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Abstract—The inherent biases present in language models 

often lead to discriminatory predictions based on demographic 

attributes. Fairness in NLP refers to the goal of ensuring that 

language models and other NLP systems do not produce biased or 

discriminatory outputs that could negatively affect individuals or 

groups. Bias in NLP models often arises from training data that 

reflects societal stereotypes or imbalances. Robustness in NLP 

refers to the ability of a model to maintain performance when 

faced with noisy, adversarial, or out-of-distribution data. A robust 

NLP model should handle variations in input effectively without 

failing or producing inaccurate results. The proposed approach 

employs a novel metric called CFRE (Context-Sensitive Fairness 

and Robustness Evaluation) designed to measure both fairness 

and robustness of an NLP model under different contextual shifts. 

Next, it projected the benefits of this metric in terms of 

experimental parameters. Next, the work integrated 

counterfactual data augmentation with help of Self-Imitation 

Reinforcement Learning (SIL) to reinforce successful 

counterfactual generation by enabling the model to learn from its 

own high-reward experiences, fostering a more balanced 

understanding of language. The integration of SIL allows for 

efficient exploration of the action space, guiding the model to 

consistently produce unbiased outputs across different contexts. 

The proposed approach demonstrates the effectiveness of our 

method through extensive experimentation and compared the 

results of the proposed metric with that of WEAT and SMART 

testing, and showed a significant reduction in bias without 

compromising the model's overall performance. This framework 

not only addresses bias in existing models but also contributes to a 

more robust methodology for training fairer NLP systems. Both 

the proposed metric and SIL showed better results in experimental 

parameters. 

Keywords—Natural language processing; fairness, robustness; 

Word Embedding Association Test (WEAT); SMART testing 

I. INTRODUCTION 

Natural Language Processing (NLP) serves as a linchpin in 
enabling seamless human-computer interaction, fostering 
intuitive communication through interfaces like voice assistants 
and chatbots. It empowers the automation of text analysis, 
expediting tasks such as sentiment assessment, document 
summarization, and content categorization with unparalleled 
efficiency. By transcending linguistic barriers, NLP promotes 
global interconnectivity, facilitating multilingual translation and 
cultural localization. 

Its contributions to AI advancements are transformative, 
powering sophisticated systems like personalized virtual 
assistants and predictive analytics. NLP is instrumental in 
extracting actionable insights from unstructured textual data, 
supporting informed decision-making in critical domains like 
healthcare, finance, and governance. Furthermore, it champions 
inclusivity by fostering the development of assistive 
technologies, such as speech-to-text systems and screen readers, 
to accommodate individuals with disabilities. 

By addressing linguistic diversity and automating complex 
textual processes, NLP is not merely a technological tool but a 
catalyst for innovation and inclusivity in the digital age. 

Natural Language Processing, a subfield of Artificial 
Intelligence, has become pivotal in automating and enhancing 
communication, yet its deployment raises pressing concerns 
around fairness and robustness. At its core, fairness in NLP 
pertains to the equitable and unbiased performance of language 
models across diverse demographic and linguistic groups. 
Robustness, conversely, measures a model's resilience to 
adversarial inputs, distributional shifts, or unexpected variations 
in data. Together, these dimensions are critical to ensuring the 
ethical and reliable use of NLP technologies. 

One of the primary fairness challenges arises from biased 
training datasets, which reflect historical inequities, stereotypes, 
or regional disparities. These biases, embedded in language 
corpora, can perpetuate societal injustices when reflected in 
model outputs. For instance, gendered pronoun resolution 
systems may reinforce occupational stereotypes by associating 
women with caregiving roles and men with leadership positions. 

Robustness, on the other hand, is tested when models face 
adversarial attacks or operate in low-resource settings. Subtle 
manipulations in input texts—like typos or syntax changes—can 
disproportionately degrade model performance. Similarly, 
underrepresentation of certain languages, dialects, or sociolects 
exacerbates the risk of exclusionary AI systems that fail to 
generalize effectively. 

