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Abstract—Coastal monitoring is vital in environmental 

management, disaster mitigation, and addressing climate change 

impacts. Traditional methods are time-consuming and error-

prone, prompting the need for innovative systems. This study 

introduces the Coastal Video Monitoring System (CoViMos), a 

novel framework for real-time shoreline detection in tropical 

regions, specifically at Kedonganan Beach, Bali. The CoViMos 

framework utilizes advanced video monitoring and optimized 

morphological operations to address challenges such as 

environmental noise and dynamic shoreline behavior. Key 

innovations include Kapur’s entropy thresholding enhanced with 

the Grasshopper Optimization Algorithm (GOA) and structuring 

elements tailored to the beach’s unique features. Sensitivity 

analysis reveals that a structuring element size of five pixels offers 

optimal performance, balancing efficiency, and image fidelity. 

This configuration achieves peak values in quality metrics such as 

the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 

Index (SSIM), Complex Wavelet SSIM (CWSSIM), and Feature 

Similarity Index (FSIM) while minimizing Mean Squared Error 

(MSE) and reducing processing time. The results demonstrate 

significant improvements in shoreline detection accuracy, with 

PSNR increasing by 9.3%, SSIM by 1.4%, CWSSIM by 1.7%, and 

FSIM by 1.6%. Processing time decreased by 1.3%, emphasizing 

the system’s computational efficiency. These enhancements ensure 

more precise shoreline mapping, even in noisy and dynamic 

environments. 

Keywords—Coastline detection; image processing; Video 

Monitoring System (CoViMoS); morphological operations 

I. INTRODUCTION 

Coastal monitoring plays a critical role in environmental 
management, disaster preparedness, and marine resource 
protection [1], [2], [3]. Effective monitoring systems rely 
heavily on accurately detecting and analyzing coastal lines, 
which are inherently dynamic due to erosion, tidal variations, 
and climate change. Traditional methods of coastline monitoring 
involve manual interpretation of satellite images and field 
surveys, which are time-consuming, prone to human error, and 
less effective in real-time scenarios [4], [5]. These limitations 
necessitate automated and robust systems that leverage 
advanced image processing techniques for accurate coastline 
detection. 

Kedonganan Beach in Bali is a complex and dynamic 
ecosystem shaped by natural forces like tides, waves, sediment 
deposition, and human activities, including tourism, fishing, and 
urban development. Effective shoreline detection and 
monitoring are critical for sustainable coastal management, 

disaster mitigation, and environmental preservation. However, 
accurate shoreline detection presents significant challenges due 
to the dynamic and irregular nature of tropical coastlines, 
ecological noise (e.g., glare, wave foam, or debris), and the 
limitations of existing image processing techniques [6], [7]. 
Addressing these challenges requires an innovative and adaptive 
approach that can handle the unique complexities of coastal 
environments. 

To overcome these challenges, this research introduces a 
novel framework called the Coastal Video Monitoring System 
(CoViMos), specifically designed to monitor and analyze 
shoreline dynamics in tropical coastal areas. The CoViMos 
framework utilizes video monitoring as its foundation, enabling 
continuous visual data capture over time. Unlike traditional 
static image-based approaches, CoViMos offers dynamic and 
real-time insights into shoreline behavior, making it particularly 
useful for understanding the effects of seasonal changes, storm 
events, and anthropogenic activities on the shoreline. This 
framework serves as the backbone of the methodology, 
facilitating the acquisition, preprocessing, and segmentation of 
coastal imagery to detect and map the shoreline accurately. 

Recent advancements in image processing have focused on 
enhancing feature extraction using techniques like edge 
detection, segmentation, and morphological operations [8], [9], 
[10]. The Canny Edge Detector, for instance, is widely 
recognized for its ability to detect edges with minimal noise. 
Still, its effectiveness diminishes in noisy and low-contrast 
environments common in coastal imagery. Morphological 
operations, particularly when utilizing structuring elements, 
have shown promise in addressing these challenges by refining 
edges, enhancing feature continuity, and suppressing noise. 
However, existing research primarily focuses on static image 
datasets, leaving a gap in the context of real-time video 
monitoring systems for dynamic coastal environments. 
Additionally, there is limited exploration of optimal structuring 
element configurations, such as size and shape, to balance signal 
quality, structural similarity, and computational efficiency. 

