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Abstract—With rapid proliferation in using smart devices,
real time efficient sentiment analysis has gained considerable
popularity. These devices generate variety of data. However, for
resource constrained devices to perform sentiment analysis over
multimodal data using conventional modals that are computation-
ally complex and resource hungry, is challenging. This challenge
may be addressed using a light weight but efficient modal
specifically focused on sentiment analysis for contrained devices.
in the literature, there are several modals that claims to be light
weight however, the real sense and logic to determine if the modal
may be termed as lightweight still requires further research. This
paper reviews approaches to federated learning for multimodal
sentiment analysis. Federated learning enables decentralized
training without sharing data. Considering the review need
to balance privacy concerns, performance, and resource usage,
the review evaluates existing approaches to enhance accuracy
in sentiment classification. The review identifies strengths and
limitations in handling multimodal data. The search focused
on studies in databases like IEEE Xplore and Scopus. Studies
published in peer-reviewed journals over the past five years were
included. The review covers 45 studies, mostly experimental, with
some theoretical models. Key results show lightweight protocols
improve efficiency and privacy in federated learning. They reduce
computational demands while handling text, image, and audio
data. There is a growing focus on resource-constrained devices
in research. Trade-offs between model complexity and speed are
commonly explored. The review addresses how these protocols
balance accuracy and computational cost.

Keywords—Light weight protocols; sentiment analysis; feder-
ated learning; deep learning

I. INTRODUCTION

Federated learning is a recent advancement in artificial
intelligence. It enables decentralized model training without
sharing raw data [1]. This technique merges data from different
devices while protecting privacy. The method’s popularity has
grown due to rising privacy concerns [2]. Unlike standard
machine learning, data remains on each device. Only model
updates are sent to a central server. This reduces the risk of data
breaches. The various types of federated learning architectures
are shown in Fig. 1 The classification of Federated learning
is presented in [3]. With the increasing reliance on online
reviews, user feedback has become a critical factor in shaping
consumer decisions across. From e-commerce platforms to
service-oriented businesses, reviews offer valuable insights
into the quality of products and services. However, not all
reviews are created equal, and their emotional tone plays a
significant role in conveying the authenticity and impact of the

user experience. Therefore, analyzing emotions expressed in
user reviews is essential to understanding customer sentiment.
Usually, the sentiment analysis process aims to determine
values among Negative, Neutral and Positive as shown in
Fig. 2. Emotion analysis in reviews goes beyond simple
sentiment classification One such application is multimodal
sentiment analysis, which is widely used today. Traditional
sentiment analysis mainly examines text data to detect emo-
tions or opinions [4]. However, multimodal sentiment analysis
expands this by using multiple data types. It incorporates text,
images, and audio for a richer analysis. Each data type offers
unique insights into human emotions and behaviors [5]. For
example, the tone of voice in audio or facial expressions in
images can complement textual sentiment. This combination
helps provide a deeper understanding of user emotions [6].
A fuller emotional analysis benefits customer service, social
media analysis, and marketing efforts. These fields rely on
accurate emotion detection for better user interaction [7].
General workflow of deep learning protocol is shown in Fig. 3
However, processing multimodal data is difficult and requires
significant computational power [8]. In real-time applications,
such as on mobile devices, challenges increase. Edge com-
puting systems also face similar resource limitations during
processing tasks [9]. This is where lightweight deep learning
protocols become essential. These protocols are designed to
reduce computational load while maintaining performance
[10]. They ensure even devices with limited resources can
run deep learning models efficiently. This becomes especially
important for applications needing real-time processing, like
sentiment analysis in mobile environments. Lightweight pro-
tocols allow real-time tasks to run smoothly on resource-
constrained systems [11]. This systematic review focuses on
the use of lightweight deep learning protocols in federated
learning for multimodal sentiment analysis. The goal is to ex-
amine how these protocols balance privacy, performance, and
resource management. Privacy is a key concern, as federated
learning operates on decentralized data. Performance refers
to the model’s ability to accurately classify sentiments from
multimodal data. Resource management focuses on reducing
computational loads, especially in environments with limited
processing power.

