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Abstract—The identification of COVID-19 using chest X-ray 

(CXR) images plays a critical role in managing the pandemic by 

providing a rapid, non-invasive, and accessible diagnostic tool. 

This study evaluates the impact of different image preprocessing 

techniques on the performance of deep learning models for 

COVID-19 classification based on COVID-19 Radiography 

Database, which includes 10,192 normal CXR images, 6012 lung 

opacity (non-COVID lung infection) images, and 1345 viral 

pneumonia images. Along with the images, corresponding lung 

masks are also included to aid in the segmentation and analysis of 

lung regions. Specifically, three convolutional neural network 

(CNN) models were developed, each using a distinct preprocessing 

method: Contrast Limited Adaptive Histogram Equalization 

(CLAHE), traditional histogram equalization, and no 

preprocessing. The results revealed that while the CLAHE-

enhanced model achieved the highest training accuracy (93.26%) 

and demonstrated superior stability during training, it showed 

lower performance in the validation phase, with validation 

accuracy of 91.31%. In contrast, the model with no preprocessing, 

which exhibited slightly lower training accuracy (92.98%), 

outperformed the CLAHE model during validation, achieving the 

highest validation accuracy of 91.50% and the lowest validation 

loss. The histogram equalization model demonstrated 

performance similar to that of CLAHE but with slightly higher 

validation loss and accuracy compared to the unprocessed model. 

These findings suggest that while CLAHE excels in enhancing 

image details during training, it may lead to overfitting and 

reduced generalization ability. In contrast, the model without 

preprocessing showed the best generalization and stability, 

indicating that preprocessing techniques should be chosen 

carefully to balance feature enhancement with the need for 

generalization in real-world applications. This study underscores 

the importance of selecting appropriate image preprocessing 

techniques to enhance deep learning models' performance in 

medical image classification, particularly for COVID-19 detection. 

Histogram Equalization The results contribute to ongoing efforts 

to optimize diagnostic tools using AI and image processing. 
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I. INTRODUCTION 

The COVID-19 pandemic has caused dramatic global 
changes, both in healthcare and in our daily lives. One major 
challenge is the efficient identification of COVID-19 patients, 
where chest imaging has played a crucial role. While computed 
tomography (CT) scans provide high-resolution 3D images, 
their high cost and time requirements make them less practical 

than chest X-rays (CXR) for widespread use. Furthermore, 
COVID-19 has single-handedly become the driving force to so 
many unprecedented changes to the norms of today’s modern 
society. On the flip side of things, we have observed welcomed 
acceleration in the adoption of digitalisation into our daily lives. 
This includes opening markets for online video meetings which 
in turn encouraging work from home policies and forcing 
countries into a standstill to fulfil lockdown requirements which 
leads to the reduction of carbon emissions by 8.8% (much larger 
than carbon emission reduction after World War II)[1][7]. Still, 
COVID-19 in its essence, is an unwelcomed pandemic that have 
brought tremendous amounts of varying losses (3.5 million 
deaths globally as of December 2019)and should be combated 
to the very best of humanity’s capabilities [2][8] . Machine 
learning is one of the newest additions to our arsenal in fighting 
off COVID-19. We have seen efforts to direct the creation of 
effective policies, utilising the power of data to govern available 
resources through the means of analysis such as effectiveness of 
vaccines, rate of vaccination and rate of cases to identify 
COVID-19 hot spots. Chest imaging is one of the methods used 
to identify potential COVID-19 patients. Options include 
computed tomography (CT), X-ray and ultrasound scans. CT 
scans are images produced by a procedure of combining series 
of X-ray scans from multiple angles combined to create a 3D 
view. CT scans have the advantage of providing a better 
overview of a patient’s conditions. However, it is considerably 
more expensive compared to X-ray procedures due to the much 
higher cost of the machine used as well as the time required to 
complete it. Deep learning models have shown promise in 
analyzing CXR scans to detect lung abnormalities linked to 
COVID-19, providing a faster, more accessible diagnostic tool. 
Previous studies have explored models with high accuracy, but 
few have investigated how different image preprocessing 
techniques can impact model performance. Attempts have been 
made in the past to provide assistance in identifying COVID19 
patients with the use of transfer learning with MobileNet, 
obtaining an accuracy score of 96.33% as well as using the latest 
Generative Adversarial Network (GAN) on X-ray images 
obtaining 85% and 95% accuracy for dataset without and with 
data augmentation respectively [3], [4],[9],[10]. 

Abhishek Agnihotri and Narendra Kohli first proposed a 
novel 20-layer CNN model with an accuracy of 89.67 in order 
to analyze the performance of hybrid deep learning models 
versus novel deep learning models [6] and pre-trained models 
[21]. This model performs better than four pre-trained models 
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(Inception_ResnetV2, VGG16, VGG19 and InceptionV3) and 
achieves accuracy close to that of one pre-trained model 
(ResNet50). In order to narrow the gap in covid-19 severity 
prediction, Fares Bougourzi et al. proposed two methods based 
on 2D and 3D CNNS respectively. The proposed method is 36% 
more effective in predicting the severity of Covid-19 than the 
baseline method and represents a 14% improvement over the 
baseline method [22]. Dandil andYildirim proposed that the 
Mask R-CNN method was successful in the segmentation of 
COVID-19 infection, and COVID-19 infection on CT slices of 
open data sets was successfully segmented. In the experimental 
study, the scores of DSC, JSC, Precision and Recall were 
81.93%, 74.19%, 90.27% and 79.47%, respectively [23]. 
Hammad and Khotanlou propose a simple CNN-based deep 
learning model, called Grad-CAM CNN (GCNN), to detect 
infection with COVID-19 disease through chest X-ray images 
and visualize heat maps with the help of Grad-CAM technology. 
In order to determine which area of chest X-ray images had 
COVID-19, a binary classification of normal chest X-ray images 
and positive chest X-ray images was performed, and the 
accuracy rate of detecting COVID-19 infection was 97.78%. 
Under the premise that the number of high-quality positive chest 
X-ray images was insufficient, they used a composite dataset to 
overcome this limitation [24]. 