The post-segmentation process in this study plays a pivotal 
role in refining the results obtained from CoViMos. 
Segmentation isolates the shoreline from other features in 
coastal imagery, such as wave crests, foam, and reflections, 
which can often distort detection accuracy. Following the 
segmentation process, post-processing techniques are applied to 
clean up noise and enhance the delineation of the shoreline 
boundary. This step ensures that the detected shoreline 
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accurately represents the true physical boundary between land 
and water, even under challenging conditions like high tidal 
activity or environmental noise. 

Studies by Kaur and Singh [11] demonstrate the potential of 
structuring elements in improving the Peak Signal-to-Noise 
Ratio (PSNR) and Structural Similarity Index (SSIM). 
However, their focus has been largely theoretical, lacking 
practical application to real-world dynamic systems like 
coastline monitoring. This research addresses these gaps by 
integrating structuring element morphological operations into a 
real-time video monitoring framework and conducting a 
comprehensive sensitivity analysis of structuring element 
configurations. 

A major innovation of this research lies in enhancing 
morphological operations during the post-segmentation process. 
Morphological operations, such as dilation and erosion, are 
widely used in image processing to refine object boundaries 
[12], [13], [14]. However, traditional approaches often rely on 
generic structural elements, such as rectangular or circular 
shapes, which are inadequate for capturing tropical shorelines' 
irregular and dynamic patterns. In this study, a tailored structural 
element morphology is developed to address these limitations. 
These structural elements are designed based on the specific 
characteristics of Kedonganan Beach, considering the curvature 
of waves, sedimentary features, vegetation interference, and 
other coastal-specific patterns. By optimizing the shape, size, 
and orientation of the structural elements, the proposed 
methodology significantly improves the accuracy of 
morphological operations, enabling more precise shoreline 
detection. 

The CoViMos framework, combined with optimized post-
segmentation processes and advanced structural element 
morphology, offers a comprehensive solution to the challenges 
of shoreline detection in tropical coastal environments. This 
research's contribution lies in its ability to enhance the 
robustness and precision of shoreline mapping, even in the 
presence of high environmental variability and noise. 
Furthermore, the novelty of the tailored structural elements 
provides a scalable approach that can be adapted to other coastal 
regions with similar complexities. 

By addressing existing gaps in traditional shoreline detection 
methods, this study advances the state of the art in coastal 
monitoring technologies and provides practical benefits for 
coastal management. The insights derived from the improved 
shoreline detection process can be used to support decision-
making in areas such as erosion control, habitat conservation, 
and disaster risk reduction. Ultimately, integrating the CoViMos 
framework and innovations in morphological operations will 
contribute to developing a reliable and adaptive tool for 
sustainable coastal management, focusing on tropical regions 
like Kedonganan Beach. 

II. RESEARCH METHODS 

A. Study Area 

Kedonganan Beach, located in southern Bali, Indonesia, is a 
renowned coastal area known for its pristine beauty, vibrant 
seafood market, and traditional fishing activities. The beach, 
part of Bali's western coastline along the Indian Ocean, holds 

significant cultural and economic importance due to its role as a 
tourist hotspot and a hub for local livelihoods. Its sandy shores, 
shallow waters, and adjacent coastal vegetation make it a 
dynamic environment influenced by natural processes like tides, 
wave actions, seasonal weather patterns, and human activities 
such as urban development and tourism infrastructure. 

Research on coastline detection at Kedonganan Beach is 
crucial for several reasons. The area is prone to coastal erosion 
and accretion, and understanding these changes is vital for 
sustainable coastal management. Accurate mapping of the 
coastline supports the preservation of the beach’s aesthetic 
appeal, which is essential for tourism, and helps ensure the 
stability of local fishing activities. 

 

Fig. 1. Study area. 

B. Research Data and Tools 

The dataset used in this study is derived from camera video 
monitoring data captured in the Kedonganan tower, as seen in 
Fig. 1. The time-exposure method converts the video data into 
images using MATLAB. The camera's specifications are in 
Table I. 

