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Abstract—Alzheimer's Disease (AD) is a persistent, 

irreversible, and degenerative neurological disorder of the brain 

that currently has no effective therapy. This condition is 

identified by pathological abnormalities in the hippocampal area, 

which may develop up to 10 years prior to the onset of clinical 

symptoms. Timely detection of pathogenic abnormalities is 

essential to impede the worsening of AD. Recent studies on 

neuroimaging have shown that the use of Deep Learning 

techniques to analyze multimodal brain scans may effectively and 

correctly detect AD. The main goal of this work is to design and 

develop an Artificial Intelligence (AI) based diagnostic 

framework that can accurately and promptly detect AD by 

analyzing Structural Magnetic Resonance Imaging (SMRI) data. 

This study presents a novel approach that combines a Directed 

Acyclic Graph 3D-CNN with an SVM classifier for timely 

detection and identification of AD by analyzing the Regions of 

Interest (RoI) like cerebral spinal fluid, white and gray matter, 

and the hippocampus in SMRI images. The proposed hybrid 

model combines Deep Learning for feature extraction and 

Machine Learning techniques for classification. The obtained 

results demonstrate its superior performance compared to earlier 

methods in accurately identifying individuals with early mild 

cognitive impairment (EMCI) from those with normal cognition 

(NC) using the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) dataset. The model attains a classification accuracy of 

97.67%, with precision at 94.12%, and sensitivity at 98.60%. 

Keywords—Alzheimer's Disease (AD); convolutional neural 

networks (CNN); Support Vector Machine (SVM); Directed Acyclic 
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I. INTRODUCTION 

Dementia is a broad word that encompasses many cognitive 
impairments that hinder daily functioning, impacting memory, 
thinking, language, and problem-solving skills. AD is the main 
source of dementia with distinct pathological features in the 
brain, responsible for around 80% of cases [1]. AD is defined 
by permanent neurodegeneration and currently lacks the 
potential for treatment. Neurodegenerative illnesses provide 
significant challenges in countries with a mostly aging 
population. It is the sixth primary cause of mortality and has a 
substantial global impact, mostly affecting the older 
demographic [2]. MR imaging is a diagnostic modality that 
uses T1-weighted images to identify and examine the 
morphological and structural irregularities associated with 
brain atrophy [3]. Therefore, MR imaging plays a crucial part 
in screening and diagnosing of AD [4, 5].  The incidence of the 
ailment has surpassed original forecasts due to the increasing  

older population and the simultaneous commencement of their 
diagnosis [6]. This necessitates due attention to effectively 
handle Alzheimer's diagnosis and treatment. 

While the exact process behind the progression of 
Alzheimer's is still not fully understood, existing knowledge 
indicates that the illness may be broadly categorized into three 
separate stages i.e. Preclinical, MCI, and AD [7, 8].  There are 
no noticeable symptoms of AD in the preclinical stage. 
However, subtle changes begin to occur in the brain. These 
pathological changes can start many years, even decades, 
before any cognitive symptoms appear [9]. The second stage is 
characterized by MCI, where individuals start to notice slight 
but measurable changes in their cognitive abilities, particularly 
memory. These changes are more significant than what is 
expected from normal aging, although they do not reach a level 
of severity that hinders one's ability to carry out everyday 
activities [10]. In the last stage of AD, the cognitive decline 
becomes sufficiently pronounced to disrupt everyday activities. 
Individuals may encounter memory impairment, disorientation, 
and challenges with tasks that require planning or decision-
making, may struggle with recognizing familiar people or 
places, and may experience a decline in physical abilities such 
as walking, swallowing, and bladder and bowel control [11]. 

The field of Machine Learning (ML) and Deep Learning 
(DL) has gathered considerable attention in over the past few 
years for its ability to accurately detect and isolate possible 
features of dementia illness, by accurately identifying the 
minute morphological changes in brain structure by analyzing 
MRI data [12, 13]. DL methodologies have proven that the 
area of AD detection has seen notable advancements via the 
use of CNNs [4, 14]. CNNs shall effectively extract structural 
characteristics from T1 MRI data with a large number of 
dimensions, leading to more precise tailored diagnoses. 
Furthermore, the implementation of an ensemble approach is 
gaining more significance in the field of medical image 
evaluation [15, 16]. AD has a quick and profound impact on 
the hippocampus, making it one of the most damaged brain 
areas and making it vital for the prompt detection of AD. The 
hippocampus is composed of several subdomains, each 
exhibiting distinct characteristics. A comprehensive evaluation 
of neurodegenerative disorders in medical applications heavily 
relies on the subfields of the hippocampus [17]. Scholars have 
proposed that the analysis of form and volume characteristics 
of hippocampal subfields in many MRI scans provides 
advantages in the prompt identification and assessment of AD 
[18, 19]. 
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The process of classifying hippocampus characteristics 
entails extracting them from either 2D or 3D MRI images 
using 2D and 3D CNNs [20,21]. When doing a comparison 
between 3D convolutions performed on a whole MRI and 2D 
convolutions performed on slices, it is evident that the former 
can capture crucial 3D structural information that is vital for 
distinction [22]. The brain MRI data has a lot of dimensions, 
thus, three-dimensional CNNs [23] are computationally 
difficult and need a longer training time compared to two-
dimensional CNNs. The above-said facts served as the 
motivation for this work. The goal of this research is to 
facilitate the timely detection of AD using the popular SVM 
classifier with more emphasis on the input features fed to it. 
This is accomplished by employing a new DAG CNN 
approach to perform feature extraction. In this study, both 2D 
and 3D DAG-CNN is used. In summary, a hybrid of CNN 
combined with SVM classifier is employed to perform early 
detection of AD. The next section gives a detailed comment on 
the literature work done in this direction. 

