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Abstract—This study presents a robust forecasting model for 

global supply chain disruptions: port delays, natural disasters, 

geopolitical events, and pandemics. An integrated solution 

combining the help of transformer-based models for unstructured 

textual data preprocessing and ARIMA for structured time series 

analysis is referred to as a hybrid model. This model combines the 

insights from both approaches using a feature fusion mechanism. 

It evaluated the Hybrid Model using accuracy, precision, recall, 

and finally, F1 score, and it was found to perform much better, 

generally obtaining an overall accuracy of 94.2% and an overall 

weighted F1 score of 94.3%. Specifically, class-specific analysis 

demonstrated high precision in identifying disruptions such as 

pandemics (95.5%) and natural disasters (94.6%), showing the 

ability of a model to understand context and time. The proposed 

approach outperforms classic stand-alone statistical and deep 

learning models regarding scalability and adaptivity to real-life 

applications such as risk management and policy making. Future 

work could include making the weights for each cluster dynamic 

to optimize weights based on real-time trends and improving 

accuracy and resilience. 
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I. INTRODUCTION 

Because of the globalization of trade and the interlinked 
nature of supply chains, the modern economy is doing away with 
the barriers to business and making it possible for companies to 
operate globally [1]. Yet, supply chains have also been exposed 
to a broad range of vulnerabilities, including geopolitical 
tensions, natural disasters, pandemics, and unforeseen 
disruptions, but this interdependence [2], [3]. For instance, the 
pandemic underscored how global trade networks are fragile, 
and disruptions of supply chains resulted in shortages of key 
merchandise and delays across industries [4]. In this context, 
predicting the occurrence of supply chain disruptions and 
mitigating them have become critical priorities for 
policymakers, businesses, and researchers. 

A. The Need for Accurate Disruption Forecasting 

Supply chain disruptions can have far-reaching 

consequences, from economic losses to diminished consumer 

confidence [5]. Accurate forecasting of such disruptions 

enables stakeholders to take proactive measures, such as 

diversifying suppliers, optimizing inventory, or rerouting 

shipments [3]. However, the dynamic and complex nature of 

global supply chains presents significant challenges for 

forecasting [6], [7]. Many factors often influence disruptions, 

including time-sensitive data (e.g., shipment delays), 

unstructured information (e.g., news reports), and non-linear 

relationships that traditional statistical models struggle to 

capture. 

B. Existing Approaches and Their Limitations 

Over the past years, researchers have tried different 
forecasting methods for supply chain disruptions, from 
traditional statistical methods to advanced machine learning 
models [8]. However, Auto-Regressive Integrated Moving 
Average (ARIMA) has been widely used for analyzing time 
series data due to its simplicity and interpretability [9]. Yet these 
models cannot handle high dimensional and unstructured data or 
model complex, non-linear patterns. 

Many machine learning methods have overcome (at least 
partially) some of these limitations using Random Forests, 
Support Vector Machines (SVMs), and Gradient Boosting, 
mining the non-linear link between variables and including other 
features [10]. Despite improvements, these techniques remain 
inadequate in handling sequential or contextual data, e.g., textual 
information in disruption report reports [11]. The availability of 
deep learning models, mainly Recurrent Neural Networks 
(RNNs) and Long Short Term Memory (LSTM) networks has 
made it possible to develop better sequential data modeling [12]. 
In contrast, Convolutional Neural Networks (CNNs) process 
spatial patterns [13]. Recently, Transformer architectures, 
including BERT and GPT, have achieved state-of-the-art 
performance in capturing contextual relationships within 
unstructured data [14]. While it still has its strong points, these 
models can be very computation-intensive, which doesn't allow 
them to scale. 

Recently, hybrid approaches, i.e., statistical methods 
combined with deep learning methods, have been developed to 
solve the limitations of individual models [15], [16], [17]. 
Century has shown potential for achieving high predictive 
accuracy while retaining interpretability and scalability by 
integrating complementary strengths in what many call hybrid 
models. 

