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Abstract—The rapid advancement of the digital creative 

industry has highlighted the growing importance of image style 

transfer technology as a bridge between traditional art and 

modern design, driving innovation in graphic design. However, 

conventional style transfer methods face significant challenges, 

including low computational efficiency and unnatural style 

transformation in complex image scenarios. This study addresses 

these limitations by introducing a novel approach to image style 

transfer based on the MLP-Mixer model. Leveraging the MLP-

Mixer's ability to effectively capture both local and global image 

features, the proposed method achieves precise separation and 

integration of style and content. Experimental results demonstrate 

that the MLP-Mixer-based style transfer significantly enhances 

the naturalness and diversity of style transformation while 

preserving image clarity and detail. Additionally, the processing 

speed is improved by 50%, with style conversion accuracy and 

user satisfaction increasing by 30% and 35%, respectively, 

compared to traditional methods. These findings underscore the 

potential of the MLP-Mixer model for advancing efficiency and 

realism in graphic design applications. 
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I. INTRODUCTION 

At the forefront of the intersection of visual art and 
computational science, image style transfer technology is 
gradually becoming a key to exploring the boundary between 
artistic equation and technological application [1]. This 
technology, by "transplanting" the style features of one image to 
another image, creates innovative images that combine different 
artistic styles, and its application in the field of graphic design is 
increasingly showing its unique value and potential [2, 3]. Image 
style transfer technology based on the MLP-Mixer model, as an 
emerging deep learning framework, is leading the future trend 
of image processing and artistic creation with its unique 
architecture and excellent performance. 

Image style transfer has seen significant advancements 
through deep learning models, including Gatys et al.'s algorithm 
using CNNs and transformer-based methods like StyleGAN and 
AdaIN [4]. These have improved stylized image quality and 
artistic expression but can be computationally intensive. Our 
research introduces the MLP-Mixer model, which offers a more 
efficient and resource-friendly approach to image style transfer. 
The MLP-Mixer's simplified architecture and high-resolution 
processing capabilities provide a novel solution to existing 
limitations. It aims to enhance the speed and quality of style 
transfer in graphic design while maintaining creative flexibility 
and visual fidelity. 

Graphic design, as the core means of visual communication, 
aims to present creativity and information to the audience most 
intuitively and attractively, and the introduction of image style 
transfer technology provides unprecedented possibilities for the 
realization of this goal [5]. MLP-Mixer model, as an innovative 
application of multi-layer perceptron (MLP) in the field of 
image processing, can effectively capture local and global 
features in images through unique architecture design and 
achieve precise control and migration of image styles [6]. This 
technology can not only promote the diversified exploration of 
artistic styles but also bring higher efficiency and flexibility to 
the design process, opening up a brand-new creative space for 
the field of graphic design [7]. Despite the advancements in 
image style transfer technology, there remains a gap in 
understanding how the MLP-Mixer model can be optimally 
applied in graphic design to create high-resolution, multi-
element images that meet industry standards. 

A comprehensive analysis of the MLP-Mixer’s ability to 

extract and transfer style features, which could revolutionize the 
way graphic designers approach style manipulation. An 
empirical study on the application of the MLP-Mixer in handling 
complex design tasks, which may lead to more efficient and 
flexible design workflows. Insights into the comparative 
advantages of the MLP-Mixer over other style transfer methods, 

informing the design community’s choice of technology for 

artistic creation. 

 The paper is structured as follows: The introduction sets the 
stage for the research problem and objectives. The subsequent 
sections delve into the theoretical foundations of the MLP-
Mixer model, its practical application in graphic design, and a 
comparative analysis with other methods. The conclusion 
synthesizes the findings and discusses future directions for the 
application of the MLP-Mixer in graphic design. 

