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Abstract—Nanomaterials, owing to their distinctive features, 

are crucial across numerous scientific domains, especially in 

materials science and nanotechnology. Precise segmentation of 

Scanning Electron Microscope (SEM) images is essential for 

evaluating attributes such as nanoparticle dimensions, 

morphology, and distribution. Conventional image segmentation 

techniques frequently prove insufficient for managing the 

intricate textures of SEM images, resulting in a laborious and 

imprecise process. In this research, a modified U-Net 

architecture is presented to tackle this challenge, utilizing a 

ResNet50 backbone pre-trained on ImageNet. This model utilizes 

the robust feature extraction abilities of ResNet50 alongside the 

effective segmentation performance of U-Net, hence improving 

both accuracy and computational efficiency in TiO2 nanoparticle 

segmentation. The suggested model was assessed using 

performance metrics including accuracy, precision, recall, IoU, 

and Dice Coefficient. The results indicated a high segmentation 

accuracy, demonstrated by a Dice score of 0.946 and an IoU of 

0.897, with little variability reflected in standard deviations of 

0.002071 and 0.003696, respectively, over 200 epochs. The 

comparison with existing methods demonstrates that the 

proposed model surpasses previous approaches by attaining 

enhanced segmentation accuracy. The modified U-Net design 

serves as an excellent technique for accurate nanoparticle 

segmentation in SEM images, providing substantial 

enhancements compared to traditional approaches. This progress 

indicates the model's potential for wider applications in 

nanomaterial research and characterization, where precise and 

efficient segmentation is essential for analysis. 
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I. INTRODUCTION 

In recent years, nanotechnology has emerged as a 
revolutionary domain with extensive applications across 
various industries, including healthcare, energy, electronics, 
and materials research [1]. Fundamental to several innovations 
is the capacity to generate and evaluate nanoparticles. 
Nanoparticles, characterized by at least one dimension ranging 
from 1 to 100 nanometres, demonstrate distinctive physical and 
chemical properties that differ from those of their bulk 
equivalents, attributable to their diminutive size and extensive 
surface area [2]. Nanoparticles have emerged as a fundamental 
element of contemporary science and technology, attributable 
to their distinctive qualities stemming from quantum 
mechanical phenomena, elevated surface-to-volume ratios, and 
size-dependent characteristics. These features allow 

nanoparticles to demonstrate improved optical, mechanical, 
magnetic, and catalytic characteristics, rendering them essential 
for various applications. 

In medicine, nanoparticles function as drug delivery 
vehicles, imaging agents for diagnostics, and tools for tissue 
engineering [3]. Gold nanoparticles are utilized for targeted 
drug administration and cancer therapy, whereas silver 
nanoparticles exhibit strong antibacterial traits, rendering them 
advantageous in medical equipment and wound dressings. 
Nanoparticles are employed in energy storage to augment the 
performance of batteries and supercapacitors by improving 
conductivity and storage capacity. In materials science, 
nanoparticles are often incorporated into bulk materials to 
improve strength, flexibility, and thermal characteristics. 

Nevertheless, these advances present the issue of precisely 
describing and assessing nanoparticles, especially regarding 
their size, shape, distribution, and surface morphology. To 
conduct a structural characterization of the particles, electron 
microscopy (EM) is one of the most commonly employed 
techniques [4]. A particle-interacting electron beam is used in 
this type of microscope. The objects are reconstructed via the 
analysis of these interactions and the signals they generate. 
Transmission electron microscopy (TEM) and SEM are the 
two primary methods. The primary distinctions between the 
two technologies are the resolution and the output dimensions. 
Though TEM images show 2D projections of objects' interior 
structures, 3D surface reconstruction from SEM images offers 
important insights into micro/nanoscopic surfaces. The 
magnification and resolution of TEM surpass those of SEM. 
Consequently, the SEM is typically employed for 
morphological characterization, whilst the TEM is utilized for 
assessing particle size and size distribution, along with other 
analyses such as phase composition and crystal structure [5]. 

Analyzing SEM images is a typical procedure used to 
investigate the outcomes of nanomaterial fabrication processes. 
By identifying and measuring objects, materials scientists can 
obtain important morphological information about the material 
of interest. Image processing procedures for SEM imaging 
were often executed based on the distinctive qualities of a 
specific material, including shape, size, brightness, and contrast 
variations among the observed objects [6]. Nonetheless, the 
interpretation and analysis of SEM images, particularly for 
extensive datasets, necessitate effective segmentation 
techniques capable of precisely delineating nanoparticle 
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boundaries from intricate backgrounds, and extracting 
characteristics including dimensions, form, and alignment [7]. 

The results of segmentation directly affect the precision of 
subsequent operations, such as nanoparticle counting, size 
distribution assessment, and morphological investigations. 
Traditionally, nanotechnologists have depended on manual 
particle measurement utilizing technologies such as ImageJ, 
which, while successful for small datasets, becomes labor-
intensive and susceptible to discrepancies in large-scale image 
analysis. Conventional techniques, like template matching, 
edge detection, and feature extraction-based categorization 
(utilizing Neural Networks or Support Vector Machines), have 
proven effective but frequently encounter challenges in 
generalization as image acquisition methodologies vary. These 
methods necessitate extensive parameter modifying by experts, 
making them rigid and time-consuming. 