The interplay of these issues creates a dual imperative: to 
mitigate inherent biases while enhancing models' adaptability 
across varied scenarios. Ethical considerations are further 
compounded by the lack of standardized benchmarks for 
measuring fairness and robustness. Solutions often involve 
trade-offs, as techniques that improve robustness, like data 
augmentation, may inadvertently amplify biases. 
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Addressing these challenges requires a multi-faceted 
approach. Incorporating diverse, high-quality datasets and 
developing fairness-aware training algorithms are pivotal steps. 
Furthermore, interdisciplinary collaboration—spanning 
computational linguistics, ethics, and social sciences—can 
provide nuanced perspectives to inform NLP research. Regular 
audits, explainable AI methods, and inclusive design principles 
are essential to embedding trustworthiness into language 
technologies. 

In conclusion, fairness and robustness are not merely 
technical hurdles but societal imperatives in the age of pervasive 
AI. As NLP systems permeate sensitive domains like hiring, 
healthcare, and legal adjudication, ensuring their ethical and 
equitable deployment becomes a moral obligation. The paper is 
organized as follows. Section I gives introduction the problem 
of bias in NLP. Section II gives explains types of bias in NLP. 
Section III gives various existing metrics for measuring bias. 
Section IV explains briefing, challenges of robustness and 
robustness contextual evaluation respectively. Experimental 
results is given in Section V and finally, the paper is concluded 
in Section VI. 

1) The Problem of Bias in NLP: Bias in Natural Language 

Processing (NLP) refers to the systematic favoritism or 

prejudice exhibited by language models, often stemming from 

imbalances or stereotypes present in their training data. This 

phenomenon undermines the equity, reliability, and ethicality 

of NLP systems, leading to unintended discriminatory 

consequences. Bias is particularly critical in applications 

influencing high-stakes decisions, such as hiring algorithms, 

legal systems, and healthcare tools, where such predispositions 

can perpetuate societal inequities [1-3]. 

At its root, bias arises from the data-driven nature of NLP 
models, which inherit the flaws, prejudices, and imbalances 
embedded in the corpora used for training. When these systems 
process text, they often reinforce or amplify existing stereotypes, 
inadvertently perpetuating harm against underrepresented or 
marginalized groups. Addressing bias is a multifaceted 
challenge that requires understanding its various types and 
manifestations. 

II. TYPES OF BIAS IN NLP 

1) Representation bias: This form of bias originates in 

training datasets that over represent certain groups or 

perspectives while neglecting others. For example, texts 

predominantly authored in English may marginalize speakers 

of minority languages or dialects, perpetuating cultural 

hegemony. 

2) Stereotypical bias: Models can perpetuate harmful 

stereotypes, such as associating certain professions with 

specific genders or ethnicities. For instance, a model might 

predict "nurse" as a woman or "engineer" as a man based on 

biased correlations in training data. 

3) Historical bias: Historical biases reflect long-standing 

societal inequities embedded in data. Even if collected 

neutrally, datasets often capture systemic inequalities, such as 

racial or gender disparities, which are then reflected in the 

model’s predictions. 

4) Selection bias: This bias arises from skewed data 

collection processes. If a training dataset is predominantly 

drawn from urban populations, for instance, the resulting model 

may fail to generalize to rural or less technologically advanced 

contexts. 

5) Aggregation bias: When data from diverse groups are 

aggregated into a single dataset, the unique characteristics of 

minority groups may be overshadowed by majority trends, 

leading to homogenized outputs that overlook nuanced needs. 

6) Interaction bias: This bias emerges during user 

interaction with NLP systems. For example, users’ queries can 

introduce biases that models then propagate, such as 

autocomplete suggestions that reinforce prejudiced or 

inappropriate language. 

7) Temporal bias: Temporal bias stems from the use of 

outdated data that fails to account for societal evolution. For 

instance, older datasets might include terms or perspectives that 

are now considered offensive or obsolete. 

8) Implicit bias: Implicit biases are more subtle and 

embedded within the model’s architecture, often surfacing in 

nuanced contexts such as sentiment analysis or content 

moderation, where subjective judgments are involved. 

