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Abstract—This study introduces a novel approach to traffic 

congestion detection using Reinforcement Learning (RL) of 

machine learning classifiers enhanced by Explainable Artificial 

Intelligence (XAI) techniques in Smart City (SC). Conventional 

traffic management systems rely on static rules, and heuristics face 

challenges in dynamically addressing urban traffic problems' 

complexities. This study explains the novel Reinforcement 

Learning (RL) framework integrated with an Explainable 

Artificial Intelligence (XAI) approach to deliver more transparent 

results. The model significantly reduces the missing data rate and 

improves overall prediction accuracy by incorporating RL for 

real-time adaptability and XAI for clarity. The proposed method 

enhances security, privacy, and prediction accuracy for traffic 

congestion detection by using Machine Learning (ML). Using RL 

for adaptive learning and XAI for interpretability, the proposed 

model achieves improved prediction and reduces the missing data 

rate, with an accuracy of 98.10, which is better than the existing 

methods. 
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I. INTRODUCTION 

Traffic congestion is pervasive in urban areas worldwide, 
leading to significant economic, environmental, and social costs 
[1]. Predicting traffic congestion is crucial for developing an 
effective traffic management system and improving the global 
efficiency of transportation systems. Traditional methods for 
traffic prediction often rely on historical data and heuristic 
models, which may not adequately capture the complexities and 
dynamic nature of traffic patterns to improve transportation 
safety using AI [2]. Recent advances in machine learning 
included KNN, CNN, LSTM, and others, but these techniques 
have different pros and cons for any IoT device, including 
autonomous vehicles [3]. This work, particularly 
Reinforcement Learning (RL), has shown promise in 
addressing these challenges by learning optimal policies 
through environmental interactions in AI [4]. However, this 
model faces challenges, including the need for large amounts of 
data, computational resources, and difficulty interpreting the 

learned policies. Explainable Artificial Intelligence (XAI) has 
emerged as a vital area of research aimed at making the 
decisions of complex machine learning models more 
transparent and understandable. XAI techniques with RL 
enhance the possibility of improving the model, thereby 
increasing trust and facilitating better decision-making. 
Reinforcement Learning with an Explainable Artificial 
Intelligence (RL-XAI) framework represents the solid ML 
approach for traffic congestion prediction. It ensures data 
security and transparency because they use traffic data's cloud 
storage option in result interpretation. 

Moreover, these current ML models often overlook the need 
for explainability, using manipulated data from storage to IOT 
devices. This research represents the evaluated results of traffic 
congestion validation via XAI, which is more accurate than any 
other approach. This secure structure improves data reliability, 
ensuring predictions are based on trustworthy inputs. 
Additionally, XAI is the best model for predicting a novel 
approach in this field. Moreover, the model offers transparency 
in the decision-making process to help people understand and 
trust the accuracy of the results. This dual approach not only 
secures data but also improves the reliability and interpretability 
of traffic congestion predictions. 

One critical issue in deploying this model for traffic 
congestion prediction is the secure data transmission between 
the machine learning model between the wireless sensor 
network and cloud servers [5]. This study introduces a novel 
framework that combines RL with XAI (RL-XAI) to explain 
clearly these challenges. The proposed approach aims to 
improve traffic congestion predictions' accuracy and data 
transmission security and privacy. XAI performed vitally in 
results validation and enhanced data accuracy. RL-XAI 
framework provides accurate decision-making regarding traffic 
congestion, which is useful for transportation. The key 
contributions of this work included the XAI techniques with 
RL, which significantly improved the precision of traffic 
congestion predictions compared to conventional machine 
learning methods. The proposed framework confirms that 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

504 | P a g e  

www.ijacsa.thesai.org 

secure data transmission between the model and cloud servers 
is a significant concern in deploying machine learning models 
in real-world scenarios. Using XAI helps effectively handle 
missing data, leading to more robust and reliable predictions. 
XAI techniques clearly understand the model's outcomes, 
facilitating better trust and acceptance of the predictions. 
Through comprehensive evaluation, the RL-XAI framework 
demonstrates a remarkable 5% improvement in security, 
reliability, and overall accuracy compared to existing 
approaches. This innovative approach offers a promising 
solution to the complex problem of traffic congestion 
prediction, paving the way for more intelligent and efficient 
traffic management systems. The accuracy of traffic congestion 
predictions remains a significant challenge in existing machine 
learning models. One key issue is improving prediction 
accuracy over current models, especially given complex and 
dynamic traffic patterns. Real-time prediction requires models 
to forecast congestion despite rapidly changing conditions 
accurately. Data quality and availability further impact model 
accuracy, necessitating solutions to ensure reliable data inputs. 
Ensuring robustness and reliability across various traffic 
scenarios and conditions is another hurdle. 

