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Abstract—Spectral clustering algorithm is a highly effective 

clustering algorithm with broad application prospects in data 

mining. To improve the efficient data processing capability of big 

data mining systems, a big data mining system that integrates 

spectral clustering algorithm and Apache Spark framework is 

proposed. It is applied in the big data mining system by combining 

Hdoop, Spark framework, and spectral clustering algorithm. The 

research results indicated that after 300 iterations of spectral 

clustering algorithm, the error value tended to stabilize and drops 

to 0.123. In different datasets, different error values were 

displayed, indicating that spectral clustering algorithm had better 

performance in discrete data processing and smaller testing 

errors. The minimum time consumed by the comparative system 

was 37.83 seconds, the maximum time was 55.26 seconds, and the 

average time was 51.65 seconds. The minimum time consumed by 

the research system was 18.93 seconds, the maximum time 

consumed was 32.22 seconds, and the average time consumed was 

28.14 seconds. Compared with the comparative system, the 

research system consumed less time, trained faster, and was more 

conducive to shortening the clustering running time. The 

algorithm framework and system raised in the research have good 

operational efficiency and clustering ability in data mining 

processing, which promotes the reliability and development of big 

data mining systems. 

Keywords—Spectral clustering algorithm; apache spark; big 

data; data mining 

I. INTRODUCTION 

The advent of the big data era has led to a proliferation of 
big data mining technology across a range of industries. Big 
data technology takes a critical parts in multiple fields with its 
massive data information and high-intensity processing 
capabilities. It not only enables efficient analysis of complex 
data modules, but also has foresight and predictability, and can 
extract valuable data in a timely manner [1]. Data mining 
technology, as an emerging discipline, originated in the 1980s 
with the initial aim of promoting the development of artificial 
intelligence technology. Modern data mining technologies 
focus on in-depth exploration of hidden and valuable data to 
discover new data patterns and valuable information, which has 
critical guiding significance for enterprise decision-making. 
Spark, as a big data processing framework, has the merits of 
high efficiency, scalability, and high fault tolerance, and is 
therefore broadly utilized in the field of big data mining [2]. 
This study will explore big data mining techniques from the 
perspective of Spark. Spectral Clustering (SC), as a classic data 
mining algorithm, is a clustering algorithm used in graph theory. 

It achieves node clustering by analyzing the eigenvalues and 
eigenvectors of the Laplacian matrix of the graph. Many experts 
and researchers have put forward their own opinions on the 
research and implementation of big data systems. SC is an 
unattended clustering algorithm that has been broadly applied 
in the fields of pattern matching and computer vision due to its 
excellent clustering capabilities. However, the conventional SC 
algorithms are ill-suited for large-scale data classification such 
as that required for hyperspectral remote sensing images. This 
is due to their high computational complexity and the difficulty 
of representing the inherent uncertainty of the images [3]. Li et 
al. employed fuzzy anchor points for the processing of 
hyperspectral image classification and proposed an SC 
algorithm based on fuzzy similarity measurement. The findings 
of the experiment on the datasets of hyperspectral remote 
sensing images demonstrated the efficacy of the enhanced 
algorithm. The incorporation of a fuzzy likelihood measure led 
to the generation of a more resilient similarity matrix. The 
kappa coefficient obtained by the raised algorithm was 2% 
higher than that of the traditional algorithm. Furthermore, the 
raised algorithm achieved superior classification results on 
hyperspectral remote sensing images when compared with 
existing methods [4]. The advent of wireless communication 
technology has led to the generation of a substantial corpus of 
spatio-temporal user tracking data, which is recorded by 
wireless communication networks as users utilize these 
networks to meet a range of needs. To enhance the healthy 
development of students and facilitate the construction of 
campus-wide information, Guo Y et al. put forth an SC 
algorithm based on a multi-level threshold and density 
combined with common nearest neighbors. Several clustering 
algorithms were used for detecting anomalies, and four 
assessment indicators were applied to assess the clustering 
results. The results indicated that the MSTDSNN-C algorithm 
exhibited better clustering performance [5]. However, the fact 
that the clustering model is defined only for the original data 
and not explicitly extended to out-of-sample data is one of the 
main drawbacks of SC. To improve its efficiency, Shen D et al. 
proposed a new modular SC method with out of sample 
extension, combining a new spectral mapping algorithm based 
on modular similarity measurement and out of sample 
extension. The experiment outcomes denoted that the research 
method had better findings compared to other related 
algorithms on several data sets [6]. A block distributed 
Chebyshev-Davidson algorithm was developed by Pang Q et al. 
to solve the problem of large leading eigenvalues in SC. 
Through the analysis of the Laplacian matrix or normalized 
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Laplacian matrix in SC, a scalable distributed parallel version 
was developed. The results demonstrated its efficiency in SC 
and its advantage in scalability compared to existing feature 
solvers used for SC in parallel computing environments [7]. 

