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Abstract—To address the low detection efficiency and high 

computational resource demands of current welded pipe defect de-

tection algorithms for small target defects, this paper proposes the 

YOLO-WP algorithm based on YOLOv5s. The improvements of 

YOLO-WP are mainly reflected in the following aspects: First, an 

innovative GhostFusion architecture is introduced in the back-

bone network. By replacing the C3 modules with C2f modules and 

integrating the Ghost CBS module inspired by Ghost convolution, 

cross-stage feature fusion is achieved, significantly enhancing 

computational efficiency and feature representation for small tar-

get defects. Second, the Slim-Neck lightweight design based on 

GSConv is employed in the neck to further optimize the network 

structure and reduce the number of parameters. Additionally, the 

SimAM lightweight attention mechanism is incorporated to im-

prove the network's ability to extract defect features, and the Fo-

cal-EIou loss is utilized to optimize CIou loss, thereby enhancing 

small object detection and accelerating loss convergence. The ex-

perimental results show that the AP(D1) and mAP@0.5 of the 

YOLO-WP model are improved by 5.3% and 3%, respectively, 

over the original model. In addition, the number of model param-

eters and FLOPs are reduced by 40% and 45%, respectively, 

achieving a good balance between performance and efficiency. We 

evaluated the performance of YOLO-WP using other datasets and 

showed that YOLO-WP exhibits excellent applicability. Com-

pared to existing mainstream detection algorithms, YOLO-WP is 

more advanced. The YOLO-WP model significantly enhances pro-

duction quality in industrial defect detection, laying the founda-

tion for building compact, high-performance embedded weld pipe 

surface defect detection systems. 

Keywords—Welded pipe; lightweight model; defect detection; 

deep learning; feature extraction; attention mechanism 

I. INTRODUCTION 

Small-diameter stainless steel welded pipes are widely used 
across various fields, including oil and gas transportation, 
chemical production, medical equipment, and automotive com-
ponents [1]. The widespread use is due to their excellent weld-
ing performance, lower manufacturing cost compared to seam-
less pipes, small diameter, lightweight design, high strength 
characteristics [2], and superior corrosion resistance [3-4]. The 
welding of small-diameter stainless steel pipes primarily em-
ploys the Gas Tungsten Arc Welding (GTAW) technique. In 
practical production, two common defects are observed on the 
weld surface. The first is weld voids, which can result from mis-
alignment or omission during the welding process [5]. The sec-
ond is welding porosity or pits, typically caused by tungsten 
electrode contamination or grinding wheel damage [6]. These 

defects can significantly impact the performance of the pipes. 
Therefore, it is essential to perform real-time inspection of the 
weld seams of small-diameter stainless steel welded pipes on 
the production line. This approach enables the timely detection 
and correction of defects, preventing defective products from 
proceeding to subsequent offline inspection stages and avoiding 
unnecessary quality control costs. 

Current methods for online inspection of weld surface de-
fects in stainless steel pipes mainly include manual inspection, 
X-ray inspection, eddy current inspection, and ultrasonic in-
spection [7]. Manual inspection is considered inefficient [8]. X-
ray and ultrasonic inspections require high operational skills 
from personnel [9]. Additionally, eddy current inspection sig-
nals are vulnerable to interference from external factors [10]. 
Therefore, there is an urgent need for a detection method that is 
efficient, easy to operate, and highly resistant to interference. 
Machine vision, a non-destructive testing method, can fulfill 
this requirement. Within recent years, with the progress of ma-
chine vision and deep learning technologies, numerous defect 
detection methodologies leveraging these approaches have 
been extensively applied in various inspection contexts, includ-
ing food and agriculture, electronics fabrication, metal materi-
als, the semiconductor sector and healthcare [11-15]. Neverthe-
less, machine vision-based inspection methods for detecting 
weld surface defects on small-diameter stainless steel welded 
pipes are still not widely used. 

