions take as arguments the control methods

for the directional keys (such as hand or head) defined in

get_control_methods; the stop_camera_thread and

stop_camera_tk_thread functions stop these threads of

execution using stop events (stop_event and stop_event_tk).

3) Interface design: For the principal interface, multiple

frames are created representing sections such as the camera

control and the Unity game, configured by grid to be arranged

according to the selected layout.

The functions show_columns, show_quadrants and
show_rows allow different GUI layouts to be changed according
to user preference, see Fig. 4 make_draggable is used to make
each frame draggable, offering flexibility in the layout of the
interface.

Fig. 4. Design of the interface control.

4) Personalisation of configurations: The configurations

frame includes sensitivity and distance threshold setting

controls, implemented as sliders (ttk.Scale) that allow the user

to customise the threshold and sensitivity of the gesture

detection system. Additionally, the user can choose between

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

52 | P a g e

www.ijacsa.thesai.org

direction controls with different methods (hand or head

gestures), defined in the settings_frame Radiobuttons.

5) Menu bar: The menu bar provides easy access to camera

and configuration options. The Checkbuttons allow you to

activate or deactivate the main sections of the interface, such as

camera control or the Unity game, the views submenu offers

different settings for the layout of the frames (show_columns,

show_quadrants and show_rows), shown in Fig. 5.

Fig. 5. Menu options.

6) Execution of the main window: The main window is

started with root.mainloop(), a loop that keeps the interface

active until the user decides to close it, by calling the on_closing

function, which stops all active camera threads.

7) Camera processing and visualisation with OpenCV:

With and Without Graphical User Interface (GUI)

The run_virtual_steering function starts initialising the
modules needed for gesture control [28].

 Image processing without GUI

The mediapipe libraries are used for recognition of hands
[16] [26] and face, and OpenCV's cv2 is used for processing the
captured image. The webcam is initialised with
cv2.VideoCapture(0), capturing the video in real time; a virtual
keyboard controller is configured using
pynput.keyboard.Controller, used to send simulated commands
to the game in Unity, see Fig. 6.

Fig. 6. Camera processing without GUI.

 Image processing with GUI

The real-time processed video is integrated into a graphical
interface using Tkinter. A subwindow displaying the processed
frames in a continuously updated Label component is shown in
Fig. 7.

Fig. 7. Camera processing without GUI.

8) Image processing and hand detection: The software

processes each camera frame in real time [24] [29], the captured

image is flipped horizontally with cv2.flip for a more intuitive

orientation, then converted to RGB before being passed to the

mediapipe model to process the hand_results and face_results

[22] [27]. These data allow the position and movement of the

hands and face to be determined.

9) Direction control based on vertical position of the hands:

Are used the reference points obtained to detect the position of

the hands on the Y-axis, allowing to differentiate whether the

right hand is more up than the left hand or vice versa. When it

detects that the right hand is more raised, the program simulates

a movement to the right by pressing the Key.right key. Similarly,

if the left hand is higher, Key.left is pressed; shown in Fig. 8.

Fig. 8. Ownership of frames.

10) Face distance based control: The program calculates the

distance of the face from the area of the face detection box; it is

used to detect approaching or moving away movements,

activating the Key.up key to accelerate as the face approaches

and Key.down to slow down as it moves away. This control

allows to adapt the speed of the vehicle within the game,

simulating acceleration and deceleration depending on the

proximity of the face, as shown in Fig. 9.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

53 | P a g e

www.ijacsa.thesai.org

Fig. 9. Head movement conditionals to accelerate or decelerate the vehicle.

11) Additional hand gesture control: The program also

includes an additional control [14] based on specific hand

gestures [3]. If the index finger is fully extended downwards, it

is interpreted as an acceleration gesture, activating the Key.up

key, when the index finger is raised, it is assumed as a braking

gesture, activating Key.down. This logic, according to the initial

configuration in the interface, allows using both face movements

and hand gestures [3] [30] to provide a more intuitive control

experience [13].

12) Error handling and camera shutdown: If the OpenCV

view window is closed or ESC is pressed, the program stops the

image processing loop [5]. The close_camera function ensures

that all OpenCV camera and window resources are properly

released.