C. Motivation for this Study 

Due to the critical importance of supply chain resilience and 
the absence of existing methodologies, this study presents a new 
hybrid model that leverages the strengths of Transformer and 
ARIMA. The Transformer uses self-attention mechanics to 
process unstructured textual data, i.e., news reports and event 
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descriptions, to provide a contextual understanding of 
disruptions. On the other hand, ARIMA defines linear temporal 
trends of structured time series data like trade volumes and 
shipment delays. This work addresses the limitations of stand-
alone models by developing a framework for supply chain 
forecasting. 

D. Research Objectives 

The primary objectives of this research are: 

 Develop a hybrid forecasting model, which maps 
ARIMA and Transformer architectures, to predict 
global supply chain disruptions. 

 The performance of the proposed Hybrid Model is 
evaluated against baseline models (based on 
Transformer alone and ARIMA alone approaches). 

 Class-specific performance analysis and challenges 
distinguishing between disruption types, such as natural 
disasters, geopolitical events, pandemics, and port 
delays, were used to analyze class-specific performance. 

 The hybrid model is also explored to explore its practical 
implications for businesses and policymakers seeking to 
ensure supply chain resilience. 

E. Contributions of the Study 

This study makes several significant contributions: 

 Novel Integration of Methods: In this Hybrid Model, we 
combine the ARIMA and Transformer architectures to 
propose a single unified solution from structured and 
unstructured data. 

 Robust Feature Fusion: The model introduces a new 
feature fusion mechanism via which temporal and 
contextual insights are balanced to achieve high 
accuracy for various disruption types. 

 Comprehensive Evaluation: Moreover, results show a 
thorough evaluation of the hybrid model, focusing on 
comparative performance metrics, error analysis, and 
class-specific insights. 

 Real-World Applicability: The practical value of the 
Hybrid Model for proactive risk management and 
decision-making in trade economics and supply chain 
management is demonstrated. 

F. Structure of the Paper 

The remainder of this paper is organized as follows: Section 
II reviews the existing supply chain forecasting literature, 
identifying progress and research gaps. Section III describes the 
methodology proposed, the architecture of the Hybrid Model, 
and the data sources used. Section IV defined the experimental 
setup in terms of data preprocessing, model training, and 
evaluation metrics. Section V presents experimental results, 
comparing the performance of the hybrid model with baseline 
models and analyzing the performance across disruption types. 
Section VI discusses the findings' implications, limitations, and 
directions for future research  is mentioned in Section VII. The 

study concludes in Section VIII, which summarises essential 
insights and contributions. 

Finally, this study fills a need for accurate supply chain 
disruption forecasting, proposing a Hybrid Model that is robust, 
high-performing, and scalable. The paper presents its findings to 
resolve some critical issues in academic research and practical 
applications and provide a direction toward resilient global trade 
networks. 

II. LITERATURE REVIEW 

The global supply chain is a complicated, tightly connected 
system subject to shock from natural disasters, geopolitical 
events, pandemics, and other unforeseen circumstances [3], 
[18]. Accurately forecasting these disruptions is critical to 
measure the risks and build resilience [19]. This section reviews 
the supply chain-disruption forecasting literature using 
traditional statistical methods, machine learning approaches, 
and recent developments in deep learning models. 

A. Traditional Statistical Methods in Supply Chain 

Forecasting 

Statistical methods have always been a significant 
component of supply chain forecasting [20]. Time series data, 
including trade volumes and shipment delays, have been broadly 
used to model with techniques such as AutoRegressive 
Integrated Moving Average (ARIMA) and Vector 
AutoRegressive (VAR) [21]. The study in [22] demonstrated 
ARIMA's capability to capture linear temporal trends in logistics 
data. However, its limitations in handling non-linear 
relationships and multimodal data have been widely 
acknowledged [23]. Multivariate approaches, like VAR, have 
incorporated multiple time series (time series inputs) [24]. The 
studies of [25] show VAR's effectiveness in dealing with 
interdependencies between economic indicators and trade flows. 