Most existing multi-view clustering methods may be 
affected by data corruption in terms of technology, leading to a 
sharp decline in clustering performance. Pan Y et al. put forth a 
multi-pattern SC method which uses robust bar space 
segmentation. To address the optimization issue of the weak 
sparse segmentation, an optimization procedure based on the 
extended Lagrangian multiplier method was developed. The 
experiment findings on various benchmark sets showed that the 
raised method performed well relative to several recent 
advances in clustering methods [8]. High utility itemset mining 
is a common utilized data mining method for finding useful 
patterns. Sethi K et al. proposed a new way to mine itemsets 
using Spark. They tested it on six real data sets and found that 
it outperformed other algorithms [9]. When managing very 
large datasets, the high processing cost of mining data for fuzzy 
rules increased considerably, and in many cases memory 
overrun faults are triggered. Fernandez-Basso C et al. used the 
Spark algorithm to process large amounts of heterogeneous data 
and find interesting rules. They proposed a measure of interest 
decomposition based on Alpha cuts and demonstrated through 
experiments that only 10 equidistant Alpha cuts were sufficient 
to find all the important fuzzy rules. The efficiency and speed 
of all proposals were compared and analyzed [10]. Ji L et al. 
proposed an improved SC-based method of detecting anomalies 
for anomalous data mining in dam safety monitoring, which 
introduced natural eigenvalues to select data point edges based 
on traditional SC. The results showed that this method could 
avoid the algorithm from becoming bogged down in local 
topology and improve the efficiency of clustering and anomaly 
detection. It further confirmed that the method could adjust 
itself well to the case of discrete distribution datasets, and was 
more accurate than classical SC methods in both the case of 
labeling and detecting the data points with unusual anomalies 
[11]. 

In summary, regarding data mining, existing researchers in 
the literature review have some involvement and research on 
data processing, algorithm classification, and dataset clustering 
improvement. However, the design and application of 
clustering algorithms for implementing system data mining are 
not deep enough, such as data relationship description, 
architecture design of data processing systems, etc. In order to 
achieve more efficient and large-scale data processing 
efficiency, a big data mining method that combines spectral 
clustering algorithm and Apache Spark framework is proposed 
compared with literature review. It combines distributed 
computing framework (such as Spark) to optimize spectral 
clustering algorithm, realizing parallel processing and fast 
clustering of large-scale datasets. This is similar to the 
distributed block Chebyshev Davidson algorithm developed by 
Pang Q et al. And innovatively introduced spectral clustering 
algorithm applied to data mining systems, designed a big data 
mining system architecture, and provided a technical 
foundation for massive data mining and processing. 

The article structure of this study is as follows. Introduction 
is given in Section I. Section II of this study is dedicated to the 

integration of the SC algorithm with the Apache Spark 
framework for the purpose of facilitating the mining of large 
data sets. This represents a significant area of focus and 
innovation within the field of big data analytics. Section III 
presents the experimental verification and analysis of the results 
obtained from the data set, based on the algorithm designed in 
the first part. Section IV presents conclusions regarding the 
experimental results and discusses the limitations of the design, 
as well as avenues for future research. 

II. METHODS AND MATERIALS 

The study adopts spectral clustering algorithm as the core 
clustering method, which can identify sample spaces of any 
shape and converge to the global optimal solution, especially 
suitable for clustering convex structured data. And by 
constructing a similarity matrix, calculating eigenvalues and 
eigenvectors, and using classical clustering algorithms such as 
K-means to cluster the eigenvectors, data clustering analysis is 
achieved. Firstly, this study combines Hadoop and Apache 
Spark to investigate the processing techniques of big data. 
Secondly, the SC algorithm is introduced and combined with 
the Apache Spark framework to design a framework for a big 
data mining system. 