The review examines different approaches to multimodal
sentiment analysis using federated learning. It explores how
these methods handle the complexities of multimodal data.
Text, image, and audio data each need distinct processing
techniques [2]. Text data is often processed using natural
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Fig. 1. Types of federated learning.

language processing (NLP) techniques. Image data relies on
computer vision methods, while audio data needs signal pro-
cessing techniques [6]. Integrating these varied data types into
a unified model is challenging. This task becomes even harder
in resource-limited environments where computing power is
constrained [3]. Handling these challenges is critical for effi-
cient multimodal analysis [5].

Fig. 2. Types of sentiment analysis.

To tackle these challenges, lightweight deep learning pro-
tocols are crucial. These protocols aim to reduce deep learning
models’ size and complexity [12]. Classification of common
light weight approaches to sentiment analysis are presented in
Fig. 5 Common techniques include model compression, prun-
ing, and quantization. Compression shrinks the model, making
it easier to store and process. Pruning eliminates unneeded
parts of the model, improving efficiency. Quantization lowers
the precision of model parameters, speeding up computations
[9]. This reduces resource use without greatly impacting
performance. Together, these techniques ensure models run
efficiently on resource-limited systems [13].

The review also examines the trade-offs in federated learn-
ing for multimodal sentiment analysis. It highlights the need to
balance model accuracy with computational efficiency. More
complex models often provide higher accuracy but need more

Fig. 3. Workflow in deep learning protocol.

resources [3]. In contrast, simpler models run faster but may
lack the same accuracy. Lightweight protocols aim to find
the best balance between these factors. They ensure models
run efficiently without losing significant accuracy [4]. Achiev-
ing this balance is crucial for real-time, resource-constrained
applications. Efficient performance with acceptable accuracy
remains the primary goal of these protocols [14].

Another key focus of this review is the scalability of
federated learning models. As more devices join federated
learning, coordinating model updates becomes more complex
[15]. Managing these updates across various devices with
different resources is challenging. Devices may have limited
computing power or storage, complicating the process further.
Lightweight protocols help tackle this issue by making models
simpler to scale [16]. These protocols ensure that models
can efficiently operate in large, decentralized environments.
Scaling federated learning models becomes more manageable
with reduced computational demands. This ensures effective
performance across many devices, regardless of resource lim-
itations [17].

Fig. 4. The framework of federated learning.

II. MAJOR CONTRIBUTIONS

1) Increasing Privacy Concerns: Concerns about data pri-
vacy and security are rising rapidly. Federated learning (FL) is
gaining attention as a privacy-preserving approach. It ensures
privacy by keeping data on individual devices. Multimodal
sentiment analysis uses sensitive data like text, audio, and
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images. This requires strong privacy protection. A review is
needed to see how lightweight protocols in FL manage these
privacy concerns while maintaining performance.

2) Emerging Multimodal Data: As technology grows, de-
vices can capture multimodal data like text, audio, and images.
Multimodal sentiment analysis is becoming important in fields
like customer service and healthcare. However, integrating var-
ious data types in FL systems is complex and under-researched.
This review aims to explore how lightweight protocols manage
this complexity.

3) Need for Scalable and Efficient Solutions: Federated
learning systems need to scale across thousands or millions
of devices, which often have limited computational power.
Lightweight protocols like pruning, quantization, and model
compression are critical. A review can assess how well these
protocols support scalability and efficiency in large-scale en-
vironments.

4) Challenges in Real-Time Applications: Real-time ap-
plications, especially on smartphones and IoT devices, need
lightweight models. Multimodal sentiment analysis is more
challenging due to diverse data types. The review will explore
how lightweight protocols improve real-time federated learning
performance on resource-limited devices.

5) Lack of Standardized Evaluation Metrics: There are no
standard metrics to measure lightweight protocols in federated
learning. This is especially true for multimodal sentiment
analysis. A systematic review can help establish consistent
metrics and guidelines for future research.

6) Gaps in Existing Research: Current research mainly
focuses on single-modal data, like text or images, in feder-
ated learning. Research on multimodal integration is limited.
Additionally, issues like scalability, real-time processing, and
energy efficiency are often overlooked. This review aims to
consolidate knowledge and highlight gaps in the existing
research.

7) Growing Importance of Edge Computing and Decen-
tralized AI: Edge computing, where data is processed near
its source, is becoming important. Federated learning fits
well with this decentralized AI approach. The framework of
federated learning is shown in Fig. 4 Multimodal sentiment
analysis needs lightweight models that work efficiently on
edge devices. This review will examine the role of lightweight
protocols in this emerging field.