This study is based on the application research of image style 
transfer technology in graphic design based on the MLP-Mixer 
model, aiming to thoroughly discuss the application prospect of 
this technology in the field of graphic design from the theoretical 
and practical aspects and promoting the innovation and progress 
in the field of design through interdisciplinary integration. This 
study will deeply explore the specific application of image style 
transfer technology based on the MLP-Mixer model in graphic 
design from multiple dimensions. First, focusing on the 
theoretical basis of the technology, it discusses how the MLP-
Mixer model can effectively extract and transfer image style 
features through optimized architecture and training strategies. 
Then, focusing on the practical application of this technology, 
we explore how to use this technology to process complex image 
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data so as to meet the standard high-resolution and multi-
element image processing requirements in graphic design. The 
research is significant as it explores the interdisciplinary 
integration of the MLP-Mixer model with graphic design, 
potentially leading to innovative design methodologies and 
improved artistic outcomes. 

II. IMAGE CLASSIFICATION MODEL BASED ON THE FUSION 

OF MLP-MIXER AND GRAPHIC DESIGN 

A. MLP-Mixer Network Structure 

The core of MLP-Mixer lies in its innovative Mixer 
structure, which entirely relies on MLP. By repeatedly applying 
these perceptrons on spatial positions or feature channels, an 
efficient fusion of image information is achieved [8, 9]. The 
Mixer only needs basic matrix multiplication, combined with 
data layout transformations (such as reshaping and transposing) 
and nonlinear scalar operations, to fuse the intrinsic information 
of images skillfully. Its workflow begins with receiving an 
image table in the format of "patches × channels" as input, and 
the size of the image table remains the same throughout the 
Mixer process [10]. The Mixer uses two MLP layers: channel 
mixer and token mixer. The former promotes information 
exchange between channels and processes each patch 
independently; The latter allows information transfer between 
different spatial locations (patches), running independently on 
each channel [11]. Fig. 1 shows the macro structure of Mixer. 
The Mixer directly connects the input layer to the output layer 
by introducing Skip-connections, effectively alleviating the 
problem of gradient disappearance and ensuring the smooth 
transfer of gradients between network layers. 

The paper concentrate on the MLPMixer as our primary 
model for style conversion. However, to fully appreciate its 
capabilities and limitations, having conducted a detailed 
comparison with other advanced style conversion methods. Our 
analysis delves into the subtleties of each method, emphasizing 
the preservation and transformation of intricate design elements. 
The MLPMixer demonstrates a unique strength in maintaining 
the finer details of the original image, such as sharp edges and 
subtle color variations, which are often blurred or lost in other 

methods. This is particularly advantageous in graphic design, 
where the integrity of the original artwork is essential. Our 
comparison reveals that while transformer-based models excel 
in global style adaptation, the MLPMixer's local feature 
manipulation results in a more refined and artistically satisfying 
outcome. By highlighting these nuances, the paper aim to 
provide a clearer understanding of the MLPMixer's potential in 
the realm of graphic design and its position relative to other 
cutting-edge style conversion techniques. 

The Mixer structure is composed of multiple layers of the 
same size. Each layer is composed of two groups of MLP blocks 
connected in series. Each group contains two fully connected 
layers and a Gaussian Error Linear Units (GELU) nonlinear 
activation function. Mixer accepts a series of S non-overlapping 
image patches, and each block is projected to the desired hidden 
dimension C to form a two-dimensional real-valued input table 
X ∈ RS × C [12]. For the input image with the original resolution 
of (H, W), the resolution of each patch is set to (P, P), then S = 
HW/P2 calculates the total number of patches, and all patches 
share the same projection matrix for linear transformation [13]. 
The channel hybrid MLP operates on the columns of X, realizes 
the mapping of RS → RS, and shares it among all columns. The 
spatial hybrid MLP processes the rows of X, realizes the 
mapping of RC → RC, and shares it among all rows. This design 
of Mixer skillfully realizes the interactive fusion of image 
information in channels and spatial dimensions, and specific 
mathematical equations can accurately describe its workflow. 
Mixer can be written as follows: equations (1)-(2). Where X is 
the Mixer input feature, (*, i) is all the data corresponding to the 
i-th column, (j, *) is all the data corresponding to the j-th row, 
W1, W2, W3, and W4 are the weight parameters corresponding 
to sequence 1, sequence 2, sequence 3 and sequence 4, σ is the 
GELU activation function, LN is the layer normalization 
function, and C and S are the total number of horizontal features 
and the total number of vertical features respectively. 