II. LITERATURE REVIEW 

Hongbo Xu et al. [24] proposed a CNN that utilizes multi-
scale attention to diagnose AD by analyzing hippocampal 
subfields. This study employs two datasets, procured from 
Peking University of China and ADNI. These datasets consist 
of a combined sample of 283 NC patients and 241 AD cases. 
The network can easily extract 3D data characteristics from 
three different planes of hippocampus subfields as input. This 
improves computational efficiency and reduces network 
complexity. Experimental methods have shown notable 
classification performance in identifying AD, eliminating the 
need for manual feature extraction. Bo Liu et al. [25] employ 
MRI scans of the hippocampus and an attention mechanism 
(DenseNet-AM) to improve classification accuracy. The 
empirical findings illustrate that the DenseNet-AM is 92.8% 
accurate, the sensitivity is 97.1%, and the specificity is 89.6% 
when distinguishing between instances of cognitive normalcy 
and AD. Malik et al. [26] presented a novel methodology 
known as the intuitionistic fuzzy random vector functional link 
network (IFRVFL), which utilizes brain imaging data to 
diagnose AD. This study aims to improve existing approaches 
by incorporating a fuzzy weighted approach into the IFRVFL 
model to improve its capability to withstand challenges. This 
methodology considers the importance of individual data 
samples while minimizing the influence of outliers and noise. 
Experimental studies indicate that in comparison to cases of 
Alzheimer's dementia (AD), the IFRVFL model has a higher 
level of efficacy in identifying both MCI and early 
identification of AD in clinical settings. Shuqiang Wang et al. 
[27] conducted a research where they introduced a new 
approach that combines 3D-DenseNets to automatically 
diagnose Alzheimer’s (AD) and moderate cognitive 
impairment by analyzing 3D brain magnetic resonance images. 
A comprehensive assessment was conducted for evaluating the 
performance of the suggested model using the ADNI dataset 
with 833 patients, and it was determined to be superior. The 
suggested approach enhances the transmission of information 
across layers by integrating several connections and a 
weighted-based combining approach is employed to integrate 
diverse topologies. A promising result was seen in the 

automation of dementia illness identification by employing an 
ensemble strategy that incorporates dense connections and a 
weighted-based fusion method. Reddy et al. [28] provide a 
deep hybrid framework in their research, which employs 
boosting approaches to classify 3D MRI images of 
Alzheimer's. The research primarily focuses on early diagnosis 
and utilizes the categorization of subcategories of MCI. The 
system uses ResNet 50 and VGG16 to extract structural 
information from MRI volumes followed by using Extreme 
Gradient Boosting (XGBoost) for classification. Pallawi et al. 
[29] employed a Transfer Learning approach to distinguish 
between various phases of Alzheimer's with an enhanced 
EfficientNetB0 model via MRI images obtained from the 
Kaggle dataset. To tackle the issue of inadequate data, data 
augmentation techniques were used. Consequently, the model 
effectively categorized several classes with a precision rate of 
95.78%, exceeding the efficacy of existing methodologies. Rui 
Guo et al. [30] provide a novel approach known as graph-based 
fusion (GBF) in their research. This technique utilizes imaging, 
genomic, and clinical data to effectively identify degenerative 
illnesses. By combining a multi-graph fusion module with an 
imaging-genetic combining module to efficiently extract 
unique information from many data modalities. The 
effectiveness of the GBF approach is shown by trials done on 
benchmarks about the identification of degenerative illnesses, 
in contrast to known graph-based methods. In their study, 
Xiaowei Yu et al. [31] has focused on developing a supervised 
deep tree model (SDTree) to forecast the advancement of AD 
at an individual level. The proposed SDTree methodology 
employs a nonlinear reversed graph embedding method inside 
a hierarchical tree framework within a latent space for 
enhanced prediction. This technique encompasses the whole 
spectrum of Alzheimer's progression and enables the 
generation of predictions for future instances. Furthermore, the 
attainment of a resilient depiction of the tree is accomplished 
by using node clustering in locations with high population 
density. Moreover, a novel methodology is suggested for 
multi-class classification by using a supervised deep tree 
architecture that integrates class labels to guide the acquisition 
of tree structure. 

The reviewed works focus on several facets of AD 
diagnosis, using novel methodologies such as multi-scale 
attention (Hongbo Xu et al.) and attention processes (Bo Liu et 
al.) to improve efficiency and precision. Innovative approaches 
like IFRVFL (Malik et al.) proficiently manage noise and 
outliers, while 3D-DenseNets (Shuqiang Wang et al.) and 
hybrid frameworks integrating ResNet and XGBoost (Reddy et 
al.) emphasize early identification of MCI categorization. 
Transfer Learning (Pallawi et al.) attains high precision by data 
augmentation, whereas graph-based fusion (Rui Guo et al.) 
amalgamates multi-modal data to enhance accuracy. The 
SDTree model (Xiaowei Yu et al.) provides a comprehensive 
framework for predicting AD development. 

The research highlights many constraints in the 
categorization systems used for AD in the literature. Hongbo 
Xu et al. [24] and Pallawi et al. [29] demonstrate how dataset 
variety limits model generalizability to larger populations. In 
approaches like Malik et al. [26], Shuqiang Wang et al. [27], 
and Rui Guo et al. [30], computational complexity is a major 
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issue. Dense networks, fuzzy logic systems, and graph-based 
solutions need plenty of resources, limiting scalability. Many 
researches, such as Bo Liu et al. [25] and Pallawi et al. [29], 
focus on specific brain areas or use single-modal data, missing 
the opportunity to increase accuracy via multi-modal 
integration. The techniques of Reddy et al. [28] and Xiaowei 
Yu et al. [31] enhance architectural complexity, which reduces 
interpretability and hinders clinical applicability. Finally, 
research like Bo Liu et al. [25] and Malik et al. [26] lack 
rigorous evaluations compared to state-of-the-art 
methodologies or real-world clinical datasets, leaving practical 
robustness untested. 