Khadija developed a web-based online COVID-19 detection 
service, and the proposed FACNN framework enabled us to 
achieve precision, accuracy, sensitivity, F-measure, recall rate, 
and specificity to achieve high performance [25]. Arul Raj. A.M 
and Sugumar R demonstrated the feasibility of early 
identification of COVID-19 using cnn and pre-processed X-ray 
images, The COVID-19 detection method based on 
convolutional neural networks (cnn) and pre-processed chest X-
ray images provides a promising solution for the accurate and 
efficient diagnosis of COVID-19 cases. The image quality and 
contrast are improved by image normalization, contrast 
stretching and segmentation, and the performance of CNN 
model is enhanced. Trained CNN models can generate accurate 
and efficient diagnostic reports, enabling healthcare 
professionals to quickly diagnose COVID-19 cases and take 
appropriate action [26]. 

Maddula et al. trained on a simplified large data set based on 
cnn, and the accuracy efficiency of the obtained model was 
0.9835, precision was 0.915, sensitivity was 0.963, specificity 
was 0.972, and F1 score was 0.987. With ROC AUC of 0.925, 
this model is better than Random Forest with accuracy of 0.8997 
and Naive Bayes with accuracy of 0.887, which proves that 
CNN's model can be combined with reinforcement learning for 
pattern recognition and deep learning model for processing large 
amounts of data. The above methods are helpful to improve the 
prediction accuracy [27]. Jagadeesh Marusani proposes a 
computer vision model to detect the presence of covid-19 
infection and the location of the infection in the lungs. The 
proposed CNN model shows good performance on chest X-ray 
data sets and validation of different data sets. This model is 
smaller in size and requires six times fewer parameters to train. 
Compared to the most advanced EfficientNetB7 model, it is 
comparable and sometimes even shows better results [28]. 
Renuka Devi SM et al. used deep learning methods to train 
database images. When given a specific chest X-ray image as 

input, the system detects whether the X-ray is in the COVID-19 
category or the normal category. The experimental results show 
that the accurate and accurate results obtained by CNN in 
COVID-19 detection are the best, with an accuracy rate of 
96.8% [29]. Hassam Tahir et al. applied ResNet-101 to the local 
Covid-19 patient registration data set in order to facilitate 
infection of the virus in developing countries without 
vaccination facilities and to save time for rapid treatment of 
COVID-19 patients. Data from 8009 local chest radiographs 
were collected. Three neural networks were suggested for 
patients Faster R-CNN, Mask-CNN and ResNet-50. The faster 
R-CNN showed the best accuracy at 87 percent. The Mask 
RCNN was 83% accurate and the resNet-50 was 72% accurate 
[30]. Jing Zhang et al., because existing models do not apply to 
the three classifications of health controls, CP, and COVID-19. 
A novel diagnostic model for COVID-19 patients based on 
graph-enhanced three-dimensional convolutional neural 
networks (CNN) and cross-central domain feature adaptation is 
proposed. A 3D CNN with graph convolution module is 
designed to enhance the capability of global feature extraction. 
At the same time, a domain adaptive feature alignment method 
was used to optimize the feature distance between different 
centers to effectively realize multi-center COVID-19 diagnosis. 
Our experimental results achieved a fairly good COVID-19 
diagnosis with 98.05% accuracy in the mixed dataset and 
85.29% and 87.53% accuracy in cross-center tasks [31]. 

Several studies have explored the use of machine learning to 
detect COVID-19, achieving high accuracy with models trained 
on medical images. However, few have investigated how 
different image preprocessing techniques might impact the 
performance of these models. This study contributes to this gap 
by developing deep learning models based on various 
preprocessing techniques applied to CXR images. The 
preprocessing methods include Contrast Limited Adaptive 
Histogram Equalization (CLAHE), traditional Histogram 
Equalization, and a control model with no preprocessing.The 
contributions of this study are listed as follows: 

1) Development of three CNN models: The study develops 

CNN models to classify COVID-19 using different image 

preprocessing techniques (CLAHE, Histogram Equalization, 

and no preprocessing). 

2) Use of real CXR datasets: The dataset used consists of 

real X-ray images from the COVID-19 Radiography Database, 

obtained from open sources like Kaggle, and includes a large 

number of CXR images classified into COVID-19, normal, 

lung opacity, and viral pneumonia categories. 

3) Identification of the most effective preprocessing 

method: The study identifies key preprocessing techniques that 

significantly influence model performance in detecting 

COVID-19, with Histogram Equalization emerging as the best 

method for model generalization. 
In this paper, we aim to extend existing efforts by evaluating 

the impact of these preprocessing techniques on deep learning 
models for COVID-19 detection. Our approach follows a 
systematic comparison to determine which technique most 
effectively enhances model performance for detecting COVID-
19 from chest X-rays. 
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II. LITERATURE REVIEW 

A. X-ray Scans for COVID-19 Identification 

Various methods have been proposed and applied in the 
global effort to mitigate the propagation of COVID-19. Given 
the limited knowledge base and database of the novel virus 
during the pandemic’s inception, methods to identify potential 
patients mainly revolve around high recall with low costs (low 
material cost and lower expertise requirement) such as take-
home test kits and clinical Antigen Rapid Test Kit (RTK). 
Another approach to identifying COVID-19 patients is by 
performing X-ray scans to identify COVID-19 related lung 
abnormalities by locating lung opacities (opaqueness of white 
areas within lung X-ray scans). The findings in Liqa A. 
Rousan’s paper collected X-ray scans using portable Xray units 
based on anteroposterior projections [11]. A minority (31%) of 
the positive patients involved in the study was observed to 
possess or develop abnormalities on their chest X-ray (CXR) 
scans while 75% of the patients did not even though all of them 
are tested positive for COVID-19 using RT-PCR, the golden 
standard for COVID-19 testing. However, significant 
correlation was identified between the progression of 
abnormalities and symptoms experienced by patients with lung 
abnormalities, suggesting plausibility of judging patient’s 
condition progress by judging changes of abnormalities in the 
X-ray scans. Common locations for the opacities are the 
peripheral and right lower zone of the lungs, with their 
respective distribution being 90% and 70%. Still, the paper 
suggested that X-ray scans still can be helpful in helping the 
process of diagnosing possible patients. Improvements could be 
made in future attempts to replicate the experiment conducted 
by having a much larger dataset compared to the one that was 
used in the paper with a total of 190 scans only. The baselines 
for judging progression of lung opacity should also include 
nonCOVID-19 patients to provide more comparisons for better 
identification of lung abnormalities unique to COVID-19. 