TABLE I. CAMERA SPECIFICATION 

Specifications 

Model CS-EB8 (3MP,4GA) 

Lens 
Viewing angle: 100° (Diagonal), 83° 

(Horizontal), 44° (Vertical) 

Max Resolution 2304 x 1296 

Frame Rate 
Max. 15fps; Self-Adaptive during network 

transmission 

Video Compression H.265 / H.264 
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C. Coastline Video Monitoring System Framework 

(CoViMoS) 

The CoViMos framework (Fig. 2) begins with acquiring 
coastal video footage, a widely used tool for shoreline 
monitoring due to its ability to capture temporal changes in 
shoreline position [15]. Coastal videos provide continuous 
spatial coverage and are suitable for extracting shoreline 
positions in dynamic coastal environments [16]. The video 
frames are pre-processed to generate composite images, such as 
time-averaged (Timex) images, that minimize noise from 
transient waves. 

 
Fig. 2. CoViMos framework. 

1) Pre-Segmentation: The video frames are processed in 

this phase to improve image quality and align them with real-

world spatial references. Timex images are generated to create 

a stable representation of coastal features, removing the effects 

of wave activity. Camera calibration ensures geometric 

accuracy by correcting lens distortions, while image correction 

adjusts brightness, contrast, and noise for improved clarity. 

Lastly, image georectification aligns the image with geographic 

coordinates, enabling precise spatial analysis [15]. 

2) Segmentation: Segmentation identifies the shoreline by 

separating the foreground (shoreline) and background (sea or 

land). Kapur's entropy-based thresholding is widely used in 

image processing, as it maximizes inter-class variance based on 

pixel intensity distributions [17], [18], [19]. The Grasshopper 

Optimization Algorithm (GOA) is employed to enhance 

threshold optimization. GOA is inspired by swarm intelligence 

and has demonstrated robust performance in solving complex 

optimization problems in image processing [20], [21], [22]. 

This step ensures accurate shoreline delineation by optimizing 

the thresholds derived from Kapur's method. 

3) Post-Segmentation: Post-segmentation refines the 

results by applying advanced image processing techniques. 

Binarization converts the segmented image into a binary format 

for clarity. Morphological operations, such as dilation, fill gaps 

and enhance connectivity in the segmented shoreline. The 

Canny edge detection algorithm detects firm edges, often 

indicative of shoreline boundaries [23], [24], [25]. 

Additionally, the Region of Interest (ROI) is defined as 

focusing on areas where shoreline features are most prominent, 

reducing noise from irrelevant regions. 

4) Shoreline extraction: The final shoreline is extracted by 

combining the outputs from segmentation and post-

segmentation. Binary and morphology-processed images 

ensure a well-defined shoreline, while edge detection sharpens 

the boundary. The extracted shoreline can be visually validated 

and used for further analysis by overlaying the ROI on the 

original image. 

5) Enhancement of coastline video monitoring system 

Framework Using Structuring Element Morphological 

Operations. 

Morphological operations, such as dilation, are applied to 
the binary image to refine its features. Dilation, which uses a 
structuring element (SE), expands the boundaries of foreground 
objects, bridging gaps and filling small holes. This process is 
beneficial for connecting fragmented coastline features that 
may arise due to noise or irregularities in the segmented image. 
Devkota et al. [26] emphasize that morphological operations 
enhance the shape and structure of binary objects in image 
analysis. By using an appropriate SE, dilation ensures that the 
coastline features are continuous and prominent, enabling more 
accurate detection in subsequent steps (Fig. 3). 

 
Fig. 3. Flowchart (Coastline features). 

Enhancing coastline video monitoring systems using 
structuring element morphological operations offers several 
benefits, particularly for improving detection accuracy and 
handling complex environments. These operations, such as 
dilation, erosion, and the morphological gradient, refine image 
edges and contours by removing noise, filling gaps, and 
enhancing the continuity of detected lines. This is especially 
crucial in coastal settings where irregular patterns arise due to 
tides, vegetation, and human activities. Moreover, the 
lightweight computational nature of morphological operations 
makes them suitable for real-time processing, enabling dynamic 
monitoring of changing coastal conditions. These operations 
ensure more precise and reliable line detection by reducing 
environmental noise, such as reflections from water surfaces or 
shadows. They can also be effectively integrated with advanced 
image processing techniques, like edge detection algorithms 
(e.g., Sobel, Canny) and machine learning models, to enhance 
their performance further [27], [28]. Scientific literature 
highlights the benefits of morphological operations in edge 
detection and image analysis. 