Employing machine vision for inspection not only elimi-
nates human subjectivity but also enables quantitative defect 
descriptions, thereby minimizing variability in the results. This 
innovation enhances detection efficiency and accuracy, foster-
ing the advancement of industrial automation. Currently, main-
stream detection algorithms can be categorized into two types 
[16]: single-stage algorithms and two-stage algorithms. Ad-
vanced single-stage object detection algorithms include the 
YOLO series, DETR, SSD and CenterNet. Advanced two-stage 
object detection algorithms include Faster R-CNN, Mask R-
CNN, Libra R-CNN and HTC. Yang [17] applied the YOLOv5 
algorithm to the welded pipe defect detection and achieved ex-
cellent results. Compared to the representative two-stage object 
detection algorithm Faster R-CNN, YOLOv5 demonstrates su-
perior precision and detection speed. Therefore, different algo-
rithms should be selected and modified for different application 
scenarios to target specific tasks. There are many existing strat-
egies for algorithm improvement that focus on optimizing 
model components to achieve desired outcomes. Zhou et al. [18] 
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introduced a novel model in the YOLOv5 algorithm that com-
bines the advantages of the CSPlayer module with a global at-
tention enhancement mechanism, improving accuracy for metal 
material detection. However, this approach increases model 
complexity and demands higher computational resources. Zhao 
et al. [19] enhanced the Faster R-CNN algorithm by replacing 
some traditional convolutional networks with deformable con-
volutional networks to improve the detection capability for 
small-size defects on steel strips. However, this approach leads 
to a significant increase in model parameters, making deploy-
ment more challenging and less suitable for direct application 
in industrial settings. Shao et al. [20] proposed the TD-Net net-
work for detecting tiny defects in industrial products, address-
ing the limitations of current image-based defect detection 
methods in identifying small and irregularly shaped defects. 
However, the detection speed has decreased. Ji et al. [21] intro-
duced the Yolo-tla algorithm, which integrates the 
C3CrossConv module into the YOLOv5 backbone, effectively 
reducing computational demand and parameter count, thus 
making the model more lightweight. However, the detection ac-
curacy has slightly decreased. Han et al. [22] proposed the 
DFW-YOLO algorithm based on YOLOv5, which automati-
cally calls defect indications, resolves redundant defect feature 
maps, and incorporates the FasterNet backbone to enhance the 
model’s feature extraction capability. However, the detection 
accuracy for small target defects has decreased. Zhou et al. [23] 
proposed the SKS-YOLO algorithm, using EfficientNetv2 as 
the backbone, which significantly reduces computation and ac-
celerates training speed while maintaining accuracy, and em-
ploys the Simplified Intersection over Union (SIoU) loss func-
tion to improve the model’s capability in locating and detecting 
surface defects on steel plates. However, the ability to extract 
small target or high-frequency features has decreased in certain 
scenarios. Yuan et al. [24] presented the YOLO-HMC algo-
rithm, which uses the HorNet network (MCBAM) as its back-
bone and incorporates an improved multi-convolution block at-
tention module to enhance feature extraction capabilities. How-
ever, the model requires more computational resources. Despite 
these studies achieving breakthroughs in specific scenarios, ex-
isting algorithms still face challenges in balancing the detection 
accuracy of small targets, model lightweighting, and real-time 
performance. 

However, the existing methods for detecting surface defects 
in small-diameter stainless steel welded pipes still face these 
challenges. Firstly, the irregular sizes of weld hole defects and 
the extremely small shapes of welding porosities further com-
plicate the detection process. Secondly, the high computational 
resources required by deep learning models pose limitations on 
their application in online detection within actual production 
environments. To address these challenges, the online detection 
of surface defects in small-diameter stainless steel welded pipes 
demands models with high speed, accuracy, and ease of deploy-
ment. To this end, we developed an enhanced model called 
YOLO-WP. This study focuses on the following key areas: 

1) Network structure optimization: By optimizing the deep 

learning network structure, we enhance the detection accuracy 

for small target defects and improve overall detection perfor-

mance. This is achieved by removing redundant structures and 

modules within the network to design a lightweight model, 

thereby increasing efficiency in resource-constrained environ-

ments while maintaining or even improving model performance. 

2) Incorporation of attention mechanism: By introducing 

attention mechanisms, we improve detection accuracy and en-

hance the ability to detect small targets. Attention mechanisms 

allow the model to focus on critical features and regions, 

thereby improving the detection of small and complex defects. 

3) Loss function improvement: By optimizing the loss 

function and tailoring it to the characteristics of the dataset, we 

further enhance the model's localization accuracy and classifi-

cation performance for small target defects. This leads to im-

proved overall detection performance. 

II. ALGORITHM DESCRIPTION 

A. Baseline YOLOv5s 

The YOLO series of algorithms has evolved through several 
versions, with YOLOv5 being widely used in the field of indus-
trial real-time detection caused by its excellent detection accu-
racy and outstanding detection speed. Innovations such as the 
CSPDarknet53 backbone, Feature Pyramid Network (FPN), 
adaptive anchor box computation, and advanced data augmen-
tation techniques have enhanced the model's performance and 
flexibility. YOLOv5 offers multiple versions of the model, in-
cluding YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and 
YOLOv5x, to accommodate different computational needs and 
scenarios [25]. Among these, the YOLOv5s model features the 
smallest network depth and width, and the fastest detection 
speed, making it relatively well-suited for the requirements of 
industrial online detection. Accordingly, this paper selects 
YOLOv5s as the base model. 

