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Abstract—In smart cities, the e-healthcare systems aided by 

Internet of Things (IoT) technologies play a significant role in 

proficient health monitoring services. The sensitivity and number 

of users in health networks highlights the necessity of treating 

security attacks. In the era of rapid internet connectivity and cloud 

computing services, patient medical information is most sensitive, 

and its electronic representation poses privacy and security 

concerns. Moreover, it is challenging for the traditional classifier 

to process a massive amount of health data and classify patients' 

health statuses. To address this matter, this paper presents a novel 

healthcare model, IoT-CDLDPM, to estimate patients’ disease 

levels using original data and fuzzy entropy extracted from 

patients' remote locations. IoT-CDLDPM incorporates a deep 

learning classifier to analyze extensive patient-related data and 

provides efficient and accurate health status predictions. 

Furthermore, the proposed model presents the secured storage 

structure of the individual's health data in cloud servers. To give 

the authenticity of the health data, two new cryptographic 

algorithms are presented that encrypt and decrypt the data 

securely transmitted through the network. A comparison with 

existing methods reveals that the proposed system significantly 

reduces computation time, with a recorded time of 0.5 seconds, 

outperforming DSVS, PP-ESAP, and DRDA by up to 80%. 

Furthermore, the proposed cryptographic model enhances 

security levels, achieving a range between 99.4% and 99.8% across 

multiple experimental setups, surpassing other widely used 

encryption algorithms such as AES, RSA, and ECC-DH. 

Keywords—IoT-driven healthcare; deep learning; fuzzy entropy; 

secure data storage; cryptography 

I. INTRODUCTION 

The convergence of cutting-edge technologies has recently 
led to revolutionary changes in the healthcare sector. Among 
these, the Internet of Things (IoT) stands out as a pivotal 
paradigm, transforming health monitoring and management [1, 
2]. IoT denotes a network of connected items and sensors 
communicating seamlessly over the Internet, facilitating real-
time data gathering and dissemination [3]. In healthcare, IoT 
enables the creation of smart environments where medical 
devices, wearables, and sensors collaborate to gather patient-
specific information [4, 5]. This interconnectedness empowers 
healthcare professionals with timely and comprehensive data, 
fostering more accurate diagnostics, personalized treatments, 
and efficient disease management [6]. 

Cloud computing has become a cornerstone in reshaping 
healthcare systems infrastructure. The cloud offers a flexible 

and centralized system for keeping and managing vast 
healthcare data [7]. It provides the flexibility to access 
information from anywhere, at any time, facilitating seamless 
collaboration among healthcare providers and enabling the 
delivery of telemedicine services [8]. Moreover, the cloud's 
robust storage capabilities alleviate the burden of data 
management, ensuring the security and accessibility of patient 
records [9]. Complementing these advancements, deep 
learning, a branch of artificial intelligence, has proven 
instrumental in deciphering intricate patterns within 
voluminous datasets [10]. Deep learning algorithms recognize 
complex relationships in healthcare data, making them 
particularly adept at disease prediction and classification tasks 
[11, 12]. Leveraging deep learning within the healthcare 
domain enhances the accuracy of diagnostics and prognostics, 
leading to the advent of precision medicine [13]. This paper 
explores the synergistic integration of IoT, cloud computing, 
and deep learning in designing a novel healthcare monitoring 
system, addressing the challenges posed by disease prediction 
and data security in the era of digital health [14]. 

This paper makes several noteworthy contributions to 
healthcare monitoring and data security. First, it introduces a 
novel, robust, and secure storage algorithm designed to 
maintain the consistency and safety of data stored in cloud 
databases. Second, the study proposes an innovative deep 
learning framework to predict health statistics collected via IoT 
sensors. Third, an encryption scheme is presented to securely 
protect the stored data, complemented by a corresponding 
decryption algorithm for accurate data retrieval. Additionally, 
the paper introduces intelligent fuzzy rules, contributing to 
effective decision-making based on medical IoT data. 