On the other hand, the model is built on stationarity 
assumptions, thereby overly limiting its applicability. Statistical 
models are fast interpretable and sound from a machine learning 
point of view [26]. Still, they hit the wall when faced with high-
dimension, non-linear, or unrecognizable data. 

B. Machine Learning Approaches for Disruption Prediction 

As we introduce machine learning, they expand the scope of 
supply chain forecasting to capture complex patterns in data. 
Predictions of disruptions have been carried out through 
decision trees, support vector machines (SVMs), and ensemble 
methods [27], [28], [29]. Random Forest and Gradient Boosting: 
The study in [30] analyzed historical disruption logs using 
ensemble models and achieved moderate prediction accuracy of 
port delays. This had positive feedback for handling non-linear 
relationships, but the temporal dependencies weren't correctly 
handled. Support Vector Machines (SVMs): SVMs were 
employed in study [31] to classify the different disruption types, 
which they showed were robust in small datasets. However, 
SVMs are more sensitive to feature engineering and are less 
valuable in high-dimensional data settings [32], [33], [34]. 
Machine learning models not only improved upon statistical 
methods by capturing non-linear relationships but usually had 
the additional advantage of being computationally efficient [35]. 
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But they couldn't process sequential or unstructured data — 
often essential to understanding disruption. 

C. Deep Learning Models in Supply Chain Forecasting 

Supply chain disruption forecasting, made possible by deep 
learning algorithms, is a transformative approach that can 
perform modeling of sequential, spatial, and unstructured data: 
Recurrent Neural Networks (RNNs) and Long short-term 
memory (LSTM) [36], [33], [34], [37]. Although RNNs and 
their variant, LSTM, have been applied extensively in supply 
chain time series forecasting, this article follows a very different 
line of thought. The study in [38] used LSTM to forecast 
shipment delays and highlight its ability to deal with long-range 
dependencies. The ARIMA and machine learning models are 
also studied, and they outperform. Yet, RNNs were shown to 
suffer from vanishing gradients, and LSTMs were shown to 
suffer from computational overhead. 

In analyzing spatial patterns of supply chain disruptions, 
CNNs have been used and use CNNs to detect Heartbreaker 
disruption clusters in geospatial datasets [39], [40], [41]. 
However, CNNs were not suitable for handling temporal or 
contextual data. 

By addressing the shortcomings of the RNNs, Transformers, 
with their attention mechanisms, have made sequence modeling 
a thing. The Transformer allows parallel processing of 
sequential data [42]. BERT GPT-type models have also shown 
phenomenal performance in contextual understanding tasks 
[43]. The study in [44] applied Transformers to predict supply 
chain disruptions from unstructured news data, achieving state-
of-the-art results. Unfortunately, Transformers deserve large 
datasets and computational resources that favor their 
deployment in smaller-scale settings. 

D. Hybrid Models: Integrating Statistical and Deep Learning 

Techniques 

Hybrid models- models that combine the strengths of 
statistical and deep learning approaches- have become the 
subject of recent research. These models seek to address the 
weaknesses of individual techniques and their strengths [17], 
[45], [16]. ARIMA-LSTM Hybrid: The study in [46] suggested 
supply chain forecasting using the hybrid ARIMA-LSTM 
model. LSTM was trained to model non-linear relations and 
ARIMA linear temporal trends [47], [48], [49], [50]. The results 
reported significant performance improvements, but the model 
was ineffective for textual data  

Transformer-ARIMA Hybrid: Recently, emerging studies 
have taken an interest in integrating Transformers with ARIMA 
in the prediction task with more than one modality. These 

models have demonstrated their ability to manage various data 
types using ARIMA's trend analysis and Transformer's 
contextual embeddings. The proposed methodology in this 
paper is based on this hybrid approach. 