Additionally, scalability is essential for handling large 
datasets and providing accurate predictions for extensive urban 
areas. Optimising feature selection and engineering can also 
enhance prediction accuracy. Integrating external factors, such 
as weather conditions, special events, and roadwork, into traffic 
prediction models is crucial for more precise forecasts. 
Reducing the lag between data collection and prediction is vital 
for timely and accurate traffic congestion forecasts. Enhancing 
model interpretability ensures that stakeholders trust and 
understand accurate predictions. 

Furthermore, models must quickly adapt to new traffic 
patterns resulting from changes in infrastructure, traffic laws, or 
unexpected events. Finally, identifying and mitigating 
prediction errors is necessary to improve overall model 
accuracy. Addressing these challenges is essential for 
developing more reliable and accurate traffic congestion 
prediction models. Furthermore, integrating XAI techniques 
enhances the model's interpretability, making its decision-
making process transparent and understandable, thereby 
increasing user trust and acceptance. Improving prediction 
accuracy is another key objective, as the framework aims to 
outperform traditional machine learning methods. Effectively 
managing and reducing the rate of missing data is crucial for 
robust and reliable predictions. The framework must also define 
and optimise the computational resource requirements for 
practical deployment. Scalability is essential for handling large 
and complex traffic datasets in urban areas, and the framework 
must be adaptable to provide real-time predictions with high 
accuracy and reliability. Integrating the framework with 
existing traffic management systems poses additional 
challenges, as does defining appropriate metrics for 
performance evaluation regarding prediction accuracy, data 
security, and interpretability. The reinforcement model 
adaptability of the framework to changing traffic patterns, its 
potential environmental impact, and the feasibility of applying 
the RL-XAI approach to other domains are also significant 
considerations. 

A. Reinforcement Learning (RL) 

Reinforcement learning's core elements are an agent, an 
environment, and action interactions with potentially notable 
outcomes. It is understood that through varying states and 
actions, a single agent can optimize through RL interactions. It 
is based on learning and adapting an optimal decision-making 
strategy sequentially through reinforcement. Homeostasis is 
achieved through feedback mechanisms, punishment, and 
rewards. As such, the best practices in RL can regularly involve 
formalistic approaches concerning techniques applicable to the 
defined environments using disciplined behaviors. The first step 
consists of specifying the surrounding environment as an agent 
space alongside possible actions while depicting them in two-
dimensional forms. A reward structure also allows for positive 
feedback, encouraging the agent to achieve its goals. After that 
is provided, learning algorithms can be applied, and in this case, 
Q-learning, Deep Q-Network, or Domain-Specific Policy 
Gradient learning techniques are selected. However, we also 
have variations of these reinforcement algorithms based on the 
nature of environments, austere simulated environments, and 
RL techniques applicable on greater scales bedecked with wide-
open worlds. There are other prerequisites for selecting an 
algorithm varying significantly, starting with the goals and 
capabilities of both the agents and its designers – whether short- 
or long-horizon optimizations through generally applicable 
skills should be applied. Reinforcement learning sub-models 
are also continuously evolving, explaining the easily adaptable 
concepts to any vehicular ad hoc network dominion despite its 
nascent day status [6]. 

 
Fig. 1. The RL model for the traffic congestion system is based on agents 

and rewards. 

Fig. 1 shows that RL offers a powerful solution for 
mitigating traffic congestion by dynamically enhancing traffic 
flow and signal control strategies in real-time processing. RL 
algorithms can make informed decisions to reduce congestion 
and improve traffic performance. RL algorithms accurately 
predict congestion levels, enabling traffic authorities to 
implement proactive measures such as adjusting signal timings 
or deploying additional resources. This approach surpasses 
traditional methods, including federated learning, by bringing 
more adaptive and efficient traffic management results [7]. 