A. Metrics for Assessing Bias 

Quantifying bias in NLP systems is a multifaceted task that 
requires metrics capable of identifying disparities, imbalances, 
and stereotypical tendencies. These metrics enable researchers 
to evaluate the degree of bias and its impact, facilitating 
informed strategies for mitigation. Below is an overview of 
commonly used metrics for measuring bias in NLP, along with 
their mathematical formulations: 

1) Statistical Parity Difference (SPD): This metric 

evaluates whether the outcomes for different demographic 

groups are equally distributed. 

SPD=P(Y=1∣G=g1) −P(Y=1∣G=g2) 

 Y: Model outcome (e.g., positive or negative sentiment). 

 GGG: Demographic group (g1, g2 represent different 
groups, e.g., male and female). 

 A value of 0 indicates perfect fairness, while deviations 
suggest bias. 

2) Equal Opportunity Difference (EOD): This metric 

focuses on the equality of true positive rates across groups, 

ensuring that all groups have equal chances of achieving 

favorable outcomes when eligible. 

EOD=P(Ý=1∣Y=1,G=g1)−P(Ý =1∣Y=1,G=g2) 

 Ý: Predicted outcome. 

 Ensures fairness specifically for eligible or qualified 
individuals. 
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3) Conditional Demographic Disparity (CDD): This metric 

measures bias in model predictions while controlling for 

specific contextual variables. 

CDD=P(Ý =1∣X=x,G=g1)−P(Ý =1∣X=x,G=g2) 

 X: Contextual variables, such as input features. 

 Helps identify disparities conditional on input attributes. 

4) Word Embedding Association Test (WEAT): This metric 

quantifies bias in word embeddings by measuring the 

association between target words and attribute word sets. 

𝑊𝐸𝐴𝑇 =
𝑚𝑒𝑎𝑛(𝑠(𝑤, 𝐴) − 𝑠(𝑤, 𝐵))

𝑠𝑡𝑑(𝑠(𝑤, 𝐴) − 𝑠(𝑤, 𝐵))
 

 w: Target word. 

 A, B: Two sets of attribute words (e.g., male- and female-
associated words). 

 s(w, A): Cosine similarity between w and words in set A. 

 A high WEAT score indicates stronger associations, 
reflecting potential biases. 

5) Bias Amplification Index (BAI): This measures the 

extent to which a model amplifies existing biases in data. 

𝐵𝐴𝐼 =
𝐵𝑖𝑎𝑠 𝑖𝑛 𝑀𝑜𝑑𝑒𝑙 𝑂𝑢𝑡𝑝𝑢𝑡

𝐵𝑖𝑎𝑠 𝑖𝑛 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎
 

Ratios greater than 1 indicate that the model exacerbates 
bias. 

6) Directional Bias Metric (DBM): This metric evaluates 

bias in sentence or text-level outputs by analyzing directional 

shifts in embeddings. 

𝐷𝐵𝑀 =
∑ COS (𝑒 ⃗⃗  , 𝑑 ⃗⃗⃗  )𝑛

𝑖=1

𝑛
 

𝑒   ⃗⃗⃗⃗  ⃗: Embedding of Sentence i 

𝑑 ⃗⃗  ⃗: Bias direction vector 

n: Total sentences 

7) Mutual Information Difference (MID): This metric 

captures the disparity in the information shared between model 

predictions and sensitive attributes. 

MID=I(Ý;G=g1)−I(Ý;G=g2) 

 I: Mutual information between predictions Ý and group 
G. 

 A high MID score reflects unequal representation of 
sensitive attributes in predictions. 

8) KL Divergence for Demographic Representation (KLD): 

This measures the divergence between the distributions of 

outcomes for different demographic groups. 

𝐾𝐿𝐷(𝑃||𝑄) = ∑𝑃(𝑖) log
𝑃(𝑖)

𝑄(𝑖)
𝑖

 

 𝑃(𝑖): Outcome distribution for group g1 

 𝑄(𝑖): Outcome distribution for group g2 

 Lower divergence values indicate better fairness. 

9) Bias Direction Magnitude (BDM): This quantifies the 

degree of separation between different demographic groups in 

embedding space. 

𝐵𝐷𝑀 = ||𝑚𝑒𝑎𝑛(𝑒 𝑔1) − 𝑚𝑒𝑎𝑛(𝑒 𝑔2)|| 

𝑒 𝑔1, 𝑒 𝑔2: Embeddings for groups g1 and g2. 