13) Initialisation of interface styles: Using the apply_styles

function you can customise the visual styles of widgets; thus: a)

the TFrame style sets a light blue background, a 5 pixel border

and a ridge relief that gives depth to the frame, b) the TLabel

style sets a 12 point Helvetica font with the same background,

the text uses a darker blue to stand out against the background,

c) the TButton style uses a 10 point Helvetica font in bold, with

a dark blue background and white text to ensure contrast, d) with

style map, the button is adjusted so that, on hover, the

background changes to an even darker blue, while keeping the

text white to ensure legibility.

14) Initialisation of the camera module with tkinter: OpenCV

libraries are imported for video handling, MediaPipe for gesture

and face detection, and pynput for keyboard input simulation.

Global variables, camera_running (check if camera is active),

last_action (store the last action performed) and press_duration

(measure how long a key is pressed) are initialized to ensure

continuous tracking of the system state during execution.

15) Video capture and processing: The video_stream

function uses OpenCV to capture video in real time. Each frame

is processed with MediaPipe to detect hand gestures and faces.

The key points of the hands are used to calculate their position

in space, allowing to determine actions such as moving left or

right. In addition, the points and connections of the hands are

visualized in the video to facilitate the interpretation of the

system.

16) Hand gesture detection: Within video_stream, hand

gestures are analyzed using the positions of specific points. This

analysis includes logic to avoid simultaneous keystrokes and

ensure smooth transitions between actions.

17) Face distance based control: The face distance is

implemented by comparing the relative size of the detected

bounding box around the face [21]. If it increases or decreases

beyond a configured threshold, the “up” or “down” keys are

triggered, simulating actions such as accelerating or braking.

B. Explanation of the Server Code

1) Server initialisation and dependency configuration: The

express, http, and socket.io libraries are used to create a server

in Node.js; an HTTP server is configured with http.createServer

and its functionality is extended with socket.io to handle real-

time connections.

2) HTTP path to check server status: The path app.get('/')

returns a simple message to confirm that the server is running.

The /getPlayers path uses a JSON format returning information

about the connected players.

3) HTTP path to check server status: The

io.on('connection', callback) function handles each client

connection. Each connected player is assigned a unique

identifier (PlayerID) and is stored in the players object.

4) Player synchronisation and start of the race: When the

number of connected players reaches the maximum allowed

(maxPlayers), the server sends a startRace event to all clients,

indicating the start of the game.

5) Real time position update: The updatePosition event

receives data from the clients, such as position and rotation in

the X, Y and Z axes; it is updated in real time in the players

object; the server emits the updated list of players through

io.emit('updatePlayers').

6) Handling disconnections: When a player disconnects, the

server deletes his information from the players object and issues

an event to update the list of players in the clients.

7) Server and listening port configuration: The server starts

on port 3020 with address 0.0.0.0.0, which allows accepting

connections from any IP address, ideal for multiplayer

environments.

C. Explanation of the Multi-User Game Code in Unity

1) Automatic object rotation (AutoRotation.cs): The

AutoRotation script implements a simple functionality to make

an object in Unity rotate continuously around its Y-axis; it is

controlled by a public variable rotationSpeed.

2) Dynamic player tracking (FollowPlayer.cs): The

FollowPlayer script implements functionality for a camera to

follow the player in Unity, dynamically adjusting to the player's

position and rotation; it includes support for virtual reality (VR)

scenarios, see Fig. 10.

Fig. 10. Player camera configuration.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

54 | P a g e

www.ijacsa.thesai.org

3) Interactive In-game console (InGameConsole.cs): The

InGameConsole script implements an in-game console in Unity,

useful for real-time debugging; it allows to display system and

user messages in a panel, see Fig. 11.

Fig. 11. View of the start of the game.

4) Panel management and connection in the main menu

(Panel.cs): The Panel script manages user interaction with a

main menu, providing options to configure a network

connection, select colors for a car and manage other related

panels.

5) Player behaviour (player.cs): The player.cs script

controls the player's behavior in the game, including movement,

interaction with the environment, updating the user interface and

communication with the server; it is essential to manage the

game logic.