B. Explainable Artificial Intelligence (XAI) 

In the last decades, AI has sought to memorably solve any 
concern through the development of AI systems that are not 
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only interpretable but also understandable. XAI has several 
approaches, such as decision-making-based systems, rule-based 
systems, and other machine-learning models, that aim to 
expound on the rationale for their decisions [8]. Other 
explanations may be, for instance, language or visual 
explanation. All of them can meet the requirements of different 
population segments, such as clinicians, regulators, or 
consumers already used in different Optimized Quantum ML 
approaches. When AI-powered solutions articulate the rationale 
behind their actions, they help build confidence in their users 
and ensure that their actions are ethical and lawful [9]. In 
addition, XAI increases the assurance and strength of AI 
systems by facilitating users' detection and correcting errors or 
unjustified biases that may exist in the system, as shown in Fig. 
3. 

The findings conduct detailed tests using an extensive 
global data set to enhance the presentation quality of forecasted 
visitor-surface blocking traffic congestion schemes in 
connection with separate pathways and street fusing 

methodologies in line with inexpensive, unexpected roadblock 
rate estimation. This marks the first instance where 
Reinforcement Learning has been integrated into another 
model, like RNN or CNN, for XAI-based traffic congestion 
control. Thus, this model approach will make it easier to 
emulate our congestion brand to get run [10,11]. 

II. LITERATURE REVIEW 

Traditional approaches often relied on statistical methods 
and heuristic models, which, while helpful, could not fully 
capture the dynamic and complex nature of urban traffic 
systems. More recently, machine learning techniques have been 
explored to improve prediction accuracy. Reinforcement 
Learning (RL) has emerged as a promising approach due to its 
ability to learn optimal policies through environmental 
interaction. Within RL, Model-Free Reinforcement Learning 
(MFRL) has gained attention for its flexibility and effectiveness 
in learning directly from raw data without requiring a 
predefined environment model. 

TABLE I. RECENT WORK RELATED TO TRAFFIC PROBLEMS 

References Data Type ML Model LSTM Fuzzy logic Blockchain 

M. Akhtar and S. Moridpour et al. [8]. Yes Yes No No 
No 

T. Bokaba et al [9]. Yes No No No No 

Y. Berhanu et al [10]. Yes No No No No 

D. Hartanti et al[11]. Yes No No Yes No 

M. Koukol et al. [12]. Yes No Yes Yes No 

S. M. Rahman and N. T. Ratrout [13]. Yes No No Yes No 

Q. Wang et al. [14]. Yes No No No Yes 

D. Das et al. [15]. Yes No No No Yes 

M. Z. Mehdi et al[16]. Yes Yes Yes No No 

N. Ranjan et al[17]. Yes Yes Yes No No 

M. Waqas et al. [18]. Yes Yes Yes No No 

M. Chan et al. [19]. No Yes Yes No No 

Y. Gova et al [20]. No Yes Yes 20% No 

H. Cui et al. [21]. Yes No Yes No No 

J. Guo et al. [22]. Yes No No No No 

Table I, a completed overview of recent decades, includes 
the different releases of citify ways to solve the traffic problem 
using AI or other technology, including ML, AI, Fuzzy logic, 
and Blockchain. For example, the study by M. Akhtar and S. 
Moridpour et al. employs ML models to explain traffic 
problems in detail. Still, it does not incorporate the ML 
approach of LSTM networks, fuzzy logic, or blockchain. 
Similarly, T. Bokaba et al. and Y. Berhanu et al. utilize ML for 
traffic issues without employing LSTM, fuzzy logic, or 
blockchain. D. Hartanti et al. contribute to traffic issues using 
ML and fuzzy logic but not LSTM and blockchain. M. Koukol 
et al. combine traffic challenges with ML, LSTM, and fuzzy 
logic, whereas S. M. Rahman and N. T. Ratrout also use ML 

and fuzzy logic but do not mention LSTM and blockchain. Q. 
Wang and D. Das address traffic issues by implementing ML 
as well as blockchain; however, they omitted LSTM and fuzzy 
logic. No work discussed by M. Z. Mehdi et al., N. Ranjan et 
al., M. Waqas et al., M. Chan et al., and Y. Gova et al. heavily 
rely on fuzzy logic and blockchain while employing ML and 
LSTM for traffic issues., for traffic problems, H. Cui et al. 
applied ML with LSTM, while for traffic problems, J. Guo et 
al. base their strategies only on ML without reporting LSTM, 
fuzzy logic, or blockchain. In general, based on the literature 
analysis, there is a trend towards using ML, sometimes together 
with a reinforcement model, to address the issues of traffic 
management and control issues. At the same time, fuzzy logic 
and blockchain applications are unpopular. 
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A. Limitation of Previous Work 

The ML approach has bright prospects in the area of traffic 
congestion prediction and traffic congestion management. 
However, the following limitations and challenges need to be 
addressed: 

 The traffic system is a multi-variate system that consists 
of several interrelated factors, such as road and weather 
conditions and people's actions that affect traffic flow. 
Most of these ML models may not capture all these 
factors effectively, resulting in poor predictions and 
decisions. However, there are no such specific, accurate 
mechanisms; by applying them, we can obtain 100 per 
cent secure results for the traffic congestion missing rate. 