B. The Overview of YOLO-WP 

Although YOLOv5s demonstrates advantages in speed, ac-
curacy, and terminal applications, it still faces certain limita-
tions in practical use, such as suboptimal localization accuracy, 
and high computational resource demands [26]. In particular, it 
often suffers from missed detections and inaccurate target lo-
calization when detecting small-scale defects. Hence, this paper 
proposes an online detection model named YOLO-WP, specif-
ically designed for detecting weld seam surface defects in 
small-diameter stainless steel pipes. The design aims of the 
YOLO-WP model have two aspects: first, to improve opera-
tional efficiency in resource-constrained environments, and 
second, improve its capability in handling small-sized defects. 
Although the optimization and validation of this model primar-
ily target the detection of weld seam surface defects in small-
diameter stainless steel pipes, its architectural design and im-
provement strategies are equally applicable to other fields re-
quiring efficient object detection. The structure of YOLO-WP 
model is illustrated in Fig. 1. The targeted improvements in-
clude: 

1) In the backbone network, the paper proposes the 

GhostFusion architecture, which enhances feature expression 

through multiscale cross-stage fusion while maintaining effi-

cient computation. In the neck network section, a lightweight 

Slim-Neck network, based on GSConv [27], is referenced to re-

duce network parameters and enhance computational resource 

efficiency. 
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Fig. 1. Schematic model of YOLO-WP. 

2) Adding the lightweight SimAM attention mechanism [28] 

to the neck network helps the model focus on key areas of the 

image, improves the fusion of feature maps across different 

scales, and enhances detection accuracy. 

3) The Focal-EIOU loss [29] is utilized to substitute the 

original CIOU loss, aiming to enhance the detection of small-

scale defects, address sample imbalance, and improve robust-

ness on small and noisy datasets. 

III. STRUCTURE OF KEY IMPROVEMENT COMPONENTS 

A. GhostFusion Architecture 

In the design of the backbone network, the innovative 
GhostFusion architecture is proposed. The construction process 
involves replacing the C3 modules with C2f modules and opti-
mizing the CBS module in the C2f module by borrowing the 
core idea of Ghost convolution, and innovatively proposing the 

Ghost CBS module, as depicted in Fig. 2. This design signifi-
cantly enhances computational efficiency and feature represen-
tation capability through cross-stage fusion, achieving resource 
savings and improving detection performance for small target 
defects. 

The core idea of Ghost Conv is to decompose conventional 
convolution operations into two stages: the main convolution 
stage and the ghost convolution stage. In the main convolution 
stage, 1×1 convolution kernels are used to extract condensed 
features, while in the ghost convolution stage, cheap 5×5 con-
volution kernels generate the remaining feature maps. The com-
plete feature layer is formed by concatenating these two parts 
[30]. The detailed operation process is shown in Fig. 3. Addi-
tionally, the C2f module splits the input data into two parts 
through a Split operation. One part is directly retained, while 
the other part is processed through multiple BottleNeck struc-
tures to achieve multi-scale feature fusion [31]. 
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The design greatly improves the computational efficiency 
and feature representation capability through cross-stage fusion, 
realizes resource saving, and improves the detection perfor-
mance of small target defects. The core of the GhostFusion ar-
chitecture lies in cross-stage feature fusion. By combining the 
Ghost CBS module with the C2f module, not only the compu-
tational efficiency is greatly improved, but also the semantic 
information of the features is significantly enhanced through 
the dynamic fusion of multi-scale features. This fusion mecha-
nism enables the model to handle different sizes of receptive 
fields simultaneously, thus extracting more comprehensive fea-
ture information in complex scenes. The GhostFusion architec-
ture performs well in the small target defect detection task. 
Through the synergy of the optimized Ghost CBS module and 
the C2f module, the model is able to efficiently extract features 
of small targets and further enhance the expressiveness of these 
features through the cross-stage fusion mechanism. This design 
not only improves the detection accuracy, but also ensures that 
the model can maintain efficient operation in resource-con-
strained scenarios. The GhostFusion architecture is designed 
with resource conservation and performance balance in mind. 
By introducing the efficient features of Ghost convolution, the 

number of parameters and computation amount of the model 
can be significantly reduced, and at the same time, through the 
cross-stage fusion mechanism, the feature expression ability of 
the model is further enhanced. This design not only improves 
the operational efficiency of the model, but also ensures its high 
performance in complex tasks. 