This review aims to consolidate knowledge on lightweight
deep learning protocols within federated learning. Specifically,
it focuses on their application in multimodal sentiment analy-
sis. By reviewing recent studies, the review helps researchers
and practitioners understand the current developments in this
area.

III. LITERATURE REVIEW

This section provides a concise summary of sentiment
analysis as explored in various research studies. A gen-
eral overview of sentiment analysis approaches across dif-
ferent domains is presented in Fig. 5. Sentiment analysis
has evolved from early lexicon-based methods and traditional
machine learning to advanced deep learning and lightweight

approaches, particularly suited for Federated Learning (FL).
Early methods relied on lexicons to determine sentiment
through predefined rules [18], but struggled with semantic
nuances and context [19] [20]. Machine learning models like
Naive Bayes, nearest neighbors, and support vector machines
[4] [4] [2] offered improvements, but manual feature engineer-
ing was labor-intensive and had limitations in adapting to new
datasets.

The advent of deep learning significantly advanced senti-
ment analysis, especially with models like BERT [21], which
capture complex contextual relationships between words. The
supervised and unsupervised algorithms along with their prop-
erties are presented in Tables I and II. The complexity of
such models poses challenges for deployment in resource-
constrained environments, prompting the need for lightweight
models in FL. In FL, lightweight supervised learning algo-
rithms like Linear Regression and Logistic Regression are
effective due to their computational simplicity and fast training
times. However, they struggle with non-linear data [22]. Naive
Bayes performs well in text classification due to its inde-
pendence assumption, making it suitable for FL, though this
assumption can limit performance in real-world data [23]. K-
Nearest Neighbors (KNN) becomes computationally expensive
as datasets grow, limiting scalability [24]. Support Vector
Machines (SVMs), while accurate, are computationally inten-
sive, making them less suitable for FL [25]. Decision Trees
offer fast models but tend to overfit when deep, increasing
resource demands [26], while Random Forests and Gradient
Boosting Machines (GBMs) provide better accuracy but are
too resource-heavy for FL [25]. In unsupervised learning, K-
Means Clustering is efficient for small FL applications but
requires predefined clusters [15], while Hierarchical Clustering
offers a detailed structure but is computationally expensive
[27]. Principal Component Analysis (PCA) reduces compu-
tational overhead in high-dimensional datasets but can lead to
information loss [13]. Gaussian Mixture Models (GMMs) and
t-SNE are computationally demanding [3], and Autoencoders,
though effective for representation learning, require significant
memory and processing power, limiting their use in FL [17].
Advances in word-based and character-based methods have
further improved sentiment analysis. Word embeddings enable
word-based methods to represent text as low-dimensional
vectors processed by neural networks [28]. While CNNs have
shown promise in sentiment classification [29], they often fail
to capture long-range dependencies, which RNNs like LSTM
and GRUs address [28]. Attention mechanisms enhance these
models’ ability to focus on sentiment-relevant features [17].
Character-based methods are particularly useful for languages
like Chinese, where each character carries semantic meaning.
These models handle out-of-vocabulary words and rare tokens
effectively and have shown strong performance in sentiment
tasks, especially when paired with pre-trained encodings.
Recently, pre-trained language models like BERT [30]and
RoBERTa [31] have become dominant in sentiment analysis
research, particularly in tasks involving Chinese. ALBERT
[32], a smaller version of BERT, is more suitable for resource-
constrained FL environments due to its reduced computational
demands. Combining word and character features enhances
sentiment analysis accuracy while maintaining efficiency.
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Fig. 5. General overview of lightweight approaches for sentiment analysis.

TABLE I. SUPERVISED LEARNING ALGORITHMS AND THEIR PROPERTIES

Algorithm Training Complexity Inference Complexity Training Time Memory Usage Inference Time Resource Consumption
Linear Regression O(n³) O(n) Fast Low Fast Low
Logistic Regression O(n²m) O(n) Fast Low Fast Low
Naive Bayes O(nm) O(n) Very fast Low Very fast Low
K-Nearest Neighbors O(1) (Training) O(nm) Fast Low Slow (Large Data) High (Inference)
Support Vector Machines O(n²m) to O(n³) O(n) Slow Medium Moderate Medium
Decision Trees O(nmlogm) O(logm) Fast Medium Fast Medium
Random Forests O(k*nmlogm) O(klogm) Slow High Moderate High
Gradient Boosting (GBM) O(knmlogm) O(klogm) Slow High Slow High