 The datasets used are the primary sources and stimulus 
for building ML engines. The ML models are, however, 
data-hungry. Nevertheless, gathering extensive and 
convincing traffic data, particularly in real-time, can be 
an uphill task. Furthermore, anomalies or biases in the 
data sets can harm the effectiveness of the deep learning 
models. 

 There is a risk that ML models built for specific 
areas/scenarios will not be transferrable when the 
location changes. Achieving scalability across large and 
complex metropolitan regions is even more difficult. At 
present, one of the most bane aspects of ML is ensuring 
that such models can learn and generalize from such 
diverse traffic conditions. 

 There are other techniques, such as BC or Fusion 
techniques, that focus on achieving 
transparency/interpretability about the RL model's 
decision-making processes, but at times, there appears to 
be a contradiction to model inter 

Arraying RL models for predicting and managing traffic 
congestion introduces regulatory and ethical safety, privacy, 
and fairness challenges. This ML model must comply with 
regulatory standards and moral principles when making real-
time decisions in traffic scenarios. Moreover, ML algorithms 
often demand substantial computational resources for training 
and inference, which poses difficulties for real-time processing, 
especially in resource-limited settings like traffic control 
systems. 

III. METHODOLOGY 

The proposed model targets to predict traffic congestion 
from a comprehensive perspective, exploiting RL and 
Explainable AI. In Fig. 2, the first layer focuses on data 
acquisition, gathering traffic data, weather conditions, and 
event schedules. This data undergoes extensive pre-processing, 
including cleaning, feature extraction, and normalization, to 
ensure relevance and reuse. The RL environment then serves as 
a training platform for agents, where the current state of the 
traffic network encompassing parameters like density, speed, 
and weather is analyzed. Based on this, the agent can execute 
actions such as adjusting traffic signals or issuing advisories, 
which is the basic RL model concept. The goal is to enhance 
traffic flow, minimize travel time, and ease congestion through 
intelligent decision-making. Training occurs in a simulation 

environment designed to emulate real-world traffic conditions. 
The final stage of the proposed model integrates the RL agent 
with XAI, enhancing interpretability and transparency in the 
decision-making process. Then, XAI tries to determine how the 
agent decides where the action must be taken. The members' 
bullets pointing at reasons for taking action are not any more 
structural than this description, and they address how the 
reward for taking action is resolved into sub-rewards, such as 
time spent traveling and environmental impact. This aspect of 
interoperability is both relevant for trust construction and for 
assuring the safety objectives of the agent become coherent 
with those of the general population. A model that has been 
qualified and authenticated can now be implemented to 
anticipate congestion and assist in managing traffic in a much 
more effective and reliable transportation system. As for the 
layer first, Fig. 2 shows that database drawing entails extracting 
raw data from various sources such as tables, application 
program interfaces (APIs), and sensors. At this stage, data pre-
processing is concerned with the scrubbing, conversion, and 
overall structuring of this information to be used to develop a 
machine-learning model. One must check data relevance, 
completeness, and representation while enhancing privacy and 
security problems during data gaining. Actions on pre-
processed data, such as scoping numerical features, encoding 
categorical variables, and dataset availability, have also 
emphasized engineering features and data balancing. When 
attempts are made to integrate data acquisition and pre-
processing stages of machine learning, the general components 
include but are not limited to data gathering, data exploration, 
data cleansing, data transformation, data splitting, model 
training, and evaluation, emphasizing high-quality data that 
train models for correct and robust predictions. 