B. Slim-Neck Structure Based on GSConv Module 

To elevate the model’s detection speed and computational 
efficiency, this paper adopts a Slim-Neck structure based on the 
lightweight convolutional GSConv module [32]. Compared to 
traditional convolution operations, GSConv reduces the num-
ber of model parameters and computational complexity load by 
dividing the input features into multiple groups and inde-
pendently performing convolution operations and depthwise 
separable convolutions on each group. GSConv introduces a 
mechanism that focuses on important feature channels, thus im-
proving the model’s feature extraction capability. The core 
principle of GSConv is to combine the characteristics of depth-
wise separable convolutions (DSC) and standard convolutions 
(SC) to achieve efficient feature map fusion and information 
flow. The structure of GSConv is shown in Fig. 4. 
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Fig. 2. Schematic diagram of the GhostFusion architecture. 
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Fig. 3. GhostConv module. 
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Fig. 4. The structure of GSConv. 

First, GSConv inputs a downsampled standard convolution, 
followed by a depthwise convolution (DWConv), which con-
catenates the depthwise standard convolution (SC) and the 
depthwise separable convolution (DSC). Subsequently, a shuf-
fle operation is applied to align the DSC output with the SC 
output, preserving channel and semantic information in the fea-
ture map. 

The Slim-Neck lightweight neck network structure can ef-
fectively fuse and enhance features while maintaining the mod-
el's detection performance, even as it reduces computational 
load and the number of parameters. 
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Fig. 5. Slim-Neck structure: (a) GSbottleneck module; (b) VoV-GSCSP 

module. 

The basic building block of Slim-Neck is called VoV-
GSCSP, which can replace the CSP layers comprised of stand-
ard convolutions. Among its components is the GSbottleneck, 
which uses GSConv as its building block, as shown in Fig. 5(a). 
The VoV-GSCSP module uses a one-shot aggregation method, 
shown in Fig. 5(b), to improve the model’s target detection 
across different sizes by merging multi-scale feature maps, 
while reducing computational load and complexity. 

C. SimAM Attention Mechanism 

To enhance the model's representation of key features and 
improve its detection performance, this paper introduces an at-
tention mechanism into the neck network of the model, thereby 
improving the Neck section and boosting the model's robust-
ness. The attention mechanism typically includes channel atten-

tion and spatial attention. The parameter-free attention mecha-
nism SimAM adopted in this paper combines both, as shown in 
Fig. 6. Adjacent pixels in an image usually have strong similar-
ities, while distant pixels have weaker similarities. SimAM gen-
erates attention weights by calculating the similarity between 
each pixel and its neighbors in the feature map, thus inferring 
three-dimensional attention weights for the feature map. This 
effectively integrates channel and spatial attention, signifi-
cantly improving the model's detection performance [33]. 
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Fig. 6. The architecture of the SimAM attention mechanism module. 

SimAM is grounded in the theory of visual neuroscience, 
where neurons with more information tend to exhibit more 
prominent activity compared to their adjacent neurons. In the 
task of surface defect detection for small-diameter stainless 
steel welded tubes, these neurons typically extract key features 
and should be assigned higher weights. This paper introduces 
the SimAM attention mechanism into the Neck network of the 
YOLOv5s model to optimize feature fusion and enhancement, 
while balancing network width, depth, and detection speed, 
thereby improving the accuracy of surface defect detection 
without increasing the network parameters. As shown in Eq. (1) 
~ (4), SimAM evaluates neurons using an energy function for 
linear separability, where t represents the target neuron, x rep-
resents the adjacent neurons, and λ is a hyperparameter. The 
lower the energy et

∗, the higher the distinguishability and im-
portance of the neuron. As Eq. (4) shows, neurons are weighted 

based on their importance using 
1

et
∗. SimAM assesses the im-

portance of features using the energy function, providing higher 
interpretability and without introducing additional learnable pa-
rameters. 

et
∗=

4(σ̂2+λ)

(t−μ̂)2+2σ̂2+2λ
               (1) 

μ̂=
1

M−1
∑ xi

M−1
i=1                (2) 

σ̂2=∑ (xi − μ̂)2M−1
i=1 .             (3) 

X̃= sigmoid (
1

E
)⊙X             (4) 

D. Improvement of the Loss Function 

The loss function determines the degree of agreement be-
tween the true values and the predicted values, and its perfor-
mance largely reflects the model's effectiveness. In the YOLO 
algorithm, there are three types of loss functions: classification 
loss, confidence loss, and localization loss. Among these, the 
localization loss represents the error between the predicted 
bounding box and the ground truth bounding box. This paper 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

717 | P a g e  

www.ijacsa.thesai.org 

conducts research and improvement on the localization loss 
function. The original localization loss function of YOLOv5s is 
CIoU loss, which is centered around the concept of calculating 
the positional alignment error between the ground truth bound-
ing box and the predicted bounding box based on the size of the 
IoU (Intersection over Union). The calculation process is ex-
pressed as: 