A similar study has also been performed on pediatric 
patients, where a total of 44 patients tested positive based on 
PCR test were included as test subjects for CXR scans [12]. 
Results show that only a minority of the children tested (13.6%) 
has no observable findings in their scans. The most common 
lung abnormality observed was peribronchial cuffing (86.3%), a 
radiologic sign of excessive build-up of fluid and mucus small 
airway passages. This form of malformation is commonly found 
in the centre of CXR scans (81.8%) followed by 63.3% for 
peripheral occurrences. However, peribronchial cuffing should 
not be considered as definitive sign of COVID19 according to 
the authors as it is a shared observation with other viral 
pneumonias such as H1N1 influenza, adenoviruses, respiratory 
syncytial viruses, rhinoviruses and other coronaviruses [13]. 
Despite suggestions from the American College of Radiology 
(ACR) on not using CXR as the frontline test to diagnose 
COVID19, the paper stressed on the importance on performing 
CXR on pediatric patients who are at higher risks. This can 
greatly help in identifying target groups that require close 
medical monitoring, ultimately reducing fatality cases. 

Both papers share the same limitation which is lack of data 
available which limits the possibility of performing a robust 

experiment to obtain definitive conclusions on the usability and 
practicality of CXR scans as a method to mitigate COVID-19. 

B. Deep Learning as a Method to Classify X-Ray Scans for 

Covid-19 

As surmised above, CXR should not be used as the primary 
tool to diagnose patients for COVID-19 due to the lack of 
decisive characteristics that can be used to single out COVID19 
lung malformation compared to other pneumonia related 
diseases. However, findings from papers utilising deep learning 
for the purpose of classifying CXR scans displayed promising 
practical use prospect. With dataset added with augmented data, 
Abdul Waheed’s GAN model boasted 95% accuracy [10]. 
Another paper also demonstrated excellent accuracy results in 
classifying X-Ray scans using various deep learning models 
such as DenseNet201(98.8%), InceptionV3(97.5%) and 
ResNet101(97.91%) [14]. These findings indicate that deep 
learning models can capture enough distinguishing patterns in 
lung abnormalities to train itself to become a high performing 
classifier. It should be addressed that since the classifier is a 
trained computer program, it can perform observations across 
large amount of data and is more capable at discerning and 
identifying unique identifiers of COVID-19 induced lung 
malformations. Still, this could not be fully used as an argument 
for the superiority of deep learning over human experts as there 
are no post model fitting activities performed that includes forms 
of validation or performance comparison between these models 
with human experts. 

There are several image pre-processing methods that can be 
performed on the training dataset to enhance the defining 
features of COVID-19 induced lung abnormalities [15]. One 
commonly used image pre-processing method is to resize input 
images before feeding them into the model for training. This 
helps in speeding up the training process (by scaling down high-
definition images) as well as standardizing input dimension. 
Image segmentation can also be performed to isolate the lungs 
from its background, theoretically removing irrelevant noises 
from being picked up as features by focusing on the Region of 
Interest (ROI). Another option is to perform image 
enhancements that enhance defining features of deformations. 
For this use case, histogram equalization can be used to 
distribute pixel intensity level. The referred paper suggested the 
use of Contrast Limited Adaptive Histogram Equalization 
(CLAHE) as it remedies the downside of using plain Adaptive 
Histogram Equalization which have the possibility to increase 
noise intensity in homogenous areas (areas with similar pixel 
values). 

Increasing dataset is one of the popular ways to increase the 
performance of deep learning models. Considering the relatively 
young age of the COVID-19 pandemic, there is a scarcity of 
available datasets. Addition of augmented data can remedy this 
problem. It should be noted that augmentation is only performed 
on training datasets to avoid contaminating test datasets that are 
used for validation with artificial data. Options for augmentation 
include positional, colour and noise injection. These variations 
in data adds to the trained model’s capability to learn from a 
more generalised, near to real life data that it will eventually try 
to classify during its application. 
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C. Image Pre-processing Methods to Enhance Input Features 

Enhancing images as a part of data pre-processing is 
important in the application of CNN as the features learned are 
highly reliant on distinguishing features detected from input 
images. Improving the features of these images via removal of 
noise or blur and increasing contrast will help in improving 
spatial features, thus helping CNN models to learn better [10]. 
Still, the application of image enhancement must be performed 
in a way that will not affect information contained within the 
images. Altered features may lead to false learning, which in 
return will have a negative impact on the final model output. 
Various methods of image enhancements have been proposed to 
help improve classification models. 

A paper on enhancing images used a fuzzy grayscale 
enhancement method to address low contrast due to inadequate 
lighting during capture [17]. The method used succeeded in 
improving image quality whilst also requiring relatively 
minimal processing time compared to other techniques. The 
proposed technique is performed by maximizing fuzzy measures 
within input images. Power-law transformation and saturation 
operator is then used to alter the membership function (a curve 
that defines how each point in the input space is mapped to 
membership value between 0 and 1) associated with the images. 

A four stage image enhancing solution has also been 
proposed by M.Selvi and Aloysius George namely pre-
processing, fuzzy based filtering, adaptive thresholding 
followed by morphological operation [18]. The stages are 
created to help pinpoint pixel areas and improve them using 
Fuzzy based filtering technique and adaptive thresholding. 
Resulting images are enhanced to have better peak signal-to-
noise (PSNR) values compared to other filtering techniques at 
the time of the paper being written maps, etc., by exploiting 
similarity and semantic relationships. The nonlinear 
representation is further exploited in exploring web image 
search results. 