2 1  1( ,i ) ( ,i ) ( ,i )U X W (W LN( X ) ), for i ...C    
 (1) 

4 3  1
( j ,* () j ,*)( j ,*)Y U W (W LN(U ) ), for j ...S  

 (2) 

 

Fig. 1. Macro structure of mixer. 
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In this structure, the GELU nonlinear activation function 
cooperates with the LN layer normalization method. The 
adjustable hidden width in spatial hybrid MLP and channel 
hybrid MLP is represented by DS and DC, respectively, where 
the selection of DS is independent of the number of input 
patches, which makes the computational complexity of Mixer 
present a linear feature when processing input patches, which is 
different from the square-level complexity of ViT [14, 15]. At 
the same time, since DC is not affected by patch size, compared 
with convolutional neural networks (CNNs), the overall 
computational complexity of Mixer also maintains a linear 
increase when processing the number of image pixels, 
demonstrating efficient and flexible computational 
characteristics. 

Mixer exhibits a unique processing mechanism by applying 
the same channel mixing MLP to each row (column) of input 
table X. The convolution operation, characterized by its cross-
channel parameter binding, ensures position invariance and this 
binding is embodied in different forms in Mixer, that is, the 
spatial hybrid MLP shares the same kernel for all channels and 
has a complete receptive field, in contrast to the separable 
convolution adopted in some CNNs, which apply different 
convolution kernels to each channel [16, 17]. The parameter-
sharing mechanism effectively controls the expansion of the 
architecture. It dramatically saves memory resources when 
increasing the hidden dimension C or sequence length S. From 
an extreme perspective, Mixer can be regarded as a specialized 
CNN, using 1 × 1 convolution to achieve channel mixing and 
using single-channel deep convolution with an entire field of 
view for patch mixing, but typical CNNs cannot be classified as 
a particular case of Mixer [18]. It is worth noting that compared 
with ordinary matrix multiplication in MLP, the complexity of 
convolution operation is increased because it requires special 
implementation to reduce cost. 

The original MLP-Mixer model uses GELU as the activation 
function. Compared with ReLU, GELU significantly improves 
the accuracy of the model without increasing its complexity. It 
effectively alleviates the phenomenon of gradient disappearance 
and gradient explosion, enhances the ability to capture the 
complex characteristics of data, and then optimizes the 
generalization performance of the model [19]. The mathematical 
definition of GELU is shown in Eq. (3). Where x is the input of 
the activation function, and tanh is the double tangent curve 
function. 

32
GELU 0 5 1 0 044715( x ) . x[ tanh( ( x . x ))]


  

 (3) 

It can be seen that GELU is the combination of the double 
tangent curve function tanh and the approximate value. In view 
of the apparent shortcomings of GELU, such as long training 
time and easy falling into local optimal solution, this paper 
replaces the activation function in the MLP-Mixer network with 
Hard-Swish. Compared with GELU, Hard-Swish can not only 
improve model accuracy without increasing complexity but also 
capture complex data relationships more efficiently and enhance 
model generalization capabilities. At the same time, the 
reduction of Hard-Swish computation significantly shortens the 

training time of the MLP-Mixer network, and its mathematical 
Eq. (4) is as follows: 

0  3

 3
HardSwish

3

6

,if x

x,if x
( x )

x( x )
,otherwise

 


  

 

 

     (4) 

Where x is the input of the activation function, it can be seen 
from the formula that Hard-Swish only needs to perform one 
multiplication calculation, and the amount of calculation is less 
than that of GELU, which needs exponential calculation and 
multiplication calculation. 

B. Fusion Network Structure Design Based on MLP-Mixer 

and Graphic Design 

In the field of modern neural networks, multi-scale 
technology helps models capture image features more 
comprehensively and improve accuracy and performance by 
processing inputs of different sizes [20]. This paper innovatively 
extends the concept of "multi-scale" to different image block 
sizes of the MLP-Mixer model. The paper designs an MLP-
Mixer image classification model that fuses multi-scale features. 
The paper aim to process images through MLP-Mixers of 
different scales and improve computational efficiency for 
images with different recognition difficulties. The model 
structure contains multiple MLP-Mixers with different scales. In 
the testing stage, these MLP-Mixers are activated from large to 
small according to the image block scale. Once the output 
confidence of an MLP-Mixer reaches the preset threshold or 
reaches the final layer, the model immediately terminates the 
inference and outputs the results, thus realizing the effective 
allocation of computing resources and significantly optimizing 
the overall computing efficiency [21, 22]. 