10) Token Probability Disparity (TPD): This metric 

measures bias in token-level predictions for specific sensitive 

terms. 

TPD=P(token∣G=g1)−P(token∣G=g2) 

Highlights disparities in word usage or token generation 
probabilities. 

These metrics provide nuanced perspectives on bias in NLP 
systems, addressing its various dimensions, such as 
representation, prediction fairness, and embedding neutrality. 
Combining multiple metrics is essential for comprehensive 
evaluation, as bias often manifests in subtle and multifaceted 
ways. 

B. Robustness in NLP 

Robustness in NLP refers to the ability of a model to 
maintain performance when faced with noisy, adversarial, or 
out-of-distribution data. A robust NLP model should handle 
variations in input effectively without failing or producing 
inaccurate results. 

C. Example of Robustness Challenges 

1) Adversarial attacks: An NLP model trained to classify 

movie reviews as positive or negative might be tricked by 

inserting inconspicuous typos or irrelevant phrases. For 

example, changing "The movie was great!" to " The moovie 

was gr8!" should ideally still yield a positive classification. 

2) Context sensitivity: An NLP system that performs well 

on one data distribution (e.g., news articles) may fail on another 

(e.g., social media text) if it's not robustly trained. 

D. Robustness Improvement Techniques 

1) Adversarial training: Including perturbed or adversarial 

examples during training so that the model learns to be resilient. 

2) Augmentation with noisy data: Training on data that has 

been altered to include variations such as different spelling, 

slang, or paraphrasing helps models generalize better. 

3) Balancing fairness and robustness: Improving fairness 

often involves altering the data or the training process to 

mitigate biases, which can sometimes reduce robustness if not 

done carefully. Conversely, making a model highly robust 

through general training methods may not necessarily address 
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inherent biases. The challenge lies in designing approaches that 

optimize both. 

E. SMART Testing 

SMART Testing is a methodological paradigm for 
systematically evaluating NLP systems across diverse 
dimensions, emphasizing their fairness, robustness, and 
adaptability. The acronym SMART encapsulates Sensitive 
attributes, Multiple subpopulations, Artifacts, Reasoning 
abilities, and Temporal changes, reflecting the multifaceted 
nature of NLP evaluation. While the framework does not have a 
universally fixed mathematical formulation, key metrics and 
equations can be used to assess these dimensions. 

1) Sensitive attributes (Fairness metrics): This component 

assesses disparities in performance between demographic 

groups with respect to sensitive attributes like gender or 

ethnicity. A commonly used fairness metric is Statistical Parity 

Difference (SPD): 

SPD=∣P(Ý =1∣G=g1)−P(Ý =1∣G=g2)∣ 

Where: 

 Ý: Model's predicted outcome. 

 G: Demographic groups (g1 and g2 represent different 
groups). 

A value closer to zero denotes minimal bias. 

2) Multiple subpopulations (Subgroup disparities): This 

dimension examines model performance across distinct 

subpopulations within the data. Disparities are quantified using 

subgroup metrics such as accuracy variance: 

Variance=
∑ (𝑃𝑖−𝜇)2𝑛

𝑖=1

𝑛
 

Where, 

 𝑃𝑖   is Model performance for subgroup i. 

 𝜇 is mean performance across all subgroups 

A high variance indicates uneven performance among 
subgroups. 

3) Artifacts (Sensitivity to spurious patterns): Artifacts 

represent unintended correlations in training data that can lead 

to spurious model predictions. Artifact sensitivity can be 

measured by comparing performance on artifact-augmented 

data to baseline data: 

Artifact Sensitivity =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 

Ratios significantly deviating from 1 suggest a susceptibility 
to artifacts. 

4) Reasoning abilities (Cognitive robustness): This 

evaluates the model's logical and linguistic reasoning abilities 

under adversarial transformations or complex scenarios. 

Robustness against transformations is defined as: 

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 𝑆𝑐𝑜𝑟𝑒(𝑅𝑆)

=
𝑃𝑜𝑠𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 

It is stated that higher scores signify greater resistance to 
input perturbations. 