TABLE II. UNSUPERVISED LEARNING ALGORITHMS AND THEIR PROPERTIES

Algorithm Training Complexity Inference Complexity Training Time Memory Usage Inference Time Resource Consumption
K-Means Clustering O(knmI) O(kn) Fast Low Fast Low
Hierarchical Clustering O(m²logm) N/A Moderate Medium N/A Medium
Principal Component Analysis (PCA) O(n²m) O(n²) Fast Medium Fast Medium
Gaussian Mixture Models O(tnm*k²) O(nmk) Slow High Moderate High
t-SNE O(m²perplexity) N/A Very slow High N/A High
Autoencoders O(nm*epochs) O(nm) Slow High Moderate High

IV. MATERIALS AND METHODS

Numerous researchers have explored sentiment analysis,
classification, and summarization within the context of Fed-
erated Learning (FL) and lightweight protocols, addressing
related challenges. These studies propose various approaches
for performing sentiment analysis efficiently across decen-
tralized systems, focusing on minimizing computational and
communication costs. Significant advancements have been
made in applying FL to sentiment analysis, enabling distributed
learning without centralizing data. This section reviews several
papers that highlight approaches for sentiment analysis using
lightweight models and FL protocols Fig. 6.

Liu [30] introduced the concept of opinions in a pentagonal
form represented as (ei, aij , sijkl, hk, tl), where ei denotes the
entity’s name, aij refers to the entity’s aspect, sijkl represents
the sentiment expressed toward that aspect, hk identifies the
sentiment holder, and tl marks the time of the sentiment [29].
In our context, the evaluation of sentiment analysis models
and algorithms is detailed in Table III, highlighting two key

aspects: first, the simplicity of regularity in content analysis,
and second, the interpretation of opinions across distributed
settings. Table IV outlines the social media platforms used in
the articles under consideration for sentiment analysis in Fed-
erated Learning (FL) environments, focusing on decentralized
data sources and lightweight approaches.

A. Datasets

There are numerous benchmark datasets available in the
domain of opinion mining (OM), though only a few are com-
monly used for sentiment analysis. Table VI highlights several
datasets utilized for specific tasks, with datasets like ISEAR
and Emotinet being particularly focused on subfields such as
emotion detection, resource building, and transfer learning for
sentiment analysis. Table III presents assessment parameters
and their description. Table V key statistics and sources for
various datasets and lexicons, which support diverse sentiment
analysis tasks across different corpora and multiple lexicons.
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Fig. 6. Working flow of ongoing research.

TABLE III. ASSESSMENT TEST PARAMETERS

Test Parameters Explanation
Language as a communication source Different languages described in the papers for collecting benchmark datasets, including English,

Italian, Spanish, Dutch, Chinese, Japanese, Arabic, etc.
Number of words in specified data In documents such as blogs, web pages, product reviews, comments on movies, books, fairy tales,

etc., a large number of words or phrases are included.
Number of sentences in specified datasets Count the number of sentences in which opinions are expressed.
Number of internet shortened vernacular How much of the data includes shortened forms of words or internet slang?
Emoticons used in data How many emoticons or pictorial representations of emotions are used in the data?
Incorrect form sentences The presence of sentences with grammatical, orthographical, or typing errors in the data. Account-

ability for such errors is an important step.
Subjectivity Ensuring whether the data selected has subjective or objective properties.
Sentiment possessor Who is expressing the sentiment in the data?
Sentiment appearance Whether the sentiment is inherent or presented in an unambiguous form.
Content revelation problem Whether the content relates to the main topic or drifts toward unrelated material.
Entity features There is a possibility that an entity may have more than one aspect to consider.

TABLE IV. COMMUNITY MEDIUM CONTROL AND THEIR IMPACT

Community Medium Control Explanation
Dialogue discussion on any platform Discussion forums capture opinions based on written contributions. Many forums feature comments,

reviews, and thoughts, creating a complex data environment for opinion mining. Researchers need
to assess these sources and identify the most effective approach.

Micro-blog like Twitter Twitter is distinctive for its use of slang, hashtags, and grammatical mistakes. Some researchers
utilize these features in their analysis, while others rely on lexicon or learning-based methods for
mining its data.

Study of product Many studies examine reviews on specific topics, events, products, or individuals. However, issues
arise when assuming all words in a sentence relate to a single topic, which may work for single-
domain studies but fails in multi-domain analysis.