For each test sample, the paper first use the Per-patch fully 
connected layer to divide and reduce the dimensionality of the 
input image according to the image block size to form an image 
table with the corresponding scale. Subsequently, the 
dimensionality reduction image table is input into a series of 
Mixer blocks, taking advantage of the computational 
characteristics of MLP-Mixer; that is, the efficiency is 
significantly improved when the number of image blocks is 
small. The model has a built-in dynamic prediction "Exit" 
mechanism to evaluate the reliability of the output results in real-
time. If it meets the standard, the calculation will be terminated 
in advance, and vice versa; it will be advanced to downstream 
processing. In downstream calculation, the original image is 
subdivided into more image blocks in exchange for more 
accurate but computationally expensive inference, and then 
additional Mixer blocks with smaller scale and the same number 
as the previous layer are activated to achieve multi-level feature 
extraction and computational optimization [23]. 

In view of the common goal of Mixer blocks of different 
channels and space mixing of image tables, the downstream 
model can continue to learn based on the upstream extracted 
features without repeating the feature extraction process, thus 
significantly improving the inference efficiency [24, 25]. The 
feature reuse mechanism is reflected here. Different from the 
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simple superposition of feature vectors at the same scale in 
ResNets and DenseNet, the MLP-Mixer multi-scale fusion 
model designed in this paper has different upstream and 
downstream Mixer scales, resulting in differences in the 
extracted image feature scales. Effective utilization and deep 
learning of cross-scale features are realized. 

C. Classification Process of Models 

When the data flows through the first layer of the model, it 
is divided into image blocks per patch; then, the channel and 
spatial features are fused by the Mixer block and finally 
normalized by the Layer Normalization layer [26]. In order to 
simplify subsequent calculations, the model additionally 
introduces a global pooling layer and a fully connected layer. 
After the two-dimensional image feature table extracted by 
Mixer is normalized, the global pooling operation is used to 
compress it into a 1 × C vector, which effectively reduces the 
amount of calculation and improves the model performance. 
Subsequently, the fully connected layer reduces the 
dimensionality of the 1 × C vector to a vector of length N, and 
N corresponds to the number of data set categories, which is 
convenient for classification. Finally, the softmax function is 
used to calculate the output probability of the model to achieve 
accurate classification. Its Eq. (5) is as follows: 

1

i

j

z

i N
z

j

e
soft max( z )

e





    (5) 

Where zi is the i-th value in the one-dimensional vector, 
softmax(zi) calculates the probability value that the result of the 
model speculates that the input image is the i-th type, e is the 
natural constant, and j is the longitudinal index. The core steps 
of model training include forward propagation, result output, 
loss calculation, gradient backpropagation, and weight update. 
The specific process is as follows: input the training set data, 
calculate the model output, use the loss function to evaluate the 
error according to the label, then update the weight through 
gradient backpropagation, and execute the cycle until the loss 
converges or reaches the maximum number of iterations. Cross 
entropy loss function and stochastic gradient descent (SGD) 
method are used for loss calculation and weight update [27, 28]. 
The principle of SGD is to calculate the loss function gradient, 
update the weight according to the negative direction of the 
gradient, and regulate the step size by the learning rate. The Eq. 
(6) is as follows: 

1k k kw w L( w ,x, y )  
    (6) 

Where wk, wk+1 are the weight values before and after the 
weight update, respectively, η is the learning rate, and ∇L(wk, 
x, y) is the gradient of backpropagation. Stochastic gradient 
descent updates only one sample at a time instead of all samples 
at a time so that it can converge faster. Its Eq. (7) is as follows. 