Moreover, this research presents a new formula for ranking 
patient data, enhancing the prioritization of critical health 
information. The study also implements spatial and temporal 
constraints on a Convolutional Neural Network (CNN) 
classifier, refining its ability to accurately predict patients' 
health conditions. Finally, the paper systematically conducts 
various experiments to evaluate the effectiveness of the 
developed health-tracking approach. Collectively, these 
contributions advance the current understanding and 
capabilities in healthcare data security, predictive analytics, and 
decision-making within the context of IoT-enabled health 
monitoring systems. 

This article is divided into several sections. Section 2 delves 
into the backgrounds, offering an in-depth exploration of the 
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contextual foundations relevant to the study. Section 3 
elucidates the proposed framework, outlining the intricacies of 
the developed healthcare monitoring system. Section 4 
summarizes the experimental observations, providing a detailed 
assessment of the system's efficiency in various scenarios. In 
section 5, the paper concludes by highlighting results, 
implications, and future research topics. 

II. BACKGROUND 

Integrating IoT, cloud computing, and deep learning in 
healthcare requires a thorough understanding of the challenges 
and opportunities within the rapidly evolving digital health 
landscape. Table I compares publications highlighting different 
methods and techniques of enhancing healthcare systems 
through these technologies. This section offers insight into the 
existing state of healthcare systems, emphasizing the growing 
reliance on interconnected devices, the significance of secure 
data storage, and the pivotal role of advanced data analytics in 
disease prediction and monitoring. 

TABLE I. AN OVERVIEW OF RELATED WORKS 

Study Objective Key techniques 
Performance 

metrics 

[15] 

Identify and trace 

cyber-attack 

events in IoT 
networks 

Network data flow 
extraction, PSO for 

deep learning 

parameter 
optimization, PSO-

based DNN 

Superior 

performance in 
detecting and 

tracing cyber-

attacks 

[16] 
Early detection of 

thyroid infections 

Fog computing, AI, 

ensemble-based 

classifier, encryption 
and decryption 

Accuracy, 

precision, 
specificity, 

sensitivity, F1 

score 

[17] 

Remote patient 
monitoring to 

reduce hospital 

visits 

IoT, AI, NN 

configuration 

optimization, IoT 
protocols for data 

transmission 

Not specified 

[18] 
Enhance privacy-
preserving 

healthcare systems 

Fog-enabled model, 

CNN with Bi-
LSTM, Medical 

Entity Recognition, 

delta sanitizer 

Recall, precision, 
F1-score, utility 

preservation 

[19] 

Detection of 

cardiovascular 

diseases  

IoT, deep learning, 

BiLSTM for feature 

extraction, AFO for 
hyperparameter 

optimization, FDNN 

classifier 

Accuracy 
(maximum 93.4%) 

In the era of ubiquitous IoT technologies, everyday devices 
seamlessly connect to the Internet, delivering intelligent 
functions and on-demand capabilities to users. Despite their 
lightweight structure and low power consumption, these 
devices often expose themselves to cyber risks, adversely 
impacting their functionality within network systems. A 
significant challenge in securing IoT networks revolves around 
identifying and tracking sources of cyber-attack events, 
particularly in the context of obfuscated and encrypted network 
traffic. 

Addressing this challenge, Koroniotis, et al. [15] have 
developed a novel forensic network methodology known as the 
Particle Deep Framework (PDF). This framework delineates 

the phases of digital investigation aimed at detecting and 
monitoring malicious activities within IoT systems. The PDF 
introduces three distinctive features: the extraction of data flow 
patterns and verification of data integrity, tailored explicitly for 
encrypted networks; the utilization of a Particle Swarm 
Optimization (PSO) algorithm for the adaptive tuning of deep 
learning variables; and the design of a Deep Neural Network 
(DNN) utilizing PSO, designed to identify and monitor 
anomalies within IoT networks associated with home 
automation. To assess the efficacy of the presented PDF, 
evaluations are conducted using UNSW_NB15 and Bot-IoT 
sources, and comparative analyses are performed using 
different deep learning algorithms. The test outcomes 
underscore the superior ability of the PDF in detecting and 
tracing cyber-attack events compared to alternative strategies. 