Consequently, conventional techniques frequently fail to 
yield reliable segmentation outcomes, resulting in erroneous 
nanoparticle analysis. The drawbacks of current techniques 
underscore the necessity for a more effective, automated 
approach to nanoparticle segmentation in SEM images. Recent 
developments in deep learning have demonstrated significant 
potential in tackling these challenges. Convolutional Neural 
Networks (CNNs) have transformed image analysis by 
facilitating automatic feature extraction and end-to-end 
learning [8]. CNNs are adept in nanoparticle segmentation 
tasks, as they can incorporate complex, hierarchical 
characteristics from raw image data, enabling the collection of 
subtle details such as nanoparticle borders and textures. 

CNN-based models, like U-Net, have shown useful in 
medical image segmentation; nevertheless, their use for 
nanoparticle segmentation in SEM images is still inadequately 
investigated. Moreover, conventional U-Net architectures may 
inadequately leverage deep learning capabilities for 
nanoparticle segmentation, as they frequently fail to capture 
multi-scale features and may experience prolonged training 
durations when utilized with extensive datasets. This study 
proposes a novel deep learning (DL)-based segmentation 
approach to tackle these difficulties. The model is based on the 
U-Net architecture, known for its effectiveness in biomedical 
segmentation of images, and integrates a ResNet 50 backbone 
for improved feature extraction. The incorporation of 
ResNet50, a robust CNN architecture pre-trained on ImageNet, 
enables the model to utilize deep residual learning, which has 
demonstrated efficacy in enhancing the training of extremely 
deep networks by alleviating the vanishing gradient issue. The 
main contributions of the proposed research are as follows: 

 To introduce a modified U-Net architecture with a 
ResNet50 backbone, specifically designed for the 
segmentation of TiO2 nanoparticles in SEM images. 

 By leveraging the pre-trained weights of ResNet50, the 
model aims to enhance feature extraction capabilities 
while simultaneously reducing training time and 
computational resources. 

 To highlight the superior performance and applicability 
of the proposed model nanoparticle analysis compared 
to existing segmentation techniques. 

The subsequent sections of the paper are structured as 
follows: Section II offers a literature review highlighting 
existing works and identifying research gaps; Section III 
elaborates on the proposed model; Section IV discusses the 
results obtained from the study; A discussion is provided in 
Section V and finally, a summary of the findings is included in 
Section VI, which gives a conclusion to the paper. 

II. LITERATURE REVIEW 

Henrik Eliasson et al. (2024) [9] developed a methodology 
utilizing two U-Net topologies to independently detect and 
categorize atomic columns at particle-support interfaces in 
STEM data. This technique sought to alleviate the problem of 
noisy data caused by the quick scan speeds required for 
monitoring nanoparticle movement. The U-Net model was 
trained on simulated non-physical images and was assessed in 
comparison to established solutions like AtomSegNet and 
AtomAI, exhibiting superior performance in both in situ and ex 
situ time series of diminutive Pt nanoparticles on CeO2. 
Experimental time series, captured at 5 frames per second, 
exhibited dynamic, site-specific displacement of atomic 
columns. Model training and evaluation were performed on an 
NVIDIA RTX 4090 GPU, necessitating around 40 minutes for 
localization and three hours for segmentation. The findings 
highlighted the method's reliability and precision in examining 
dynamic nanoparticle behavior. 

Nina Gumbiowski et al. (2023) [10] performed an 
investigation of metallic nanoparticles utilizing a machine 
learning approach that focused on segmentation, the 
differentiation of overlapping particles, and individual 
identification. An approach employing ultimate erosion of 
convex shapes (UECS) was devised to address particle overlap, 
enabling the assessment of characteristics such as size, 
circularity, and Feret diameter within a large particle 
population. The automated analysis of TEM images 
successfully extracted shape- and size-related data, including 
that of nanoscale gold nanoparticles. They employed a DL 
model, namely a deeplabv3+ network with a ResNet-18 
backbone, demonstrating that their method sustained 
performance over diverse contrast levels, surpassing traditional 
image processing techniques. This automation markedly 
decreased analysis duration relative to manual techniques and 
enabled the extraction of extensive data on particle attributes. 
Nevertheless, constraints remained in the analysis of 
significantly overlapping particles, highlighting the difficulties 
in precisely understanding two-dimensional projections in 
microscopy. 

Jonas Bals and Matthias Epple (2023) [11] employed CNN 
to independently interpret nanoparticle images acquired from 
scanning electron microscopy. A framework was built for 
obtaining secondary electron (SE) and STEM images, enabling 
quantitative studies of particle size and shape. Utilizing pixel 
weight loss maps to train CNNs enhanced the segmentation of 
overlapping particles. Their approaches encompassed the 
classification of forms, including cubes and spheres, the 
segregation of particles, and the removal of agglomerates. 
They attained great accuracy in shape classification utilizing 
AlexNet and ResNet34, together with efficient segmentation 
employing UNet++. Nevertheless, the system encountered 
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difficulties with particles that displayed ambiguous forms or 
partial obscurity, resulting in a considerable misclassification 
rate. Moreover, challenges associated with particle overlap and 
intensity fluctuations in SE images further impeded the 
efficacy of their approach. 

Matthew Helmi Leth Larsen et al. (2023) [12] examined the 
most effective frame dose for object detection and 
segmentation in low electron dose TEM imaging. The MSD-
net architecture exhibited superior performance compared to 
the regular U-net, particularly at frame dosages lower than 
those utilized during training. The MSD-net successfully 
segmented Au nanoparticles, attaining visibility at dosages as 
low as 20–30 e−/Å² and full segmentation at 200 e−/Å². During 
training with simulated images, the study highlighted how 
crucial it is to model the modulation transfer function (MTF), 
hence improving the network's capacity to identify 
nanoparticles in low signal-to-noise ratio environments. 
Through benchmarking the U-net and MSD-net across 
different frame dosages, the authors demonstrated that the 
MSD-net can generalize beyond its training data, establishing it 
as the best option for analyzing noisy images. 