III. METHODOLOGY 

A. Data Preparation 

The dataset used in this paper is obtained from Kaggle, titled 
COVID-19 Radiography Database [14], [16]. The dataset can be 
found using the following link: 
https://www.kaggle.com/datasets/tawsifurrahman/covid19radio
graphy-database. The images are from four health condition 
classes namely COVID-19, normal (healthy), lung opacity (non-
COVID lung infection) and viral pneumonia. Total number of 
images for each class are 3616, 10192, 6012 and 1345 
respectively. Totalling the numbers gives us 21165. This dataset 
is built by researchers from Qatar University and the University 
of Dhaka, Bangladesh along with their collaborators from 
Pakistan and Malaysia. Sources include padchest dataset, a 
Germany medical school, Github, SIRM, Kaggle and Tweeter. 
The images are X-Ray scan results from patients subjected to the 
scan for the purpose of detecting COVID-19. The CNN model 
will be used to perform feature extraction on these images and 
use the characteristics identified in input feature maps for the 
purpose of classification. Based on the abnormalities present in 
the chest X-ray scans, the CNN model will then be able to 
perform the necessary predictions. The augmented training data 

generation for the CNN model was performed using the Keras 
ImageDataGenerator class with several parameters passed for 
the purpose of data augmentation. Data augmentation is a 
method that increases the amount of data artificially by creating 
new sets of data derived from geometric transformations applied 
on the original dataset. Alterations include forms of rotation, 
translation, flipping and noise addition. Forms of alteration such 
as adjusting brightness or applying ZCA whitening is not 
considered. Instead, minor width and height shift is applied to 
account for possible positions at which the lung and 
corresponding abnormalities are located within the X-ray scans. 
Horizontal flip is also enabled, while vertical flip is not. This 
means, the model will not take into consideration an upside-
down X-Ray scans as well as forego any significance put into 
the positions of pneumonia induced lung malformations. In 
simpler words, any abnormalities formed either at the right or 
the left side of the CXR scans are considered to have the same 
significance in classifying the respective CXR scans. 

As highlighted above, the distribution of data for each class 
is not balanced, with normal X-ray scans consisting almost half 
of the entire dataset. This was not addressed as initially 
considered in favour of maintaining the amount of learnable data 
over possible bias. Dropping these images with the purpose of 
balancing the dataset may lead to a reduction of performance as 
the pool of data that the model can learn from reduces. 
Geometric transformations are not applied to the data due to the 
sensitive dependence on pixel locations as well as the minute 
variations that accounts for the difference in the X-ray classes. 
Other options such as increasing brightness is also not applied 
as X-ray scans are generally similar in both currently used 
dataset as well as in real-life practice. 

The usual train test split is used instead of stratified split as 
the preservation of class proportion is not desired due to the 
imbalance of samples as mentioned. Aside from training 
purposes, the training set is also sampled and passed to the same 
pre-processing function used in training to provide 
visualizations of CXR scans after being processed. 

B. Data Pre-processing 

Equations in display format are separated from the 
paragraphs of the text. Equations should be flushed to the left of 
the column. Equations should be made editable. Displayed 
equations should be numbered consecutively, using Arabic 
numbers in parentheses. See Eq. (1) for an example. The number 
should be aligned to the right margin. 

Based on randomly sampled observations, all images are 
perfectly collected for training, with no visible defects that might 
significantly impact the model’s performance. Thus, no images 
have been dropped from the original dataset. Normalization is 
performed on both training and test datasets by enabling the 
rescale parameter (rescale = 1./255) which converts the pixels 
within the range from [0, 255] to [0, 1]. This scaling procedure 
aids in making images contribute more evenly to the calculated 
total loss. The low range also helps in increasing the likeliness 
of the neural network to converge. 

The input (training and test) images are also resized 
uniformly to 256 by 256 by specifying the input shape parameter 
in the first layer of the Keras sequential model. 
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Three pre-processing methods have been chosen as the 
differentiating variable for each model, which are CLAHE, 
histogram equalization [20] and no pre-processing. CLAHE and 
histogram equalization are image enhancement methods used to 
bring out distinguishing features that might be important for 
deep learning models to capture thus building their knowledge 
base on the classes within the dataset. Both pre-processing 
methods are implemented using the OpenCV API. CLAHE 
stands for Contrast Limited Adaptive Histogram Equalization 
and is a subset of adaptive histogram equalization. It is used 
primarily to improve contrast in images akin to the usual 
histogram equalization with a slight difference in approach. 
Instead of using the entire image, CLAHE computes multiple 
histograms by focusing on small regions within an image called 
tiles. These tiles correspond to local areas within distinct 
sections of the image which redistributes the lightness value of 
the image. This results in improved contrast, further enhancing 
the boundaries or edges that will be useful in capturing 
distinguishing shape of lung abnormalities within the CXR 
scans. CLAHE is an improved version of adaptive histogram 
equalization, in which it solves the problem of over amplifying 
noise in homogenous areas. This is done by the introduction of 
contrast limit that clips calculated histogram. The clipping 
process is performed before the calculation of Cumulative 
Distributive Function (CDF) [19]. This clipping variable is set 
in the pre-processing of input images phase for the first model 
by specifying the clip limit (CL) to be 4 using the OpenCV API. 
The number of tiles were kept the same as the default value 
specified by OpenCV which is (8,8). 

Histogram equalization is an umbrella term that can be used 
to refer to various subsets of image enhancement using similar 
methodologies. However, in this experiment histogram 
equalization used as the manipulated variable for the second 
model refers to the traditional form of histogram equalization. 
The method contrasts itself with its aforementioned subset, 
CLAHE where it only uses one histogram that represents the 
whole image for the purpose of enhancement. These histograms 
are then equalized, resulting in a distribution of intensity values 
across the entire image. Regions with lower contrasts will then 
be able to increase its contrast as a result. Histogram 
equalization works particularly well with images with dark 
background and lighter coloured subjects such as XRay scans. It 
also has the advantage of being computationally cheaper 
compared to its more complex subset due to its fairly 
straightforward approach. The CDF of a standard histogram is 
given as H’(i): 

𝐻′(𝑖) = 𝐻(𝑗)  
0≤𝑗<𝑖

𝑋                       (1) 

This equation is then used to remap the histogram by 
normalizing H’(i) to have a maximum value of 255. Next, the 
intensity values for the histogram equalized image can be 
obtained using the following equation: 

 equalized(x,y) = H′(src(x,y)) (2) 

 
Fig. 1. The process of applying CLAHE. 