D. Performance Analysis of Coastline Video Monitoring 

Systems 

The Performance Analysis of Coastline Video Monitoring 
Systems involves evaluating the system's ability to accurately 
detect shorelines and assess video quality through several key 
performance metrics. The Peak Signal-to-Noise Ratio (PSNR) 
measures the quality of the detected shoreline by comparing the 
detected video to the ground truth, where higher PSNR values 
indicate less noise and better preservation of the original 
shoreline. The Structural Similarity Index (SSIM) provides a 
more perceptually accurate measure of image quality by 
assessing the similarity in structural elements such as luminance, 
contrast, and texture between the detected and ground truth 
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images. For further accuracy, the Complex Wavelet SSIM (CW-
SSIM) incorporates wavelet transforms, making it robust against 
small distortions and shifts in video frames, allowing for a more 
detailed evaluation of shoreline detection. The Feature 
Similarity Index Measure (FSIM) also focuses on low-level 
image features like phase congruency and gradient magnitude, 
offering an in-depth analysis of how well the system preserves 
critical shoreline features. Lastly, the Execution Time metric 
assesses the system's processing speed, which is crucial for 
applications requiring real-time or near-real-time performance. 

PSNR measures the ratio between a signal's maximum 
possible power and noise's power. Higher PSNR indicates better 
quality. PSNR equation is shown in Eq. (1). 

𝑃𝑆𝑁𝑅 = 10 − log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)

Where: 

● MAX is the maximum pixel intensity value (e.g., 255 for 
8-bit images). 

● MSE is the Mean Squared Error between the detected 
and ground truth shorelines. The MSE equation is shown 
in Eq. (2). 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑁
𝑖=1   

Xi and Yi are pixel intensities at location in the detected and 
ground truth images. 

FSIM assesses similarity based on low-level features like 
phase congruency (PC) and gradient magnitude (GM). FSIM 
equation shown in Eq. (3). 

𝐹𝑆𝐼𝑀 = (𝑥, 𝑦) =
∑ 𝑃𝐶𝑖𝑖  .  𝑆𝐺𝑀(𝑥𝑖,𝑦𝑖)

∑ 𝑃𝐶𝑖𝑖


Where: 

● ∑ 𝑃𝐶𝑖𝑖  Is phase congruency at pixel i. 

● 𝑆𝐺𝑀(𝑥𝑖 , 𝑦𝑖) Is gradient magnitude similarity at pixel i. 

SSIM measures the structural similarity between two 
images. It is defined as Eq. (4). 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)


Where: 

● 𝜇𝑥, 𝜇𝑦 is the mean intensities of x and y. 

● 𝜎𝑥
2, 𝜎𝑦

2 is variances of x and y. 

● 𝜎𝑥𝑦 is covariance of x and y. 

● 𝐶1, 𝐶2are small constants to stabilize the division. 

CW-SSIM compares two images in the wavelet domain, 
providing robustness to small translations and distortions. The 
equation is shown in Eq. (5). 

𝐶𝑊 − 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
|∑ 𝑥𝑦 .�̅��̅�𝑘 |

√∑ |𝑥𝑘|2
𝑘 .∑ |𝑦𝑘|2

𝑘
        (5) 

Where: 

● 𝑥𝑦 , 𝑦𝑘 Are complex wavelet coefficients of the two 

images 

● �̅��̅� Is conjugate of 𝑦𝑘  

III. RESULT AND DISCUSSION 

A. Sensitivity Analysis in Structure Element Morphology 

Operation 

Sensitivity analysis aims to evaluate how variations in 
specific features of the structuring element by pixel 
configuration changes impact morphological operations' 
outcomes. This process seeks to assess robustness by comparing 
the performance of the morphological operation under various 
configurations across multiple images. For this analysis, five 
trials were conducted using structuring elements of five different 
line lengths that are 2, 4, 5, 10, 15. 