Conventional methods often need the extraction of features 
by hand, a process that may time-consuming and potentially 
overlook crucial attributes. In addition, current models may 
have difficulties in dealing with noise, resulting in a decrease 
in classification accuracy. Additionally, there are difficulties in 
accurately detecting the initial phases of AD and differentiating 
them between various phases of cognitive decline. The issue of 
inadequate data might ultimately restrict the capacity to train 
resilient models, hence affecting their overall effectiveness. 

To overcome these limitations, the researchers in this study 
have developed methods like DAG CNNs for automatically 
extract features from the SMRI images, by avoiding the need 
for manual feature extraction and capturing more relevant 
characteristics. Advanced architectures like DAG CNNs 
enhance accuracy by better analyzing complex data, such as 
brain MRI scans. This research also used data augmentation 
methods to overcome the problem of inadequate data by 
artificially expanding the amount and variety of the dataset. 
This results in improved training and more efficient models. 
The hybrid models used in this study combine the strengths of 
multiple methods like DL for extracting the significant features 
and ML techniques for performing classification to further 
improve classification performance. 

A. Novelty 

The proposed methodology is innovative in integrating 
DAG 3D-CNN with SVM to facilitate the prompt detection of 
AD, utilizing the advantages of both methodologies." Although 
CNNs are proficient in feature extraction, SVM classifiers are 

recognized for their resilience in managing small sample data 
and high-dimensional feature spaces, which are typical issues 
in medical imaging datasets. This hybrid method offers a 
distinctive means to enhance classification efficacy in AD 
diagnosis. 

The DAG architecture for CNNs facilitates a versatile route 
for feature propagation and allows for more profound feature 
investigation, circumventing the vanishing gradient issue. Our 
method provides a customized solution to the unique problems 
of volumetric medical data by building the architecture 
specifically for these issues, distinguishing it from 
conventional CNN architectures used in analogous 
applications. 

The researchers have chosen DAG-CNN architecture 
because to its capacity for parallel processing of features across 
several scales, enhancing the network's proficiency in 
capturing the spatial hierarchies present in 3D medical pictures. 
This structure enhances generalization by mitigating 
overfitting, since the modular architecture allows for selective 
feature aggregation. 

III. METHODOLOGY 

Fig. 1 demonstrates a system specifically developed for the 
prompt identification and categorization of AD. This approach 
uses CNN and SVM. The method starts by obtaining the 
brain's SMRI data from ADNI, and KAGGLE datasets. These 
images are essential for discerning structural alterations 
corresponding to AD since they record intricate details about 
the brain's composition. Following that, the SMRI images go 
through pre-processing, a crucial stage that employs methods 
including skull stripping, normalization, shrinking, and noise 
reduction. Pre-processing ensures that the pictures are 
normalized, strengthening key characteristics while decreasing 
noise and unnecessary details, thereby improving the accuracy 
of further investigations. Once the data has been pre-processed, 
it is then split into two distinct training and validation sets. 
These two datasets are then used for training and assessing 
efficacy of the model, during the training process, therefore 
mitigating overfitting and ensuring the model's ability to 
effectively generalize to novel data. 

 

Fig. 1. Block diagram for the methodology. 
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The crux of this method is in the development of a CNN 
network, which excels at processing volumetric structural MRI 
data with great efficiency. The CNN automatically acquires the 
ability to extract spatial characteristics from brain images that 
are symptomatic of AD.  At first, a 2D-CNN was developed to 
analyze the 2D slices of the MRI images. The 2D-CNN model 
has many advantages, namely its simplicity and decreased 
computational expenses. This is due to its ability to evaluate 
images on a per-slice basis, resulting in faster training and 
lower resource requirements. The implementation of the 2D-
CNN model is straightforward, and the training periods are 
quicker because of the reduced complexity in processing 2D 
images. However, the 2D-CNN approach does have significant 
drawbacks. 2D CNNs evaluate each slice independently, which 
might result in the loss of crucial spatial connections between 
slices and the omission of significant characteristics necessary 
for precise Alzheimer's diagnosis. Due to the constraints of 2D-
CNNs in accurately representing the whole 3D architecture of 
the brain, it became imperative to switch to a 3D-CNN. The 
3D-CNN model enables the analysis of the whole volumetric 
SMRI data while maintaining the spatial connections between 
various brain areas. This comprehensive approach allows the 
model to better detect minor alterations in structure that are 
linked to the early stages of AD, resulting in enhanced 
accuracy in categorization. The use of a 3D model aligns with 
the objective of achieving improved accuracy and reliability in 
the early detection of AD, making it a vital step in our research. 
Once the network completes the image processing, it proceeds 
to extract the significant features from the fully connected 
layers of the CNN. These layers function as classifiers inside 
the network and integrates the features collected into a 
condensed representation. Subsequently, this representation is 
used to train an SVM model, which categorizes the data into 
distinct classes, such as AD or normal cognitive. The SVM 
classifier is used because of its resilience in distinguishing 
classes in spaces with a large number of dimensions, hence 
enhancing its effectiveness as a classifier when paired with the 
characteristics retrieved by the CNN. 

Finally, the efficacy of the integrated CNN with SVM 
model is assessed by measuring parameters such as accuracy, 
precision, recall, and F1 score. This assessment is vital in 
guaranteeing that the suggested model is not just accurate but 
also reliable and has the ability to extrapolate well to new, 
unfamiliar data. In summary, our technique successfully 
integrates DL for automated extraction of features using 
traditional ML for classifiers, resulting in an efficient method 
for the prompt identification of dementia. Such detection is 
essential for immediate attention and treatment. 