All models are fed with CXR scans that have been processed 
into a grayscale image using the OpenCV cvtColor method. Fig. 
1 demonstrates the process of applying CLAHE (Contrast 
Limited Adaptive Histogram Equalization) to a chest X-ray 
image. Below is a detailed explanation of each step in the 
diagram:The first step involves dividing the chest X-ray image 
into a 4x4 grid, resulting in 16 smaller tiles. 

This division is done to allow local contrast enhancement, 
which is the main feature of CLAHE. In the diagram, the 
original chest X-ray image is shown, and the grid overlay 
highlights the individual tiles. The next step involves setting a 
clip limit (CL). The clip limit controls the amount of contrast 
enhancement applied during CLAHE. A higher clip limit leads 
to greater contrast enhancement. In this flowchart, the clip limit 
is set to CL = 0.02. For each tile, a histogram is calculated. A 
histogram represents the distribution of pixel intensity values in 
the image. This step is important because CLAHE works by 
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manipulating the image's histogram to enhance the contrast in 
areas of the image with low contrast. After calculating the 
histogram, the clip histogram step follows. In this step, the 
histogram is clipped to the defined clip limit. If any part of the 
histogram exceeds the clip limit, it is clipped off and 
redistributed, effectively limiting the maximum intensity range. 
This helps in preventing over-enhancement of certain regions 
and preserving the details in the image. 

This cumulative distribution function (CDF) represents the 
cumulative sum of the clipped histogram. It helps in 
redistributing the pixel intensities across the entire range, which 
further contributes to improving the local contrast.The 
equalization step follows the cumulative histogram calculation. 
Here, the pixel intensities are redistributed based on the 
cumulative histogram. This process enhances the contrast in the 
image by stretching the pixel intensity values over a wider range. 
The equalized histogram allows for a more balanced distribution 
of pixel values, making the image more visually appealing and 
improving the visibility of important features. The final step 
shows the enhanced tile after applying CLAHE. The local 
contrast of the selected tile has been enhanced, making the 
details of the image more visible. In this case, the tile with the 
"Sn" label (possibly representing a specific area of interest in the 
X-ray image) is shown as the final enhanced tile. 

C. Descriptive Analysis 

Samples of processed images have been by extracting 
images from the training dataset and passing it through the same 
image processing methods used in the training of the model. We 
can see the difference in the resulting images after being passed 
through different image processing methods as following Fig. 2:  

 
Fig. 2. Images after pre-processed with different image enhancement 

methods. 

Through observation, both CLAHE and histogram 
equalization has helped in highlighting the edges and the shape 
of lung opacities when present in CXR scans. Differences in 
between CLAHE and histogram equalization are as expected, 
where histogram equalization tends to subdue the intensity of 
homogenous areas (pixel with similar values). This can be 
described based on the third row of sample images, where the 
ribcages at the center of the histogram equalized image is seen 
to almost lose its shape due to lowered contrast. CLAHE on the 
other hand seems to uniformly enhance its features, consistently 

providing clearer shape of the ribcages. We can also see that 
CLAHE tends to highlight the structures within white areas 
better compared to histogram equalized images. This may 
improve its chance in building a better predictor. It may also 
backfire as no mention of inner structures of lung opacity is 
mentioned to be a signal or indicator that can be used to 
distinguish different pneumonia diseases. This means that these 
enhanced inner structures might become irrelevant features in 
the process of identification. 

D. Modelling to Data 

Three different CNN models have been developed to fulfil 
the purpose of this paper. All models are constructed using the 
sequential model class from Keras with the same structure which 
consists of two convolutional layers, two max pooling layers, 
one flattening layer and two dense layers. 

The convolutional layers are purposely built to have 
increasing number of filters as the inputs are passed deeper into 
the CNN model. This is done to capture larger numbers of 
patterns to enable the model in identifying greater nuances 
within the CXR scans. Convolutional layers are all proceeded 
by max pooling layers throughout the structure. Max pooling is 
immediately applied to the first layer of the CNN structure to 
downsample input images, reducing dimensions and learnable 
parameters. This helps in decreasing the amount of time needed 
to train the classification model. The overall structure can be 
visualized using the VisualKeras library as follows in Fig. 3: 

 

Fig. 3. Resized structure of the CNN models used in the experiment. 

Normalization: Normalization is a process in data 
preprocessing which is used to change the range of numerical 
data so that it is located in a specific cell, such as [0,1] or [1,1]. 
In image processing, normalization is a common practice. The 
essence of the method is some layer input data of the neural 
network that is preprocessed with zero mathematical 
expectations and unit variance with the intention of improving 
the stability and efficiency of the training process [10]. For FER 
tasks, normalization can give different features similar to ranges. 
Unnormalized data may lead to unstable gradient problems 
during model training. In deep learning models, normalized data 
may lead to a gradient that is too large or too small, thus 
affecting the learning effect of the model. The normalization in 
FER2013 dataset is shown in Fig. 8: 
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Over categorical in this experiment due to the mutually 
exclusive nature of the dataset classes. This means that the true 
classes (Yi) are encoded as standalone integers instead of onehot 
encoded. Examples of true classes for sparse categorisation are 
[1], [2], [3] while one-hot encoded true classes are [1,0,0], 
[0,1,0], [0,0,1]. The true classes in sparse categorisation refer to 
the indices of the classes. Linking the class prediction of a model 
is done by taking the ground truth. For example, if a model 
output is [0.5, 0.2, 0.4], the prediction will be class 1 if the class 
indexation starts from 1. The cross-entropy equation is the same, 
with the only difference being the format of the true class labels: 

𝐽(𝑤) = −
1

𝑁
 ∑ 𝑦𝑖  log (𝑦̂𝑖)

𝑁
𝑖=1                   (3) 

Where:y i = true label, yˆi = predicted label, W = model 
parameters. 