Various physiological activities are regulated by the thyroid 
gland, a crucial organ of the endocrine system. These processes 
include building proteins, energy metabolism, and hormone 
response. Accurate characterization and reconstruction of the 
thyroid are essential for detecting thyroid conditions, as 
alterations in the gland's shape and size indicate potential health 
issues. Understanding the origins and progression of thyroid 
diseases is paramount, necessitating focused research in this 
domain. The intersection of IoT, artificial intelligence, and 
cloud computing offers immediate computation capabilities 
with diverse applications in the healthcare sector. Machine 
learning algorithms are increasingly used in critical decisions. 
Individuals with thyroid conditions require a reliable and time-
sensitive Quality of Service (QoS) framework. 

Singh, et al. [16] have innovatively integrated artificial 
intelligence and fog computing into intelligent healthcare, 
establishing a reliable mechanism for quickly diagnosing 
thyroid infections. A novel ensemble-based classifier is 
introduced for identifying thyroid patients, utilizing UCI 
datasets, and simulations are conducted using Python 
programming. In addition to detection accuracy, the proposed 
framework emphasizes security through authentication and 
encryption. The effectiveness of the proposed framework is 
comprehensively assessed for power, RAM, and bandwidth 
usage. Simultaneously, the potential classifier's effectiveness is 
evaluated based on F1 score, sensitivity, specificity, precision, 
and accuracy. The results demonstrate that the developed 
methodology and classifier significantly outperform traditional 
methods in addressing thyroid disease detection complexities. 

Singh, et al. [17] have developed e-health tools and 
telemonitoring systems to reduce hospitalizations, particularly 
in epidemic situations. This initiative leverages artificial 
intelligence and IoT to tackle these challenges effectively. This 
research aims to determine the most suitable and efficient 
configuration of hidden layers and encoding functions for a 
Neural Network (NN). Subsequently, the information 
transmitted through IoT networks is elucidated. The NN, an 
integral project component, scrutinizes information received 
from sensor data to make informed decisions. The selected 
condition is subsequently conveyed to the attending medical 
professional. This innovative tool empowers patients to 
independently recognize and predict illnesses, aiding healthcare 
professionals in remote disease detection and analysis. 
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Significantly, this is achieved without physical hospital visits, 
enhancing healthcare accessibility and efficiency. 

Traditional health systems often struggle to manage vast 
volumes of biomedical data, leading to cloud-based storage and 
sharing. However, this approach introduces security challenges, 
particularly regarding privacy and confidentiality breaches. To 
address these issues, Moqurrab, et al. [18] have introduced an 
innovative fog-based data privacy model named "delta 
sanitizer", leveraging deep learning to enhance healthcare 
systems. The algorithm developed is built upon a Convolutional 
Neural Network with Bidirectional Long Short-Term Memory 
(Bi-LSTM) and is proficient in recognizing health-related 
entities. Statistical findings indicate that the delta sanitizer 
model surpasses existing models, achieving a recall of 91.1%, 
a precision of 92.6%, and an F1-score of 92%. Notably, the 
sanitization model demonstrates a 28.7% improvement in 
utility preservation compared to contemporary approaches. 
This underscores the efficacy of the proposed model in 
balancing the imperatives of privacy preservation and data 
utility in biomedical contexts. 

Technological advances in the IoT, sensing technologies, 
and wearables have led to significant enhancements in 
healthcare quality, shifting from traditional healthcare 
approaches to continuous monitoring. Sensors attached to 
biomedical devices capture bio-signals generated by human 
actions, with the biomedical electrocardiogram (ECG) signal 
being a standard and non-invasive method for examining and 
diagnosing cardiovascular diseases (CVDs) rapidly. Given the 
challenges posed by the increasing number of patients and the 
diverse ECG signal patterns, computer-assisted automated 
diagnostic tools play a crucial role in ECG signal classification. 
In response to this need, Khanna, et al. [19] have introduced an 
innovative healthcare disease diagnosis model that integrates 
IoT and deep learning algorithms to analyze biomedical ECG 
signals. The model's primary objective is CVD detection 
through deep learning models of ECG signals. Bidirectional 
Long Short-Term Memory (BiLSTM) enhances the model's 
ability to extract meaningful feature vectors from ECG signals. 
The performance of the BiLSTM is further improved by 
leveraging the Artificial Flora Optimization (AFO) algorithm 
as a hyperparameter optimizer. A Fuzzy Deep Neural Network 
(FDNN) classifier assigns appropriate class labels to ECG 
signals. The model's accuracy is rigorously evaluated using 
biomedical ECG signals, and the test results confirm its 
superiority, achieving a maximum accuracy of 93.4%. This 
underscores the potential of the proposed model in advancing 
healthcare diagnostics through the fusion of IoT and deep 
learning technologies. 