A. SMRI Datasets 

This research used structural MRI images received from the 
ADNI and KAGGLE databases. The ADNI consists of four 
distinct phases, including ADNI 1, ADNI GO, ADNI2, and 
ADNI4. Each phase has its specific aims and cognitive stages. 
This study used structural MRI images. Fig. 2(a) depicts the 
AD dataset utilized in this study. Among the 455 participants 
in the ADNI study, there were 97 AD subjects, 78 early MCI 
subjects, 148 LMCI subjects, and 135 subjects with normal 
cognition (NC). 

 
(a) 

 
(b) 

Fig. 2. (a) ADNI data set, (b) KAGGLE data set. 

The dataset obtained from Kaggle shown in Fig. 2(b) and 
has four different classes: NC, Early EMCI, Late MCI, and 
AD. The dataset is divided into separate training and test sets. 
The training dataset composed of 5120 photos, whereas the test 
dataset has 1279 images. The NC class contains the largest 
quantity of photos, consisting of 2560 for training and 640 for 
assessment. The EMCI dataset consists of 1791 pictures for 
training and 448 images for testing, whereas the AD dataset 
comprises 717 training images and 179 test images. The LMCI 
class has the lowest number of pictures, with a total of 52 for 
training and 12 for assessment. 

B. Preprocessing and Segmentation of SMRI Images 

Fig. 3 depicts the methodological steps employed for the 
early identification of AD using the data samples acquired 
from the ADNI and KAGGLE. The collected images are in 
NifTi (.nii) format. The N4ITK bias correction is first 
performed to eliminate low-frequency noise and the resulted 
image are shown in Fig. 3(a). Subsequently, the raw volumes 
are subjected to pre-processing through the Statistical 
Parametric Mapping [45] toolbox in MATLAB. During the 
pre-processing stage of SPM, the images were co-registered 
with the ICBM-152 template to align them to the Montreal 
Neurological Institute coordinate system (MNI) and 
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additionally, the images are normalized, skull stripped (Fig. 3b) 
and categorized into white, gray matter, and cerebral spinal 
fluid as shown in Fig. 3(c). Hippodeep [44] tool is used for 
segmenting left and right hippocampal and shown in Fig. 3(d). 
Subsequently, the images were resized to dimensions of 
256*256*128. The pre-processed data is separated into two 
distinct sets: training and validation. The proposed 3D-CNN is 
the trained and validated via these two datasets. The trained 
CNN is utilized to extract important characteristics from the 
input SMRI data. These characteristics obtained from the 
flattening layer of CNN are further partitioned into validation 
and training features, which are then utilized for both training 
and testing of the suggested DAG based 3D-CNN with SVM 
model. 

 

Fig. 3. (a) N4 bias correction, (b) Skull stripping, (c) Segmented WM, GM, 

& CSF, (d) Segmented Hippo. 

C. Design and Development of DAG Based 2D/3D-CNN 

The CNN and ML classifiers are often used AI tools for the 
identification and categorization of Alzheimer’s, and their 
performance largely relies on the features extracted and 
analysed. Traditionally, researchers manually extract certain 
characteristics, which are then incorporated into ML classifiers 
for categorization. This research study employs a DAG based 
2D/3D layered CNN model as shown in Fig. 4 for 
automatically extracting characteristics from SMRI data, 
leveraging their strength in handling substantial volumes of 
visual information. The architecture remains the same for both 
2D and 3D except that the layers are made to handle 2D and 
3D data respectively. This variant is brought in to observe the 
magnitude of change in the classifier performance metrics, 
which 3D layers offers compared to the 2D layers in the 
suggested CNN framework. The proposed CNN framework 
uses multiple paths and concatenation layers to learn, extract, 
and combine diverse feature representations, improving the 

model's proficiency in appropriately classifying AD. The core 
structure of the proposed CNN framework comprises of four 
distinct layers: convolutional, normalization, pooling, and 
activation. The proposed model employs a total of six 
convolutional blocks, each composed of four layers, namely 
convolutional layer (CL), batch normalization (BN), max 
pooling (MP), and leakyRelu (LR) activation layer. The 
convolutional layer applies 3*3*3 kernel filtering to extract 
various characteristics from the input SMRI images, 
subsequently accompanied by a LeakyReLU activation, batch 
normalization, and max pooling to extract and condense the 
significant features from SMRI images effectively. These 
extracted features by pooling layer are fed to ML classifier. 
The pooling layer decreases the spatial dimensions of the 
feature maps, effectively decreasing the trainable variables and 
controlling overfitting. The BN layer helps to stabilize and 
speed up training by normalizing the inputs to the next layer. 
After passing through the series of convolutional blocks, the 
feature maps are transformed into a one-dimensional vector 
before being inputted into fully connected layers for final 
classification. Prior to feeding the data into the CNN, MRI 
images are pre-processed, resized to dimensions of 
256x256x128, and normalized. The DAG based 3D-CNN was 
trained for 10 epochs with a learning rate of 0.001, using the 
Adam optimizer with categorical cross-entropy loss, employing 
a batch size of 8. The dataset's class imbalance was addressed 
by the use of class weights. 

 

Fig. 4. Proposed DAG-CNN architecture. 
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1) Advantages of DAG-CNN over other architectures: The 

DAG structure enhances computational performance and 

minimizes redundancy in feature extraction compared to 

conventional CNN systems. In contrast to ResNets or 

DenseNets, which depend on unique skip connections, the 

DAG architecture offers a more universal approach for 

adaptive feature flow, especially advantageous for 3D data 

where spatial information is essential. 

The integration of CNN and SVM arises from the use of 
their complementing advantages: CNNs excel at extracting 
deep, hierarchical features, whilst SVMs are particularly 
proficient in classification problems involving tiny or 
unbalanced datasets. This is especially pertinent in the early 
identification of AD where the quantity of the information 
often poses a constraint. 