To avoid overfitting, several options have been considered 
for data regularization such as adding a dropout layer, adding a 
normalization layer after the input layer, as well as adding a 
kernel regularizer in the last layer. Ultimately, it has been 
decided the only regularizer that will be used is the Ridge 
Regression regularizer (L2 regularization). The decision to not 
use normalization layer is due to significant drop in performance 
for all models when applied. Dropout layer has also been 
experimented but also disregarded due to similar drop in 
performance. Dropout layer has also been found to be more 
effective when used with deeper deep learning structures. The 
L2 regularization was chosen over L1 regularization as it does 
not have the tendency to completely remove features deemed as 
irrelevant. This behaviour is because L1 is capable of forcing 
coefficients to be exactly zero if given high enough tuning 
parameter value (usually denoted by λ). While this might be 
good in reducing the possibility of overfitting in most cases, L1 
is not used in this experiment to preserve every single parameter 
no matter how insignificant and only measure their respective 
importance by their coefficient values. This decision is made to 
avoid removing possibly important nuances that might help in 
the final classification process. 

Three options of optimizers have been considered, namely 
Adaptive Moment Optimization (Adam), stochastic gradient 
descent (SGD) and Root Mean Squared Propagation (RM-
SProp). After performing multiple iterations using a controlled 
model with the same structure, Adam has been chosen due to its 
excellent performance. It has also been chosen based on its 
efficiency when working with large datasets. Adam inherits the 
same concept of momentum from gradient descent with 
momentum, usually denoted by mt. The formula is given as 
follows: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1) [
𝛿𝐿

𝛿𝑤𝑡
]                  (4) 

Where:mt = aggregate of gradients at time t [current], mt−1 = 
aggregate of gradients at time t-1 [previous],wt= weights at time 
t, δL = derivative of Loss Function, δwt = derivative of weights 
at time t, β1= moving average parameter. 

It also inherits the use of exponential moving average from 
RMSProp, giving us a new variable called sum of square of past 
gradients, denoted by vt. 

𝜐𝑡 = 𝛽2𝜐𝑡−1 + (1 − 2) [
𝛿𝐿

𝛿𝑤𝑡
]  2                  (5) 

Where:vt = sum of square of past gradients,β2 = moving 
average parameter. 

Adam further improves on these variables by computing and 
using bias corrected versions of the variables. These new 
variables are given as follows: 

𝑚𝑡̂ =
𝑚𝑡

1−𝛽1
𝑡                                     (6) 

𝜐𝑡̂ =
𝜐𝑡

1−𝛽2
𝑡          (7) 

The weights are then updated using the following equation: 

𝑤𝑡 = 𝑤𝑡 − 𝑚𝑡̂ (
𝛼

√𝜐̂𝑡+𝜀
)                          (8) 

Where: ϵ = a small + ve constant to avoid ’division by 0’ 
error. 

When training a deep learning model, the training accuracy 
rate and validation accuracy rate are important indicators to 
measure the model performance. The training accuracy rate 
refers to the proportion of correct predictions of the model on 
the training data set during the training process. It reflects the 
model's performance on known training data. The validation 
accuracy rate refers to the prediction accuracy rate of the model 
on the validation set. Validation sets are data that have not been 
seen before in the training process and are mainly used to 
evaluate the generalization ability of the model. 

 Train Acc=
∑  𝑛

𝑖=1 1(𝑦̂𝑖=𝑦𝑖)

𝑛
× 100 (9) 

𝑉𝑎𝑙 𝐴𝑐𝑐 =
∑  𝑚

𝑖=1 1(𝑦̂𝑖=𝑦𝑖)

𝑚
                        (10) 

Where, for each training sample 𝑥𝑖 the model's prediction 𝑦̂𝑖 
, 𝑦𝑖is compared with the true label. If the prediction is correct, 
that counts as a correct prediction. 

Due to the sheer variations of model that can be generated 
by varying the value of hyperparameters in CNN, cross-
validation and hyperparameter tuning using GridSearchCV or 
RandomSearchCV has not been applied. This decision was 
made considering the computational costs involved as well as 
time constraints. However, hyperparameter tuning has been 
done manually to increase the performance of each model. The 
final values of hyperparameters are listed as below in Table I: 

TABLE I.  FINAL HYPERPARAMETERS CHOSEN FOR CNN MODELS 

Hyperparameter Value 

Batch size 32 

Epoch 25 

Adam learning rate 0.001 

Adam β1 0.9 

Adam β2 0.999 

Adam  0.0000007 

L2 regularizer λ 0.01 

CLAHE clip limit 4 
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E. Communicating and Visualizing the Results 

As shown in Fig. 4, both Train Loss and Val Loss decrease 
gradually with the training rounds. The validation loss fluctuates 
at some points, but the overall trend is also downward. The 
CLAHE-enhanced model showed a good decreasing trend of 
training and verification loss, indicating that the model gradually 
learned the features on the training set and verification set. The 
training accuracy (Train Acc) and validation accuracy (Val Acc) 
both increased steadily, and basically became stable when they 
approached 20 epochs, indicating that the verification accuracy 
and training accuracy were close to each other, indicating that 
the model avoided overfitting well, and CLAHE enhancement 
helped the model learn image features better [5]. 

As shown in Fig. 5, training losses and validation losses 
decreased gradually, and validation losses also fluctuated in 
some epochs, but the overall trend was downward. Compared 
with the CLAHE-enhanced model, the validation loss 
fluctuation is slightly larger, indicating that the model has a 
slightly weak generalization ability on the validation set and 
may need further tuning. Training accuracy and validation 
accuracy rise rapidly in the initial phase and level off near 20 
epochs. The verification accuracy is slightly lower than the 
training accuracy, which indicates that the performance of the 
model on the verification set is slightly worse than that on the 
training set, and there is a certain tendency of overfitting, but the 
overall performance is still good. 

 
Fig. 4. Images after pre-processed with different image enhancement 

methods (I). 

As shown in Fig. 6, Training losses and validation losses also 
decrease with epoch, and validation losses also fluctuate at some 
points, but less so. The loss of the model without preprocessing 
decreased relatively gradually, especially after 10 epochs, and 
the validation loss was sometimes slightly higher than the 
training loss, indicating that the model needed longer training 

time to reach a stable state without preprocessing. Despite the 
high accuracy on the validation set, it performed slightly worse 
than models preprocessed with CLAHE and histogram 
equalization, suggesting that data without preprocessing may 
result in a limited ability of the model to learn features as well 
as it would have done with preprocessing techniques. 

 
Fig. 5. Images after pre-processed with different image enhancement 

methods (II). 