LCIOU=1-IOU+
ρ2(b,bgt)

c2 +αv         (5) 

Where b and bgt represent the centroids of the prediction 
frame and the true frame respectively, ρ represents the compu-
tation of the Euclidean distance between the two centroids, so 
ρ2(b, bgt) is the distance between the centroid of the prediction 
frame and the centroid of the defective true bounding box, and 
c represents the diagonal distance of the smallest closed region 
that can contain both the prediction frame and the true frame. 
αv denotes the aspect ratio between the prediction frame and 
the true bounding box. 

From Eq. (5), it is evident that despite CIoU loss function 
considering the overlap area, distance between center points, 
and aspect ratio of the regression bounding boxes, there are still 
some issues. Specifically, it adjusts based solely on the aspect 
ratio without considering the specific values of width and 
height. Additionally, the gradients of width and height have op-
posite signs, preventing simultaneous increase or decrease, 
leading to potentially amplifying the width or height during op-
timization when both the width and height of the anchor box are 
greater than the defect to be detected. Therefore, this paper se-
lects the EIOU loss function, which modifies the aspect ratio 
adjustment in the CIoU loss function to specific width and 
height regression, enabling the model to converge faster and 
achieve higher accuracy, hence improving the detection effi-
ciency for small target defects. The formula is as follows: 

LEIOU = LIOU + Ldis + Lasp = 1 − IOU +
ρ2(b,bgt)

c2 + 

ρ2(w,wgt)

Cw
2 +

ρ2(h,hgt)

Ch
2           (6) 

Where w, h represents the width and height of the predicted 
box, wgt,hgt represent the width and height of the real box, Cw 
and Chare the width and height of the smallest outer box that 
covers both boxes. 

In this paper, variations in viewing angles and lighting may 
impact dataset quality during defect identification. In addition, 
the irregular appearance of defects complicates precise manual 
labelling, resulting in imperfect alignment between the aiming 
frame and defects. These factors cause dramatic fluctuations in 
loss value when training on low-quality samples, which can se-
verely affect model performance. The goal of the proposed Fo-
cal l1 is to address the imbalance between high- and low-quality 
samples. Balance problem, and combined with EIOU loss to 
form Focal-EIOU loss. 

LFocal−EIOU = IOUγLEIOU           (7) 

Where γ is a constant, with a verified γ value of 0.5 giving 
the best results [34]. 

IV. EXPERIMENTAL PROCEDURE DESIGN 

A. Experimental Platform and Parameter Design 

During the model experiments, to maintain consistency with 
the comparison models and ensure the comparability of the ex-
perimental results, the SGD optimizer was used with an initial 
learning rate of 0.01, a momentum of 0.935, and a weight decay 
coefficient of 0.0005. The experiment was conducted with a 
batch size of 16 across 100 epochs. The experimental environ-
ment configuration is shown in Table I, and all experiments in 
this paper were conducted using this configuration. 

TABLE I. EXPERIMENTAL ENVIRONMENT CONFIGURATION 

Category Configuration 

CPU Intel® Core™ i5-12490F Processor 

GPU NVIDIA GeForce RTX 3070ti 8G 

RAM 32G 

Operation System Windows 10 

Framework PyTorch 2.0.0 

Programming enviroment Python 3.9 

CUDA 11.8 

B. Experimental Datasets 

In this paper, we selected stainless steel welded pipes with 
defects, produced in actual manufacturing, with diameters rang-
ing from 7mm to 9mm as samples. The defects studied in this 
paper are shown in Fig. 7. Due to the high visual similarity be-
tween welding sand holes and welding pores on these small-
diameter stainless steel welded pipes, we categorized them as a 
single class. 

     
           D: weld hole         D1: weld porosity and weld blister 

Fig. 7. The two types of defects studied in this paper. 

In the absence of publicly available datasets dedicated to 
this field, this study established an experimental platform for 
image acquisition. An industrial matrix camera (model MV-
CS004-10GM) was employed, precisely positioned above the 
welded pipe and aligned with the center of the annular aperture 
to ensure consistency and high quality in image acquisition. The 
smooth surface of the pipe reflects light centrally, resulting in 
brighter tones in the image, whereas weld void defects scatter 
the light due to their surface characteristics, creating darker ar-
eas that clearly outline the defects. Additionally, this study uti-
lized an adjustable-brightness annular LED aperture as the light 
source and integrated a slider motor to accurately adjust the dis-
tance between the welded pipe and the camera, enabling rapid 
and precise focusing for pipes of different specifications and 
enhancing the flexibility and adaptability of the system. The 
specific setup is shown in Fig. 8. 
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Fig. 8. Image acquisition platform. 