Where ∇L(wk, xi, yi) is the backpropagation gradient 
corresponding to each sample, and w is the weight value. 

k

i iw w L( w ,x , y ) 
    (7) 

III. APPLICATION OF IMAGE STYLE TRANSFER 

TECHNOLOGY IN GRAPHIC DESIGN 

A. Overall Architecture of Style Migration Network 

Fig. 2 outlines the general network architecture of the style 
transfer algorithm, including the encoder, generator, and 
discriminator. The encoder processes the input image and 
generates content and style encoding by sharing the 
convolutional layer and style and texture output branches. The 
generator synthesizes an output image based on the encoded 
information. In training, losses stem from reconstruction and 
style transfer tasks [29]. Using content and style encoding, the 
generator outputs reconstructed or migrated images. The 
reconstruction loss contains an L1 distance constraint structure, 
and the Generative Adversarial Nets (GAN) loss ensures 
authenticity. Migration loss measures tone and texture details by 
global and local GAN losses. 

The DF layer is flexibly embedded with a style migration 
architecture generator, replacing stacked convolution and depth-
guided image feature synthesis. It receives the depth map as the 
structure guide, which is estimated by the pre-trained LéReS. In 
view of the fact that when the network deepens, the structural 
information is lost at each resolution, and the features with 
different resolutions contain object information with different 
scales, the features with low resolution contain object contours. 
The features with high resolution contain edge details. The DF 
layer replaces all scale convolutions except the three-channel 
adaptation of the last layer. Depth structure constraints are 
combined with style, reconstruction, and authenticity constraints 
to prevent the network from ignoring structural information in 
feature transmission [30]. 

In this paper, the proposed DF layer and depth structure loss 
are integrated into Park et al. 's architecture, and the emphasis is 
on improving the generator structure constraints. The down 
sampling multi-branch convolutional encoder, L1 
reconstruction loss, Cooccur GAN texture constraint loss, and 
GAN loss to ensure style authenticity are preserved. The DF 
layer replaces the original convolution, retains the convolution 
kernel modulation to introduce style information, and adds a 
new depth structure loss to reconstruction and style transfer 
tasks. In order to verify that the performance improvement 
comes from the DF layer and depth structure loss, the depth 
information is encoded together with the RGB image in the 
fourth channel and the depth structure loss is regulated in the 
experiment to confirm the effectiveness of the DF layer and the 
loss. 
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Fig. 2. General network architecture of style transfer algorithm. 

In order to solve the problem of structural information loss, 
this paper starts from three aspects: resolution, structure and 
hierarchy, and focuses on the granularity of DF layer modules. 
The intermediate features of the generated network are related 
to different objects and structures, so the modulation parameters 
of the same dimension as the intermediate features of the 
backbone network are used to modulate different objects and 
positions. Affine transform modulation is adopted, the structural 
information is strengthened by element-by-element 
multiplication, and the unconcerned structural information is 
supplemented by element-by-element addition. Considering the 
relative position of the DF layer and backbone network feature 
extraction convolution, it is initially placed after convolution. 
However, the completion of texture information after structural 
information enhancement is not considered, so it should be 
realized by convolution. Therefore, the relative position of 
convolution and depth spatial information modulation is 
adjusted to ensure the complete processing of structure and 
texture information. 

The adjusted DF layer module places the backbone network 
feature extraction convolution after the depth space information 
modulation so that the structure-enhanced image features further 
supplement the texture details, and the rest of the architecture 
remains unchanged. The adjusted DF module represents Eq. (8)-
(10) as follows: 

c cw ( w d( I ) )   
    (8) 

c cw ( w d( I ) )   
     (9) 

i0( f ) w ( f )    
    (10) 

Where wγ, wc, wβ are convolution parameters and d(Ic)↓ 
represents the depth estimate of the content reference image Ic 
adapted to the resolution of the present module via down 
sampling. * Represent a convolution operation. The gamma and 
DFT modules process the features that will be fed into the lower 

module. ☉ represent element-by-element multiplication, where 
element f0 represent a value at some specific position in the H × 
W × C feature, w is a weight parameter. fi represents the feature 
from the upper module of the input DFT module. In this paper, 
the DF layer is used to add residual connection, and the shallow 
and deep structural information is fused to co-draw images in 
deep networks to ensure the integrity of details and object 
contours. This optimized Eq. (11) as follows: 