1) Peak Signal-to-Noise Ratio (PSNR): Fig. 4 shows the 

relationship between Peak Signal-to-Noise Ratio (PSNR) and 

pixel values, showcasing a decline in PSNR as pixel values 

increase. PSNR, commonly measured in decibels (dB), is a 

standard metric used to evaluate the quality of image 

reconstruction or compression by quantifying the similarity 

between an original and a distorted image. Higher PSNR values 

typically indicate better image quality. According to the data 

presented, the PSNR reaches its maximum value of 27.0245 dB 

at pixel 5, while the lowest value, 21.9970 dB, occurs at pixel 

20. This trend aligns with findings in the literature, where an 

increase in pixel distortion or noise levels is often associated 

with a decline in PSNR, as documented by Elat et al. [29]. Such 

behavior highlights the sensitivity of PSNR to variations in 

noise and distortion, which is crucial in applications such as 

image compression, denoising algorithms, and watermarking. 

Additionally, the drop in PSNR with increasing pixel values 

underscores the trade-off between data modification and image 

quality, a phenomenon explored extensively in studies on 

adaptive filtering [30]. 

 

Fig. 4. Peak Signal-to-Noise Ratio (PSNR). 

2) Mean Square Error (MSE): Fig. 5 shows the Mean 

Squared Error (MSE) values for various pixel levels, 

showcasing the relationship between pixel modifications and 

image distortion. MSE, a metric used to quantify the average 
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squared difference between the original and distorted image, 

increases as the level of distortion rises. At pixel 0, the MSE is 

166.0989, which decreases to its lowest value of 129.0117 at 

pixel 5, indicating minimal error. However, as pixel values 

increase, the MSE rises significantly to 219.1567 at pixel 10, 

379.5442 at pixel 15, and reaches its maximum of 410.5653 at 

pixel 20. This trend demonstrates that greater pixel variations 

result in higher distortion levels, as reflected by the increase in 

MSE. These findings align with established principles in image 

processing, where MSE effectively measures degradation, 

making it a critical tool for evaluating image quality and the 

impact of noise or modifications. 

 
Fig. 5. Mean Square Error (MSE). 

This trend indicates that the structural element size 
significantly impacts the error, with excessively small or large 
elements introducing more inaccuracies. The structural element 
of 5 pixels offers the best balance, minimizing error while 
maintaining quality. Such insights are critical in fields like 
image processing, where optimizing structural element size is 
essential for tasks like filtering, reconstruction, or 
morphological operations. 

3) Structural Similarity Index (SSIM): Fig. 6 shows the 

relationship between the Structural Similarity Index (SSIM) 

and pixel values, highlighting the effect of pixel variations on 

image quality. SSIM, a widely used metric for evaluating image 

quality by measuring structural similarity, ranges from 0 to 1, 

with values closer to 1 indicating higher similarity. According 

to the data, the SSIM value peaks at 0.9171 for pixel 5, 

indicating the highest image quality. At pixel 0, the SSIM is 

0.9138, slightly lower than the maximum. However, as pixel 

values increase, the SSIM steadily decreases, dropping to 

0.9044 at pixel 10, 0.8782 at pixel 15, and the lowest value, 

0.8646, at pixel 20. This trend aligns with findings in image 

processing literature, where higher noise or pixel alterations 

typically reduce structural similarity, resulting in a perceptible 

degradation of image quality. Such analysis highlights the 

sensitivity of SSIM to changes in pixel values, reinforcing its 

importance as a robust metric for evaluating image fidelity. 

 
Fig. 6. Structural Similarity Index (SSIM). 

4) Complex Wavelet Structural Similarity Index 

(CWSSIM): Fig. 7 shows the relationship between the Complex 

Wavelet Structural Similarity Index (CWSSIM) and varying 

pixel perturbation levels. CWSSIM, a metric designed to 

evaluate structural similarity in images or signals, shows a 

noticeable trend: as the pixel perturbation increases, the 

CWSSIM values decline, indicating reduced structural 

similarity between the reference and perturbed data. The 

CWSSIM is highest at 5 pixels (0.9749), reflecting maximum 

structural similarity, but progressively decreases, reaching its 

lowest value of 0.8159 at 20 pixels. This demonstrates the 

metric's sensitivity to structural changes caused by pixel 

perturbation. 