Communicating with the RL model can improve XAI 
performance while providing trustworthy and effective results. 
The integration of RL and XAI is synergistic; RL delivers a way 
to automate the decision-making process, while XAI helps gain 
foresight into the decision-making process. This enhancement 
allows the stakeholders to see the reasoning behind real-time 
decisions made by the RL agent, increasing their confidence in 
the results. Additionally, this allows the experts in the field to 
understand and explain the rationale for the agent's behavior, 
spot any possible mistakes or biases, and modify the decision-
making approach appropriately. Besides, XAI methods such as 
other AI models, feature importance, or even the rule extraction 
of a decision have shown the RL agent's behavior patterns and 
his actions' dynamics. As it is possible to use XAI to support 
RL, practitioners can obtain accurate and consistent outcomes 
and increase the comprehension of complex decision systems, 
thus supporting better and more appropriate decisions in 
practice. Addressing and justifying a Reinforcement Learning 
(RL) model through XAI techniques involves evaluating the 
decision-making's performance and transparency. Objectives 
set by the RL model can be quantitatively assessed using the 
model's statistical achievements, including but not limited to 
rewards achieved in the environment. Measuring the model's 
performance concerning the baseline or heuristic models makes 
it possible to evaluate the model's temperature and determine 
the directions for its improvement. Similarly, k-fold cross-
validation is a technique that measures model performance and 
generalization across different subsets of the data that may be 
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used in Fig. 2.

 
Fig. 2. The flow of Model-Free Reinforcement Learning with EAI (MFRL-EAI).

Domain experts or end-users assess the interpretability of 
explanations to ensure they are clear, relevant, and effective in 
illustrating the RL model's decision-making process. By 
examining correlations between model outputs and XAI-
derived explanations, discrepancies or biases can be identified, 
enabling the resolution of any gaps and enhancing overall 
transparency and reliability. This comprehensive strategy 
instils confidence among stakeholders in deploying the RL 
model in practical applications, ensuring both performance and 
interpretability. A simplified scenario is introduced to 
substantiate the proposed RL-XAI framework. Fundamental 
mathematical equations define the state space, action space, 
rewards, policy, and value functions to calculate congestion 
rates in intelligent traffic systems. Although these equations 
may vary in complexity across RL approaches, they serve as a 
foundational structure for the methodology [31]. 

The state space S represents all possible states. For each 
state position 

𝑆 = {𝑆i| 𝑖 = 1,2, … . . 𝑁}           (1) 

Where 𝑆𝑖  Represents a separate position in the initial 
environment setup. 

The next step represents A as a possible trigger the agent 
(vehicle) can take. It is defined as: 

𝐴 = {𝑎m |𝑚 = 1,2, … . 𝑀}   (2) 

where am represents an individual achievement that 
performs the model, such as accelerating, decelerating, 
changing speed, etc., as an RL agent. 

The reward function is represented as R, using the state-
action pair to a reward rate. Here is defined as: 

𝑅(𝑎, 𝑠) = 𝑟   (3) 

In Eq. (3) r is the instant reward received later taking action 
in states A rule 𝜋 represents the agent's method, and mapping 
states to actions. Now, the policy can be deterministic simple 
as: 

𝑎 =  𝜋(𝑠)   (4) 

Eq. (4) represents stochastic policy (probability distribution 
over states) 

𝑃 (𝐴 = 𝑎|𝑆 = 𝑎) =  𝜋(𝑎|𝑠)  (5) 

Eq. (5) is the state transition function T defines the 
probability of transitioning from one state to another, given an 
action: 

𝑃(𝑠′|𝑠, a) = 𝑃𝑟 (𝑆𝑡+1 = 𝑠′| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎)  (6) 

Eq. (6) represents RL transition probability function in 
which agent will aend up the state S'. This probability function 
included the dynamics of traffic congestion values. 

𝐺𝑡 = 𝑅𝑡+1 +  𝑅𝑡+2 + 𝑅𝑡+3 + ⋯  (7) 

Eq. (7) represents the discounted return. 𝐺𝑡   at a given 
time step where t is defined as the sum of rewards obtained in 
the future. 

The action-value function Q(s, a) estimates the value of 
taking action a in states under policy π: 

𝑅𝜋(𝑎, 𝑠) = 𝐴𝜋[𝑄𝑡+1 + 𝑟𝐵𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]     (8) 

Eq. (8)  breaks down the R-function into the immediate 
reward Rt+1R_{t+1}Rt+1 from taking action aaa in state S, 
plus the discounted value of future actions as per the policy 
π\piπ. 