The CNN-SVM combination offers superior feature 
separation compared to end-to-end CNN classifiers, since 
SVM emphasizes optimizing the separation among classes in a 
high-dimensional space. This hybrid method guarantees that 
the retrieved characteristics are both deep and properly 
distinguished for classification, resulting in enhanced 
sensitivity and specificity. 

D. Framework of the Proposed DAG Based 3D-CNN with 

SVM Classifier 

The primary aim of this investigation is to improve upon 
existing approaches by modifying the architectures of CNNs to 
extract critical features and ML classifiers for accurate AD 
categorization. The proposed architecture shown in Fig. 5 has 
high capacity to produce innovative solutions that can 
efficiently detect Alzheimer's in its initial stages. 

The use of hybrid DAG 3D-CNN with an SVM classifier 
has been demonstrated to be a very efficient methodology for a 
diverse array of classification jobs. The superiority of the DAG 
3D-CNN with SVM lies in its hybrid nature. The proposed 
model by combining a CNN for characteristics extraction with 
an SVM for classification leverages the strengths of both 
techniques. The enhancement of classification performance, 
interpretability, and generalization ability is accomplished with 
the resilience of SVMs and the feature extraction capabilities 
of CNNs. Support Vector Machines (SVMs) use non-linear 
mechanisms and flexibility to enhance decision boundaries and 
accuracy, CNNs have a remarkable ability to obtain 
hierarchical and discriminative features from raw input data, 
which are crucial for identifying pathological changes 
associated with AD. Furthermore, the classifier incorporates 
the regularization properties of Support Vector Machines 
(SVMs), ensuring robustness against overfitting. The method 
shown in Fig. 5 depicts the flow of data through a hybrid DL 
and ML model for Alzheimer’s classification. 

The SVM is a popularly used ML methodology utilized for 
categorization tasks. The methodology is specifically 
formulated to ascertain the hyperplane that optimizes the 
degree of differentiation between observations that correspond 
to different classifications. The mathematical formulation of 
the decision function for Support Vector Machines (SVM) is: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤. 𝑥 + 𝑏)  (1) 

 

Fig. 5. Proposed DAG-CNN with SVM classifier. 

where b is the bias factor, the weight vector is w, an input 
feature vector is x, and the sign function is denoted by sign(.). 
The distance between the nearest data point xi and the 
hyperplane known as support vectors is derived using the 
below Eq. (2). 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖, ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒) =
|𝑤.𝑥𝑖+𝑏|

∥w
∥ (2) 

∥ w ∥= (w12 +  w22±. . . . . . . . . +wn^2)^1/2(3) 

where b is the bias factor, the weight vector is w, and ∥w∥ 
is the magnitude or Euclidean norm of weight vector and 
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calculated as shown in Eq. (3), an input feature vector in 𝑛-
dimensional space is xi. The margin is inversely proportional 
to the size of w. The main objective of SVM is to ascertain the 
ideal values of w and b coefficients that enable the attainment 
of the largest margin. The ideal values for the weight vector w 
and bias b are obtained by addressing an optimization problem 
that tries to increase the margin between classes while 
decreasing misclassification errors. In case of data that is not 
linearly separable, Support Vector Machines (SVM) include a 
slack variable xi for each data point. This variable allows for a 
certain degree of misclassification, striking a balance between 
maximizing the margin and minimizing errors. This results in 
an optimization problem in which the goal is to minimize the 
expression as shown in Eq. (3). 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑖, ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒) =
1

2
∥ w ∥2+ 𝐶. Σ xi  (4) 

where C determines the balance between the size of the 
margin and the penalty for misclassification. 

IV. RESULTS AND DISCUSSION 

Timely identification is crucial in effectively controlling 
and perhaps slowing down the progression of Alzheimer’s 
dementia, making it an essential area of investigation. Hence 
the primary objective of this current study is to develop a 
highly efficient hybrid AI model with the combination of 
DAG-CNN and SVM classifier that can identify AD by 
analyzing SMRI data. 

Both Classification and early detection of AD are 
accomplished by using the proposed DAG CNN and SVM 
framework, developed using MATLAB 2022b. 80% of pre-
processed images were utilized for training and 20% for 
validation. 

AD may be classified as four different phases: Preclinical 
(Normal Cognitive), Early MCI, Late MCI, and AD. This 
research study attempted on three distinct binary classifications 
under three case studies. 

 Case 1: EMCI Vs subjects with Normal Cognition 
(NC). This distinction is of utmost importance in 
detection of subjects in the initial stages of AD.  

 Case 2: EMCI with LMCI  

 Case 3: LMCI with AD 

Initially, this study involved in extracting the volumetric 
features manually using the ITK-SNAP[43] cloud-based 
application, specifically focused on SMRI images. Around 22 
volumetric characteristics were extracted from specific regions 
inside the hippocampus. These manually extracted features 
were fed as input for a SVM classifier,  which yeilded an 
accuracy of 88.4% for discriminating EMCI with Normal 
Cognitive (case 1 scenario), which triggered the use of CNN-
based automated feature extraction to achieve improved 
accuracy. Table I depicts the performance of an SVM model 
achieved for 22 manually extracted volumetric features shown 
in Table II from hippocampal subfields. The performance 
metrics are listed for SVM classifier. 

Next, a 2D-CNN was designed and used to analyze 2D 
slices of the SMRI images available in the ADNI and 

KAGGLE repository. On the Kaggle dataset, the 2D-CNN 
module without an SVM classifier demonstrated a 
classification accuracy of 90.17% in differentiating between 
NC and EMCI, 98.98% in differentiating between NC and AD, 
and 90.43% in differentiating between EMCI and LMCI. The 
accuracy in distinguishing between NC and EMCI, AD and 
NC, and EMCI and LMCI using the 2D-CNN architecture 
without an SVM classifier were 94.20%, 89.97%, and 82.17% 
respectively, for the ADNI dataset. The suggested DAG 2D-
CNN without the SVM classifier model's efficacy metrics for 
the Kaggle and ADNI datas+ets are presented in Table III. 