 

Fig. 7. Structural Similarity Index (CWSSIM). 

The behavior observed in the graph aligns with findings in 
the literature. Yan et al. [31] introduced the Structural Similarity 
Index (SSIM) to measure perceptual image quality based on 
luminance, contrast, and structure. CWSSIM extends this 
approach into the wavelet domain, enabling it to capture 
structural variations effectively at multiple resolutions. Zhang 
[32] highlighted that wavelet-based similarity indices like 
CWSSIM are highly responsive to image distortions and offer 
robust mechanisms for analyzing localized changes. 
Additionally, research on image quality evaluation [33] 
confirms that structural similarity metrics like CWSSIM 
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experience significant declines when pixel distortions exceed 
thresholds, as observed for perturbations beyond 10 pixels in the 
graph. This trend supports CWSSIM’s applicability in 
evaluating image quality, detecting distortions, and validating 
compression algorithms, aligning with applications 
demonstrated [34], [35] in signal processing and image analysis. 
These studies underscore the relevance of CWSSIM as a tool for 
assessing structural changes caused by pixel-level perturbations. 

5) Feature Similarity Index (FSIM): Fig. 8 shows the 

relationship between pixel values and the Feature Similarity 

Index (FSIM), a metric used to measure image similarity, where 

higher values indicate greater similarity. The X-axis represents 

pixel values ranging from 0 to 20, while the Y-axis shows FSIM 

values ranging from 0.76 to 0.98. At 0 pixels, the FSIM is 

0.9513, slightly increasing to 0.9547 at 5 pixels. However, as 

pixel values increase beyond 5, the FSIM begins to decline, 

dropping to 0.9398 at 10 pixels, 0.9215 at 15 pixels, and 

reaching its lowest value of 0.8359 at 20 pixels. This trend 

suggests that higher pixel values reduce similarity, likely due to 

a loss of fine details during processing. 

 

Fig. 8. Feature Similarity Index (FSIM). 

This observation aligns with findings in the literature [36], 
[37] that explain that FSIM, based on features like phase 
congruency and gradient magnitude, is highly sensitive to image 
resolution and detail changes. Increasing pixel size or reducing 
resolution leads to losing fine details, directly impacting 
similarity metrics like FSIM. Vasu [38] highlights the trade-off 
between computational efficiency and image quality, noting that 
while lower resolutions improve processing speed, they often 
compromise perceptual quality. Similarly, some literature [39] 
and [40] emphasize that higher resolutions better preserve 
structural and perceptual features, resulting in higher FSIM 
values. Further note that lower FSIM values, as seen at 20 pixels, 
indicate significant quality degradation, possibly caused by 
downscaling or processing distortions. 

6) Processing time: Fig. 9 shows the relationship between 

pixel values and processing time in seconds. The X-axis 

represents pixel values ranging from 0 to 20, while the Y-axis 

shows time in seconds. The data reveals a clear decreasing trend 

in processing time as pixel values increase. At 0 pixels, the time 

is the highest, approximately 3.097 seconds, while the lowest 

time, 2.5986 seconds, is observed at 20 pixels. The reduction in 

processing time is steeper between 0 and 10 pixels and becomes 

less pronounced at higher pixel values. This trend aligns with 

findings in the literature. The study in [41] explain that higher 

pixel counts typically increase processing time due to the larger 

data volume. However, optimizations like subsampling and 

dimensionality reduction can mitigate this issue, resulting in 

shorter processing times for larger pixel values. Similarly, the 

study in [42] highlights that reducing pixel density, such as 

through downscaling, enhances computational efficiency while 

maintaining adequate performance for applications like object 

detection. The study in [43] further notes that processing time 

reductions tend to plateau beyond a certain resolution threshold 

due to hardware and memory limitations. As emphasized by 

[44], balancing resolution and processing time is critical in real-

time systems. Higher resolutions are only employed when 

necessary, as the exponential time costs outweigh the benefits 

of marginal improvements in detail. 

 
Fig. 9. Processing time. 