6) Player movement management (player.cs): The Update

method is called once per frame and handles the main logic of

the player's movement. Depending on the platform and the input

mode (keyboard or gestures), the input values for horizontal and

vertical movement are obtained.

7) Straighten the overturned car (player.cs): The RightCar

method is responsible for straightening the player's car by

applying an upward force and continuing the game.

8) User interface update (player.cs): The UpdateUI method

updates the points and lives texts in the user interface; it is called

whenever the player's points or lives change.

9) Collision management (player.cs): The

OnCollisionEnter method is called when the player's car collides

with another object, if it has the ObjectCollision tag, the player's

points are reduced, if the points reach zero, a life is reduced and

the points are reset. If the lives reach zero, a “You lost” message

is displayed.

10) Restart car position (player.cs): The ResetCarPosition

method resets the position and rotation of the player's car to its

initial state. This is used when the car falls off the stage or when

resetting the player's points and lives.

11) Management and connection to the server

(SocketManager.cs): The SocketManager.cs script in Unity

handles the connection and communication with a server via

WebSockets; it is crucial for the multiplayer functionality of the

game, allowing data synchronization between players and the

server.

12) Connection to server (SocketManager.cs): The

ConnectToServer method establishes the connection to the

server using the IP address and the color of the car. It configures

connection, disconnection and error, and defines handlers for

various game events.

13) Player ID assignment (SocketManager.cs): The

OnAssignPlayerID method handles the player ID assignment

event; it gets the ID from the server's response and stores it in a

local variable.

14) Initialisation and player update (SocketManager.cs):

The OnInitializePlayers method creates or updates players at the

start of the game, and OnUpdatePlayers updates player positions

and rotations during the game.

15) Position and rotation sending (SocketManager.cs): The

UpdatePosition method sends the player's position and rotation

to the server. It converts the data to a JSON object and outputs

it to the server via the socket.

16) Point and life adjustment in the interface (size,cs): The

script tamano.cs in Unity adjusts the position and size of dot and

life texts in the user interface.

D. Explanation of the Multi-User Game Code in Unity

The main figures of the video game scenario are shown
below.

 Principal Camera, shown in Fig. 12.

Fig. 12. Game camera position configuration.

 Vehicle models, we organized the designs of the vehicles
to compete in the prefabs folder; this is shown in Fig. 13.

Fig. 13. 3D model of vehicles.

 The design of the race track, as would be the scenario, is
shown in Fig. 14.

Fig. 14. Running track along the terrain.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

55 | P a g e

www.ijacsa.thesai.org

 The configuration of the race track is shown in Fig. 15.

Fig. 15. Race track configuration.

 Principal player design, as shown in Fig. 16.

Fig. 16. Local player configuration.

 Principal menu configuration, three sub-panels are
organized within a canvas where the user can configure
the ip and connection port, as well as choose the color of
the vehicle. If the entered data is validated, the system
displays a confirmation message to start the multiuser
racing game, as shown in Fig. 17.

Fig. 17. Components view in unity.

 The principal menu of the game is displayed in the
interface shown in Fig. 18.

Fig. 18. Main menu in the game.

 Eleccion of the player's cart, the options referred to the
colours, is shown in Fig. 19.

Fig. 19. Selection of the player's car.

 Successful connection view of the player, ready to
complete the players, is shown in Fig. 20.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

56 | P a g e

www.ijacsa.thesai.org

Fig. 20. View of successful player connection.

V. RESULTS AND DISCUSSION

A robust client-server system was built using Node.js,
capable of supporting a configurable number of players. Each
client, developed in Unity, incorporates a script called
SocketManager that facilitates bidirectional communication
with the server. This allows to synchronise the start of the game
when all players have connected and configured.

In the client, a start panel was designed that offers each
player the possibility of configuring the network parameters,
selecting a character and waiting for the minimum number of
participants configured in the server to be reached before
starting the game.

The developed videogame was adapted to run on both PC
and mobile devices Tablet, Smartphone, see Fig. 21; providing
a multiplatform experience. In addition, two control options
were incorporated for players using PCs:

 Traditional Control: Use of directional keys to move left,
right, forward or backward.

 Gesture Control Interface: A system that uses the
device's camera to detect hand and face gestures, which
are mapped to the game's directional key actions.