However, since the accuracy was not optimal for all cases, 
the proposed CNN architecture with 2D layers was converted 
into 3D layers which is capable of processing the complete 
volumetric SMRI data and capturing the spatial connections 
inside the brain's structure to enhance the model’s capability to 
accurately diagnose the Alzheimer's in early-stage. The 
suggested DAG 3D-CNN without the SVM classifier model's 
efficacy metrics for the ADNI dataset are presented in 
Table IV. The accuracy in distinguishing between NC and 
EMCI, AD and NC, and EMCI and LMCI using the 3D-CNN 
architecture without an SVM classifier were 96.86%, 90.45%, 
and 96.67% respectively, for the ADNI dataset. 

The proposed DAG 3D-CNN with SVM classifier 
outperforms the 2D and 3D-CNN modules. With the ADNI 
dataset, the hybrid DAG 3D-CNN with the SVM model is 
97.67 per cent accurate. Tables V and VI provide the 
performance outcomes of the hybrid DAG 3D-CNN with SVM 
classifier and the comparison of SVM model, 2D-CNN for 
ADNI and KAGGLE datasets & 3D-CNN with and without 
SVM models, respectively, to identify the Alzheimer's at an 
initial stage. The comparative analysis of different models and 
their performance for the ADNI and KAGGLE dataset is 
shown in Table VI. This evaluation considered five regions of 
interest (ROIs). 

TABLE I.  PERFORMANCE EVALUATION OF THE SVM CLASSIFIER FOR 

MANUALLY EXTRACTED VOLUMETRIC FEATURES OF HIPPOCAMPAL 

SUBFIELDS USING ITK-SNAP FOR ADNI DATASET 

Classification Accuracy Precision Sensitivity F1 Score 

NC with EMCI 88.40 86.60 94.00 0.90 

EMCI with LMCI 80.40 80.70 80.40 0.80 

LMCI with AD 86.00 94.00 78.00 0.85 

Table I and Fig. 6 displays the efficacy metrics of an SVM 
classifier used for categorizing various phases of AD. The 
classification is determined by analysing 22 volumetric 
characteristics extracted from hippocampus subfields using the 
ITK-SNAP[43] tool, which are depicted in Table II. The 
classifier achieved 88.40% accuracy in differentiating EMCI 
from NC. The classification model achieved a precision of 
86.60%, a sensitivity of 94.00%, and an F1 score of 0.90. 
These findings demonstrate that the classification method is 
very successful in identifying Alzheimer's in its first stages. 
Nevertheless, although achieving satisfactory outcomes, the 
accuracy remains inferior to the findings reported in the 
research literature. Thus, to improve the precision and efficacy 
of prompt identification, our research study has shifted to 
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CNN-based automated feature extraction, yielding superior 
outcomes. 

 

Fig. 6. Performance metrics of SVM classifier. 

TABLE II.  VOLUMETRIC FEATURES EXTRACTED FROM THE 

HIPPOCAMPUS SUBFIELDS FOR EARLY DETECTION AND CLASSIFICATION 

FROM ADNI DATASET 

22 Volumetric Features extracted from the hippocampus subfields 

Sl. 

No. 
Left Hippo 

Sl. 

No. 
Right Hippo 

1 
Left CA1 (Corno Ammonis 

1) 
12 Right CA1 (Corno Ammonis 1) 

2 Left CA2  13 Right CA2 

3 Left CA3 14 Right CA3 

4 Left DG (Dentate Gyrus) 15 Right DG (Dentate Gyrus) 

5 Left Tail 16 Right Tail 

6 Left Sub (Subiculum) 17 Right Sub (Subiculum) 

7 Left Erc (Entorhinal Cortex) 18 Right Erc (Entorhinal Cortex) 

8 Left A35 19 Right A35 

9 Left A36 20 Right A36 

10 
Left Phc (Parahippocampal 

Cortex) 
21 

Right Phc (Parahippocampal 

Cortex) 

11 Left Cysts  22 Right Cysts  

The hippocampus has morphologically and functionally 
diverse subfields that differ in AD susceptibility. Early AD 
begins with tau buildup and neuronal loss in CA1.Though 
seldom studied, recent findings suggest CA2 role in social 
memory and pathological changes in AD. CA3 and Dentate 
Gyrus (DG) are Essential for pattern separation. structural 
changes may cause early cognitive impairment. The entorhinal 
cortex (ERC) and perirhinal cortex (PHC), which are crucial 
for hippocampal input and output, are among the first areas to 
atrophy in AD. Object recognition and memory encoding 
depend on the perirhinal cortex near the hippocampus. Since 
A35 and A36 allow hippocampus-cortical memory network 
connection, neurodegeneration in these regions corresponds 
with cognitive difficulties in early AD. Recent studies show 

that volumetric abnormalities in these regions suggest 
pathogenic processes like tau accumulation, and include them 
in the feature set improves sensitivity to early AD changes. 
Fluid-filled hippocampal cysts may suggest neurodegenerative 
processes including gliosis or vascular changes. Cystic 
changes, seldom seen in AD, may be linked to structural 
atrophy in nearby hippocampus subfields, improving 
hippocampal health assessment. 