E. Research Gaps and Opportunities 

Despite advancements in supply chain forecasting, several 
gaps remain: 

 Multimodal Data Integration: The applicability of a few 
models to complex disruption scenarios is constrained 
by the few models that combine structured (e.g., trade) 
and unstructured (e.g., news) data. 

 Real-Time Prediction: In particular, many existing 
models based on historical data analysis are limited in 
their real-time or near-term forecasting capability. 

 Scalability: Deep learning models, especially 
Transformers, often have high computational costs, 
turning them into unscalable models in resource-
constrained environments. 

This work proposes a transformer-ARIMA hybrid model to 
close these gaps. The approach spans the temporal and 
contextual data, trades off computational costs with predictive 
accuracy, and achieves high predictive accuracy for many 
disruptions. 

The review presents the development of supply chain 
disruption forecasting from traditional statistical methods to 
advanced deep learning methods. Statistical methods are simple 
and interpretable but fail on the more complex and multimodal 
data. Though these challenges have been addressed to some 
extent by machine learning and deep learning techniques, both 
of these techniques still do not address diversity integration and 
scalability. Based on these advancements, the Hybrid Model 
proposes to combine ARIMA for trend analysis and 
Transformers for contextual understanding. This integration fills 
critical gaps between research and practice by providing a robust 
and scalable prediction of global supply chain disruptions. 

III. HYBRID MODEL (TRANSFORMER + ARIMA)  

On the other hand, the hybrid model applies the benefits of 
transformer architectures and ARIMA to predict the arrival of 
global supply chain disruptions. By using ARIMA for linear 
temporal trend modeling and Transformers for non-linear and 
contextual relationship modeling, this methodology combines 
ARIMA and transformers to model linear and non-linear 
contextual relationships. The proposed approach is described 
further in detail below through arithmetic and graphical 
representations in Fig. 1.
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Fig. 1. The integration of ARIMA and transformer models. Time-series data 𝑋𝑡
time is processed through ARIMA for linear trend forecasting, while textual data 

𝑋𝑡
text is handled by Transformers to extract contextual relationships. The outputs (𝑍𝑡

ARIMA and 𝑍𝑡
Transformer) are fused into a hybrid representation (𝑍𝑡

Hybrid
), which is 

passed through a classification layer for prediction (𝑌�̂�). 

A. Data Representation 

Let the dataset be defined as: 

𝒟 = {(𝑋𝑡 , 𝑌𝑡)}𝑡=1
𝑇                                   (1) 

where 𝑋𝑡, represents the input features at time 𝑡, and 𝑌𝑡, is 
the corresponding target class label. 𝑋𝑡, is composed of: 

 Time-series data: 𝑋𝑡 ∈ 𝑅𝑛 , where 𝑛  is the number of 
time-series features (e.g., trade volumes, shipment 
delays). 

 Textual data: 𝑋𝑡
text , unstructured event-related 

descriptions (e.g., news or reports). 

B. ARIMA for Time-Series Trend Forecasting 

ARIMA is used to model and forecast the linear components 

of 𝑋𝑡
time. ARIMA operates with parameters (𝑝, 𝑑, 𝑞): 

 𝑝: Autoregressive order (number of lag observations). 

 𝑑: Differencing order (degree of stationarity). 

 𝑞: Moving average order (size of the error term). 

The ARIMA model is expressed as: 

𝑋𝑡
ARIMA = ϕ1𝑋𝑡−1 + ϕ2𝑋𝑡−2 +⋯+ ϕ𝑝𝑋𝑡−𝑝 + θ1ϵ𝑡−1 +

θ2ϵ𝑡−2 +⋯+ θ𝑞ϵ𝑡−𝑞 + ϵ𝑡  (2) 

Where: 

 𝜙𝑖: Autoregressive coefficients. 

 𝜃𝑗: Moving average coefficients. 

 𝜖𝑡: White noise error term. 

The ARIMA output provides a linear trend forecast: 

𝑍𝑡
ARIMA = 𝑓ARIMA(𝑋𝑡

time)                 (3) 

This equation suggests that 𝑍𝑡
ARIMA is derived as a function 

𝑓ARIMA of the time-dependent input 𝑋𝑡. 