Wenkai Fu et al. (2022) [13] developed a machine learning 
model for predicting temporal sequences of in-situ TEM video 
frames with a hybrid long-short-term memory (LSTM) 
algorithm and a features de-entanglement technique. They used 
deep learning algorithms to predict future video frames from 
prior ones, offering insights into size-dependent structural 
alterations in Au nanoparticles under dynamic response 
settings. The models exhibited notable performance, with a 
structural similarity value of roughly 0.7, while being trained 
on limited datasets. The researchers accurately forecasted the 
shifts of Au nanoparticles from rigid to dynamic forms, 
underscoring the model's relevance in catalytic science. 
Although the structural similarity scores were inferior to those 
from more extensive benchmark datasets, the PhyDNet model 
proficiently delineated the structural evolution of Au 
nanoparticles. 

Zhongyuan Ji and Yuchen Wang (2022) [14] utilized TEM 
to examine and evaluate the morphological characteristics of 
nanoparticles. A multirandom forest algorithm for image 
segmentation was devised, which markedly surpassed 
conventional techniques like maximum entropy threshold 
segmentation and watershed segmentation. Utilizing FCM 
clustering and the algorithm's ability to manage diverse gray 
levels in TEM images, they attained segmentation accuracy of 
up to 95%. Notwithstanding these gains, the methodology 
exhibited certain limitations, such as sensitivity to fluctuations 
in sample characteristics and image quality, along with 
computing difficulties in handling extensive datasets. 

Annick De Backer et al. (2022) [15] presented a Bayesian 
genetic approach to reconstruct atomic models of monotype 
crystalline nanoparticles from single projections utilizing Z-
contrast imaging. They employed atom-counting data from 
annular dark field STEM images as input for preliminary 3D 
models. The approach reduced structural energy while 
integrating past knowledge regarding atom-counting accuracy 
and neighbor-mass relationships. The results indicated 
enhanced reliability in reconstructing beam-sensitive 

nanoparticles, especially those approximately 3 nm in size, at 
low electron doses. Their comprehensive simulation analysis 
objectively assessed the reconstructions, demonstrating a 
substantial improvement in the precise identification of surface 
atoms. The study demonstrated that the incorporation of finite 
atom-counting precision and neighbor-mass relationships 
significantly enhanced the quality of 3D atomic models, 
indicating improved predictions of catalytic capabilities for 
future applications. The algorithm was subsequently utilized to 
evaluate a time series of experimental photographs of a 
platinum nanoparticle, demonstrating its efficacy in real-time 
structural measurement. 

Hari Mohan Singh et al. (2022) [16] developed a machine 
learning regression model, Gradient Boost Regression (GBR), 
to predict the particle size of aluminum nitride (Al₂N₃), silicon 
nitride (Si₃N₄), and titanium nitride (TiN) nanoparticles 
dispersed in ethylene glycol (EG) solution. They found critical 
factors affecting density, including nanoparticle size, molecular 
weights, volume concentration, and temperature. The GBR 
model demonstrated significant accuracy in forecasting 
nanofluid density for a training dataset, nearly matching 
experimental values obtained from a DMA 500 density meter 
across different temperatures and concentrations. The research 
utilized Gradient Search Optimization (GSO) for 
hyperparameter optimization to improve model performance. 
The outcomes show a robust correlation between the GBR 
predictions and experimental data, highlighting the model's 
efficacy. 

Alexey G. Okunev et al. (2020) [17] investigated the 
automated identification of metal nanoparticles on highly 
oriented pyrolytic graphite utilizing deep learning 
methodologies, particularly the Cascade Mask-RCNN neural 
network. Their model was trained on a dataset including 23 
scanning tunnelling microscopy (STM) images, which 
included 5,157 labeled nanoparticles, and was subsequently 
validated on a distinct set of images. The trained network 
achieved a precision of 0.93 and a recall of 0.78, illustrating its 
proficiency in identifying nanoparticles with an accuracy range 
of 0.87–0.99 for mean particle size assessments. The study 
emphasized the limitations of traditional image processing 
techniques, which required high-quality images and significant 
parameter adjustment. Researchers have created the open-
access web service "ParticlesNN," enabling researchers to 
analyze noisy STM images without prior improvement, thereby 
markedly enhancing nanoparticle identification and 
quantification across diverse imaging scenarios. 

Horwath et al. (2019) [18] examined sophisticated deep 
learning techniques for the segmentation of nanoparticles in 
EM images. They discovered that although the speed and 
quality of image segmentation had enhanced, the application of 
deep learning methods to precisely capture physical attributes 
continued to pose difficulties. The model's generalization was 
limited by the necessity for pixel-level annotations and the 
class imbalance in the training datasets, necessitating 
meticulous preparation. The effectiveness of segmentation on 
high-resolution images was further compromised by noise and 
light fluctuations, requiring more focus during training. Their 
experiments with various CNN configurations highlighted the 
importance of batch normalization and kernel size in enhancing 
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model accuracy and stability. Nevertheless, problems persisted, 
including sensitivity to fluctuations in image resolution and a 
tendency to overfit the training data. 