5) Temporal changes (Adaptability over time): This aspect 

assesses how well the model performs as linguistic norms 

evolve. Temporal robustness is evaluated by measuring 

performance deviation across time-stamped datasets. 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑇𝐷)
= |𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑡1 − 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑡2| 

It is stated that smaller deviations reflect higher adaptability 
to temporal variations. 

6) Aggregated SMART score: To provide a unified view, an 

aggregated score can be computed as a weighted combination 

of the individual dimensions: 

SMART Score=w1⋅SPD+w2⋅Variance+w3⋅Sensitivity+w4⋅Ro

bustness Score+w5⋅Temporal Deviation 

Where w1, w2, w3, w4, and w5 are weights reflecting the 
relative importance of each dimension. 

III. PROPOSED NOVEL METRIC-CONTEXT-SENSITIVE 

FAIRNESS AND ROBUSTNESS (CFRE) 

The proposed Context-Sensitive Fairness and Robustness 
Evaluation (CFRE) metric is designed to measure both fairness 
and robustness of an NLP model under different contextual 
shifts [3-9]. Below is the mathematical formulation of the 
proposed metric: 

A. CFRE Metric Components 

1) Fairness Impact Score (FIS): The Fairness Impact Score 

evaluates the difference in output distributions when the model 

is tested with original data (𝑂𝑜𝑟𝑖𝑔) and perturbed data (𝑂𝑝𝑒𝑟𝑡) 

across different demographic or context groups (𝐺𝑖). 

FIS =
1

|G|
∑DKL(P(

|G|

i=1

𝑂𝑜𝑟𝑖𝑔|𝐺𝑖)||𝑃(𝑂𝑝𝑒𝑟𝑡|𝐺𝑖)) 

Where 

 DKL is Kullback-Leibler (KL) divergence. 

 P(𝑂𝑜𝑟𝑖𝑔|𝐺𝑖) and P(𝑂𝑝𝑒𝑟𝑡|𝐺𝑖) are probability distributions 

of  outputs for  groups 𝐺𝑖 in original and perturbed cases 
respectively. 

 |G| is number of distinct groups being evaluated. 

2) Robustness Contextual Evaluation (RCE): The 

robustness contextual evaluation (RCE) measures the stability 

of model predictions by computing the cosine similarity 

between output vectors from original and perturbed data (𝑂𝑜𝑟𝑖𝑔) 

and (𝑂𝑝𝑒𝑟𝑡) respectively. 
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𝑅𝐶𝐸 =
1

𝑁
∑

𝑂𝑜𝑟𝑖𝑔
𝑗

.𝑂𝑝𝑒𝑟𝑡
𝑗

‖𝑂
𝑜𝑟𝑖𝑔
𝑗

‖‖𝑂𝑝𝑒𝑟𝑡
𝑗

‖ 

𝑁
𝑗=1   

where 

 N is the number of samples. 

 𝑂𝑜𝑟𝑖𝑔
𝑗

 and   𝑂𝑝𝑒𝑟𝑡
𝑗

 are the output vectors for jth sample in 

the original and perturbed data sets. 

3) Combined CFRE score: The overall CFRE score can be 

weighted combination of the FIS and RCE to balance fairness 

and robustness. 

𝐶𝐹𝑅𝐸 = 𝛼 ∗ 𝐹𝐼𝑆 + 𝛽 ∗ 𝑅𝐶𝐸 

Where  𝛼 and 𝛽 are weights that control importance of each 
component. 

This formulation allows us to assess not just how fair is 
model across different contexts but also how consistently it 
performs when subject to contextual variations. 

In the context of the CFRE metric, the interpretations for FIS 
RCE, and combined CFRE are given as below. 

a) Fairness Impact Score (FIS): 

 Interpretation: A higher FIS value indicates a greater 
divergence between the original and perturbed model 
outputs, suggesting that the model's fairness is more 
sensitive to contextual changes. This can mean the model 
exhibits potential biases when tested with varied input 
conditions, highlighting fairness issues. 

 Lower FIS: Implies that the model maintains fairness 
across different demographic or context groups, showing 
resilience to contextual shifts. 

b) Robustness Contextual Evaluation (RCE): 

 Interpretation: This score reflects how similar the 
model's outputs remain under perturbations. A higher 
RCE value means the model is more robust, maintaining 
consistent behavior even when inputs are contextually 
modified. 