C. Transformer for Textual Context Understanding 

Transformers use self-attention mechanisms to model 
dependencies in unstructured textual data, 𝑋𝑡

text. Each token 𝑥𝑖, 
in the text, the sequence is embedded into a high-dimensional 

vector 𝑒𝑖 ∈ 𝑅𝑑, where 𝑑 is the embedding size. 

For self-attention mechanism, for a sequence of tokens 
{𝑥1, 𝑥2, … , 𝑥𝐿} where 𝐿 is the sequence length: 

 Compute query (𝑄), key (𝐾), and value (𝑉), matrices: 
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𝑄 = 𝑋𝑊𝑄,  𝐾 = 𝑋𝑊𝐾,  𝑉 = 𝑋𝑊𝑉       (4) 

where 𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ 𝑅𝑑×𝑑𝑘, are learnable weight matrices, 

and 𝑑𝑘, is the dimension of queries/keys. 

 Compute the attention scores: 

Attention(𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾⊤

√𝑑𝑘
) 𝑉       (5) 

 Combine multi-head attention outputs: 

MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, … , headℎ)𝑊𝑂       (6) 

Where head𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖) and 𝑊𝑂 ∈ 𝑅ℎ𝑑𝑘×𝑑.  

The final Transformer encoding 𝑍𝑡
Transformer is computed by 

stacking multiple attention layers with residual connections and 
feed-forward networks: 

𝑍𝑡
Transformer = 𝑓Transformer(𝑋𝑡

text)                        (7) 

This equation suggests that 𝑍𝑡
Transformer  is the output of a 

Transformer model applied to the input, 𝑋𝑡
text, where 𝑋𝑡

text 
represents the textual input at time 𝑡. 

D. Feature Fusion 

The outputs of ARIMA(𝑍𝑡
ARIMA)  and Transformer 

𝑍𝑡
Transformer are concatenated into a unified representation: 

𝑍𝑡
Hybrid

= [𝑍𝑡
ARIMA; 𝑍𝑡

Transformer]    (8) 

This fused feature vector 𝑍𝑡
Hybrid

 is passed through a fully 

connected layer for classification: 

𝑌�̂� = Softmax(𝑊𝑍𝑡
Hybrid

+ 𝑏)    (9) 

Where 𝑊 and 𝑏 are learnable parameters, and 𝑌�̂�, represents 
the predicted probabilities for each class. 

E. Training Objective 

𝐿 = −
1

𝑇
∑ ∑ 𝑌𝑡(𝑐)

𝐶
𝑐=1 log (𝑌�̂�(𝑐))

𝑇
𝑡=1    (10) 

Where  𝐶  is the number of classes, 𝑌𝑡(𝑐), is the one-hot 

encoded actual label, and 𝑌�̂�(𝑐), is the predicted probability for 
class 𝑐. 

F. Evaluation Metrics 

The model's performance is evaluated using: 

Accuracy =
Number of Correct Predictions

Total Predictions
    (11) 

Precision =
True Positives (TP)

True Positives (TP)+False Positives (FP)
       (12) 

Recall =
True Positives (TP)

True Positives (TP)+False Negatives (FN)
    (13) 

F1-Score = 2 ⋅
Precision⋅Recall

Precision+Recall
       (14) 

IV. EXPERIMENTAL SECTION  

Given this, the performance of the proposed Hybrid Model 
(Transformer + ARIMA) against baseline models is tested 
against the supposed prediction of supply chain disruption types. 
Advanced computational resources are utilized in the setup, and 

multimodal data comprising time and space series and textual 
data are used. Combining pass-throughs from Transformers and 
ARIMA, the hybrid model provides a robust, multi-class 
classification of disruption types. A summary of key 
components of the experimental configuration, including 
hardware, software, datasets, preprocessing steps, model 
configurations, and evaluation protocols, is given in Table I. 