Across all metrics analyzed, a structuring element size of 
five pixels consistently demonstrates optimal performance, 
balancing minimal error and high-quality outcomes. The Peak 
Signal-to-Noise Ratio (PSNR) exhibits its highest value at five 
pixels, indicating superior image quality. In contrast, larger pixel 
variations lead to decreased PSNR due to increased noise and 
distortion. Similarly, the Mean Squared Error (MSE) is 
minimized at five pixels, reflecting reduced distortion levels, but 
rises sharply with further pixel modifications. Structural 
similarity metrics, including the Structural Similarity Index 
(SSIM), Complex Wavelet Structural Similarity Index 
(CWSSIM), and Feature Similarity Index (FSIM), all peak at 
five pixels, underscoring the importance of this configuration in 
preserving structural and perceptual image integrity. Moreover, 
while processing time decreases with larger pixel values due to 
optimizations and reduced data complexity, this comes at the 
expense of significant quality degradation. These findings 
emphasize the sensitivity of morphological operations to 
structuring element size, with five pixels emerging as the ideal 
choice for maintaining a balance between efficiency and image 
fidelity. 

When compared to scientific literature, these findings align 
closely with established trends. Research demonstrates that 
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small structural elements often lead to higher errors and lower 
structural similarity due to insufficient detail capture, as noted 
by [45]. Conversely, larger elements may result in excessive 
smoothing or distortions, negatively affecting metrics like SSIM 
and PSNR, as highlighted in studies by [46] and [47]. Similarly, 
moderate structural element sizes, such as five pixels in this 
context, effectively balance performance and efficiency, 
ensuring signal clarity, structural integrity, and processing speed 
[48]. 

B. Enhancement of Coastline Video Monitoring System 

Framework Using Structuring Element Morphological 

Operations 

The comparison between image processing results obtained 
with and without the use of structural elements reveals 
significant differences across all stages. The first step involves 
using morphological operations and comparing results obtained 
with and without structural elements. 

Morphology 

Without Structure Element Using Structure Element 

  

Fig. 10. Morphology comparison 

From Fig. 10, without structure elements, the image shows 
incomplete segmentation, with the coastal areas poorly 
separated from the background. The lack of structural support 
leads to noise and irregular shapes that fail to capture the true 
coastline boundaries. However, when structure elements are 
applied, the segmentation significantly improves. Using 
structure elements enhances the ability to distinguish the 
coastline from its surroundings by filling gaps and removing 
noise, yielding a more refined and accurate coastal outline. 

Canny Edge Detection 

Without Structure Element Using Structure Element 

  

Fig. 11. Canny Edge Detection Comparison 

The step continued with canny edge detection. The 
performance of the Canny edge detection algorithm (Fig. 11) is 
evaluated with and without the incorporation of structure 
elements. Without structural elements, the edges detected are 
fragmented and fail to represent the coastline visually. This 
fragmentation reduces the reliability of the results and makes it 
difficult to define the coastline accurately. By introducing 

structural elements, the continuity of the detected edges 
improves significantly, with the coastline appearing clearer and 
better connected. 

Coastline Detection 

Without Structure Element Using Structure Element 

  

Fig. 12. Coastline detection comparison 

The coastline detection results shown in Fig. 12 marked 
improvement when structure elements are used. Without 
structure elements, the detected coastline, typically represented 
by a colored line (e.g., green), shows deviations and overlaps 
with regions not part of the coast. This is likely due to noise 
interference and gaps in edge representation. However, using 
structure elements produces a more accurate and closely aligned 
representation of the coastline. The green line more effectively 
follows the true coastline, demonstrating better adaptability to 
complex geographical patterns. 

The final comparison against ground truth data (Fig. 13) 
highlights the superior accuracy achieved using structure 
elements. Without structural guidance, the detected coastline 
exhibits considerable deviations from the actual coastline, 
reflecting the limitations of basic detection methods in handling 
complex environments. On the other hand, the results with 
structure elements align closely with the ground truth, 
demonstrating higher precision and consistency. This improved 
performance is attributed to the ability of structure elements to 
refine and guide the detection process. 