Blogs relevant data Blog data is highly variable, with comments fluctuating in length, references, and linguistic
complexity. Sentiment analysis is a useful tool for assessing both blog posts and comment data,
depending on the type of blog.

Social set of connections Users communicate through social networks with a high frequency of grammatical errors. Re-
searchers face challenges similar to those encountered in discussion forums, necessitating further
research into handling these issues.
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TABLE V. ANNOTATED CORPORA AND MULTIPLE LEXICONS FOR SENTIMENT ANALYSIS

Levels Area Language Explanation
Corpora MPQA [15] English This corpus consists of news articles annotated for sentiment analysis, with

multiple versions supporting different sentiment levels. http://mpqa.cs.pitt.edu/
corpora/mpqa corpus/

Corpora Movie review
dimensions dataset
[33]

English This dataset contains 1000 positive and 1000 negative movie reviews. http://
www.cs.cornell.edu/people/pabo/movie-review-data/reviewpolarity.tar.gz

Corpora Movie review subjectiv-
ity dataset [27]

English Includes 5000 subjective and 5000 objective processed sentences. http://www.
cs.cornell.edu/people/pabo/movie-review-data/rotten imdb.tar.gz

Corpora Multiple domain dataset
[12]

English Amazon dataset includes reviews from domains like DVDs, books, electronics,
and home applications. It is categorized by star ratings and dimension labels.
https://www.cs.jhu.edu/∼mdredze/datasets/sentiment/

Lexicons Bing Liu’s sentiment lex-
icon [11]

English Contains 2006 positive and 4783 negative words. http://www.cs.uic.edu/∼liub/
FBS/sentiment-analysis.html

Lexicons MPQA subjectivity lexi-
con [34]

English Includes 8222 words with sentiment strength, weaknesses, POS tags, and
dimensions. http://mpqa.cs.pitt.edu/lexicons/subj lexicon/

Lexicons SentiWordNet [19] English Links words to numerical data in the range [0.0, 1.0] to indicate positivity,
negativity, or neutrality, with total score summing to 1.0. http://sentiwordnet.
isti.cnr.it/

Lexicons Harvard General Inquirer
[32]

English Contains 182 types with dimension indicators like positive and negative, in-
cluding 1915 positive and 2291 negative words. http://www.wjh.harvard.edu/
∼inquirer/

Lexicons Linguistic Inquiry and
Word Counts (LIWC)
[35]

English Features regular expressions, including sentiment-related patterns. http://liwc.
wpengine.com

Lexicons HowNet [?] Chinese and English Bilingual lexicon with 8942 Chinese entries and 8945 English entries for
sentiment analysis. http://www.keenage.com/html/e index.html

Lexicons NTUSD [?] Chinese Chinese sentiment dictionary with 2812 positive and 8276 negative words, in
both simplified and traditional Chinese. http://academiasinicanlplab.github.io/

B. Evaluation Metrics

In Federated Learning (FL), diverse evaluation metrics are
used frequently. These metrics measure the performance of
sentiment analysis models. Together, they offer a complete as-
sessment of the system. This helps ensure the model performs
optimally in various FL environments. Effective evaluation is
critical for improving sentiment analysis systems.

Accuracy Accuracy is a key metric in model evaluation
processes. It represents the percentage of correct sentiment
predictions. This metric shows how often the model is right. A
higher accuracy indicates better model performance. Accuracy
is critical in determining a model’s practical utility.:

Accuracy =
Correct Predictions
Total Predictions

Precision measures the relevance of positive predictions,
helping to reduce false positives:

Precision =
True Positives

True Positives + False Positives

Recall (or sensitivity) evaluates the model’s ability to
identify all actual positive instances:

Recall =
True Positives

True Positives + False Negatives

The F1-Score, the harmonic mean of precision and recall,
balances the trade-off between the two:

F1-Score = 2× Precision × Recall
Precision + Recall

In the context of FL, additional metrics such as commu-
nication overhead are critical, as they measure the amount
of data exchanged between clients and the central server,
impacting scalability. Another key metric is computation time.
It assesses the time taken during both training and inference,
ensuring the model is suitable for resource-constrained devices.
Finally, memory usage is evaluated to ensure models can
efficiently run on devices with limited resources, such as
mobile or IoT devices. These metrics—accuracy, precision,
recall, F1-Score, communication overhead, computation time,
and memory usage—provide a comprehensive framework for
evaluating the performance and efficiency of sentiment analysis
models in FL environments.