 High RCE: Indicates strong robustness, where the model 
produces stable outputs across different contexts. 

 Lower RCE: Suggests that the model's predictions are 
more context-dependent and can vary significantly with 
slight input changes. 

c) Overall CFRE Value: 

 Combined Score: The weighted sum of FIS and RCE 
allows us to evaluate both fairness and robustness 
together. 

 High CFRE with balanced weights: Implies that the 
model is sensitive to contextual shifts (indicating fairness 
issues) but also robust in maintaining consistent outputs 
under certain conditions. 

 Lower CFRE: Indicates that the model is more fair and 
robust across various tested contexts, demonstrating 
resilience and equitable behavior. 

IV. INTEGRATING CFRE METRIC INTO SELF IMITATION 

LEARNING (SIL) 

A. Introduction to Self-Imitation Learning (SIL) 

Self-Imitation Learning (SIL) is an advanced reinforcement 
learning technique that enables agents to learn from past 
experiences, even suboptimal ones, by revisiting previously 
successful trajectories. Unlike traditional reinforcement 
learning, which often prioritizes exploration or maximizing 
immediate reward signals, SIL leverages historical data to 
reinforce and improve upon earlier decisions. It is particularly 
effective in complex environments where exploration is 
expensive or risky, as it capitalizes on self-generated "expert" 
demonstrations to refine policy optimization. By integrating 
memory-based learning with reinforcement dynamics, SIL 
demonstrates resilience in solving tasks requiring long-term 
planning and precise decision-making [10-18]. 

B. Main Idea behind Self Imitation Learning (SIL) 

At its core, Self-Imitation Learning revolves around the 
principle of leveraging an agent's historical successes as pseudo-
demonstrations for future improvement. Unlike standard 
reinforcement learning paradigms, which discard suboptimal 
trajectories, SIL recognizes that even suboptimal actions can 
contain valuable information for solving complex tasks. This is 
particularly important in environments with sparse or delayed 
rewards, where the exploration of new policies might fail to 
yield immediate benefits. 

SIL achieves this by employing a replay buffer, which stores 
trajectories (sequences of states, actions, and rewards) that 
yielded above-average returns. These trajectories are treated as 
guiding examples, and the agent revisits them during training to 
imitate its own past successes. This imitation process is 
formalized through a self-imitation loss function, which adjusts 
the policy to reproduce actions from successful trajectories. 

The central innovation of SIL lies in its ability to balance 
exploitation and exploration dynamically. While traditional 
methods often face a trade-off between exploiting known 
strategies and exploring new possibilities, SIL introduces a 
mechanism where self-imitation augments learning efficiency 
without stifling exploration. This enables the agent to improve 
incrementally, even in scenarios where external rewards are 
scarce or noisy. 

Moreover, SIL is robust to noise and imperfect 
demonstrations, as it does not rely on external expert input but 
instead generates its training data from its own interactions with 
the environment. This self-reliant nature makes it highly 
scalable and adaptable to diverse tasks, from robotics to game-
playing. 

In essence, SIL represents a shift from purely reward-driven 
learning to a hybrid framework that integrates self-guidance, 
allowing agents to harness the full potential of their past 
experiences for future success. By embracing both imitation and 
exploration, it achieves greater sample efficiency and stability in 
training, setting a new benchmark for learning in complex and 
uncertain domains. 
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C. Integrating CFRE with SIL 

The CFRE metric is a performance measure designed to 
evaluate the trade-off between fairness and reward optimization 
in reinforcement learning. Integrating CFRE into Self-Imitation 
Learning (SIL) involves modifying the SIL framework to 
consider fairness explicitly during the learning process. The 
Algorithm 1 shows the CFRE integrated into SIL. Integrating 
the CFRE metric into Self-Imitation Learning (SIL) can 
effectively scale to real-world NLP systems operating in 
resource-constrained environments by prioritizing fairness and 
reward efficiency in model training. The approach allows 
selective reuse of high-reward, fairness-optimized trajectories, 
reducing computational overhead while maintaining equitable 
outcomes. By leveraging the CFRE metric's adaptability, the 
framework aligns with limited-resource constraints, improving 
both performance and inclusivity without excessive reliance on 
additional data or computing power. This ensures robust 
deployment of NLP systems in diverse, real-world scenarios. 