To demonstrate the improved model's generalization capa-
bility, this study captured images of two defects types under 
varying lighting conditions, angles, distances, and focal 
lengths. For each type of defect, 2,000 images were selected to 
form the training set and 600 images for the validation set, with 

all images having a resolution of 640×640 pixels. Subse-

quently, the images were annotated, and the number of defect 
instances in both the training and validation sets was statisti-
cally analyzed. Detailed data are presented in Table II. 

TABLE II. DEFECT DATA LABELING STATISTICS 

Defect Type 
Dataset Labels 

Training Dataset Testing Dataset 

D：weld hole 2866 784 

D1：weld porosity and 

weld blister 
2995 813 

V. EXPERIMENTAL RESULTS AND ANALYSES 

A. Algorithm Evaluation Metrics 

Accuracy P, mean accuracy mAP, recall R, parameters, 
model complexity (FLOPs) and FPS were used to evaluate the 
performance of the model. 

P=
TP

TP+FP
                   (8) 

R=
TP

TP+FN
                   (9) 

mAP=
∑ Api

N
i=1

C
                (10) 

Where TP is the number of correctly detected defects; FP is 
the number of incorrectly detected defects; FN is the number of 
undetected defects; AP denotes the accuracy of the detection; 
the value of mAP is obtained by averaging all the category APs; 
and C is the total number of detected categories. 

When larger mAP and P values indicate higher detection 
accuracy, smaller parameters and FLOPs reflect a more light-
weight model, and higher FPS reflects the faster algorithm de-
tection speed. 

B. YOLO-WP Ablation Experiments 

To validate the effectiveness of the proposed improvements, 
this study conducted ablation experiments using YOLOv5s as 
the baseline model, incrementally adding improvement mod-
ules across six sets of experiments, as shown in the Table III. 
Compared to the first experimental group, the second group, af-
ter incorporating the GhostFusion efficient feature fusion net-
work structure, saw an improvement of 3.2% in AP(D1) and 
1.6% in mAP@0.5. Additionally, the number of parameters and 
FLOPs decreased by 22.2% and 33.5%, respectively, which not 
only enhanced computational efficiency but also improved the 
detection capability for small target defects. Compared to the 
second group, the third group introduced the Slim-Neck archi-
tecture based on the lightweight convolutional GSConv module 
into the neck network. This resulted in a further reduction of 
27.1% in parameters and 17.4% in FLOPs while maintaining 
the model's detection performance. Compared to the third set, 
the fourth set introduced the lightweight SimAM attention 
mechanism in the neck network. Although FPS decreased by 
2.2, there was no increase in parameters and FLOPs. Mean-
while, AP(D), AP(D1), and mAP@0.5 improved by 0.5%, 
1.2%, and 0.8%, respectively. In the fifth set, the Focal-EIOU 
loss was used to optimize CIOU loss, further improving the 
model's localization accuracy and convergence speed compared 
to the fifth set. AP(D), AP(D1), and mAP@0.5 increased by 
0.5%, 0.8%, and 0.7%, respectively, with mAP@0.5 reaching 
96.6%. The ablation experiments from the second to the fifth 
set demonstrate that each improvement method effectively op-
timizes the model. Compared to the baseline model YOLOv5s 
in the first set, the improved YOLO-WP model (sixth set) 
achieved a 5.3% increase in AP(D1) and a 3% increase in 
mAP@0.5, while reducing parameters and FLOPs by 40% and 
45%, respectively. The YOLO-WP model efficiently detects 
small target defects with higher performance and lower compu-
tational cost, thereby enhancing overall detection accuracy. Alt-
hough FPS decreased by 2.6, it still meets the requirements for 
online detection of surface defects in small-diameter stainless 
steel welded pipe seams. 

TABLE III. ABLATION EXPERIMENTS 

Group Model 
AP(%) 

P(%) mAP@0.5 (%) Parameters(106) FLOPs (G) FPS (F/S) 
D D1 

1 YOLOv5s(Baseline) 97.1 90.3 93.3 93.7 7.2 15.5 105.3 

2 YOLOv5s+GhostFusion 97.3 93.2 94.1 95.2 5.9 10.3 104.9 

3 YOLOv5s+GhostFusion+Slim-Neck 97.1 93.1 93.9 95.1 4.3 8.5 103.7 

4 YOLOv5s+GhostFusion+Slim-Neck+SimAM 97.6 94.3 94.5 95.9 4.3 8.5 101.5 

5 
YOLOv5s+GhostFu-

sion+SlimNeck+SimAM+Focal-EIou 
98.1 95.1 94.7 96.6 4.3 8.5 102.7 

mailto:mAP@0.5
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(a)                      (b)                   (c) 

Fig. 9. Validation results for YOLO-WP and YOLOv5s. (a) Original image; (b)YOLOv5s; (c) YOLO-WP. 