Fig. 21. Video game running on Multiplatform, PC, Tablet, smartphone.

In the following figures the execution of the multiplatform
videogame is shown, in Fig. 22 the cars in full race can be seen
on two platforms, in Fig. 23 the control of the red car with hand
gestures, in Fig. 24 the car at a different speed leaves the circuit,
in Fig. 25 with hand gestures the car returns to the circuit and
continues the race.

Fig. 22. Cars in full race on two platforms, PC and tablet.

Fig. 23. Controlling the red car with hand gestures.

Fig. 24. Car at a different speed wanders off track.

Fig. 25. With a hands gesture the car is steered back to the circuit and the race

continues.

The system executes key presses using two types of control:
hand gestures and facial movements, both detected by
MediaPipe [14]. For hand control, the relative position of the
hands is evaluated: if the right hand is higher than the left hand,
the system simulates the action of pressing the right arrow key;
if the left hand is higher, it simulates the action of pressing the
left arrow key. The green node, which marks the centre between
the two hands, indicates that both hands are centred. In addition,
the facial movement adjusts the distance control, triggering

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

57 | P a g e

www.ijacsa.thesai.org

zoom in or zoom out actions, depending on the position of the
face in front of the camera. For acceleration and deceleration
control [31], the system uses the position of the index finger
relative to the wrist: if the index finger is higher than the wrist,
it simulates the action of pressing the ‘up’ key to accelerate; if it
is lower, it simulates the action of pressing the ‘down’ key to
decelerate, thus allowing the speed to be dynamically adjusted
by these movements.

As seen in Fig. 26, Fig. 27, Fig. 28, the system provides
visual messages on screen, such as ‘Move left (Right hand
higher)’, which orients the user on the movements required to
interact as discussed by [11] with the virtual steering wheel for
the game developed in Unity. This information is useful, that in
some cases the message shows unrecognisable (‘’higher‘’)
characters, thus improving the clarity of the instructions.

Fig. 26. Hand movement to the left (a).

Fig. 27. Hand movement to the left (b).

Fig. 28. Hand movement to the left (c).

The system was able to detect the hand movements [20] in
real time [25] and quickly reflect the changes in position by the
variations in the positions of the points between the two images,
where the hand is seen to rise and change orientation, resulting
in an immediate adjustment in the structure detected by the
system.

In the case of the multi-user server developed with Node, the
tests showed that for a range of 2 to 4 players connected from
PC or mobile it is feasible to have a competition with few
moments of instability in the connection, which suggests that the
optimisation of the secondary threads of each client should be
deepened so that the system supports a greater number of users.
Table I shows the technical aspects of the multi-user server.

TABLE I. TECHNICAL ASPECTS OF THE MULTI-USER SERVER

Aspect
Technical

Details
Benefits Limitations

Performance

Metrics

Server

Hardware

Lenovo

with Core

i5/i7

processor,
12GB

RAM,

integrated
card or

NVIDIA

graphics.

Good

performanc
e on

standard

test
hardware.

Performance

may not be

representativ
e for lower

hardware.

50-60% CPU
usage during

4-player

testing.

Server

Operating
System

Windows

11 in both

cases
(Core

i5/i7).

Compatibili
ty with

modern

systems.

Linux servers
may offer

better

performance.

Response

time: ~80-120

ms under
ideal

conditions.

Player
Devices

Android
devices

(version

12 or
higher)

and PCs

(Linux or
Windows).

Stable
connections

on Android

12 or higher
devices.

Variability in
connection

quality

depending on
device.

Connection
success rate:

98% on

mobile
devices.

Control
interface

(PC)

Python

control
interface

for PC

connection
.

Efficient

connection
from Linux

or

Windows
PCs.

Interface

could be
more

complex for

non-technical
users.

Synchronisati

on time: 100-
150 ms

Gesture

recogniti

on

Gesture

recognitio
n

performed

with
specific

cameras

and
algorithms

.

High
accuracy in

Gesture

Recognition
with

suitable

lighting
conditions.

Success rate

decreases

with poor
lighting or

fast

movement.

Success rate:
85-90% with

ideal

conditions.

Failure rate:

15% in low
light.