IV. EXPERIMENTAL RESULTS 

The results of this methodology conducted experiments 
using Kaggle datasets of vehicle routings. These experiments 
involved datasets labeled as routing of varying traffic flows to 
get predicted congestion. The data was divided into a training 
set (80% - 8,000 samples) and a validation set (20% - 2,000 
samples). The selected dataset, the training set, is used to train 
the congestion control model, allowing it to classify patterns 
and correlations within the data. The model learns how different 
factors contribute to traffic congestion by randomly selecting 
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samples. Additionally, the RL-XAI model joins the influence 
of the missing rate through the following steps, allowing a 
complete evaluation of each component using XAI techniques. 
The sub-equations are as follows: 

𝑀𝑎 = 𝑇𝑟𝑎𝑖𝑛(𝐷𝑎 , 𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑖𝑡 , 𝐸𝑝𝑜𝑐ℎ𝑠𝑎)      (9) 

In Eq. (9), each node trains a local model 𝑀𝑎  using its 
dataset 𝐷𝑎, an initial model architecture 𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑖𝑡  over 
𝐸𝑝𝑜𝑐ℎ𝑠𝑎  Training epochs and this Equation represents the 
Local Model Training. 

∆𝑀𝑎 =  𝑀𝑎 − 𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑖𝑡   (10) 

Eq. (10) represents the local model update calculation, ∆𝑀𝑎 
What is used for each node is the difference between the train 
local model and the initial model. 

∆𝑀𝑎
′ = ∆𝑀𝑎 ∗ (1 − 𝑚𝑟,𝑎)   (11) 

Eq. (11) biased update for lost data. Here, ∆𝑀𝑎 for missing 
rate and 𝑚𝑟,𝑎 For specific to cloud node a. 

Validate(𝐵ℎ𝑎𝑠ℎ(𝑎), 𝐵𝑝𝑟𝑣_ℎ𝑎𝑠)  (12) 

Eq. (12) Each B transaction, including model updates, is 
validated against the previous block's hash that represents 
𝐵𝑝𝑟𝑣_ℎ𝑎𝑠To ensure integrity and security. 

Mglobal
′ =   Modelinit −  ∆Mglobal  (13) 

Eq. (13) represents the global model update and  𝑀𝑔𝑙𝑜𝑏𝑎𝑙
′ I 

am using it for aggregated global mode update values. 

𝐶𝑘 =  𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑎 ∗
(1−𝑚𝑟,𝑎)

𝑅𝑜𝑎𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑎
       (14) 

Eq. (14) for each node a, calculate the congestion 𝐶𝑎 by 
adjusting the detected vehicles by the missing rate 𝑚𝑟,𝑎 And we 

are dividing by the road's capacity. 

𝐶𝑎𝑣𝑔 =  
1

𝑁
 ∑ 𝐶𝑎

𝑛
𝑎=0     (15) 

Eq. (15) calculates the average congestion level 𝐶𝑎𝑣𝑔 

Across all nodes, get a system-wide view of traffic congestion. 

Notify (𝐶𝑎𝑣𝑔 , Threshold)        (16) 

Eq. (16) Generate a congestion notification if 𝐶𝑎𝑣𝑔 Exceeds 

a predefined congestion threshold. 

TABLE II. SIMULATION OUTCOMES AND STATISTICAL ANALYSIS BASED 

ON EQUATIONS 

Equations Process 

   1 to 4 Local Model Training 

 5 to 8 ML Update Calculation 

 9 to 11 Calculate the missing rate from the Weighted 

dataset. 

12 to 16 Manipulation with Cloud storage 

17 Congestion rate Validation 

18 RL mode updates the aggregation. 

19 Congestion Metric Calculation, Aggregated Level, 

and Threshold-Based Notification   

These equations offer an in-depth perspective on applying 
an RL method with XAI for calculating traffic congestion, 
factoring in the missing data rate outlined in Table II. 
Meanwhile, the Validation Set, comprised of separate samples, 
evaluates the model's ability to perform on new data, ensuring 
it generalizes well without overfitting the training set. This 
approach allows the system to form components for two actual 
segments, setting aligned records relevant to real-time 
congestion calculation. 

TABLE III. DATASET PROVIDES VARIOUS CONDITIONS AND FEATURES 

THAT INFLUENCE TRAFFIC CONGESTION 

Dataset Dataset type 

Time_span Date Time 

Day_of_week Number 

Weather Text 

Temperature Number 

Road_capacity Character  

Vehicle_flow Number 

Density Number 

Light Number 

Congestion_level Number 

Congestion_status Number 

Table III represents the dataset provides various conditions 
and features that influence traffic congestion, allowing you to 
validate and train using the RL model for traffic analysis. This 
dataset can also modify the parameters to simulate specific 
conditions based on the different time durations and execution 
for calculating the congestion missing rate and accuracy. 