Yi-Chi Wang et al. (2019) [19] examined the issues 
associated with employing STEM tomographic imaging to 
delineate 3D elemental segregation in nanoparticles, mainly 
arising from electron dose constraints in conventional 
techniques. They used a method known as spectroscopic single 
particle reconstruction (SPR), derived from structural biology, 
to assess PtNi nanocatalysts. They effectively identified 
nanoparticles with a diameter of 20 ± 2 nm and a platinum 
concentration of 56 ± 6 atom% by integrating both STEM-EDS 
and STEM-HAADF images. The significant diversity in 
nanoparticle size, shape, and composition required rigorous 
selection criteria for accurate characterization in the SPR 
technique. 

Although methods for segmenting and detecting 
nanoparticles in electron microscopy have advanced, there are 
still a number of significant drawbacks. Numerous current 
methodologies, including deep learning techniques, encounter 
difficulties in precisely segmenting overlapping nanoparticles, 
particularly under fluctuating imaging settings like low signal-
to-noise ratios and elevated electron doses. Conventional 
segmentation techniques often rely on extensive pixel-level 
annotations and encounter class imbalance, leading to 
overfitting and insufficient generalization across diverse 
datasets. Furthermore, traditional algorithms can inadequately 
consider the complexities of nanoparticle morphology, such as 
irregular shapes and agglomeration effects, limiting 
classification accuracy. Dependence on certain imaging 
modalities sometimes limits these models' ability to include 
diverse types of electron microscopy data. To address these 
limitations, we present a novel methodology designed to 
enhance segmentation accuracy and robustness across various 
nanoparticle types and imaging conditions, thus facilitating 
more precise analysis in materials science and nanotechnology 
applications. 

III. MATERIALS AND METHODS 

The proposed modified U-Net architecture, incorporating a 
ResNet50 backbone, was chosen due to its superior feature 
extraction capabilities, which are critical for accurately 
segmenting TiO₂ nanoparticles in SEM images. The deep 
residual learning framework of ResNet50 enables the model to 
effectively capture intricate textural details and morphological 
variations, thereby addressing the limitations of conventional 
segmentation approaches that struggle with complex 
nanoparticle structures. Furthermore, the integration of 
ResNet50 with U-Net enhances segmentation accuracy while 
maintaining computational efficiency, leveraging pre-trained 
ImageNet weights to expedite training and improve 
generalization across diverse SEM datasets. In contrast, 
traditional U-Net models, while effective for biomedical image 
segmentation, lack the depth required for precise nanoparticle 
boundary detection, often resulting in suboptimal segmentation 
performance. Moreover, standard CNN-based approaches 
necessitate extensive manual feature engineering and fail to 
adequately handle the high variability in SEM image textures. 
High-complexity architectures, such as DeepLabV3+, although 

capable of achieving high accuracy, impose significant 
computational overhead, making them less practical for real-
time applications. The proposed modified U-Net architecture 
effectively mitigates these challenges, providing a robust, 
scalable, and precise segmentation framework that significantly 
outperforms existing methodologies in the domain of 
nanomaterial characterization. 

The approach seeks to improve the segmentation of 
nanoparticles in high-resolution SEM images by incorporating 
transfer learning and a modified U-Net (mUNet) architecture. 
A pre-trained ResNet50 model is employed, originally 
constructed on the ImageNet dataset, to extract significant 
features from SEM images depicting various nanoparticle 
shapes, distributions, and sizes. Each image in the dataset is 
paired with a ground truth mask that delineates the 
nanoparticles, enabling supervised learning. Pre-processing 
techniques, such as image scaling and normalization, enable 
the standardization of inputs for the model. The ResNet50 
backbone serves as a feature extractor, acquiring multi-scale, 
intricate representations of the SEM images, which the mUNet 
model then refines for accurate segmentation. The efficiency of 
the model is evaluated following training by accuracy, 
precision, recall, Intersection over Union (IoU), and Dice 
Coefficient to confirm its ability to separate nanoparticles 
under diverse imaging settings. By overcoming the issues 
related to SEM images, this method aims to increase the 
precision and efficacy of nanoparticle segmentation. Fig. 1 
displays the suggested framework's block diagram. 

A. Dataset 

The dataset for the proposed study is obtained from the 
publicly accessible repository on GitHub (https://github.com/ 
BAMresearch/automatic-sem-image-segmentation). The 
database includes EM micrographs of TiO2 particles and their 
related segmentation masks that define the boundaries of these 
particles. The collection additionally encompasses 
classifications of the particles according to their visibility and 
occlusion. The set is organized into subfolders that include raw 
SEM and TSEM images, along with manually annotated 
segmentation and classification masks. This extensive dataset 
establishes a robust basis for training and assessing the mUNet 
model, ensuring the precision and dependability of the 
segmentation procedure through the utilization of high-quality, 
real-world SEM data. Fig. 2 shows the first and last sample 
SEM images from the dataset along their corresponding 
manually annotated segmentation mask. 

B. Data pre-processing 

Pre-processing techniques such as scaling and 
normalization are employed to normalize the SEM images for 
uniform input into the neural network. Resizing standardizes 
images to a consistent dimension, whereas normalization 
calibrates pixel values to meet the network's specifications, 
hence improving the model's data processing efficiency. 
Standardizing the inputs enhances the model's robustness and 
its capacity to manage changes in nanoparticle morphology 
within SEM images. The dataset was divided into two 
categories, with 85% allocated for model training and the 
remaining 15% allotted for validation. This curated dataset is 
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essential for training and assessing the mUNet model, enabling precise and resilient segmentation performance. 