TABLE III.  COMPARISON OF THE EFFICACY OF THE PROPOSED DAG 2D-
CNN CLASSIFIER ON THE ADNI AND KAGGLE DATASETS 

Classification dataset Accuracy Precision Sensitivity 
F1 

Score 

NC with EMCI 

adni 

94.20 96.43 91.80 0.94 

EMCI with 

LMCI 
82.13 97.63 65.87 0.79 

LMCI with AD 89.97 88.50 91.87 0.90 

NC with EMCI 

kaggle 

90.17 86.86 87.05 0.87 

EMCI with 

LMCI 
90.43 89.82 97.54 0.94 

LMCI with AD 98.98 98.97 100.00 0.99 

Table III presents a comparison of the efficiency of the 
proposed framework on two datasets, namely ADNI and 
Kaggle. The results are shown in Fig. 7(a) and 7(b).  The 
model is evaluated by measuring its performance metrics 
across three classification tasks: distinguishing EMCI from 
NC, LMCI from AD, and EMCI from LMCI. The model 
achieves high accuracy on both datasets for distinguishing 
EMCI from NC, with the ADNI dataset slightly outperforming 
the Kaggle dataset. The model shows very high accuracy and 
F1 score, especially on the Kaggle dataset, indicating excellent 
efficacy in differentiating LMCI from AD. The model 
performs the lowest on this classification for distinguishing 
EMCI from LMCI, particularly on the ADNI dataset, where 
sensitivity is much lower compared to the Kaggle dataset. 
Overall, the model demonstrates strong performance in 
distinguishing NC from AD, with somewhat lower 
performance for differentiating EMCI from LMCI 
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(b) 

Fig. 7. (a) Performance metrics of 2D-CNN for ADNI data (b) Performance 

metrics of 2D-CNN for Kaggle. 

TABLE IV.  PERFORMANCE OF PROPOSED HYBRID DIRECTED ACYCLIC 

GRAPH 3D-CNN CLASSIFIER FOR ADNI DATASET 

Classification Accuracy Precision Sensitivity F1 Score 

NC with EMCI 96.86 100 95.04 0.97 

EMCI with LMCI 90.45 94.42 90.50 0.92 

LMCI with AD 96.66 96.87 96.66 0.96 

Table IV shows the efficiency metrics of the suggested 
DAG 3D-CNN model for the ADNI dataset. The model 
demonstrates strong performance in distinguishing EMCI from 
NC and has achieved an accuracy of 96.86%. The model has 
remarkable performance, achieving perfect precision, a 
sensitivity of 95.04%, and an F1 Score of 0.97%. The model 
efficacy metrics are plotted and shown in Fig. 8. 

 

Fig. 8. Performance metrics of 3D-CNN. 

TABLE V.  PERFORMANCE OF PROPOSED HYBRID DIRECTED ACYCLIC 

GRAPH 3D-CNN WITH SVM CLASSIFIER FOR ADNI DATASET 

Classification Accuracy Precision Sensitivity F1 Score 

NC with EMCI 97.67 94.12 98.60 0.96 

EMCI with LMCI 98.33 96.86 96.86 0.96 

LMCI with AD 100 100 96.67 0.98 

Table V shows the efficiency metrics of the suggested 
DAG 3D-CNN with the SVM classifier model for the ADNI 
dataset. The model demonstrates strong performance in 

distinguishing EMCI from NC and has achieved an accuracy of 
97.67%. The model has remarkable performance, achieving 
perfect precision, a sensitivity of 98.60%, and an F1 Score of 
0.96%. The model efficacy metrics are plotted and shown in 
Fig. 9. 

 

Fig. 9. Performance metrics of 3D-CNN with SVM. 

TABLE VI.  COMPARATIVE ANALYSIS OF THE PROPOSED MODELS FOR 

EARLY DETECTION OF AD 

Method Accuracy Precision Sensitivity 
F1 

Score 

SVM with manually 

extracted features (ADNI) 
   88.40 86.60 94.00 0.90 

2D-CNN (Kaggle)    90.17 86.86 87.05 86.96 

2D-CNN (ADNI)    94.20 96.43 91.80 94.06 

DAG 3D-CNN (ADNI)    96.86 100 95.04 0.97 

DAG 3D-CNN with SVM 

(ADNI) 
   97.67 94.12 98.60 0.96 

Table VI displays the performance measures for five 
distinct models employed in the early identification and 
categorization of AD. An SVM classifier with manually 
extracted features achieved 88.40% accuracy in discriminating 
early MCI with normal cognitive. The 2D-CNN model 
achieved a 90.17% accuracy when trained on Kaggle data. 
However, when trained on ADNI data, the same model 
performed better, with an accuracy of 94.20%. The DAG 3D-
CNN model achieved a 96.86% accuracy when trained on 
ADNI data. The DAG 3D-CNN with SVM classifier surpassed 
all other models, with an accuracy of 97.67%. The five distinct 
model’s Accuracy values are plotted and shown in Fig. 10. 

 

Fig. 10. Performance metrics of the proposed models. 
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TABLE VII.  THE ACCURACY COMPARISON OF PROPOSED MODEL WITH 