Latency

and
Response

Tests
conducted

in

controlled
environme

nt with

low
latency

local

network.

Low

latency

under
controlled

conditions.

Latency
increases

with more

players
connected

simultaneousl

y.

Average

latency: ~120
ms in local

network.

Average

latency with 4

players: ~200
ms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

58 | P a g e

www.ijacsa.thesai.org

Finally, [7] uses gestural interaction techniques to control a
video, as from [4] in hand gesture recognition, in the present
work the developed gesture control interface has proved to be an
inclusive tool, allowing players with disabilities to use their
hands or head movements to control the directional keys in any
multiplayer game in Unity. This solution facilitates the
participation of all players, regardless of their physical abilities,
promoting accessibility in digital entertainment. A sample of the
code worked on the system can be seen in Fig. 29.

Fig. 29. Face detection.

VI. CONCLUSIONS

A hand gesture recognition system based on artificial vision
[40] and real-time pattern detection was designed and
implemented, achieving an innovative alternative to the use of
directional keys in video games. This approach improves player
immersion and makes the gaming experience more accessible,
especially for users with motor disabilities.

The results demonstrated a high accuracy and speed of
response to gestures ensuring a smooth and ideal interaction.
Furthermore, customisation options were implemented in the
interface, such as sensitivity, distance threshold and widget
layout, contributing to its usability and versatility.

An efficient client-server architecture was developed that
supports multiple simultaneous users, ensuring real-time
communication and offering flexibility for individual network
configurations and character selection within the game. The
design uses threads and resources such as the camera
responsibly, improving stability and minimising conflicts during
interface use, contributing to increased performance and
synchronisation.

The video game developed in Unity was adapted to run on
PC platforms and mobile devices, extending its reach and
allowing players to enjoy a consistent and immersive experience
regardless of the device used.

The integration of traditional controls together with the
gesture-based interface ensures greater inclusion of different
play styles and user preferences.

In the comparative evaluation of the gesture control system
against traditional methods, advantages in innovation and
immersive experience were evident. While traditional controls
maintain an advantage in accuracy and reliability under less
optimal technical conditions, the gesture interface proved to be
an intuitive and accessible solution, capable of improving user
satisfaction by adapting to their preferences and needs.

FUTURE WORKS

As a result of the present work, a prospective vision for
future work can be gained:

Optimisation of gesture recognition algorithms in variable
lighting environments: It is essential to improve the accuracy of
gesture recognition systems in changing lighting conditions,
ensuring a consistent and reliable user experience.

Application of self-supervised learning in human-computer
interaction systems: Implementing self-supervised learning
techniques can improve the adaptability and efficiency of
gesture interfaces, allowing systems to learn and adjust to
individual user preferences and behaviours.

Integration of gesture recognition into augmented and virtual
reality interfaces: Combining gesture recognition technologies
with augmented and virtual reality environments can offer more
immersive and natural gaming experiences, improving user
interaction with digital content.

Development of deep learning models for the identification
of complex gestures: The use of deep neural networks can
facilitate the detection and classification of more sophisticated
gestures, expanding the repertoire of available commands and
improving interaction in multiplayer games.

Implementing gesture recognition using radar technology for
mobile applications: The use of radar sensors in mobile devices
can enable accurate gesture recognition without relying on
cameras, offering an efficient and less invasive alternative for
video game control.

ACKNOWLEDGMENT

Thanks to the Universidad Nacional de San Agustín de
Arequipa for the support it provides for the development and
implementation of proposals that benefit the continuous
improvement of student performance through proposals that
help to solve society's problems.

REFERENCES

[1] M. Kassim, Y. San and R. Norlis, "Hand Gesture Recognition System
using Image Processing," 2021 IEEE 17th International Colloquium on
Signal Processing & Its Applications (CSPA), Selangor, Malaysia, 2021,
pp. 57-62, doi: 10.1109/CSPA52141.2021.9377292.

[2] T. Häckel, C. Eppner, and R. Stolkin, "Self-Supervised Learning of Hand-
Eye Coordination for Robotic Grasping," IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 2648-2655, April 2021, doi:
10.1109/LRA.2021.3055843.