 

Fig. 1. Block diagram of the proposed model. 

 

Fig. 2. Sample images from the dataset. 

C. Model Development 

Segmentation is an essential procedure in image analysis 
that entails dividing the images into separate sections, 
facilitating the identification and localization of particular 
objects within the image. This research utilizes deep learning 
techniques to improve segmentation accuracy, specifically for 
the identification of nanoparticles in SEM images. The U-Net 
design, acclaimed for its efficacy in biomedical image 
segmentation, underpins the suggested methodology. A mUNet 
employs a pre-trained ResNet50 encoder to enhance feature 

extraction and gather multi-scale information. This 
combination enables the accurate delineation of nanoparticle 
borders, enhancing both the precision and efficiency of the 
segmentation process. 

1) U-Net: The U-Net is a widely employed CNN model, 

particularly adept at segmentation tasks, such as nanoparticle 

segmentation in high-resolution SEM images. UNet is 

engineered for pixel-level classification, facilitating the 

differentiation of regions of interest (ROI) from the 

background in images, which is particularly beneficial in 
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domains like medical imaging, biological analysis, and 

materials science [20]. The architecture is characterized by its 

U-shaped structure, with two main pathways: a contracting 

pathway and an expansive pathway, as shown in Fig. 3. The 

contracting path derives feature maps from the input image 

using many convolutional layers, whereas the expansive path 

reconstructs these features into a segmented output by 

integrating low-level and high-level features. 

 

Fig. 3. Basic UNet architecture. 

The contracting path, referred to as the encoder, adheres to 
the conventional architecture of a CNN. The process entails 
consecutive applications of two 3×3 convolutional layers, 
succeeded by a ReLU activation function and a 2×2 max-
pooling operation. The max-pooling procedure aims to down 
sample the image, decreasing its spatial dimensions while 
simultaneously doubling the number of feature channels at 
each iteration. The convolutional procedure is mathematically 
expressed as shown in Eq. (1). 

                𝑓(𝑥) = 𝜎(𝑊 ∗ 𝑥 + 𝑏)                                (1) 

where, W denotes the convolutional weights, x signifies the 
input image, b indicates the bias, and σ represents the 
activation function. 

The expansive path, known as the decoder, mimics the 
contracting path in reverse, with the objective of reconstructing 
the image's spatial dimensions while preserving localization 
accuracy. At each phase of the expanding pathway, the feature 
maps are subjected to up sampling, generally via a 2×2 
transpose convolution process, to revert the image to its 
original resolution. The transpose convolution is 
mathematically represented in Eq. (2). 

                         𝑥̂ = 𝑊𝑇 ∗ 𝑓(𝑥)                                 (2) 

Where, 𝑊𝑇 denotes the transposed weights utilized in the 
up-sampling process, while 𝑥 signifies the upsampled feature 
map. This step is succeeded by concatenation with the relevant 
feature maps from the contracting path, enabling the network 
to merge low-resolution, high-context data with high-

resolution, low-context features. The concatenation technique 
preserves small information from prior layers, which is 
essential for precise nanoparticle segmentation. 

Skip connections are crucial to the performance of the U-
Net [21]. These connections directly associate feature maps 
from the contracting path with the expanded path, as shown in 
Fig. 4, enabling the model to preserve intricate spatial 
information that could be lost during downsampling. By 
integrating low-level, high-resolution characteristics with up 
sampled high-level features, the network can generate precise 
and detailed segmentations. 

 

Fig. 4. Skip connections in the UNet architecture. 
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In the final layer, a 1×1 convolution is utilized to transform 
the 64-channel feature map into the requisite number of output 
classes (e.g., foreground and background in binary 
segmentation), mathematically represented as in Eq. (3). This 
generates the definitive segmentation mask, categorizing each 
pixel based on its respective region. 

               𝑦 = 𝑊𝑓𝑖𝑛𝑎𝑙 ∗ 𝑓(𝑥) + 𝑏𝑓𝑖𝑛𝑎𝑙                          (3) 

Where 𝑊𝑓𝑖𝑛𝑎𝑙  represents the final layer's weights, and 

𝑏𝑓𝑖𝑛𝑎𝑙  is the bias term. 

A distinctive feature of the U-Net architecture is its 
capacity to manage huge images via an overlap-tile method. 
Due to GPU memory limitations on image size, U-Net divides 
huge images into smaller tiles, processes each tile 
independently, and then merges them to generate a 
comprehensive segmentation map. To mitigate the loss of 
context at the image peripheries, the input image is mirrored 
throughout the tiling procedure. This technique guarantees 
precise segmentation of edge pixels, even when analyzing 
extensive SEM images of nanoparticles. 

2) Proposed modified UNet architecture: The proposed 

research enhances the traditional U-Net design by integrating a 

modified U-Net structure that employs a ResNet50 encoder. 

This modification seeks to utilize the powerful feature 

extraction skills of ResNet50 to enhance nanoparticle 

segmentation performance from SEM images. The 

modification concentrates on optimizing feature extraction, 

refining multi-scale representations, and improving the overall 

accuracy of segmentation results. 

ResNet50 is a CNN that uses residual learning to improve 
the training of deep networks, facilitating the effective 
acquisition of intricate hierarchical features vital for precise 

segmentation tasks. ResNet50 comprises 50 layers organized 
into many blocks, as shown in Fig. 5, using skip connections, 
enabling the model to learn residual functions [22]. This 
architecture mitigates the degradation issue frequently 
observed in deep networks, wherein greater depth results in 
reduced performance. ResNet50 mitigates vanishing gradient 
problems by establishing direct paths for gradients during back 
propagation, hence enhancing the training of deeper networks. 
Each residual block in ResNet50 comprises two or three 
convolutional layers, batch normalization, and ReLU activation 
algorithms, ending in a shortcut connection that bypasses one 
or more layers. 