Comparison with Ground Truth 

Without Structure Element Using Structure Element 

  

Fig. 13. Calibration with ground truth data comparison 

C. Metric Performance of  Coastline Video Monitoring 

System Framework Using Structuring Element 

Morphological Operations 

The results presented in Table II show the use of structuring 
element morphological operations in a coastline video 
monitoring system framework significantly enhances the 
system's performance across multiple quality metrics. 
Specifically, the Peak Signal-to-Noise Ratio (PSNR) improved 
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by 9.3%, increasing from 24.7233 to 27.0245, and the Structural 
Similarity Index (SSIM) rose by 1.4%, from 0.9044 to 0.9171. 
Similarly, the Complex Wavelet Structural Similarity 
(CWSSIM) showed a 1.7% improvement, increasing from 
0.9583 to 0.9749, while the Feature Similarity Index (FSIM) 
improved by 1.6%, rising from 0.9398 to 0.9547. Additionally, 
the processing time decreased slightly by 1.3%, from 2.9626 
seconds to 2.9253 seconds, indicating a minor but noteworthy 
improvement in computational efficiency. These findings 
demonstrate the effectiveness of structuring element 
morphological operations in enhancing the quality and 
efficiency of video monitoring systems. 

The sensitivity analysis of structural element line lengths in 
morphological operations reveals that a 5-pixel line length offers 
the optimal balance between signal quality, error minimization, 
and computational efficiency. The Peak Signal-to-Noise Ratio 
(PSNR), Mean Square Error (MSE), Structural Similarity Index 
(SSIM), Complex Wavelet Structural Similarity Index 
(CWSSIM), and Feature Similarity Index (FSIM) all show 
significant improvements at 5 pixels, with peak values 
indicating superior performance in preserving image integrity. 
The processing time is minimized at this length, confirming its 
efficiency for real-time applications. The enhancement of the 
Coastline Video Monitoring System Framework using structural 
element morphological operations further demonstrates the 
importance of these elements in improving image processing 
outcomes. Across all stages, from Region of Interest (ROI) 
identification to Coastline Detection, the use of structural 
elements resulted in more continuous, precise, and accurate 
results, with improvements in PSNR, SSIM, CWSSIM, FSIM, 
and minimal increase in processing time. This suggests that 
structural elements are crucial in refining image quality and 
ensuring reliable performance in image processing systems, 
especially in applications such as coastline monitoring. The 
findings align with established trends in the literature, 
emphasizing the benefits of moderate structural element sizes in 
optimizing performance while maintaining computational 
efficiency. 

TABLE II. METRIC PERFORMANCE OF  COASTLINE VIDEO MONITORING 

SYSTEM FRAMEWORK USING STRUCTURING ELEMENT MORPHOLOGICAL 

OPERATIONS 

Parameter 
Without Structure 

Element 
Using Structure 

Element 
Enhancement 

PNSR 24,7233 27,0245 9,3% 

SSIM 0,9044 0,9171 1,4% 

CWSSIM 0,9583 0,9749 1,7% 

FSIM 0,9398 0,9547 1,6% 

Time 2,9626 2,9253 -1,3% 

IV. CONCLUSION 

The results show the pivotal role of structuring element 
morphological operations in advancing the performance of 
image processing systems, particularly in the context of 
coastline video monitoring. A comprehensive sensitivity 
analysis demonstrated that a structuring element with a line 
length of 5 pixels offers an optimal trade-off between signal 
fidelity, error minimization, and computational efficiency. Key 

metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural 
Similarity Index (SSIM), Complex Wavelet Structural 
Similarity Index (CWSSIM), and Feature Similarity Index 
(FSIM) consistently achieved their highest values at this 
configuration, reflecting significant improvements in both 
perceptual and structural image quality. Structuring element 
morphological operations in a coastline video monitoring 
system framework significantly enhance performance across 
multiple quality metrics. Specifically, the Peak Signal-to-Noise 
Ratio (PSNR) improved by 9.3%, increasing from 24.7233 to 
27.0245, and the Structural Similarity Index (SSIM) rose by 
1.4%, from 0.9044 to 0.9171. Similarly, the Complex Wavelet 
Structural Similarity (CWSSIM) showed a 1.7% improvement, 
increasing from 0.9583 to 0.9749, while the Feature Similarity 
Index (FSIM) improved by 1.6%, rising from 0.9398 to 0.9547. 
Additionally, the processing time decreased slightly by 1.3%, 
from 2.9626 seconds to 2.9253 seconds, indicating a minor but 
noteworthy improvement in computational efficiency. 
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