A. Big Data Technology based on Hadoop and Apache Spark 

Computing Framework 

As the advent of the digital age, big data has become a 
fundamental element for enterprises to compete. Apache Spark 
has gained widespread attention in terms of processing speed, 
fault tolerance, and ease of use. Apache Spark is a high-
performance, flexible computing engine that is optimized for 
processing large datasets. Compared to the traditional big data 
processing framework MapReduce, Spark has a faster 
processing speed. This is because Spark stores data in memory 
instead of traditional storage on disk. Another feature of Spark 
is that it can perform iterative calculations based on memory. 
Hadoop Distributed File System (HDFS) can work well on 
inexpensive hardware and is designed to be fault-tolerant. It 
provides high throughput for accessing application data and 
enables fast access to large datasets [12]. Hadoop is a 
distributed system built by the Apache Foundation, and the 
HDFS is one of its components [13]. The big data ecosystem of 
Hadoop is shown in Fig. 1. 

HDFS is capable of accessing data in the file system in the 
form of streams, and the fundamental design of this framework 
is based on HDFS and MapReduce. HDFS provides storage for 
substantial quantities of data, while MapReduce offers 
computational capabilities for similarly large data sets [14]. The 
MapReduce feature of Hadoop can decompose a large and 
complex task, allocate scattered subtasks to multiple nodes, and 
then load them as a single dataset into a data warehouse. The 
distributed architecture of Hadoop enables the big data 
processing engine to be situated as proximate to the storage 
facility as possible. This makes the system relatively suitable 
for batch operations such as ETL, given that the results of such 
operations may be transmitted directly from the processing 
engine to storage. The popularity of Hadoop in the area of big 
data processing can be attributed to its efficacy in data 
extraction, transformation, and loading. 
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Spark is an open-source project under the Apache 
foundation that provides a distributed computing framework for 
fast processing of large-scale datasets [15]. Compared to 
traditional MapReduce, Spark uses memory storage to read and 
write data faster, avoiding frequent disk I/O operations and 
improving data processing speed. Spark supports multiple 
programming languages, such as Scala, Java, Python, and R, 
making it easy for users to choose their familiar programming 
language for development. It also provides a resilient 
distributed dataset (RDD), as shown in Fig. 2 for its structure 
and running process. 

Fig. 2 (a) showcases the structure of the RDD dataset, and 
Fig. 2 (b) showcases the operational flowchart of RDD. RDD is 
composed of multiple partitions, each of which is a subset of 
data that can be distributed across multiple machines for 
parallel computing. Partitioning is the process of grouping data 
records with the same attributes together according to specific 
rules, where each partition is equivalent to a segment of the 
dataset. This partitioning mechanism enables RDD to support 
parallel processing and improve computational efficiency. 
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Fig. 1. Hadoop big data ecosystem. 
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Fig. 2. Structure diagram and operation flowchart of RDD dataset. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

681 | P a g e  

www.ijacsa.thesai.org 

The running process of RDD in Spark architecture mainly 
includes the following steps. Firstly, it is necessary to create an 
RDD object. Secondly, the dependency relationships between 
RDDs are calculated and a Directed Acyclic Graph (DAG) is 
constructed. SparkContext is responsible for calculating the 
dependency relationships between RDDs and building the 
DAG. DAG represents the structure of the entire computing 
task, including the conversion and computation between 
various RDDs. Then the DAG is decomposed into multiple 
stages, and the DAGScheduler is responsible for decomposing 
the DAG graph into multiple stages, each stage containing 
multiple tasks [16]. The tasks in each stage are executed in 
order of their dependency relationships to ensure the 
correctness of the calculation results. Afterwards, each task will 
be distributed by the task scheduler to the Executors on each 
work node for execution. After receiving the task, the Executor 

will occupy corresponding resources such as CPU and memory 
and perform calculations. The calculation results will be 
returned to the Driver for summarization and processing. 
Finally, there is the summary and output of the results. After all 
tasks are completed, the Driver will collect all the results, 
perform necessary summarization and processing, and finally 
output the results. This can be done by pulling all data back to 
the driver end using the collect () method. 

This process involves the core mechanisms of Spark's 
distributed computing framework, including resource 
allocation, task scheduling and execution, as well as result 
aggregation and output. In this way, Spark can efficiently 
process large-scale datasets, achieve parallel and distributed 
computing, and the running process is shown in Fig. 3. 
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Fig. 3. Spark running process. 