In a standard residual block, the input 𝑋  undergoes a 
sequence of convolutions, after which the original input is 
reintegrated into the output, resulting in Eq. (4). 

                              𝑌 = 𝐹(𝑋) + 𝑋                                      (4) 

Where F(X) denotes the function acquired by the 
convolutional layers, and Y signifies the output of the block. 
This architecture enhances the acquisition of identity 
mappings, hence aiding the training of more profound 
networks. 

The ResNet50 encoder comprises numerous convolutional 
layers arranged in blocks. Each block generally consists of 
three convolutional layers: the initial layer applies a 1x1 
convolution to diminish dimensionality, the subsequent layer 
employs a 3x3 convolution for feature extraction, and the last 
layer utilizes another 1x1 convolution to reinstate the original 
dimensionality. This setup improves the model's ability to 
represent spatial hierarchies while preserving computational 
efficiency. The implementation of batch normalization 
subsequent to each convolutional layer enhances learning 
stability by normalizing the inputs to each layer. 

 

Fig. 5. ResNet 50 architecture. 

The downsampling is achieved by strided convolutions and 
max pooling layers. Strided convolutions diminish the spatial 
dimensions of feature maps while augmenting depth, 
efficiently capturing multi-scale characteristics at diverse levels 
of abstraction. The downsampling process is essential for the 
encoder, enabling the model to concentrate on more intricate, 
abstract representations of the input data as it advances through 
the layers. As the input SEM images traverse the ResNet50 
encoder, feature maps are produced at various depths. These 
feature maps encompass a comprehensive array of attributes 
that capture both low-level features (like textures and edges) 
and high-level semantic data (such as patterns and shapes). The 
hierarchical structure of feature extraction allows the model to 

acquire intricate representations essential for precisely 
segmenting nanoparticles in the images. The formula for 
feature extraction at any specified layer is represented as 
shown in Eq. (5). 

                    𝐹𝑖 = 𝜎(𝑊𝑖 . 𝑋 + 𝑏𝑖)                             (5) 

Where 𝐹𝑖  denotes the feature map at layer 𝑖 , 𝑊𝑖  and 𝑏𝑖 
represents the weights and biases of the convolutional layer, 
whereas 𝑋 signifies the input feature map from the preceding 
layer. 

The deepest convolutional layers process the smallest and 
most abstract feature mappings near the architecture's 
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bottleneck. This component encapsulates the most complicated 
illustrations of the input data, enabling the network to 
proficiently discern complex patterns related to nanoparticles. 
The architectural design enables the model to manage high-
level properties while preserving essential spatial information 
required for precise segmentation. 

During the decoder step, the design utilizes transpose 
convolutions (deconvolutions) to up sample the feature maps to 
their original input dimensions. The mUNet employs a 
concatenation method that integrates the up sampled feature 
maps with the matching encoder feature maps at different 
levels, rather than simply copying the feature maps. This 
procedure ensures the preservation and integration of intricate 
details and spatial data from preceding layers with enhanced 
semantic attributes. The concatenation is represented 
mathematically as in Eq. (6). 

            𝐹𝑐𝑜𝑛𝑐𝑎𝑡 = 𝐹𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑⨁𝐹𝑒𝑛𝑐𝑜𝑑𝑒𝑟                     (6) 

Where 𝐹𝑐𝑜𝑛𝑐𝑎𝑡  denotes the concatenated feature map, 
𝐹𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑  refers to the feature map subsequent to upsampling, 

and 𝐹𝑒𝑛𝑐𝑜𝑑𝑒𝑟  signifies the feature map derived from the 
encoder. 

The output layer employs a 1×1 convolution to diminish 
the feature map's channel number to one, appropriate for binary 
segmentation applications. A sigmoid activation function is 
utilized on the output to produce a segmentation mask, 
resulting in values ranging from 0 to 1, which represent the 
probability of each pixel being part of the target class 
(nanoparticles). The final segmentation mask is represented as 
shown in Eq. (7). 

        𝑀 = 𝜎(𝑊𝑜𝑢𝑡𝑝𝑢𝑡 . 𝐹𝑐𝑜𝑛𝑐𝑎𝑡 + 𝑏𝑜𝑢𝑡𝑝𝑢𝑡)                 (7) 

Where 𝑀  represents the output mask, and 𝑊𝑜𝑢𝑡𝑝𝑢𝑡  and 

𝑏𝑜𝑢𝑡𝑝𝑢𝑡 denote the weights and bias for the output layer. 

Post-processing techniques, including thresholding and 
morphological processes, are utilized to enhance the raw 
segmentation outcome. The proposed research achieves 
enhanced segmentation performance due to the creative 
utilization of convolutional layers, downsampling techniques, 
and residual connections, which facilitate an in-depth 
knowledge of the input data. 

D. Hardware and Software Setup 

The study utilized a high-performance computational 
configuration comprising an Intel Core i7 CPU, 32GB of 
RAM, and an NVIDIA GeForce GTX 1080Ti GPU, facilitating 
the effective management of demanding computational 
workloads. The framework was executed with the Keras 
library, a high-level neural network API based on TensorFlow, 
recognized for its user-friendly interface and robust 
functionalities. The training procedure was conducted on 
Google Colab, a cloud-based Python notebook platform that 
offers easy accessibility to substantial computational resources, 
hence facilitating model training. 