[3] L. H. Chen, J. H. Wang, and M. T. Hsieh, "Real-Time Hand Gesture
Recognition for Human-Computer Interaction," IEEE Transactions on
Multimedia, vol. 23, pp. 226-235, Jan. 2021, doi:
10.1109/TMM.2020.2994535.

[4] C. Li and M. Fu, "Real-Time Hand Gesture Detection and Recognition
Based on Deep Learning," 2020 IEEE International Conference on Visual

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

59 | P a g e

www.ijacsa.thesai.org

Communications and Image Processing (VCIP), Macau, China, 2020, pp.
1-4, doi: 10.1109/VCIP49819.2020.9301843.

[5] H. R. Lee, J. Park, and Y.-J. Suh, "Improving Classification Accuracy of
Hand Gesture Recognition Based on 60 GHz FMCW Radar with Deep
Learning Domain Adaptation," Electronics, vol. 9, no. 12, p. 2140, Dec.
2020. DOI: 10.3390/electronics9122140.

[6] B. P. S. Ahluwalia y R. Wason, "Gestural Interface Interaction: A
Methodical Review," International Journal of Computer Applications,
vol. 60, no. 1, pp. 21, Dec. 2012.

[7] C. Peng, L. Cao, J. T. Hansberger, and V. A. Shanthakumar, "Hand
gesture controls for image categorization in immersive virtual
environments," 2017 IEEE Virtual Reality (VR), Los Angeles, CA, USA,
2017, pp. 18-22, doi: 10.1109/VR.2017.7892237.

[8] F. W. Simor, M. R. Brum, J. D. E. Schmidt, R. Rieder, and A. C. B. De
Marchi, "Usability evaluation methods for gesture-based games: A
systematic review," JMIR Serious Games, vol. 4, no. 2, p. e17, 2016, doi:
10.2196/games.5860.

[9] L. Chen, F. Wang, H. Deng and K. Ji, "A Survey on Hand Gesture
Recognition," 2013 International Conference on Computer Sciences and
Applications, Wuhan, China, 2013, pp. 313-316, doi:
10.1109/CSA.2013.79. keywords: {Gesture
recognition;Computers;Thumb;Cameras;Human computer
interaction;Robots;Human-Computer Interaction (HCI);Hand Gesture
Recognition;Kinect},

[10] A. S. Mohamed, N. F. Hassan, and A. S. Jamil, "Real-Time Hand Gesture
Recognition: A Comprehensive Review of Techniques, Applications, and
Challenges," Cybern. Inf. Technol., vol. 24, no. 3, pp. 163–181, Sep.
2024, doi: 10.2478/cait-2024-0031

[11] B. J. Jo, S.-K. Kim, and S. Kim, "Enhancing Virtual and Augmented
Reality Interactions with a MediaPipe-Based Hand Gesture Recognition
User Interface," Ingénierie des Systèmes d'Information, vol. 28, no. 3, pp.
311–318, 2023, doi: 10.18280/isi.280311.

[12] C. Li, Q. Wu, and S. Gao, "Deep learning models for real-time gesture
recognition in interactive applications," Pattern Recognition, vol. 131, pp.
108–114, 2023

[13] J. Pirker, M. Pojer, A. Holzinger, and C. Gütl, "Gesture-Based
Interactions in Video Games with the Leap Motion Controller," in
Human-Computer Interaction. User Interface Design, Development and
Multimodality (HCI 2017), Lecture Notes in Computer Science, vol.
10271, Springer, pp. 620–633, May 2017.

[14] M. L. Amit, A. C. Fajardo and R. P. Medina, "Recognition of Real-Time
Hand Gestures using Mediapipe Holistic Model and LSTM with MLP
Architecture," 2022 IEEE 10th Conference on Systems, Process &
Control (ICSPC), Malacca, Malaysia, 2022, pp. 292-295, doi:
10.1109/ICSPC55597.2022.10001800.

[15] Y. Zhu and B. Yuan, "Real-time hand gesture recognition with Kinect for
playing racing video games," 2014 International Joint Conference on
Neural Networks (IJCNN), Beijing, China, 2014, pp. 3240-3246, doi:
10.1109/IJCNN.2014.6889481.