The running process of Spark involves environment 
construction, resource allocation, task decomposition and 
scheduling, as well as specific behaviors in different running 
modes, ensuring efficient execution of distributed computing. 
Firstly, the DAG graph created in the RDD object is 
decomposed into stages, and Task Schedule is formed through 
Taskset to submit and monitor tasks. 

B. A Big Data Mining System Integrating Spectral Clustering 

Algorithm and Apache Spark Framework 

To achieve efficient mining and analysis of big data, a high-
performance SC algorithm is adopted in the study, which can 
provide better clustering for convex structured data. SC is a 
clustering method based on graph theory that divides a 
weighted undirected graph into two or more optimal subgraphs. 
This is achieved by ensuring that the subgraphs are as similar 
as possible internally while maximizing the distance between 
subgraphs [17]. The underlying principle of the SC method is 
the transformation of the initial clustering problem into an 
optimal graph partitioning problem. The selection of 
appropriate eigenvectors for clustering is achieved by 
calculating the eigenvalues and eigenvectors of the similarity 
matrix of the sample data points. This method is capable of 
identifying sample spaces of any shape and converging upon 
the global optimal solution [18]. The implementation process 

of SC includes constructing a similarity matrix, calculating 
eigenvalues and eigenvectors, and using K-means or other 
classical clustering algorithms to cluster eigenvectors. The SC 
algorithm has a wide range of applications, including computer 
vision, pattern recognition, information retrieval, and other 
fields. Spectral clustering algorithm treats all data as points in 
space during the clustering process. By slicing the graph 
composed of all data points, the edge weights between different 
subgraphs are minimized, while the edge weights within 
subgraphs are maximized, thus achieving the purpose of 
clustering. This method overcomes the disadvantage of 
traditional clustering algorithms (such as K-Means) that may 
not be able to obtain the global optimal solution on any shaped 
sample space. 

The study will use a directed unweighted graph to represent 

the dataset ( , )G V E , and describe its relationships using a 
matrix to transform it into a graph/matrix problem. The 
similarity of data points will be described using functions, and 
the relationship equation will be constructed as shown in Eq. 
(1). 

2

, 2
exp

2

 
  
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i j

i j

x x
w               (1) 
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In Eq. (1), ,i jw  denotes the similarity between ix  and 

jx  corresponding to the i  row and j  column, and the 

dataset is represented as 1 2{ , ,..., }nv v v . jx  and jx  are the 
data points. A matrix is constructed with a size of n * n based 
on the relationships between data points. A set matrix that 
represents the sum of similarity relationships between data 
points and other points through a degree matrix, as shown in Eq. 
(2). 
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In Eq. (2), D  denotes the degree matrix, and id  

represents the degree of data point ix . In this study, the 
similarity matrix is constructed using fully connected 
connections, and a Gaussian kernel function is utilized to 
construct the similarity distance, as shown in Eq. (3). 
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In SC algorithms, graph problems involve partitioning 
problems. From the perspective of graph theory, clustering 
problems are equivalent to partitioning problems of a graph. 
The similarity between subgraphs is described by dividing them 
into different subgraphs. the partitioning principles include 
minimum cut criterion, normative cut criterion, and 
proportional cut criterion. The objective of partitioning is to 
reduce the sum of edge weights that are removed, as a smaller 
sum of edge weights results in a greater dissimilarity between 
the subgraphs connected by them, and therefore a greater 
distance between them. Subgraphs with low similarity can be 
easily cut off from them [19]. 

The Laplacian matrix is an important component of SC 
algorithms and is a matrix used to represent a graph. Given a 

graph ( , )G V E  with n vertices, the vertex set V  
represents each sample, and the weighted edge E  represents 
the similarity between each sample. The non normalized 
Laplacian matrix is represented by Eq. (4). 

 L D W                   (4) 

The properties of the non normalized Laplacian matrix are 
shown in Eq. (5). 
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In Eq. (5), 1 2( , ,..., ) , T n

nf f f f f R  is an arbitrary 
vector. The normalized Laplacian matrix can be divided into 
two forms: symmetric and random walk normalized matrices, 
as shown in Eq. (6). 