An essential element of this research was the selection of 
hyperparameters, which profoundly influence model 
performance during training. Unlike model parameters that are 

derived from the data hyperparameters are predetermined by 
the user and are crucial in shaping the configuration of the 
training process to optimize the performance of the 
nanoparticle segmentation model. The precise hyperparameter 
selections and model configuration are detailed in Table I. 

TABLE I.  HYPERPARAMETER SPECIFICATIONS 

Hyper parameters Values 

Epochs 200 

Learning Rate 0.0001 

Optimizer ADAM 

Batch size 4 

Loss function Dice loss 

IV. EXPERIMENTAL RESULTS 

Initially, several factors are defined to quantify essential 
performance parameters, as represented in following Eq. (8), 
Eq. (9), Eq. (10), Eq. (11), Eq. (12), and Eq. (13). These 
metrics, based in the principles of False Positive (FP), True 
Negative (TN), False Negative (FN), and True Positive (TP), 
are crucial for evaluating the efficacy of the model. 

The calculation of accuracy involves dividing the total 
number of predictions by the number of right predictions. 

                  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                           (8) 

The exactness of a prediction is measured by its precision, 
or the number of true positives. Instead, recall quantifies 
completeness, or the number of real positives that were 
anticipated as positives. 

                     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (9) 

                    𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (10) 

      𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)      (11) 

                        𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =
2×𝐴∩𝐵

|𝐴|+|𝐵|
                           (12) 

                            𝐼𝑜𝑈 =
|𝐴∩𝐵|

𝐴∪𝐵
                                (13) 

Where, A and B denote the set of predicted and actual 
positive instances. 

The dataset is partitioned into five folds using KFold, 
which randomly assigns data to training and validation sets for 
each iteration. For each fold, the model is established and 
constructed with five iterations of 200 epochs each. The 
training procedure includes a 15% validation split, with 
EarlyStopping callbacks to avert overfitting by ceasing training 
when the validation loss does not increase over a 
predetermined number of epochs. Following each training 
session, the model's learning progression is depicted via the 
training and validation loss curves, as shown in Fig. 6. Metrics 
from each iteration are recorded for subsequent analysis, 
facilitating a thorough assessment of the model's performance 
across several folds. 
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(a) Run 1 

 
(b) Run 2 

 
(c) Run 3 

 
(d) Run 4 
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(e) Run 5 

Fig. 6. Training and validation dice coefficient of the proposed model. 

The incorporation of visualizations that compare predicted 
masks with original images, as illustrated in Fig. 7, improves 
interpretability and facilitates the evaluation of segmentation 
quality. 

The model's precision metric exhibits a gradual 
enhancement across the runs, as shown in Fig. 8 (a) and Table 
II, commencing at 0.907 in the initial run and culminating at 
0.926 in the final run. This pattern indicates the model's 
enhanced capacity to accurately identify true positive 
nanoparticle boundaries. Notwithstanding a slight decline to 
0.900 in the third run, overall precision enhanced, especially in 
the fourth run, where it attained 0.916. The recall scores 
consistently stayed elevated during the runs, as shown in Fig. 8 
(b), starting at 0.974, decreasing slightly to 0.969 in the second 
run, and achieving a maximum of 0.979 in the third run. The 
most recent test registered a decrease to 0.966; however, the 

recall metrics continually demonstrated the model's capability 
in detecting nanoparticle segments. 

The IoU score demonstrated robust performance, as shown 
in Fig. 8 (c), commencing at 0.885, with minor fluctuations 
during the second and third runs, and ultimately increasing to 
0.897 in the last run. This enhancement indicates improved 
precision in delineating nanoparticle boundaries. The DSC 
commenced at 0.938, as shown in Fig. 8 (d), and reached a 
peak of 0.946 in the third run, indicating the highest level of 
segmentation accuracy attained. A decrease in DSC was noted 
in consecutive trials, culminating in a final value of 0.940. The 
mUNet model demonstrates robust segmentation capabilities, 
with significant performance enhancements across multiple 
parameters, confirming its efficacy in precisely recognizing 
and characterizing nanoparticle boundaries. 

  
(a) Run 1      (b) Run 2 
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(c) Run 3      (d) Run 4 

 
(e) Run 5 

Fig. 7. Prediction outputs. 
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Fig. 8. Visualization of performance evaluation. 

TABLE II.  PERFORMANCE EVALUATION 

Metric Run 1 Run 2 Run 3 Run 4 Run 5 

Dice Score (DSC) 0.939 0.938 0.938 0.943 0.946 

Intersection over Union (IoU) 0.885 0.883 0.883 0.892 0.897 

Recall 0.974 0.969 0.979 0.972 0.966 

Precision 0.907 0.909 0.900 0.916 0.926 

Global Accuracy 0.981 0.982 0.983 0.991 0.993 

AUC ROC 0.990 0.992 0.988 0.994 0.994 
 

Fig. 9 displays histograms that depict the performance 
measures of the mUNet model. The precision scores, between 
0.912 and 0.916, demonstrate the model's robust ability to 
effectively separate nanoparticles with minimal false positives. 
Despite a slight variation in these numbers, the general stability 
demonstrates the model's efficacy in positive predictive 
accuracy. The recall scores vary from 0.962 to 0.970, 
indicating the model's exceptional capability in accurately 
identifying almost all true positive cases of nanoparticles. The 

IoU scores, ranging from 0.884 to 0.892, indicate strong 
performance, reflecting a significant overlap between expected 
and actual areas. The uniformity of these scores highlights the 
model's dependability in sustaining high-quality segmentation 
across samples. Finally, the Dice scores vary from 0.938 to 
0.943, underscoring the model's proficiency in generating 
precise segmentations. The close proximity of these scores 
signifies negligible performance variability, hence affirming 
the model's dependability. 
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Fig. 9. Histogram plots. 