[16] J. Xu, H. Wang, J. Zhang, and L. Cai, "Robust Hand Gesture Recognition
Based on RGB-D Data for Natural Human–Computer Interaction," IEEE
Access, vol. 10, pp. 46123-46133, 2022, doi:
10.1109/ACCESS.2022.3176717.

[17] S. S. Rautaray and A. Agrawal, "Real-Time Hand Gesture Recognition
System for Dynamic Applications," International Journal of UbiComp
(IJU), vol. 3, no. 1, pp. 21–31, Jan. 2012. doi: 10.5121/iju.2012.3103.

[18] A. S. Khalaf, S. A. Alharthi, I. Dolgov, and P. O. Toups Dugas, "A
Comparative Study of Hand Gesture Recognition Devices in the Context
of Game Design," Proceedings of the 2019 ACM International
Conference on Interactive Surfaces and Spaces, Daejeon, Republic of
Korea, 2019, pp. 397-402, doi: 10.1145/3343055.3360758.

[19] J. Liu and M. Kavakli, "A survey of speech-hand gesture recognition for
the development of multimodal interfaces in computer games," 2010
IEEE International Conference on Multimedia and Expo, Singapore,
2010, pp. 1564-1569, doi: 10.1109/ICME.2010.5583252.

[20] J. Warchocki, M. Vlasenko, and Y. B. Eisma, "GRLib: An Open-Source
Hand Gesture Detection and Recognition Python Library," arXiv preprint
arXiv:2310.12476, 2023, [Online]. Available:
https://arxiv.org/abs/2310.12476.

[21] Y. Li, J. Huang, F. Tian, H.-A. Wang, and G.-Z. Dai, "Gesture interaction
in virtual reality," Virtual Reality & Intelligent Hardware, vol. 1, no. 1,
pp. 84-112, 2019, doi: 10.3724/SP.J.2096-5796.2018.0006.

[22] K. Kondo, G. Mizuno, and Y. Nakamura, "Feedback Control Model of a
Gesture-Based Pointing Interface for a Large Display," IEICE
Transactions on Information and Systems, vol. E101-D, no. 7, pp. 1894-
1905, Jul. 2018, doi: 10.1587/transinf.2017EDP7298.

[23] S. Spanogianopoulos, K. Sirlantzis, M. Mentzelopoulos and A.
Protopsaltis, "Human computer interaction using gestures for mobile
devices and serious games: A review," 2014 International Conference on
Interactive Mobile Communication Technologies and Learning
(IMCL2014), Thessaloniki, Greece, 2014, pp. 310-314, doi:
10.1109/IMCTL.2014.7011154.

[24] D. Avola, L. Cinque, A. Fagioli, G. L. Foresti, A. Fragomeni, and D.
Pannone, "3D hand pose and shape estimation from RGB images for
keypoint-based hand gesture recognition," Pattern Recognition, vol. 129,
p. 108762, 2022, doi: 10.1016/j.patcog.2022.108762.

[25] O. Köpüklü, A. Gunduz, N. Kose and G. Rigoll, "Real-time Hand Gesture
Detection and Classification Using Convolutional Neural Networks,"
2019 14th IEEE International Conference on Automatic Face & Gesture
Recognition (FG 2019), Lille, France, 2019, pp. 1-8, doi:
10.1109/FG.2019.8756576.

[26] Y. Yaseen, O.-J. Kwon, J. Kim, F. Ullah, J. Lee, and S. Jamil,
"Comparative Analysis of Hand Gesture Datasets for Drone Control
Using Mediapipe," SSRN Electronic Journal, pp. 1–24, Jun. 2024. DOI:
10.2139/ssrn.12345678.

[27] J.-O. Kim, M. Kim, and K.-H. Yoo, "Real-Time Hand Gesture-Based
Interaction with Objects in 3D Virtual Environments," in Proceedings of
the Digital Informatics and Convergence Symposium, Chungbuk
National University, South Korea, pp. 1–7, 2024.

[28] D. Bachmann, F. Weichert, and G. Rinkenauer, "Review of Three-
Dimensional Human-Computer Interaction with Focus on the Leap
Motion Controller," Sensors, vol. 18, no. 7, p. 2194, Jul. 2018. DOI:
10.3390/s18072194.