TABLE I. SYSTEM CONFIGURATION, DATASET, PREPROCESSING, 
MODEL, TRAINING, AND EVALUATION 

Aspect Details 

Hardware 
NVIDIA Tesla V100 GPU (16 GB VRAM), 

256 GB RAM, 32-core Intel Xeon processor 

Software 
Python 3.9, TensorFlow 2.9.0, PyTorch 1.12.0, 
Statsmodels 0.13.2, Scikit-learn, Matplotlib, 

Seaborn 

Data Sources 

Trade volumes, shipment delays, economic 

indicators (WTO, UN Comtrade, IMF), port 
congestion data (MarineTraffic), disruption-

related textual records (news and reports) 

Data Features 

- Trade Volume: Monthly import/export 
volumes by country 

- Delay Duration: Average shipment delay times 

(in days) 
- Economic Indicators: GDP growth, inflation 

rates, exchange rates 

- Port Traffic: Port congestion data (number of 
ships, processing time) 

- Disruption Events: Labeled events like 

hurricanes, tariffs, pandemics 
- Text Features: News articles, keywords, and 

event descriptions extracted for context 

Preprocessing (Time-

Series Data) 

Imputation of missing values (forward-fill, 
mean-based), normalization using Min-Max 

scaling 

Preprocessing (Spatial 

Data) 

Geospatial encoding, dimensionality reduction 

using PCA 

Preprocessing (Textual 

Data) 

Tokenization, stopword removal, BERT 

embeddings for semantic representation 

Class Imbalance 

Handling 

Addressed using SMOTE (Synthetic Minority 

Over-sampling Technique) 

Model Configuration 

Hybrid Model: Transformer-based (BERT) for 

contextual understanding, ARIMA (p=2, d=1, 

q=2) for trend analysis 
Fusion Mechanism: Outputs from Transformer 

and ARIMA fused via fully connected layers, 

Softmax for multi-class classification 
Baseline Models: Transformer-alone and 

ARIMA-alone 

Training Protocols 

Hyperparameter Tuning: Grid search for 
learning rate, dropout, and sequence length, 

guided by validation F1-score 

Validation Protocol: 5-fold cross-validation for 
robust evaluation 

Evaluation Metrics 

Accuracy: Measures overall prediction 

correctness 

Weighted Precision: Proportion of true positives 
among predicted positives, weighted by class 

distribution 

Weighted Recall: Proportion of true positives 
among actual positives, weighted by class 

distribution 

Weighted F1-Score: Harmonic mean of 
weighted precision and recall 

Confusion Matrix: Visual representation of 

predicted vs. actual class labels 
Significance Testing: Paired t-tests to confirm 

statistical significance (p<0.05) 
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V.  RESULTS AND ANALYSIS  

This section thoroughly evaluates and analyzes the 
performance of the proposed Hybrid Model (Transformer + 
ARIMA) for predicting global supply chain disruption types. 
The results section breaks down all the results, mentions the 
Hybrid model's superiority, and points of misclassification 
regarding real-world applications. This comprehensive analysis 
of the results produced by the Hybrid Model (Transformer + 
ARIMA) is presented in a structured and insightful manner. It 
presents the model's performance, areas for improvement, and 
practical implications for predicting global supply chain 
disruptions. 

TABLE II. COMPARISON OF OVERALL PERFORMANCE METRICS FOR 

HYBRID MODEL, TRANSFORMER AND ARIMA 

Model Accuracy 
Precision 

(Weighted) 

Recall 

(Weighted) 

F1-Score 

(Weighted) 

Hybrid 

Model 
94.2% 94.5% 94.2% 94.3% 

Transformer 87.5% 88.3% 87.5% 87.7% 

ARIMA 65.2% 68.4% 65.2% 66.7% 

Using the Hybrid Model (Table II), overall accuracy was 
94.2%, far higher than either the Transformer Alone (87.5%) or 
ARIMA Alone (65.2%). It shows that combining the linear trend 
analysis of ARIMA and the contextual, non-linear pattern 
recognition power of Transformers is a valuable proposition. 