Fig. 10 illustrates the mean values of the primary 
performance metrics acquired over an epoch of 200. The Dice 
Score Mean is 0.940, indicating a high degree of accuracy in 
the overlap between the anticipated and actual nanoparticle 
areas. The mean IoU score is 0.887, demonstrating strong 
efficacy in accurately defining nanoparticle regions with few 
deviations. The mean results together underscore the 
dependability of the mUNet model in nanoparticle 
segmentation tasks, demonstrating consistent performance 
across various parameters. 

Fig. 11 depicts the standard deviations computed across 
200 epochs. The Dice score demonstrates a minimal standard 
deviation of 0.002071, indicating consistent segmentation 
accuracy over repetitions. The IoU score demonstrates a 
standard deviation of 0.003696, signifying reliable overlap 
between predicted and real nanoparticle regions. The recall has 
slightly larger variance, with a standard deviation of 0.006005, 
indicating modest fluctuations in the model's capacity to 
recognize all actual nanoparticle occurrences. 

 

Fig. 10. Mean value of the scores. 
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Fig. 11. Standard deviation of the scores. 

The precision exhibits a standard deviation of 0.003264, 
signifying dependable identification of true positives. The 
standard deviation of global accuracy is 0.004693, indicating 
uniform performance across all iterations, whilst the AUC-
ROC score exhibits the lowest deviation at 0.00124, implying 
remarkable stability in differentiating between nanoparticle and 
non-nanoparticle regions. The low standard deviations across 
all measures indicate that the mUNet model exhibits consistent 
and dependable performance, with minor variations in its 
ability to effectively segment TiO2 nanoparticles throughout 
numerous iterations. 

V. DISCUSSION 

A thorough accuracy comparison of the suggested model 
against a number of cutting-edge segmentation methods is 
depicted in Fig. 12 and Table III. The suggested framework 
attained an outstanding accuracy of 99.3%, markedly 
surpassing conventional approaches such as NSNet (86.2%) 
and more sophisticated architectures like Deeplabv3+ with 
ResNet-18 (96.12%), multiple-output convolutional neural 
networks (96.59%), and U-Net (97.1%). 

TABLE III.  COMPARATIVE ANALYSIS OF THE PROPOSED MODEL AGAINST EXISTING METHODS 

Author Methodology Accuracy (%) 

Sun et al. [25] NSNet 86.2 

Gumbiowski et al. [10] Deeplabv3+ network with a Resnet-18 96.12 

Oktay et al. [24] multiple output convolutional neural networks 96.59 

Bals et al. [11] UNET and UNet++ 97 

Leonid Mill et al. [23] U-Net 97.1 

Proposed model: Modified U-Net with ResNet 50 99.3 

 

Fig. 12. Comparison of the proposed model with existing methods. 
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The suggested model exhibits enhanced segmentation 
performance compared to closely comparable models such as 
UNet++ (97%) and U-Net (97.1%). The enhancement is due to 
the incorporation of ResNet50 as the encoder, facilitating 
superior feature extraction via deep residual learning, along 
with the U-Net's strong skip connections, which ensure 
accurate reconstruction of spatial information. The 
modifications, together with the model's capacity to utilize pre-
trained weights for more effective training, lead to a significant 
improvement in segmentation accuracy for nanoparticle 
boundaries in SEM images. The modified layout exhibits 
enhanced proficiency in managing complex textures and 
diverse sizes of nanoparticle areas, positioning itself as a 
dependable and effective solution for high-precision 
segmentation tasks in nanotechnology. 

VI. CONCLUSION 

The proposed research offers an extensive approach for 
automating the segmentation of SEM images of TiO2 
nanoparticles utilizing a modified U-Net architecture with a 
ResNet50 backbone pre-trained on ImageNet. This model 
effectively overcomes the drawbacks of conventional 
segmentation techniques, which frequently encounter issues 
with the intricate and diverse textures present in SEM images. 
By utilizing the robust feature extraction capabilities of 
ResNet50 and integrating them with the effective segmentation 
framework of U-Net, the model exhibits notable enhancements 
in accuracy, precision, and overall performance. The findings, 
featuring an average Dice score of 0.940 and an IoU of 0.887, 
demonstrate the model's proficiency in precisely delineating 
nanoparticle boundaries. The minimal standard deviations in 
all performance metrics, such as a Dice score standard 
deviation of 0.002071 and an IoU standard deviation of 
0.003696, underscore the model's consistency and stability 
throughout various iterations. The incorporation of skip 
connections and multi-scale feature learning allows the model 
to preserve spatial details while analyzing abstract, high-level 
data. This method substantially surpasses conventional 
strategies in nanoparticle segmentation for accuracy and 
reliability, as evidenced by comparisons with existing methods. 
The model's versatility and diminished training duration 
underscore its practical utility for high-throughput nanoparticle 
investigation in materials science. The research highlights the 
efficacy of deep learning models, particularly the mUNet, in 
enhancing nanomaterial analysis through accurate, automated 
segmentation methods. 
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