VARIOUS ALGORITHMS FOR EARLY ALZHEIMER’S DISEASE DETECTION 

Ref. No. 
Dataset 

used 
Algorithms used Accuracy 

B. K. Choi et al. [32] 

Adni 

2D-CNN 78.1% 

M. Ghazal et al. [33] 
3D deeply supervised 

adaptable CNN 
93.2% 

S. Basaia et al. [34] DL and CNN 87.1% 

C. Feng et al. [35] 
3D-CNN & FSBi-

LSTM. 
86.36% 

Archana B et al. [36] CNN 95.82% 

R. Joshi et al. [37] Densenet-169 91.80% 

C. Kaur et al. [38] Random Forest 86.24% 

S. Samanta et al. [39] CNN 85.73% 

B. Kumar Yadav et al. 
[40] 

CNN 94.57% 

A. J. Nair et al. [41] VGG 90.34% 

F. Hajamohideen et al. 
[42] 

Siamese CNN 91.83%  

Proposed model  
SVM with manually 

extracted features 
88.40% 

Proposed model  Kaggle 2D-CNN 90.17% 

Proposed model  

Adni 

2D-CNN 94.20% 

Proposed model 3D-CNN with DAG 96.86% 

Proposed model  
3D-CNN with DAG 

and SVM classifier 
97.67% 

Table VII presents a comparison of the efficiency of several 
methods for the ADNI and Kaggle datasets. The suggested 
model, which used a 3D-CNN combined with an SVM 
classifier, produced an impressive accuracy of 97.67%, 
Additional models, such as 3D-CNN without SVM attained 
96.86% and those using 2D-CNNs, achieved high performance 
as well, with accuracies of 94.2% for ADNI and 90.17% for 
the Kaggle dataset respectively. The comparison clearly 
illustrates the better efficacy of the suggested approach, 
especially the DAG 3D-CNN with the SVM classifier, which 
attains the best accuracy of 97.67%. The performance metrics 
of various algorithms are plotted and shown in Fig. 10. 

A. Discussion 

This research aimed to create and assess sophisticated DL 
methodologies for the early identification of AD via SMRI 
datasets, employing both 2D and 3D CNN architectures in 
conjunction with an innovative integration of SVM classifiers. 
The suggested strategies shown substantial improvements in 
classification accuracy relative to current approaches in the 
literature. 

Numerous recent researches have used DL methodologies 
for the categorization of AD, resulting in differing degrees of 
efficacy. B. K. Choi et al. [32] used a 2D-CNN, attaining an 
accuracy of 78.1%, hence underscoring the constraints of 
conventional 2D convolutional techniques. Advanced models, 
such as the 3D deeply supervised adaptive CNN by M. Ghazal 
et al. [33], demonstrated an accuracy of 93.2%, while 
frameworks like FSBi-LSTM integrated with 3D-CNN by C. 
Feng et al. [35] attained 86.36% accuracy. 

The suggested 3D-CNN using a DAG architecture attained 
an accuracy of 96.86%, surpassing the majority of documented 
research. The integration with an SVM classifier enhanced 
performance to 97.67%, establishing a new standard in AD 
classification accuracy, exceeding prior benchmarks 
established by models such as Densenet-169 (91.80%) by R. 

Joshi et al. [37] and Siamese CNN (91.83%) by F. 
Hajamohideen et al. [42]. This notable improvement is due to 
the DAG architecture's capacity to capture complex spatial 
information in SMRI data and the SVM's effective decision 
boundary optimization. The results indicate the capability of 
automated systems to offer dependable assistance in clinical 
decision-making for the early identification of AD. 

B. Clinical Significance of the Findings 

1) Early diagnosis: Our approach, integrating 3D-CNN 

with SVM for the early identification of AD, facilitates 

diagnosis in its first stages, perhaps prior to the onset of 

clinically observable cognitive impairment. Early identification 

is essential for prompt interventions, such cognitive therapy or 

pharmaceutical treatments, which may decelerate illness 

development. 

2) Customized therapy: By pinpointing certain parts of the 

hippocampus afflicted in initial phases of AD, our approach 

may facilitate the development of individualized therapy 

techniques, focusing on the brain areas most severely impacted 

by the condition. 

3) Monitoring illness progression: The volumetric 

alterations in the hippocampus subfields may function as 

biomarkers for assessing illness progression over time, 

providing a non-invasive instrument for doctors to evaluate 

treatment effectiveness and disease trajectory. The 

methodology may be applicable. 

V. CONCLUSION 

This research work introduces a novel method for the 
timely identification of AD via Structural MRI images. The 
proposed strategy utilizes deep neural networks i.e. DAG 3D-
CNN for significant characteristic features extraction followed 
by SVM as a classifier. The model is trained and assessed by 
employing the Kaggle and ADNI datasets. For the Kaggle and 
ADNI datasets, the 2D-CNN module being evaluated offered 
an accuracy of 90.17% and 94.20%, 3D-CNN without SVM 
offered an accuracy of 96.86% and the hybrid 3D-CNN 
module with SVM classifier presented a superior accuracy of 
97.67% in detecting EMCI subjects, respectively. This proves 
that the hybrid framework is relatively good and suitable for 
early detection and classification for all three case studies dealt 
in this research work. The efficacy of the suggested DAG 3D-
CNN with SVM classifier technique in early Alzheimer's (AD) 
diagnosis shall be improved by training the network with 
additional clinical information, and by enhancing the number 
of ROIs used in the study. 

A. Limitations and Future Work 

This study, like other studies, has certain limitations that 
must be acknowledged. The sample size and insufficient 
demographic diversity may restrict the model's generalizability 
to wider groups. Subsequent research should use bigger and 
more heterogeneous datasets to corroborate the model's 
resilience across other demographics. Secondly, while this 
work used a 3D-CNN for SMRI data, the integration of other 
imaging modalities like PET and fMRI might significantly 
improve classification accuracy and diagnostic capabilities. 
Despite these constraints, this work establishes a significant 
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basis for enhancing automated detection techniques for AD and 
highlights critical avenues for further research. 

Future research areas include investigating multimodal 
fusion by integrating SMRI with other imaging techniques like 
PET and fMRI, so offering a more holistic perspective on AD 
pathology and enhancing model efficacy. Furthermore, using 
longitudinal research to observe temporal changes may 
facilitate the building of prediction models capable of both 
early detection of AD and monitoring its advancement. 
Incorporating clinical data, including cognitive scores and 
genetic information, might significantly improve the model's 
accuracy and personalization, allowing more customized 
treatment strategies for AD patients. Ultimately, exploring 
other DL methodologies, such attention processes or 
reinforcement learning, might enhance model efficacy in 
intricate neuroimaging tasks. 
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