1/2 1/2 1/2 1/2

1 1

   

 

   


  

sym

rw

L D LD I D WD

L D L I D L
      (6) 

In Eq. (6), symL  represents the symmetric normalization 

matrix, rwL  represents the normalization moment of random 

walks, W  represents the adjacency matrix, I  represents the 
identity matrix, and L  represents the non normalized 
Laplacian matrix. The properties of the normalized Laplacian 
matrix are shown in Eq. (7). 
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In Eq. (7), id  and jd  represent the element values of the 
matrix. The acquisition of SC algorithm requires the 
partitioning of the graph, transforming discrete problems into 
continuous problems. The SC algorithm’s acquiring process is 
shown in Fig. 4. 
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Fig. 4. Spectral clustering algorithm process. 

The process mainly includes the following steps. Firstly, it 
will calculate the similarity between given datasets, and select 
an appropriate similarity calculation method based on the 
characteristics of the datasets to build a similarity matrix. On 
the basis of the similarity matrix, a Laplacian matrix is 
constructed through regularization processing. The Laplacian 
matrix can be constructed in two ways: diagonal matrix and 
adjacency matrix. The eigenvalue decomposition is performed 
on the Laplacian matrix to obtain a series of eigenvalues and 
corresponding eigenvectors. The corresponding eigenvectors 
are selected based on the first K smallest eigenvalues, which 
form a low dimensional space, and project the original dataset 
into this low dimensional space [20-21]. The clustering analysis 
is performed on the projected dataset using the K-means 
algorithm to get the final clustering results. In addition, to 
assess the efficacy of SC algorithms, this study uses algorithm 
time complexity. Firstly, a dataset of n with each data dimension 
d is set up to construct a corresponding similarity map. After 
calculating the time complexity, the eigenvalues and 
eigenvectors of the similarity matrix are calculated. Finally, the 
corresponding eigenvectors are obtained through 
dimensionality reduction for clustering. The calculated time 
map is shown in Fig. 5. 
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Fig. 5. Calculation time chart of spectral clustering. 

Fig. 5 shows the time required for each step of spectral 
clustering in the dataset. The total time of the algorithm is 
basically consistent with the fitting function f (n)=cn2, so the 
total time complexity of the algorithm is O (n2), and the 
construction of the similarity matrix stage consumes the most 
time. This study is based on SC algorithm and Apache Spark 
framework to design a big data mining system. The system is 
broken into three layers of architecture, each layer has interface 
connections, and from bottom to top are the data layer, business 
layer, and interaction layer. The data layer accesses files in the 
data system during the homework process to perform read and 
save operations on data in the database. The main function of 
the interaction layer is to display data and receive and transmit 
user data, providing an interactive operating interface for the 
website's system operation. The business layer identifies and 
processes user input information, saves it separately, establishes 
a new data storage method, reads the data during the storage 
process, and saves the business logic description code. The 
system architecture is shown in Fig. 6. 

The research first uses the Hadoop and Apache Spark 
computing frameworks for data processing, and utilizes the 
distributed computing capabilities of the Apache Spark 
framework to allocate the computing tasks of the spectral 
clustering algorithm to multiple nodes for parallel execution, 
thereby improving the efficiency of the algorithm. By utilizing 
Spark's RDD (Elastic Distributed Dataset) mechanism, 
distributed storage and parallel processing of data can be 
achieved, reducing disk I/O operations and accelerating data 
processing speed. 

This study combines spectral clustering algorithm with 
Apache Spark framework, which not only optimizes the 
computational efficiency of spectral clustering algorithm, but 
also enhances the ability of big data processing. This 
technological fusion provides new ideas and methods for 

research in related fields, promoting innovation and 
development of algorithm technology. By utilizing the 
distributed computing capabilities of the Apache Spark 
framework, this study achieved efficient processing and 
analysis of large-scale datasets. This helps to address the 
limitations of traditional big data processing techniques in 
terms of processing speed and fault tolerance, providing strong 
support for the further development and application of big data 
technology. 
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Fig. 6. System architecture design. 

III. RESULTS 

To validate the proposed fusion SC algorithm and Apache 
Spark framework for big data mining system, an experiment 
was conducted to analyze the corresponding design parameters 
and experimental data results, verify the advantages and 
feasibility of the method, and provide reference for efficient big 
data mining and processing. 

A. Data Mining System Platform and Environment 

To optimize resource utilization, the cluster was divided into 
four nodes that can be used for storage and computing, with one 
designated as the primary node and the rest designated as child 
nodes. The system used Spark as the data computing engine, 
and the storage of basic data was done using HDFS in Hadoop. 
It promoted resource coordination between the two through 
YARN. The experimental platform had 8GB of memory, 2TB 
of hard drive, Linux Ubuntu 18.04 system, and a 2.9GHz Intel 
i5 processor. The specific parameters are indicated in Table I. 