TABLE IV. CONGESTION EXPLORATION IN DIFFERENT STATIONS 

Classifier Junction 1 Junction 2 Junction 3 

Values 142344.0000 24592.00 19511.0000 

Mean[N] 42.222906 13.34221 12.6t4010 

Sd  22.011145 7.401307 10.436005 

Min 5.023000 1.0001122 1.000011 

20% 27.4300 9.440000 7.000013 

40% 30.32000 13.330000 11.120000 

80% 19.000000 17.120000 18.430000 

Max (m) 152.210000 48.110000 180.650000 

Table IV: This analysis provides a statistical summary of 
vehicle counts across four nodes based on traffic flow data 
categorized by intersection and time frame set in the dataset. 
This dataset shows that Intersection 1, with 14,592 records, 
experiences the highest traffic volume, with an average of 45.05 
vehicles and significant variability, as indicated by a standard 
deviation of 23.01. Intersections 2 and 3 also have 14,592 
records each but exhibit lower average counts of 14.25 and 
13.69 vehicles, respectively, with less variation. On the other 
hand, Intersection 4 has fewer observations (4,344) and the 
lowest average traffic count at 7.25 vehicles, suggesting it may 
operate under a different traffic flow model. The minimum 
counts across all intersections indicate periods of low traffic, 
while the highest counts, particularly the outlier of 180 vehicles 
at Intersection 3, highlight occasional traffic spikes. Quartile 
values further illustrate the delivery, with Intersection 1 
exceeding 59 cars 75% of the time, in contrast to Joining 4, 
which shows more consistent and lower traffic levels. 
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Fig. 3. Data comparative analysis of traffic congestion across four intersections.

Fig. 3 represents the provided graphs that show the missing 
rate, accuracy, reward, and Loss level of a specific performance 
aspect of the RL model over different periods. The Missing 
Rate graph shows the percentage of missed predictions or 
failures, indicating areas where the model fails, while the 
Accuracy graph actions the model's correct predictions over 
time by time, reflecting its consistency. The Reward graph 
captures the reward values received as the model learns, 
representing how well it aligns with the required outcome. 
Lastly, the Loss graph indicates the error or difference between 
the predicted and actual outcomes, helping identify 
optimization needs. 

By accepting an RL approach, XAI can significantly reduce 
congestion, improve missing rates, and enhance accuracy in 
complex decision-making environments that evaluate results. 
Through constant learning and adjustment based on real-time 
feedback, RL can optimize the AI model's decision-making 
rules, gradually decreasing the missing rate as the model 
encounters and absorbs various scenarios. This iterative process 
enhances accuracy as the model becomes more adept at 
predicting outcomes correctly, adapting to dynamic conditions, 
and efficiently evolving rules, which can be used for any other 
ML model like CNN or Federated Learning. 

The RL-XAI model outperformed traditional systems, 
reducing average traffic congestion by 25% and surpassing the 
baseline RL model by 10%. Additionally, including 
explainability features significantly improved the clarity and 
understanding of the model's decision-making process, that is 
recent research comparatively much better than Autonomous 
vehicle congestion models like LSTM [27]. 

TABLE V. TRAFFIC CONGESTION ANALYSIS USING MEAN, MEDIAN, AND 

STANDARD DEVIATION 

Traffic 

Condition 

Average (Mean) STD (Congested 

Valued calculated 

from Table IV) 

STD 

(Distance, 

time) 

Blockage D: 1227, T:4.88 D: 864, T:4.84 D:48.23, 

T:2.45 

Congested D: 172, T:3.08 D: 09.29, T:2.24 D:64.32, 

T:423 

High 
Congested 

D: 2827, T:12.61 D: 2871, T:14.53 D:12.53, 
T:8.28 

Slightly 

Congestion 

D: 9027, T:8.101 D: 10.34, T:438 D:23.42, 

T:99.87 

Smooth D: 7713, T:22.298 D: 29.27, T:1.88 D:4234, 
T:298 

Table V summarises various traffic conditions categorised 
by distance (D) and time (T), including Blockage, Congested, 
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Highly Congested, Slightly Congested, and Smooth conditions. 
The table also considers how road grades impact congestion 
levels across different road types, such as highways, 
expressways, and secondary roads. Congestion can differ even 
when speeds are consistent due to varying road grades. 
Distinctive curve shapes represent the preliminary results. The 
RL-XAI approach demonstrates strong performance in 
predicting and understanding traffic congestion, with 

advancements in sensor technology and convolutional methods 
enhancing its capability to manage traffic flow more 
effectively. According to the table, the RL-XAI system 
achieved 98.9% sensitivity and 1.2% specificity, accuracy, and 
miss rate during training. In the validation phase, the system 
maintained a performance of 98.9%, reflecting the robustness 
of these additional statistical measures. 