1l R L l lf ( ( f )) f   
    (11) 

Where δR and δL represent two adjacent DFT modules, fl 
represents the l-th DFT layer input feature, and fl + l represents 
the output feature processed by the previous DFT layer, which 
is sent to the l + 1 DFT layer. The features fl from the upper layer 
are modulated via two adjacent DFT modules δR and δL, and 
then added to the features fl from the upper layer as input to the 
next layer. 
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B. Loss Function 

In this paper, the task is divided into two sub-tasks: 
reconstruction and migration. For each task, the DS Loss 
enhancement generator is used, with the DF module and feature 
transformation layer, to implement structural guidance in style 
migration, constrain the object boundary, shape, and stacking 
order, and maintain structural constraints in the reconstruction 
task. The generator total Eq. (12)-(13) as follows: 

Park rec,Park trans,Park L L L
   (12) 

Zhang rec,Zhang trans,Zhang L L L
   (13) 

Refactoring loss ℒ𝑟𝑒𝑐,𝑃𝑎𝑟𝑘, ℒ𝑟𝑒𝑐,𝑍ℎ𝑎𝑛𝑔, and migration loss 

ℒ𝑡𝑟𝑎𝑛𝑠,𝑃𝑎𝑟𝑘 , ℒ𝑡𝑟𝑎𝑛𝑠,𝑍ℎ𝑎𝑛𝑔 , The two types of losses together 

constitute the total loss ℒ𝑃𝑎𝑟𝑘 and ℒ𝑍ℎ𝑎𝑛𝑔. The reconstruction 

task involves image encoding and restoration, reflecting the 
model's ability to learn content and texture, and is the foundation 
of the transfer task. Evaluate the reconstruction loss and enhance 
the original loss of the architecture by comparing the differences 
between the reference and reconstructed images. In the Park 
architecture, L1 loss achieves pixel-level fine reconstruction, 
while GAN loss ensures image authenticity, but both are 
difficult to perceive structure and contour details accurately. DS 
Loss compensates for the above shortcomings by constraining 
the reconstruction of object structures and synergistically 
improving the overall structural constraint effect with ℒ1 loss 
and GAN loss. This article will correspond to the generator loss 
representation Eq. (14) – Eq. (16) as follows: 

 1 1l x X c sx G( E ( x ),E ( x )) EL
   (14) 

1GAN ,rec x X c s[ logD(G( E ( x ),E ( x )))] EL
  (15) 

1rec,Park l GAN ,rec DS ,rec  L L L L
   (16) 

Where x represents the input picture, since the reconstruction 
task does not need to be migrated, and the task in this paper is 
performed within the same data set, the style reference map or 
the content reference map is not distinguished in the 
reconstruction loss. D and G represent the discriminator and 

generator, respectively. Ec and Es are the transfer expectation 
function and style expectation function corresponding to plane 
technology, respectively. ℒ𝑙1  represents the ℒ1  loss, 

ℒ𝐺𝐴𝑁,𝑟𝑒𝑐  represents the GAN loss used in the reconstruction 

task, and ℒ𝐷𝑆,𝑟𝑒𝑐 represents the depth structure loss used in the 

reconstruction task. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In order to verify the performance improvement of the 
MSMLP model compared to the original MLP-Mixer, we use 
MSMLP with the same parameter settings as MLP-Mixer-b and 
MLP-Mixer-s for comparative experiments. In the experiment, 
40 groups of weights are assigned to the inference times of three 
MSMLP classifiers, and the classification results are displayed 
in red curves. At the same time, the classification results of 
MLP-Mixer-s at three different scales (16 × 16, 8 × 8, 4 × 4) are 
represented by blue line graphs. The test results on the CIFAR10 
and CIFAR100 data sets, as shown in Fig. 3, intuitively compare 
the performance differences between MSMLP and MLP-Mixer-
s. 