III. PROPOSED FRAMEWORK 

Fig. 1 presents a comprehensive overview of the proposed 
healthcare monitoring system, comprising nine core modules: 
IoT devices, cloud database, temporal manager, rule base, rule 
manager, prediction, secure storage, decision manager, and user 
interface. Patient health data is captured by IoT devices and 
transmitted to a data collection agent, which stores the 
information in a cloud-based database. The user interface 
facilitates data retrieval from this cloud repository, enabling 
seamless access. Extracted data is then channeled to the 
decision manager for subsequent processing and secure storage. 
The latter incorporates a robust security framework comprising 
encryption, decryption, and key generation components. A 
novel RSA-based encryption algorithm safeguards data, while 
the corresponding decryption algorithm ensures data integrity. 
The efficient key generation algorithm underpins the entire 
cryptographic process. Encrypted data is persistently stored in 
the cloud database and can be retrieved upon user request 
through the user interface, with the decision manager 
orchestrating the process. 

Patient statistics are forwarded to the prediction component 
for disease level estimation. This module leverages a novel 
deep learning architecture, the Fuzzy-Temporal Convolutional 
Neural Network (FTCNN), to accurately determine the severity 
of diseases. The temporal manager ensures data timeliness, 
while the spatial manager verifies patient location. The rule 
manager constructs and finalizes fuzzy rules stored in the rule 
base for subsequent disease prediction. The decision manager 
guides rule generation and interprets prediction outcomes, 
conveying results to physicians and patients. The IoT-
CDLDPM framework encompasses three primary components: 
IoT-based data acquisition, secure data storage, and advanced 
disease prediction, which are discussed in this section. 

Initial patient data is collected from remote locations using 
IoT devices tailored to specific diseases such as cancer, 
cardiovascular conditions, and diabetes. These devices employ 
specialized sensors to capture relevant patient symptoms, 
including glucose levels, heart rate, and electrocardiogram data. 
Extracted features are organized into individual patient records, 
each uniquely identified. The collected data is securely 
transferred to the cloud database through a coordinated process 
involving the decision manager, user panel, and data gathering 
component, with a secure storage component playing a critical 
role. The data capture component aggregates data and forwards 
it to the user interface, identifying essential characteristics and 
passing them to the decision manager for security processing. 
Subsequently, the decision manager transmits preprocessed 
data to the storage component for encryption, decryption, and 
secure cloud storage. 
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Fig. 1. An overview of the proposed healthcare monitoring system. 

The proposed secure storage framework incorporates novel 
key generation, encryption, and decryption algorithms to 
safeguard medical and patient data. The initial phase involves 
key generation using an Elliptic Curve-based Key Generator 
(ECKG). This algorithm extracts a 4-bit cloud user code, 
partitioning it into two binary values (a and b). A prime number 
(p) is selected to define the Galois Field (GFp). Subsequently, 
the ECKG employs the Diffie-Hellman key exchange protocol 
to generate public keys PA and PB. 

An additional layer of protection is introduced through the 
novel RSA-based Key Generator (RSAKG) to enhance security 
further. This algorithm derives key pairs (e and d) from specific 
points (q and r) on the elliptic curve. The RSAKGA process 
involves calculating n and U and generating public and private 
keys. 

We employ the elliptic curve cryptography-based cyclic 
encryption procedure (ECC-CEP), which involves two 
sequential stages. The first stage utilizes elliptic curve-based 
encryption, while the second employs RSA-based encryption, 
enhancing the overall security of the process. This 
comprehensive approach ensures the confidentiality and 
integrity of the transmitted data. 