[29] S. S. Rautaray and A. Agrawal, "Interaction with virtual game through
hand gesture recognition," 2011 International Conference on Multimedia,
Signal Processing and Communication Technologies, Aligarh, India,
2011, pp. 244-247, doi: 10.1109/MSPCT.2011.6150485.

[30] A. Safa et al., "Improving the Accuracy of Spiking Neural Networks for
Radar Gesture Recognition Through Preprocessing," in IEEE
Transactions on Neural Networks and Learning Systems, vol. 34, no. 6,
pp. 2869-2881, June 2023, doi: 10.1109/TNNLS.2021.3109958.

[31] S. D. Bharatula, U. R. Vadhegar and M. Maiti, "GestureFlow: A Novel
Hand Gesture Control System for Interactive Gaming," 2024 15th
International Conference on Computing Communication and Networking
Technologies (ICCCNT), Kamand, India, 2024, pp. 1-6, doi:
10.1109/ICCCNT61001.2024.10724912.

[32] A. Gupta, N. Chawla, R. Jain, N. Thakur, and A. Devi, "Gesture-Based
Touchless Operations: Leveraging MediaPipe and OpenCV," NEU
Journal for Artificial Intelligence and Internet of Things, vol. 1, no. 2, pp.
1-10, Oct. 2023.

[33] P. S, G. Deena, H. D, A. K B, and H. S, “Gaming using different hand
gestures using artificial neural network”, EAI Endorsed Trans IoT, vol.
10, Feb. 2024.

[34] M. R. Islam, R. Rahman, A. Ahmed, and R. Jany, "NFS: A Hand Gesture
Recognition Based Game Using MediaPipe and PyGame," Islamic
University of Technology, Gazipur, Dhaka, Bangladesh, 2022.

[35] U. Patel, S. Rupani, V. Saini and X. Tan, "Gesture Recognition Using
MediaPipe for Online Realtime Gameplay," 2022 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT), Niagara Falls, ON, Canada, 2022, pp. 223-229,
doi: 10.1109/WI-IAT55865.2022.00039.

[36] A. Sharma, Simran, L. Verma, H. Kaur, A. Modgil and A. Soni, "Hand
Gesture Recognition Gaming Control System: Harnessing Hand Gestures
and Voice Commands for Immersive Gameplay," 2024 International
Conference on Emerging Innovations and Advanced Computing
(INNOCOMP), Sonipat, India, 2024, pp. 101-107, doi:
10.1109/INNOCOMP63224.2024.00026.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

60 | P a g e

www.ijacsa.thesai.org

[37] E. Sophiya and S. S. Reddy, "Hand Gesture-Driven Gaming for Effective
Rehabilitation and Improved Quality of Life - A Review," 2024 5th
International Conference on Innovative Trends in Information
Technology (ICITIIT), Kottayam, India, 2024, pp. 1-6, doi:
10.1109/ICITIIT61487.2024.10580667.

[38] S. Metkar, J. Mahajan, J. Adsul and B. Chavan, "Human body gesture-
controlled gaming application," 2022 Second International Conference on
Next Generation Intelligent Systems (ICNGIS), Kottayam, India, 2022,
pp. 1-6, doi: 10.1109/ICNGIS54955.2022.10079850.

[39] D. Jatain, S. Singh, N. Jatana, G. Sharma, V. Garg and M.

Niranjanamurthy, "A Real-Time Camera-based Motion Sensing Game
Tool for Cervical Rehabilitation," 2024 International Conference on
Knowledge Engineering and Communication Systems (ICKECS),
Chikkaballapur, India, 2024, pp. 1-8, doi:
10.1109/ICKECS61492.2024.10617271.

[40] C. Yeh, W. -C. Shen, C. -W. Ma, Q. -T. Yeh, C. -W. Kuo and J. -S. Chen,
"Real-time Human Movement Recognition and Interaction in Virtual
Fitness using Image Recognition and Motion Analysis," 2023 12th
International Conference on Awareness Science and Technology
(iCAST), Taichung, Taiwan, 2023, pp. 242-246, doi:
10.1109/iCAST57874.2023.10359266.