 
Fig. 6. Images after pre-processed with different image enhancement 

methods (III). 
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Image preprocessing has a significant effect on the 
performance of the model. CLAHE enhancement technology 
works best at improving local contrast, helping models better 
learn useful features to improve accuracy and reduce overfitting. 

Histogram equalization came in second, while models 
without any preprocessing performed poorly. It is suggested to 
use appropriate image preprocessing technology in practical 
application to improve the generalization ability and overall 
performance of the model. 

IV. RESULTS 

The Table II outlines the performance of each model based 
on the predefined evaluation metrics above. 

TABLE II.  PERFORMANCE OF EACH MODEL 

Image 

enhancement 

Accuracy 

(%) 

Validation 

accuracy (%) 
Loss 

Validation 

loss 

CLAHE 93.26 91.31 0.1987 0.2503 

Histogram 

equalization 
93.16 91.42 0.1935 0.2569 

No 

preprocessing 
92.98 91.50 0.2020 0.2479 

Based on the final results obtained, we can observe that all 
four evaluation metric scores for all of the models are relatively 
the same. 

As shown in Table III. CLAHE performs the best at training, 
with the highest accuracy score and second lowest loss. The 
difference between models using histogram equalized inputs and 
no pre-processing is relatively minor, where no preprocessing 
scores 0.18 lower accuracy and 0.0085 higher loss. CLAHE 
scored 0.28 and 0.1 higher in training accuracy compared to no 
pre-processing and histogram equalized models respectively. 
CLAHE also has the second-best loss with a 0.0052 and 0.0032 
margin compared to no histogram equalized and no pre-
processing models. However, evaluation metrics based on the 
validation data set tells a different story, with CLAHE being the 
worst performer, with validation accuracy of 91.31 and a 0.0024 
higher loss compared to no pre-processing. Interestingly, the 
model trained using inputs without any form of image 
processing became the best performer with a validation accuracy 
score of 91.50 and validation loss of 0.2479. This contradicts 
with initial hypothesis based on literature reviews, that CLAHE 
would be the best performer in both training and validation 
phase. Upon consideration, histogram equalization is chosen as 
the best method to enhance CXR scans for this very specific 
CNN model. The main reason to this choice is due its overall 
performance during both training and validation phase. Models 
that are better at validation usually signifies a better capability 
to generalise. Specifically for the context of this experiment, 
histogram equalization enables the model to better identify 
distinguishing features that characterise COVID-19 inflicted 
CXR scans instead of ‘memorizing’ the features through 
training datasets without actual ‘understanding’. The fact that 
CLAHE is better at enhancing the minute details of lung 
abnormalities might the drawback to its ability to generalize as 
well as histogram equalized model and no preprocessing model. 

TABLE III.  EVALUTION METRIC MEAN AND STANDARD DEVIATION 

CLAHE 

Metric Mean Standard deviation 

Training accuracy 0.869348 0.079467384 

Training loss 0.351748 0.189184685 

Validation accuracy 0.872868 0.044526815 

Validation loss 0.34308 0.107216724 

Table IV shows the histogram equalization model. the mean 
value of the training accuracy rate is 0.880868, and the standard 
deviation is 0.061541603, showing a high training accuracy rate, 
while the standard deviation is small, indicating that the training 
process is relatively stable. The average verification accuracy is 
0.885632, and the standard deviation is 0.040508844. The 
verification accuracy is high and the fluctuation is small, 
indicating that the model has good generalization ability. The 
validation loss is 0.32322 with a standard deviation of 
0.102009803, showing large fluctuations on some validation 
data, but still performing well overall. Histogram equalization 
improves the performance of the model, especially in the 
validation accuracy, but the validation loss fluctuates greatly, 
suggesting that its stability is slightly lower than that of CLAHE. 

TABLE IV.  EVALUTION METRIC MEAN AND STANDARD DEVIATION 

HISTOGRAM EQUALIZATION 

Metric Mean Standard deviation 

Training accuracy 0.880868 0.061541603 

Training loss 0.323184 0.148779061 

Validation accuracy 0.885632 0.040508844 

Validation loss 0.32322 0.102009803 

Table V shows that the mean training accuracy of the model 
without preprocessing is 0.876968, and the standard deviation is 
0.063891847, indicating that the consistency in the training 
process is good, but the accuracy of the model is slightly lower 
than that of other preprocessing methods. The average validation 
accuracy is 0.875144, and the standard deviation is 
0.044533499, which is close to the validation accuracy 
compared with other methods, but slightly lower than CLAHE 
and histogram equalization methods. The verification loss is 
0.343188 and the standard deviation is 0.104845224. The 
fluctuation of the verification loss is large, which shows the 
instability of the model on the verification set. 

TABLE V.  EVALUTION METRIC MEAN AND STANDARD DEVIATION WITH 

NO-PREPROCESSING 

Metric Mean Standard deviation 

Training accuracy 0.876968 0.063891847 

Training loss 0.335916 0.155654603 

Validation accuracy 0.875144 0.044533499 

Validation loss 0.343188 0.104845224 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

642 | P a g e  

www.ijacsa.thesai.org 

V. DISCUSSION 

During the training phase, the CLAHE-enhanced model 
outperformed both the histogram equalization and no 
preprocessing models in terms of accuracy, achieving a training 
accuracy of 93.26%. This suggests that CLAHE excels in 
enhancing the minute details of lung abnormalities, which could 
be crucial in detecting subtle features associated with COVID-
19 infections. The model’s relatively low loss (0.1987) further 
emphasizes its ability to minimize errors during training. 

However, the histogram equalization method, while slightly 
less effective than CLAHE in terms of training accuracy, 
performed well with a mean training accuracy of 93.16%. This 
method helped improve the contrast and brightness of CXR 
images, which may have helped the model more effectively 
learn the distinguishing features of the images. Notably, the 
training loss for histogram equalization (0.1935) was also lower 
than that of the CLAHE-enhanced model, suggesting that while 
CLAHE improves feature details, histogram equalization might 
be more effective at optimizing the overall model performance 
by reducing error rates during training. 

The model without preprocessing, while achieving a slightly 
lower training accuracy (92.98%), showed stable training 
consistency. With a training loss of 0.2020, it demonstrated that 
even without preprocessing, the CNN model could still 
effectively learn to classify the CXR images, albeit with less 
precision than the other methods. This highlights that while 
preprocessing enhances model performance, it is not an absolute 
requirement for effective training. 