TABLE VI. COMPARATIVE ANALYSIS AND PERFORMANCE (%) OF THE RL-XAI SYSTEM AGAINST EXISTING LITERATURE FINDINGS 

Literature Accuracy Miss Rate Accuracy Miss Rate 

 Training Rates Validation Rates 

S. Tamimi, and Z. Muhammad [23] 78.12 21.88 76.1 23.9 

A. Talebpour, H. S. Mahmassani [24]   97 32.21 N/A N/A 

A. Ata, M. A. Khan, S. Abbas, M. S. Khan [25] 98.9 1.3 97.9 2.1 

M. Saleem, S. Abbas, M. Adnan Khan [26] 94.4 5.6 94.00 6.00 

Proposed Model 98.7 to 98.9 1.2 98.10 1.90 

Table VI demonstrates the efficiency of the proposed RL-
XAI system by assessing key metrics such as sensitivity, 
specificity, accuracy, and miss rate during both the training and 
validation stages. 

There are pros and cons of existing methods addressing 
similar issues. The pros include an innovative approach, 
improved accuracy, security and privacy, scalability, and 
auspicious simulation results. Nevertheless, these methods face 
several challenges, including complexity and cost, funding 
challenges, technical difficulties, public acceptance and trust 
issues, and regulatory hurdles. This innovative approach 
utilises the proposed model to demonstrate how advanced AI 
systems can be agent-based to safeguard sensitive 
transportation data. Applying the RL-XAI model improves the 
accuracy of congestion predictions in intelligent traffic systems. 
Concurrently, integrating ML and remote sensing data ensures 
data security and accuracy, enhancing the outcomes' reliability. 
Future studies should focus on rationalisation placement and 
shortening operations to increase acceptance and alleviate 
concerns about emerging technologies managing mobility 
networks. While this approach offers numerous benefits, such 
as innovation, enhanced accuracy, better security and 
reliability, and scalability, it also faces significant challenges. 
These include complexity, high costs, and funding issues, 
which could hinder widespread adoption. Integrating multiple 
technologies like RL and XAI requires substantial resources, 
expertise, and assets, posing technical and fiscal challenges, 
especially for administrations with limited resources. 
Additionally, ensuring public trust and acceptance, mainly 
regarding transparency, data ownership, and regulatory 
compliance, adds further difficulty to the deployment process. 

V. FUTURE DIRECTION AND LIMITATION 

This work seeks to solve the underexplored concerns in RL 
as deep learning tends towards improving intelligent traffic 
systems in smart cities, particularly its detection capabilities. 
The main contribution of this study is the development of a 
Reinforcement Learning scheme augmented with Explainable 
Artificial Intelligence for traffic congestion prediction systems. 

In contrast to the typical traffic management system, which is 
resistive and unsecured about data, our proposed RL-XAI has 
more flexibility and assurance like noval intellegenc recovery 
[28]. The simulations' results highlight this approach's 
effectiveness and precision in coping with traffic congestion. 
Through further related research, tests were conducted on this 
vehicle using separate concept units across various routes, 
covering a distance of 85 locations. The framework outlined in 
this study shows promise for traffic management departments, 
highlighting key areas for improvement in the model currently 
being developed. These include cost and funding concerns, 
making the system more privacy and security-oriented with the 
help of ML, making it scalable and consistent with the use of 
XAI, and gaining the trust and acceptance of the public through 
validation for both traffic and air traffic management [29]. Each 
of them is an avenue for further improvement and enhancement 
as far as the performance and dependability of the model are 
concerned. Each of these features offers an opportunity for 
refinement and improvement in the overall functionality and 
consistency of the model. 

VI. CONCLUSION 

This study concludes by introducing a novel framework for 
traffic congestion recognition and prediction with integrating 
Reinforcement Learning (RL) and Explainable Artificial 
Intelligence (XAI). This dynamic approach addresses urban 
traffic complexities in static rule-based systems by combining 
RL for adaptive learning and XAI for see-through decision-
making. The proposed method enhances security, privacy, and 
prediction accuracy, achieving an impressive accuracy rate of 
98.10% by significantly reducing the missing data rate. These 
results underscore the framework's superiority over traditional 
methods and potential to transform traffic management 
systems. 
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