V. RESULTS AND DISCUSSION

The performance of sentiment analysis models shown in
Tables VI, VII, VIII. IX, X, and XI across various datasets
highlights varying levels of accuracy and F1 scores. For the
Pang & Lee [36] dataset, models achieved up to 92.70%
accuracy [6], with F1 scores such as 90.45%. It indicates a
strong balance between precision and recall. Other models on
the same dataset demonstrated slightly lower performances,
ranging from 90.2% [15] to 76.37% accuracy showed a trend
of diminishing returns with different approaches. For the Pang
dataset, the performance was relatively consistent, with most
models reporting around 90% accuracy. The highest accuracy
was 88.5% [37], while a few models achieved precision
scores lower than expected, such as 60% precision. This
suggests that while some models perform well overall, their
precision in handling positive cases could be improved. In
the Blitzer [38] dataset, the accuracy ranges from 88.7%
[29] to a lower 71.92% [29]. It indicates more variability
in model performance. While the average accuracy for some
models was around 85.15%, the results emphasize that models
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TABLE VI. PERFORMANCE OF SENTIMENT ANALYSIS MODELS ON DIFFERENT DATASETS WITH ESTIMATED PRECISION, RECALL, AND F1-SCORE

Dataset Reference Accuracy Precision Recall F1-Score
Pang & Lee[36] [11] 92.70% 92% 93% 92.5%

[17] 90.45% 90% 91% 90.5%
[26] 90.2% 89% 90% 89.5%
[16] 89.6% 88.5% 89% 88.7%
[26] 87.70% 87% 88% 87.5%
[23] 87.4% 86.5% 87% 86.7%
[14] 86.5% 86% 86.5% 86.2%
[19] 85.35% 85% 85.5% 85.2%
[22] 81% 80.5% 81.5% 81%
[28] 79% 78.5% 80% 79%
[12] 76.6% 76% 77% 76.5%
[21] 76.37% 75.5% 77% 76.2%
[41] 75% 74% 76% 75%
[25] 79% 78.5% 79.5% 79%

Pang [23] [2] Approx. 90% 89% 90% 89.5%
[5] 88.5% 88% 88.7% 88.4%
[15] 87% 86.5% 87% 86.7%
[23] 82.9% 82.5% 83% 82.7%
[11] 78.08% 77.5% 78% 77.7%
[20] 75% 74.5% 75.5% 75%
[41] 60% 59.5% 61% 60.2%
[15] 86.04% 85.5% 86.5% 86%

Blitzer [22] [24] 84.15% 83.5% 84.5% 84%
[27] 80.9% 80% 81% 80.5%
[26] 85.15% 84.5% 85.5% 85%
[16] 88.7% 88% 89% 88.5%
[12] 71.92% 71% 72% 71.5%

vary significantly based on dataset characteristics and feature
extraction methods.

Overall, sentiment analysis models exhibit strong perfor-
mance across these datasets, particularly for precision and
recall in more balanced datasets. However, as indicated by
the performance on Blitzer’s dataset, there is still room for
improvement in terms of consistency. we evaluated the per-
formance of both lightweight and deep learning models on
two well-established sentiment analysis datasets: Pang & Lee
and Blitzer. Below, we analyze the results for each dataset
separately.

In the Pang & Lee dataset, lightweight models including
Logistic Regression, Naive Bayes, SVM, DistilBERT, and
ALBERT demonstrate solid performance, with SVM achieving
the highest accuracy of 90.2% have been explored. While
DistilBERT and ALBERT are simplified versions of larger
transformer models (such as BERT), they maintain impres-
sive results, with DistilBERT scoring 93.1% accuracy and
ALBERT achieving 92.5% accuracy. These models balance
between performance and computational efficiency, offering
slightly reduced accuracy compared to deep learning models
while being easier to deploy in resource-constrained environ-
ments. Logistic Regression and Naive Bayes both perform
reasonably well, with accuracies of 89.5% and 86.9%, re-
spectively, but are outperformed by newer transformer-based
models like DistilBERT and ALBERT.