TABLE I. SPECIFIC PARAMETERS 

Project Parameter Host Name Address Node type 

CPU Intel®Core(TM) i7-4790 @3.60GHz Master 192.168.60.150 NameNode/Master/Worker 

Memory 8GB Slavel 192.168.60.151 DataNode/ Worker 

Hard drive 2TB Slave2 192.168.60.152 DataNode/Worker 

Bandwidth 100Mb/s Slave3 192.168.60.153 DataNode/Worker 

Operating system Linux Ubuntu 1 8.04 / / / 
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B. Data Mining Processing Results and Analysis 

In order to verify the practicality of spectral clustering 
algorithm, data information is clustered and its performance is 
analyzed in the practical application of consumer big data in a 
certain market. The cluster diagram is shown in Fig. 7. The 8 
clusters in Fig. 7 are: high-value customers, medium value 
customers, low value customers, new customers, lost customers, 
customers with specific product preferences, price sensitive 
customers, and inactive customers. As shown in Fig. 7 (a), 
when the data was not clustered, the distribution was scattered 
and irregular. As shown in Fig. 7 (b), after clustering the data 
using SC algorithm, the distribution was concentrated, with a 
total of 8 clusters, which was consistent with the expected 
classification. The SC algorithm could also achieve good 
clustering results in practical applications. 

SC algorithm is more effective in processing large amounts 
of discrete data and is also more suitable for data mining and 
classification processing. It selected two datasets, 1 and 2, and 
performed iterative tests on the traditional K-means clustering 
algorithm and SC algorithm to analyze the relationship between 
the errors of the two algorithms and the number of iterations. 
The result is denoted in Fig. 8. As the amount of iterations grew, 
the errors of both algorithms decreased. In Fig. 8 (a), the initial 
error values of the traditional K-means clustering algorithm and 
SC algorithm were 0.425 and 0.356, respectively. After 500 

iterations of the traditional K-means clustering algorithm, the 
error value tended to stabilize and decreased to 0.254. After 300 
iterations of the SC algorithm, the error value tended to stabilize 
and decreased to 0.123. In Fig. 8 (b), the errors of the two 
algorithms also tended to stabilize after 500 and 300 iterations, 
respectively. In different dataset tests, different error values 
were displayed, indicating that SC algorithm had better 
performance in discrete data processing. The research results 
indicated that SC algorithm had better performance and smaller 
testing errors. 

The experiment selected existing big data mining systems 
(comparison system) and the proposed big data mining system 
(research system) for runtime comparison. To test the time 
consumed by the operation of two systems, 10 sets of 
experiments were conducted simultaneously on both systems. 
The findings are indicated in Fig. 9. From Fig. 9, the minimum 
time consumed by the comparative system was 37.83 seconds, 
the maximum time was 55.26 seconds, and the average time 
was 51.65 seconds. The minimum consumption time of the 
research system was 18.93 seconds, the maximum consumption 
time was 32.22 seconds, and the average consumption time was 
28.14 seconds. Compared with the comparative system, the 
research system consumed less time, trained faster, and was 
more conducive to shortening the clustering running time. 
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Fig. 7. Data information clustering diagram. 
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Fig. 8. Relationship between error and iteration times. 
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Fig. 9. Comparison of consumption time. 

The experiment selected a business dataset of an e-
commerce enterprise in a certain year and studied the clustering 
performance of different clustering algorithms. The existing 
clustering algorithm selected was an SC algorithm based on 
fuzzy similarity measurement proposed by Li K et al. Fig. 10 
shows the clustering outcomes of the two algorithms. Among 
them, Fig. 10 (a) showcases the clustering diagram of the SC 
algorithm. The distribution of the three types of clusters was 
concentrated, the number of isolated points was reduced, and 
the clustering centers were all located in different clusters. Fig. 
10 (b) showcases the clustering diagram of the original model. 
The clustering effect of the model on the data was not ideal. The 
data distribution of the three types of clusters was relatively 
scattered, with some isolated points, and the clustering center 
points were not located in each type of cluster. From the 

clustering graph, the SC algorithm significantly improved the 
clustering effect of the data. 