The validation phase results presented a different picture, 
where the CLAHE-enhanced model performed the worst in 
terms of validation accuracy (91.31%) and exhibited the highest 
validation loss (0.2503). This is in contrast to the initial 
hypothesis, which anticipated that CLAHE would perform well 
in both training and validation phases. The discrepancy between 
training and validation performance suggests that while CLAHE 
is effective in fine-tuning the model’s ability to capture minute 
details in CXR images, it might lead to overfitting. The 
enhanced features could cause the model to ‘memorize’ training 
data without fully generalizing to unseen validation images, thus 
impairing its performance on the validation set. 

In contrast, the model trained without any preprocessing 
achieved the best validation accuracy (91.50%) and the lowest 
validation loss (0.2479), despite its lower training accuracy 
compared to CLAHE. This indicates that the lack of 
preprocessing enabled the model to generalize better, as it did 
not overfit the specific features of the training set. The validation 
results for this model demonstrate that preprocessing methods 
like CLAHE and histogram equalization might enhance feature 
extraction but at the cost of generalization ability. These findings 
highlight the importance of balancing training performance with 
generalization, especially in medical image classification, where 
the model must perform well on unseen data.The histogram 
equalization model, while showing good validation accuracy 
(91.42%), also exhibited noticeable fluctuations in validation 
loss (0.2569). While histogram equalization improved the 
model’s ability to generalize better than CLAHE, it still 
presented challenges in terms of stability during the validation 
phase. The slightly better performance of the histogram 

equalization model, compared to CLAHE, underscores its 
ability to enhance image contrast while maintaining reasonable 
generalization. 

VI. CONCLUSION 

This study evaluated the impact of different image 
preprocessing techniques—CLAHE, traditional histogram 
equalization, and no preprocessing—on the performance of a 
convolutional neural network (CNN) for COVID-19 
classification using chest X-ray (CXR) images. The 
experimental results demonstrated that all preprocessing 
methods improved model performance during the training 
phase, but the validation phase revealed distinct trade-offs 
between accuracy, loss, and generalization ability. 

The CLAHE-enhanced model achieved the highest training 
accuracy (93.26%) and exhibited strong stability, but it showed 
poor generalization in the validation phase, with the lowest 
validation accuracy (91.31%) and higher validation loss 
(0.2503). This suggests that while CLAHE helps capture 
detailed image features, it may lead to overfitting, affecting the 
model’s ability to generalize effectively. In contrast, the model 
without preprocessing achieved the best validation performance, 
with a validation accuracy of 91.50% and the lowest validation 
loss (0.2479), highlighting its superior generalization ability. 
However, its training accuracy (92.98%) was slightly lower 
compared to the other methods. This finding emphasizes that 
while preprocessing enhances feature extraction, a simpler, 
unprocessed approach can sometimes yield better 
generalization. 

The histogram equalization method, while not the best in 
training accuracy, provided a good balance between training 
performance and validation accuracy. With a validation 
accuracy of 91.42%, it demonstrated that traditional image 
enhancement techniques could improve generalization without 
overfitting, making it the most suitable preprocessing method 
for the CNN model in this study. 

In conclusion, histogram equalization emerged as the 
optimal preprocessing method for COVID-19 classification in 
CXR images, offering the best combination of training and 
validation performance. Future work could investigate more 
sophisticated preprocessing techniques or hybrid models to 
further enhance both performance and generalization in medical 
image classification tasks. 

VII. FUTURE WORKS AND LIMITATION 

While this study has provided valuable insights into the 
effect of image preprocessing techniques on COVID-19 
detection using chest X-ray (CXR) images, there are several 
avenues for future research to further enhance the performance 
and generalization of deep learning models. 1.Future work could 
explore combining CLAHE and histogram equalization to 
leverage the strengths of both methods. A hybrid preprocessing 
approach could potentially enhance image details while 
maintaining good generalization ability, addressing the 
limitations seen when using CLAHE alone. 2. The use of more 
sophisticated deep learning models, such as ResNet, DenseNet, 
or Inception networks, may further improve performance, 
especially in terms of handling complex features in CXR 
images.These architectures have been shown to excel at feature 
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extraction and overcoming challenges like overfitting. 3.To 
address the potential overfitting issues observed, further 
research could incorporate advanced data augmentation 
techniques. This could include random rotations, flips, and color 
jittering, or even synthetic data generation techniques, to create 
a more diverse training dataset and enhance the generalization 
capability of the model. 4. Future research should focus on 
testing these models in real-world clinical environments to 
evaluate their robustness, scalability, and performance on larger, 
diverse datasets. This would also include the development of a 
user-friendly interface for healthcare professionals to easily 
adopt the models in practice. 

This study has several limitations that should be addressed 
in future work. 1. The model was trained using a limited number 
of CXR images from the COVID-19 Radiography Database. 
Although the dataset is large, it may not fully represent the 
variety of CXR images encountered in real-world clinical 
settings, which could impact the model’s ability to generalize to 
diverse populations and varying image qualities. Expanding the 
dataset or incorporating additional datasets from other regions 
or healthcare providers could improve the model's robustness. 2. 
While different preprocessing techniques were evaluated, the 
impact of each preprocessing method may vary depending on 
the dataset used. The methods tested in this study may not 
perform equally well on other datasets or in clinical settings. 
Therefore, the generalizability of these findings across different 
datasets remains an open question. 3. While deep learning 
models, including CNNs, are powerful for image classification 
tasks, they are often criticized for their lack of interpretability. 
Future work should focus on making the models more 
explainable to healthcare providers. Techniques such as Grad-
CAM (Gradient-weighted Class Activation Mapping) can be 
employed to visualize which parts of the CXR images are 
contributing to the model's predictions, making the model more 
transparent and aiding in clinical decision-making. 4. This study 
focused solely on the detection of COVID-19 from CXR 
images, and did not account for other variables that may affect 
the model’s performance, such as different scanner types, 
patient positioning, or image resolution. These external factors 
can significantly influence model accuracy and should be 
considered in future studies for a more comprehensive 
evaluation of the model’s real-world effectiveness. 
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