To offer a clearer illustration of the detection performance 
of the enhanced model, two images with two types of defects 
were randomly selected from the test set to evalutate the 
YOLO-WP model. This paper provides a visual comparison of 
the detection outcomes of the YOLO-WP model and the 
YOLOv5s model on images of small-diameter stainless steel 
welded pipes. As shown in Fig. 9, the YOLOv5s algorithm 
model exhibited missed detections and low accuracy in detect-
ing small target defects. In contrast, the improved YOLO-WP 
algorithm model accurately located the weld seam surface de-
fects within the images, demonstrating superior overall detec-
tion accuracy compared to the YOLOv5s algorithm model. This 
effectively addresses the issues of low detection efficiency and 
missed detections of small target on small-diameter stainless 
steel pipes. 

C. Comparative Experiments with Multiple Datasets 

To validate the generalization capability and robustness of 
the YOLO-WP model and to ensure its effectiveness across a 
wide range of applications, this paper designs experiments to 
test YOLOv5s and YOLO-WP on the MT Defects Dataset and 
NEU-DET Dataset. The MT Defects Dataset, used for magnetic 
tile surface defect detection, consists of 1,344 images that en-
compass five types of defects: pores, cracks, wear, fractures, 
and uneven surfaces. The NEU-DET dataset, utilized for de-
tecting surface defects on hot-rolled steel strips, comprises 
1,800 images that encompass six defect types: rolled scale, 
cracks, patches, pitted surfaces, inclusions, and scratches. Both 
datasets are divided into training and validation sets at a ratio 
of 7:3. The experimental results are shown in Tables IV and V. 
Table IV shows that the YOLO-WP model's mAP@0.5 in-
creased by 0.5% compared to YOLOv5s. Additionally, the 
model's parameters and FLOPs are reduced by 38% and 43% 
respectively, while the detection speed is nearly unaffected. 
These results indicate that the YOLO-WP model achieves 
higher accuracy in detecting magnetic tile surface defects, 
demonstrates greater computational efficiency, and is easier to 

deploy. As shown in Table V, the YOLO-WP model's 
mAP@0.5 increased by 0.9% compared to YOLOv5s. Moreo-
ver, the model's parameters and FLOPs were reduced by 36% 
and 43%, respectively, while the detection speed remained al-
most unchanged. These findings further demonstrate that the 
YOLO-WP model outperforms YOLOv5s in detecting surface 
defects in the hot-rolled steel strip dataset. The experimental 
results from both the MT Defects Dataset and the NEU-DET 
Dataset confirm that YOLO-WP surpasses YOLOv5s in terms 
of accuracy, model complexity, and computational efficiency. 
Overall, these experiments suggest that YOLO-WP offers 
greater practical value and stronger robustness for industrial ap-
plications compared to YOLOv5s. 

TABLE IV. EXPERIMENTAL RESULTS OF MT DEFECTS DATASET 

Model mAP@0.5(%) 
Parame-

ters(106) 
FLOPs(G) FPS(F/S) 

YOLOv5s 89.1 7.3 15.4 87 

YOLO-

WP 
89.6 4.5 8.7 86 

TABLE V. EXPERIMENTAL RESULTS OF NEU-DET ON THE DATASET 

Model mAP@0.5(%) 
Parame-

ters(106) 
FLOPs(G) FPS(F/S) 

YOLOv5s 85.3 7.3 15.4 84 

YOLO-

WP 
86.1 4.6 8.7 82 

D. Comparison of Frontier Models 

To more effectively assess the performance of the enhanced 
model introduced in this paper, we carried out comparative ex-
periments using various object detection algorithms on a dataset 
for detecting surface defects in small-diameter stainless steel 
welded pipe seams. These algorithms include Faster R-CNN, 
SSD, YOLOv6, YOLOv7-tiny [35], YOLOv8s, YOLOv9, 
YOLOv10s [36] and YOLOv11s [37], along with our algorithm 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

720 | P a g e  

www.ijacsa.thesai.org 

(YOLO-WP). As shown in the Table VI, YOLO-WP achieved 
an mAP@0.5 of 96.6%, with 4.3 million parameters, 8.5 
GFLOPs, and a speed of 102.7 FPS. The experimental results 
indicate that, compared to other algorithms, the YOLO-WP 
model has the smallest number of parameters and FLOPs, as 
well as the fastest detection speed. Although YOLO-WP's 
mAP@0.5 is 0.2% lower than that of Faster R-CNN, it signifi-
cantly reduces the number of parameters and FLOPs. 