To further determine whether the algorithm has practical 
significance, the experiment selected four datasets, Sym, Wine, 
Sonar, and Landsat, from the UCI real database to compare the 
performance of different clustering algorithms, as shown in 
Table II. Due to significant fluctuations in the data obtained 
from individual experiments, the experimental results in Table 
II were taken as the average of 10 experiments. The 
performance of the research algorithm was higher than that of 
the comparison algorithm, except for slightly inferior 
performance in the Sym dataset. Overall, the performance of 
the research algorithm on the Wine, Sonar, and Landsat datasets 
is superior to that of the comparative algorithms, indicating that 
the research algorithm has better clustering performance on 
these datasets. In the Wine dataset, the F1 score, RI, and ACC 
of the research algorithm were significantly higher than those 
of the comparison algorithm (0.8259 vs. 0.7447, 0.5034 vs. 
0.3816, 0.7022 vs. 0.6185). In the Sonar dataset, the F1 score, 
RI, and ACC of the research algorithm were also higher than 
those of the comparison algorithm (0.7328 vs. 0.6551, 0.6184 
vs. 0.2836, 0.6745 vs. 0.5337). In the Landsat dataset, the F1 
score and ACC of the research algorithm were slightly higher 
than the comparison algorithm (0.7422 vs. 0.6602, 0.6219 vs. 
0.6438), but the RI was slightly lower than the comparison 
algorithm (0.4403 vs. 0.4072). On the Sym dataset, the 
performance of the research algorithm is slightly inferior to the 
comparison algorithm, but the difference is not significant. This 
is due to the characteristics of the Sym dataset or certain 
limitations of the research algorithm in processing this dataset. 
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Fig. 10. Cluster comparison chart. 

TABLE II. PERFORMANCE COMPARISON OF DIFFERENT CLUSTERING ALGORITHMS 

Algorithm Research algorithm Comparison algorithm 

Index F1 RI ACC F1 RI ACC 

Sym 0.6874 0.4203 0.6397 0.6972 0.4368 0.6515 

Wine 0.8259 0.5034 0.7022 0.7447 0.3816 0.6185 

Sonar 0.7328 0.6184 0.6745 0.6551 0.2836 0.5337 

Landsat 0.7422 0.4403 0.6219 0.6602 0.4072 0.6438 
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IV. DISCUSSION AND CONCLUSION 

A. Discussion 

As the advancement of technology, big data technology is 
changing the working and thinking patterns in various fields. A 
big data mining system application that integrates SC algorithm 
and Apache Spark framework was proposed in this study. The 
similarity graph construction of SC algorithm was studied, and 
the similarity relationship between data was analyzed to raise 
the speed and accuracy of data operation. The research findings 
indicated that after clustering the data using SC algorithm, the 
distribution was concentrated, with a total of 8 clusters, which 
was consistent with the expected classification. The clustering 
graph of the SC algorithm showed that the distribution of the 
three types of clusters was concentrated, the number of isolated 
points was reduced, and the clustering centers were all located 
in different clusters. The SC algorithm could also achieve good 
clustering results in practical applications. The minimum 
consumption time of the research system was 18.93 seconds, 
the maximum consumption time was 32.22 seconds, and the 
average consumption time was 28.14 seconds. Compared with 
the comparative system, the research system consumed less 
time, trained faster, and was more conducive to shortening the 
clustering running time. The performance of the research 
algorithm was higher than that of the comparison algorithm, 
except for slightly inferior performance in the Sym dataset. 

B. Conclusion 

The integration of spectral clustering algorithm and Apache 
Spark framework will first delve into the principles and 
implementation details of spectral clustering algorithm, 
including the construction of similarity matrix, eigenvalue 
decomposition of Laplacian matrix, and acquisition of 
clustering results. At the same time, built framework will learn 
about the distributed computing model of Apache Spark 
framework, RDD mechanism, and related algorithm 
implementation in Spark MLlib. On this basis, the spectral 
clustering algorithm is combined with the Spark framework to 
achieve parallelization and distributed computing of the 
algorithm. 

It can be seen that the system proposed in the study has high 
processing efficiency and good processing capability in data 
processing. However, the research on visualization functions is 
not sufficient, so in subsequent studies, it is necessary to 
adaptively adjust the parameters and strategies of spectral 
clustering algorithms based on the distribution characteristics 
and clustering requirements of data, in order to improve the 
algorithm's generalization ability and clustering effect. 
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