Compared with MLP-Mixer, MSMLP significantly reduces 
the computational cost, especially when processing small-size 
image blocks; the gap of GFLOPs is more prominent. By 
adjusting the weights, MSMLP can flexibly realize any point on 
the performance curve. On the CIFAR10 and CIFAR100 data 
sets, the specific accuracy and throughput of MSMLP, MLP-
Mixer-s, and MLP-Mixer-b are shown in Table I. At the same 
time, this article also compares ResMLP-s12 and gMLP-Ti 
models in the same field. 

The experiment uses NVIDIA 1070 GPU, batch size 16, to 
test the actual inference speed of MSMLP. The results are shown 
in Fig. 4. Taking MLP-Mixer-s and MLP-Mixer-b as the 
baseline, the accuracy rates of MSMLP on the CIFAR10 data 
set reached 81.58% and 81.87%, respectively, an increase of 
0.09% and 0.36%. At the same time, the inference speed 
increased to 1.37 times and 1.36 times, respectively. On the 
CIFAR100 data set, the accuracy rate of MSMLP increased by 
4.7% and 2.92%, and the inference speed increased to 1.38 times 
and 1.39 times, respectively. Comparing ResMLP-s12 and 
gMLP-Ti, although MSMLP is slightly inferior to ResMLP-s12 
in accuracy, the inference speed is the highest. 

 

Fig. 3. Performance differences between MSMLP and MLP-Mixer-s. 
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TABLE I. ACCURACY AND THROUGHPUT 

Type 
Top-1 

accuracy 

Throughp

ut 

Top-1 

accuracy 

Throughp

ut 

MLP-

Mixer-s 
91.2688 866.88 57.2432 835.52 

MSMLP-s 91.3696 1191.68 62.5072 1155.84 

MLP-

Mixer-b 
91.2912 327.04 58.6208 327.04 

MSMLP-b 91.6944 448 61.8912 454.72 

ResMLP-
s12 

91.7728 361.76 62.9664 362.88 

gMLP-Ti 91.2352 433.44 60.648 433.44 

 

Fig. 4. MSMLP actual inference speed. 

Fig. 5 shows that the exit accuracy of MSMLP using feature 
reuse in the first classifier is 2.16% lower than that without it, 
but the model complexity is similar. In the subsequent classifier 
exit, the accuracy of the feature reuse version is 1.29% and 
4.84% higher, respectively, and the GFLOPs only increase by 
14.3% and 9.7%. This shows that although feature reuse caused 
a slight decrease in the accuracy of the first exit, the overall 
accuracy of MSMLP was improved, and the increase of 
GFLOPs was less than 15%. 

Fig. 6 illustrates that upon the integration of the Hard-Swish 
activation function into the MLP-Mixer architecture, there is a 
notable enhancement in both the accuracy of the model and the 
speed of inference. The introduction of this particular activation 
function appears to contribute positively to the overall 

performance of the network. Furthermore, the implementation 
of additional Mixer block jumping connections, which facilitate 
the flow of information across different layers, leads to a 
substantial increase in the accuracy of the model. However, this 
addition does have a downside, as it results in a slight reduction 
in the reasoning speed of the MLP-Mixer. Despite this trade-off, 
the simultaneous application of both enhancements—namely, 
the Hard-Swish function and the jumping connections—
ultimately yields improvements in both accuracy and reasoning 
speed for the MLP-Mixer. Consequently, the model design 
proposed in this paper incorporates these two key improvement 
strategies, capitalizing on their respective benefits to optimize 
the performance of the MLP-Mixer architecture. 

 

Fig. 5. MSMLP accuracy of feature reuse. 

Fig. 7 shows that this method significantly improves the 
image embedding capabilities of different style migration 
architectures and has apparent advantages across data sets. The 
authenticity, detail retention, and structural constraints of the 
reconstructed image all exceed the baseline. This proves that 
under the guidance of the DF layer and DS Loss, the generator 
focuses more on the object boundary and uniform texture and 
optimizes the structure and texture retention. 

 

Fig. 6. MLP mixer improvement experiment. 
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Fig. 7. Image embedding performance under depth guidance. 

Fig. 8 shows that compared with Park et al. 's architecture, 
this method has a 4% increase in Content Loss on the Flicker 
Mountain dataset and an 8% increase in SIFID reflecting style 
maintenance. The plug-and-play layer and loss are effective on 
both multi-dataset and baseline methods. Experiments show that 
the depth guidance method can effectively restrict the structure 
boundary of objects, optimize texture synthesis, and improve the 
quality of style transfer as a whole. 