Algorithm-1: CFRE-Integrated SIL 

1. Initialize: 

a) Define the environment E, action space A, and 
state space S. 

b) Initialize SIL's policy πɵ(a∣s), replay buffer B 

and reward function R(s,a). 

c) Set the CFRE threshold τ, which balances 
fairness and efficiency. 

2. Collect Experience: 

a) Interact with the environment to generate 

trajectories τ= (st, at, rt, st+1) using the current 
policy πɵ. 

b) Add the trajectories to the replay buffer B.                              

3. Compute CFRE Metric: 

a. For each trajectory τ, compute the FIS and 
CRE : 

b.  CFRE(τ)=α⋅FIS(τ)+β⋅CRE(τ) Where: 

i. α,β: weights balancing fairness and 
reward efficiency. 

ii. CRE(τ)=Sum of rewards/Length of  
Trajectory 

iii. FIS (τ): Fairness computed using 

sensitive attributes or group-specific 
metrics. 

c. Retain trajectories with CFRE(τ)≥τ in B. 

4.Update Policy: 

Use the retained trajectories from B to compute the SIL loss: 

a) SIL  loss: 
𝐿𝑆𝐼𝐿 = − log(𝜋𝜃(𝑎|𝑠)). (𝑅𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑠) −

                                        𝑅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑠))  

b) Apply gradient descent to minimize 𝐿𝑆𝐼𝐿. 

5. Test Policy: 

a) Evaluate the updated policy using CFRE and 

track performance metrics such as fairness 

scores, reward efficiency, and overall task 

accuracy. 

6. Repeat: 

Continue the process for a predefined number of episodes or until 

convergence by repeating steps 2 to 5. 

V. EXPERIMENTAL RESULTS 

The experiment was conducted using Crow-S pairs data set 
on Google Colab platform of python version 3.11.8. The Crow-
S pairs dataset is a benchmark specifically designed to measure 
biases in NLP models, focusing on sensitive social attributes like 
gender, race, and socioeconomic status. 

It consists of sentence pairs where one sentence carries 
subtle bias while the other is neutral, enabling the evaluation of 
a model's fairness by observing its scoring discrepancies. By 
systematically exposing latent stereotypes or prejudiced 
behavior in model outputs, the dataset also tests the robustness 
of NLP systems against biased linguistic patterns, helping to 
create more equitable language technologies. 

At first, we project the graph showing comparison of original 
and perturbed scores using CFRE as given in Fig. 1. Next, we 
project the density over scores of WEAT, SMART testing as 
given in Fig. 2. Next, we project mean scores for various metrics 
as given in Fig. 3.Finally, we project graphs for average loss 
versus epochs and average reward versus epochs as given in Fig. 
4. Fig. 1 to Fig. 3 showed significant improvement in results in 
proposed CFRE metric. 

 
Fig. 1. Comparision of original and perturbed scores for CFRE metric. 
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Fig. 2. Density versus scores of various metrics. 

 
Fig. 3. Mean scores versus various metrics. 

 

Fig. 4. Graph for loss versus Epochs and Average reward versus Epochs. 
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VI. CONCLUSION 

The integration of the CFRE metric with Self-Imitation 
Learning (SIL) presents a powerful paradigm for achieving 
fairness, robustness, and efficiency in reinforcement learning-
based NLP systems. This approach ensures that models not only 
optimize rewards but also address systemic biases, promoting 
equitable outcomes. By leveraging past successes with fairness-
aware constraints, it balances performance and inclusivity, 
making it especially viable for resource-constrained and real-
world applications. 

The proposed metric outperformed other existing metrics 
like WEAT and SMART testing. Also, it got low mean score 
compared to that of these metrics. The variation between 
original and perturbed scores serves as a measure of the model's 
robustness. A narrow difference signifies that the model is 
resistant to input alterations, showcasing its stability, whereas a 
wider discrepancy indicates that the model is more vulnerable to 
adversarial changes or biased modifications in the input data. 
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