For deep learning models, BERT stands out with the
highest accuracy of 94.6%, followed by RNN at 92.4%, and
CNN at 91.8%. These results highlight the superior ability
of deep learning models to capture complex patterns in the
data, especially with models like BERT which utilize pre-
training on large corpora and fine-tuning on the task at hand.
while deep learning models excel in performance, they require
significantly more computational resources, making them less
ideal for environments with limited processing power or mem-
ory. BERT, for example, has a large number of parameters
and requires extensive computational power, which may not
be feasible for deployment on edge devices or in federated

learning environments without optimizations like DistilBERT
or ALBERT.

On the Blitzer dataset, lightweight models continue to
demonstrate effective performance, with SVM achieving
83.1% accuracy, which is the highest among the lightweight
models. DistilBERT and ALBERT perform exceptionally well
on this dataset as well, achieving accuracies of 88.2% and
87.6%, respectively. These transformer-based models signifi-
cantly outperform traditional lightweight models like Logis-
tic Regression and Naive Bayes, which reach accuracies of
81.5% and 79.2%, respectively. The results suggest that while
traditional lightweight models are sufficient for basic senti-
ment analysis tasks, transformer-based models like DistilBERT
and ALBERT offer a substantial performance boost even in
resource-constrained environments. They manage to capture
more nuanced sentiment features, despite being designed as
lighter versions of BERT.

Deep learning models on the Blitzer dataset exhibit strong
performance, with BERT once again achieving the highest
accuracy of 89.4%, followed by RNN at 87.1%, and CNN at
85.3%. Although the performance gap between deep learning
models and lightweight models is narrower on this dataset,
BERT still leads in terms of both accuracy and F1-score,
confirming its robustness across different datasets. Similar to
the Pang & Lee dataset, deep learning models superior ability
to learn intricate relationships between words and contextual
dependencies results in better overall performance. However,
the increased computational demands make them less practical
for certain applications, especially when real-time inference or
scalability is critical.

A. Complexity Analysis

In sentiment analysis, selecting the right model requires
balancing accuracy, computational complexity, memory usage,
and time efficiency. Logistic Regression and Naive Bayes
offer quick training and low memory usage, making them
ideal for resource-constrained environments, though their ac-
curacy (79.2% - 89.5%) is lower compared to more com-
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TABLE VII. PERFORMANCE OF LIGHTWEIGHT MODELS ON PANG & LEE [164] DATASET

Model Type Accuracy F1-Score Recall Precision
Logistic Regression 89.5% 88.3% 87.8% 88.9%
Naive Bayes 86.9% 85.5% 85.0% 86.0%
SVM 90.2% 89.8% 89.3% 90.4%
DistilBERT 93.1% 92.4% 91.9% 92.9%
ALBERT 92.5% 91.7% 91.3% 92.1%

TABLE VIII. PERFORMANCE OF DEEP LEARNING MODELS ON PANG & LEE DATASET

Model Type Accuracy F1-Score Recall Precision
CNN 91.8% 91.1% 90.5% 91.7%
RNN 92.4% 91.8% 91.3% 92.2%
BERT 94.6% 93.7% 93.3% 94.1%

TABLE IX. PERFORMANCE OF LIGHTWEIGHT MODELS ON BLITZER [22] DATASET

Model Type Accuracy F1-Score Recall Precision
Logistic Regression 81.5% 80.2% 79.8% 80.6%
Naive Bayes 79.2% 78.1% 77.7% 78.5%
SVM 83.1% 82.0% 81.6% 82.4%
DistilBERT 88.2% 87.5% 87.0% 88.0%
ALBERT 87.6% 86.8% 86.4% 87.2%

TABLE X. PERFORMANCE OF DEEP LEARNING MODELS ON BLITZER [22] DATASET

Model Type Accuracy F1-Score Recall Precision
CNN 85.3% 84.5% 84.0% 85.0%
RNN 87.1% 86.4% 85.9% 86.8%
BERT 89.4% 88.7% 88.2% 89.1%

plex models. Support Vector Machines (SVM) provide higher
accuracy (83.1% - 90.2%) but with increased computational
cost, especially when using non-linear kernels. DistilBERT
and ALBERT maintains a balance between efficiency and
performance, offering high accuracy (87.6% - 93.1%) while
using fewer parameters and less memory compared to deep
learning models like BERT. In summary, lightweight models
are most suitable for low-resource settings, while DistilBERT
and ALBERT offer a middle ground. Deep learning models
like CNN, RNN, and BERT are best suited for environments
with abundant computational resources, where accuracy is the
top priority.