To better demonstrate the balanced advantages of the 
YOLO-WP model regarding detection accuracy, model com-
plexity, and detection speed, this paper presents scatter plots il-
lustrating the relationships among these factors. As shown in 
Fig. 10(a), the YOLO-WP model is positioned in the upper right 
corner of the two-dimensional coordinate system, reflecting its 
ability to balance speed and detection accuracy. In Fig. 10(b), 
the YOLO-WP model is positioned in the upper left corner of 
the two-dimensional coordinate system, indicating its capabil-
ity to balance computational efficiency and detection accuracy. 

TABLE VI. COMPARISON OF FRONTIER MODELS  

Model mAP@0.5(%) 
Parame-

ters(106) 
FLOPs(G) FPS(F/S) 

Faster R-CNN 96.8 135.4 400.8 24.5 

SDD 86.1 63.5 43.7 58.3 

YOLOv6 92.5 15.6 31.3 79.7 

YOLOv7-tiny 94.3 6.3 12.7 97.4 

YOLOv8s 95.2 10.3 27.5 83.6 

YOLOv9 95.4 70.5 317.2 31.5 

YOLOv10s 95.8 11.3 26.2 90.1 

YOLOv11s 96.2 13.4 27.3 91.2 

YOLO-

WP(Ours) 
96.6 4.3 8.5 102.7 

 

  
(a) Scatter plot of the relationship between mAP@0.5 and FPS.       (b) Scatter plot of the relationship between mAP@0.5 and FLOPs. 

Fig. 10. Relationship scatter plot. 

Based on the comparative experimental data and analysis 
presented above, the improved algorithm proposed in this paper 
achieves a balance between accuracy and lightweight design, 
efficiently utilizing computational resources to reach an opti-
mal balance between model accuracy and training weights. This 
further underscores the superiority of the YOLO-WP algorithm. 
By significantly reducing the number of parameters and 
FLOPs, the YOLO-WP algorithm lowers hardware require-
ments. Consequently, this improvement meets the demands for 
online detection of weld seam surface defects in small-diameter 
stainless steel pipes. 

VI. CONCLUSIONS 

To address the gap in detecting surface defects on small-
diameter stainless steel pipe weld seams, and to overcome the 
limitations of YOLOv5s on terminal devices, which arise from 
insufficient computational power and poor detection capabili-
ties for small object defects, this paper proposes the signifi-
cantly improved YOLO-WP algorithm. By introducing the in-
novative GhostFusion architecture, Slim-Neck lightweight de-
sign, SimAM lightweight attention mechanism, and Focal-EIou 

loss function optimization, the YOLO-WP model achieves a 
5.3% and 3% increase in AP(D1) and mAP@0.5, respectively, 
compared to the original model. Additionally, the number of 
model parameters and FLOPs are reduced by 40% and 45%, 
respectively, significantly enhancing the efficiency of small tar-
get detection and the model's applicability in resource-con-
strained environments. Experimental results show that the 
YOLO-WP model achieves high detection accuracy, low com-
plexity, minimal computational requirements, and rapid detec-
tion speeds. This model has demonstrated robustness across dif-
ferent datasets. Compared to other models, YOLO-WP exhibits 
strong competitiveness, improving production quality and re-
ducing costs, thereby making it suitable for industrial online in-
spection. 

However, this study still has certain limitations. Although 
we collected and trained common defect data during the online 
production process, which to some extent reduced the burden 
of subsequent offline detection, we have not yet achieved com-
prehensive coverage of surface defects in small-diameter stain-
less steel pipe weld seams. Moreover, YOLO-WP still faces 
challenges in dealing with more complex defect types, such as 
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occluded or extremely small targets. In future research, we plan 
to introduce more types of defects for study and verify the ca-
pability of our algorithm model in offline detection of surface 
defects in stainless steel pipe weld seams. We will also specifi-
cally improve a set of algorithm models suitable for offline de-
tection to achieve collaborative work between offline and 
online detection, thereby fully applying visual inspection to all 
quality control processes. 

This study provides a novel solution for the detection of sur-
face defects in small-diameter stainless steel pipe weld seams. 
By optimizing the network architecture, incorporating light-
weight design, and improving the loss function, the model's de-
tection performance in resource-constrained environments has 
been significantly enhanced. These improvements not only of-
fer an efficient and accurate detection tool for industrial online 
inspection but also provide valuable references for future re-
search in related fields. 
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