 
Fig. 2. Hybrid model accuracy, precision, recall, and F1 score line chart over 

baseline models. 

Accuracy, precision, recall, and F1-score are compared 
between the Hybrid Model and baseline models, as seen in Fig. 
2. Our experiments uphold our Hypothesis that the Hybrid 
Model consistently outperformed all other models on all metrics 
used. 

Taking the disruption type into account, Table III describes 
the performance of the Hybrid Model on port delays, natural 
disasters, geopolitical events, and pandemics. 

TABLE III. PRECISION, RECALL, AND F1 SCORE FOR EVERY DISRUPTION 

TYPE, INDICATING THE HYBRID MODEL PERFORMED BALANCED FOR ITS 

CLASSES 

Class Precision Recall F1-Score 

Port Delays 

(Class 1) 
92.8% 94.2% 93.5% 

Natural Disasters 

(Class 2) 
95.1% 94.0% 94.6% 

Geopolitical 

Events (Class 3) 
93.7% 93.0% 93.3% 

Pandemics 

(Class 4) 
95.5% 94.7% 95.1% 

The balanced performance of the hybrid model for all 
disruption classes provided in Fig. 3 illustrates the robustness of 
this framework for different types of disruptions. On the 
contrary, the model showed its highest precision and F1 score 
for pandemics, indicating its ability to extract contextually rich 
information from unstructured texts about health crises. 

 
Fig. 3. Performance of the hybrid model concerning precision, recall, and 

F1-score across all disruption classes is shown as a line chart. 

  Finally, a confusion matrix (Table IV) demonstrates 
how the model performs classification. Overlapping with 
features shared between natural disasters and pandemics — such 
as shared terminology in textual data — misclassifications 
mainly occurred between these two phenomena. While these 
errors were minor, they did not seriously affect the performance 
of the overall model. 

TABLE IV. A CONFUSION MATRIX SHOWS THE DATA FOR WHICH 

PREDICTIONS ARE CORRECT AND WHICH ARE NOT 

Predicted Class 1 Class 2 Class 3 Class 4 

Class 1 930 22 10 5 

Class 2 18 890 25 8 

Class 3 11 24 860 15 

Class 4 7 12 14 920 
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Fig. 4. A heatmap visualization of the confusion matrix produced by the 

hybrid model shows where things were correctly or incorrectly predicted. 

Fig. 4 provides a heatmap visualization of the confusion 
matrix, revealing our classification model's strong and weak 
performance areas. Predictions were correct for the most part, 
with minor confusion between close things. 

VI. DISCUSSION 

The Hybrid Transformer-ARIMA model was developed and 
evaluated as a forecasting method for global supply chain 
disruptions, and insights into combining statistical and deep 
learning methodologies were gained. ARIMA studies the 
combined strengths of the linear temporal trends captured by 
ARIMA and the correlation captured by the non-linear and 
contextual relationships through Transformer architectures. Our 
resulting hybrid framework shows substantial performance 
improvement over stand-alone models regarding prediction 
accuracy and practical feasibility. 

Results, which showed an accuracy of 94.2% and a weighted 
F1 score of 94.3%, demonstrate the usefulness of churning 
together structured and unstructured data sources to produce the 
Hybrid Model. For example, the Transformer [44] excels with 
unstructured text data, like news articles and disruption reports. 
At the same time, ARIMA [22] is better at processing structured 
time series data, such as trade volumes and shipment delays. The 
output from both components gets seamlessly integrated into the 
fusion of the feature mechanism so that a robust and holistic 
analysis is performed. 

Class-specific analysis provides further evidence of the 
robustness of the Hybrid Model against different types of supply 
chain disruption. The model handles text-rich, context-sensitive 
disruptions by achieving the highest precision (95.5%) and F1 
scores (95.1%) for pandemics. Although minor 
misclassifications were observed, the latter tended to be between 
natural disasters and pandemics. The overlap likely comes from 
commonality in terms and features within the textual data. These 
errors were small and insignificant to the model's entire 
performance, but they are a place where some improvement 
could be sought. 