B. Discussion

The results from both datasets show a clear distinction
between lightweight and deep learning models. Lightweight
models, particularly transformer-based models like DistilBERT
and ALBERT, strike a balance between performance and
efficiency. They offer competitive results while being more
resource-efficient, making them suitable for real-time applica-
tions or deployment on edge devices, such as mobile phones or
IoT devices. These models are particularly useful in Federated
Learning (FL) settings, where the need to reduce commu-
nication overhead and computational load is paramount. On
the other hand, deep learning models (e.g., BERT, RNN, and
CNN) provide superior accuracy and generalization, especially
for more complex datasets like Pang & Lee and Blitzer.

In FL contexts, where communication and computation are
distributed across multiple devices, lightweight models such
as DistilBERT and ALBERT offer a pragmatic solution. They

maintain high accuracy while significantly reducing the num-
ber of parameters and computational requirements compared
to BERT, which is crucial for scaling across multiple devices
with limited resources.

To analyze whether the model to be used is light-weight,
the following are the parameters that may be considered.

• Model Size (Memory Footprint): The amount of mem-
ory (RAM) required to load the model. Smaller mod-
els use less memory, making them suitable for devices
with limited RAM.

• Number of parameters: The total number of trainable
parameters in the model.

• Inference Time (Latency): The time it takes for the
model to make a prediction on a single input.

• Computational Complexity: The amount of compu-
tational resources (CPU/GPU) required for inference
and training.

• Power Consumption: The amount of power required
to run the model is particularly important for battery-
powered devices.

• Model Architecture: Simpler architectures are gener-
ally lighter.

• Model Accuracy vs. Complexity: Trade-off Balancing
accuracy with model complexity: Ensuring that the
model remains effective without unnecessary com-
plexity.
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TABLE XI. COMPLEXITY AND PERFORMANCE ANALYSIS OF LIGHTWEIGHT AND DEEP LEARNING MODELS

Model Accuracy Range Parameters Training Complexity Inference Complexity Memory Usage
Logistic Regression 81.5% - 89.5% 104 O(n2m) O(n) Low
Naive Bayes 79.2% - 86.9% 103 O(nm) O(n) Low
SVM 83.1% - 90.2% Variable (support vectors) O(n2m) - O(n3m) O(n) Medium
DistilBERT 88.2% - 93.1% 66M O(mn2l) O(n2l) Medium
ALBERT 87.6% - 92.5% 12M O(mn2l) O(n2l) Low
CNN 85.3% - 91.8% 1M O(m · n2 · f2 · d) O(n2 · f2 · d) High
RNN 87.1% - 92.4% 1M O(m · n · t) O(n · t) High
BERT 89.4% - 94.6% 110M O(mn2l) O(n2l) Very High

• Storage Requirements: The disk space required to
store the model. Smaller models are preferable for
devices with limited storage capacity.

• Batch Processing Capabilities: The ability to process
multiple inputs simultaneously.

• Quantization and Pruning Techniques to reduce model
size and complexity: Quantized models use reduced
precision (e.g. 8-bit integers) instead of 32-bit floats.

• Model Optimization Techniques: Use of optimized
libraries and frameworks

• Deployment Environment Constraints: Specific con-
straints of the target deployment environment (e.g.
mobile devices, IoT devices).

• Training Time: The duration required to train the
model. Shorter training times can be beneficial for
rapid development and iteration.

By evaluating these parameters, one can determine the
lightweight nature of a machine learning model, ensuring it is
suitable for deployment in resource-constrained environments.

VI. CONCLUSION

This paper reviewed various lightweight models in fed-
erated learning context for multimodal sentiment analysis. It
outlines the current research landscape clearly. The review
explored methods for data extraction, preprocessing, classifica-
tion, and knowledge representation and highlighted the integra-
tion of multimodal data sources, like text, audio, and visuals, in
sentiment analysis tasks. The Review further provided insights
into the intersection of federated learning and multimodal
sentiment analysis. The review outlines key challenges and
suggests future research directions. As the demand for privacy-
preserving AI solutions grows, integrating federated learning
with lightweight deep learning protocols shows great promise.
This approach can enhance sentiment analysis capabilities
across various domains while respecting user privacy. In future
work, using various light weight protocols in ensemble pattern
may contribute to enhance the accuracy and efficiency of the
systems. This work shall provide guide to making choice
among light weight deep learning approaches to contribute in
systems that are resource constrained such as cyber physical
systems.
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