Fig. 9 shows that the designed optimal architecture has an 
excellent performance in realism, structure preservation, and 
texture rendering in reconstruction and migration tasks. The 
paper adds a convolution operation, which affects the processing 

of enhanced features, causing the ContentLoss and SIFID 
indicators to be inferior. The success of attention mechanisms 
such as CBAM in ordinary generative networks stems from the 
gradual selection of crucial information. However, in style 
transfer, channel modulation and spatial modulation have 
achieved information selection and enhancement and extra 
attention anti-interferes with existing modulation, so the training 
does not converge. Although applied residual link convergence, 
CBAM still interferes with channel style information and spatial 
structure information, and the effect is inferior. It excludes 
spatial attention and only explores channel attention. Channel 
enhancement also interferes with existing information, and the 
effect is still not as good as the optimal architecture. 

 

Fig. 8. Style transfer performance under deep guidance. 

 

Fig. 9. The influence of different depth fusion layers on image reconstruction and style transfer. 
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The data in Fig. 10 shows that pattern style transfer using an 
adversarial generative network (GAN) requires a lot of style 
image training, and stylization of patterns of different sizes takes 
a long time. Although the iterative method of Gatys et al. does 
not require training, the style conversion time is too long. 
Johnson et al. 's method has a long training period but a fast style 
transition. The method IN this paper is slightly slower IN 
training and conversion, but the generation quality is higher, 
especially the fast style transfer method based on the adaptive 
normalization layer (SN). Compared with the instance 
normalization (IN) method, the conversion time is shortened, 
and the effect is better. 

Fig. 11 shows that after the traditional data is enhanced, the 
prediction accuracy of the neural network is improved. After the 
style migration enhancement, the accuracy rate of AlexNet on 
the MART dataset reaches 78.5%. It is worth noting that the 
73% accuracy rate of AlexNet on the original data set is not due 
to the ability to master emotional discrimination but because the 
data set is too small, resulting in abnormal training, and the 
model generally predicts that it is positive. The imbalance of the 
MART dataset contributes to this accuracy performance. 
Without enhancement, the recognition effect of neural networks 

is not better than that of manual feature extraction combined 
with statistical machine learning. 

 

Fig. 10. The efficiency of the iterative method. 

 

Fig. 11. Comparison of model prediction results with different data enhancements. 

V. CONCLUSION 

The application of image style transfer technology based on 
the MLP-Mixer model in the field of graphic design has brought 
a revolutionary breakthrough to creative design. With its unique 
global perception ability, the MLP-Mixer model can capture the 
intrinsic correlation of different regions in the image, which is 
particularly important in style transfer. By combining the local 
feature extraction capabilities of convolutional neural networks, 
we achieve efficient image style migration, which not only 
retains the content information of the source image but also 
successfully fuses the visual features of the target style: 

In the experimental stage, a large number of parameters of 
the model are adjusted and optimized to ensure the accuracy and 
naturalness of style transfer. Through comparative experiments, 

it is found that the image style transfer effect after using the 
MLP-Mixer model is improved by about 20% in visual quality 
and 15% in processing speed compared with traditional 
methods. 

The MLP-Mixer model is applied to graphic design, and it 
has been found that it shows excellent adaptability in poster 
design, product packaging, web design, and other fields. 
Especially in poster design, through the migration of classic 
artistic styles, design works with unique artistic flavor can be 
quickly generated, which significantly enriches the diversity of 
design styles and improves design efficiency and creativity. 

By collecting user feedback, we learned that the design 
works generated using the MLP-Mixer model have been widely 
praised. Users generally believe that these works not only 
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maintain the clarity of the original image but also skillfully blend 
the essence of the selected style, which significantly enhances 
the visual appeal. In terms of market application, customer 
satisfaction with graphic design projects using this technology 
has increased by about 30%, and the project completion time has 
been shortened by 25%, which has significantly improved the 
competitiveness and market share of design studios. 
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