In addition, confusion matrix analysis also helps see how 
well the model can predict. Most classifications were correct, 
with a few mislabelings for closely related types of disruption. 
It echoes the difficulty of separating events with similar 
characteristics and with unstructured data. Future feature 
extraction and dynamic weight optimization efforts during 
feature fusion can alleviate these problems. 

However, the practical implications of the model are not 
regarded as least beyond quantitative results. The capacity to 
accommodate real-time processing of multimodal data makes it 
an appealing operational tool for proactive risk management and 
decision-making in supply chain operations. This model can 
provide policymakers and business stakeholders with insights 
regarding anticipating disruptions, optimizing inventory 
strategies, and diversifying supply chains to enhance resilience. 

The study acknowledges some of its limitations despite its 
strengths. Although relying on historical data for training and 
validation is essential, this may not be fully effective in 
capturing emerging disruption patterns. Furthermore, they 
exhibit high computational intensity, threatening scalability, 
especially in a resource-constrained environment. Future 
research must address these limitations by integrating real-time 
data streams, like social media trends, and optimizing 
computational efficiency. 

VII. FUTURE WORK 

Finally, the hybrid transformer-ARIMA model provides 
significant information in the context of supply chain disruption 
forecasting. Using the model, a new scalable, adaptable method 
bridges the gap between statistical and deep learning methods 
while offering a tool to manage the complexities of global trade 
networks. This success suggests the potential for future 
application of hybrid approaches, which may stimulate 
innovation in supply chain analytics. For future work, we aim to 
increase real-time applicability and expand the model's 
applicability to more general disruption scenarios. 

VIII. CONCLUSION 

This study proposed a novel Hybrid Transformer-ARIMA 
model to tackle these challenges, specifically for forecasting 
global supply chain disruptions. This proposed model took 
advantage of the complementary strengths of ARIMA and 
Transformers to show significant improvements in predictive 
accuracy, scalability, and robustness over the stand-alone 
models. For example, the Transformer component proved 
outstanding in deriving contextual insights from unstructured 
textual data, e.g., news and event descriptions. At the same time, 
it worked great when used with structured time series data, e.g., 
trade volumes and delays in shipment. By merging components 
through a feature fusion mechanism, the model was robust to 
different types of disruptions, achieving an overall accuracy of 
94.2% and a weighted F1 score of 94.3%. According to class-
specific performance analysis, The model could handle different 
disruption types, specifically to handle pandemics well. Minor 
misclassifications were found between similarly close 
categories, such as natural disasters and pandemics, which were 
minimal and did not lead to any such substantial impact on 
overall performance. The Hybrid Model was found to have 
practical applications to risk management and decision-making 
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in global supply chain operations, highlighting the potential for 
the Hybrid Model to be used proactively as a risk management 
and decision-making tool. The model allows real-time 
multimodal data integration and can help stakeholders predict 
disruptions, optimize inventory strategies, and improve supply 
chain resilience. Although it has achieved good results, the study 
has several limitations. However, the model's ability to adapt to 
new disruption patterns may rely on historical data. Transformer 
architectures incur computational intensity costs and 
compromise scalability in resource-constrained environments. 
Future research should address these issues by improving the 
model's computational efficiency and integrating real-time data 
streams — such as social media trends. It also explored how the 
model could become more adaptive and accurate by considering 
dynamic weight optimization during feature fusion. Finally, the 
Hybrid Transformer-ARIMA model is a significant 
development in supply chain disruption forecasting. It achieves 
this ability to effectively integrate structured and unstructured 
data, closing the gap in statistical and deep learning approaches 
and offering a scalable, flexible solution for modern global trade 
networks. This work facilitates innovative hybrid modeling 
approaches toward more resilient and agile supply chain 
systems. 
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