To complete an entire cryptographic cycle, the suggested 
elliptic curve cryptography and RSA-enabled multi-decryption 
scheme are applied to decrypt the original text. This algorithm 
involves a two-stage process where the first stage utilizes RSA-
based decryption, and the second involves ECC-based 
decryption. Integrating these cryptographic techniques 
establishes a robust and multilayered security framework for 
ensuring the privacy and integrity of healthcare data. 

The predictive model comprises two principal modules to 
assess disease severity based on symptoms and patient 
feedback. The initial module utilizes a deep learning approach 
to analyze symptom-based severity, evaluate patient feedback 
textually, and estimate sentiment scores specific to individual 
diseases to determine their severity level. Subsequently, the 
model incorporates severity rating features alongside user 
feedback, allowing for evaluating severity-based ratings and 
indicating the disease status for specific data instances. 

Severity classification relies on the extraction of salient 
features from patient data. This study proposes an MCST-CNN 
architecture to accurately determine disease severity and 
compute patient polarity scores. To refine severity 
categorization, Latent Dirichlet Allocation (LDA) is employed 
to cluster extracted severity levels. The MCST-CNN model is 
a specialized CNN architecture comprising four distinct 
channels for abnormal, medium, low, and average severity 
states. Dataset features are mapped to a linear matrix via a 

lookup function, resulting in a matrix 𝑋 ∈ 𝑅𝑛𝑘 . The severity 
level embedding channel refines severity estimation by 
incorporating a 45-dimensional severity analyzer vector. 

The convolutional layer is instrumental in extracting salient 
features from medical datasets, reports, and physician notes. By 
applying filters of varying sizes, this layer effectively identifies 
crucial attributes for feature and severity level embedding. 

Given a filter 𝑤𝑡x ∈ 𝑅ℎ×𝑘 , where h refers to the height of 
matrix x embedded in a particular channel, feature extraction is 
performed according to Eq. (1) within defined temporal and 
spatial boundaries. ATT denotes an asymmetric curve and b 
represents a bias term. The resulting attribute map, 𝐶𝐻x ∈
𝑅𝑛−ℎ+1, is calculated for a specific time interval (t1 to t2) as 
outlined in Eq. (2). For severity merging and attribute 
embedding within the embedding channel, distinct filters 𝑤𝑡𝑧 ∈
𝑅ℎ×1 are employed to generate attribute maps as described in 
Eq. (3). This approach enables the generation of diverse feature 
representations and attributes. 

𝐶𝐻𝑖〈𝑡1, 𝑡2, 𝑠𝑝〉 = 𝐴𝑇𝑇(𝑤𝑡. 𝑥𝑖+ℎ + 𝑏) (1) 

𝐶𝐻𝑥〈𝑡1, 𝑡2, 𝑠𝑝〉 = [𝐶𝐻1
𝑥 , 𝐶𝐻2

𝑥 , … , 𝐶𝐻𝑛−ℎ+1
𝑥 ] (2) 

𝐶𝐻𝑧〈𝑡1, 𝑡2, 𝑠𝑝〉 = [𝐶𝐻1
𝑧 , 𝐶𝐻2

𝑧 , … , 𝐶𝐻𝑛−ℎ+1
𝑧 ] (3) 

The pooling operation is pivotal in capturing maximum 
features from input values, typically expressed as shown in Eq. 
(4). Following this operation, the ultimate attributes are 
obtained by concatenating the semantically significant 
attributes using a filter. Typically, this process is denoted as 

𝐶𝐻 =
1

𝐶𝐻
𝑥

⊕
1

𝐶𝐻
𝑧

. Eq. (5) illustrates the resulting final 

attributes, where the terms n and m denote distinct thresholds 
for useful and attribute-specific components, correspondingly. 
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𝐶𝐻𝑥 = 𝑀𝐴𝑋(𝐶𝐻𝑥) 𝑎𝑛𝑑 𝐶𝐻𝑧 = 𝑀𝐴𝑋(𝐶𝐻𝑧) (4) 

𝐶𝐻 =
1

𝐶𝐻
𝑥

⊕ … ⊕
𝑛

𝐶𝐻
𝑥

⊕
1

𝐶𝐻
𝑧

⊕ …
𝑚

𝐶𝐻
𝑧

 (5) 

Typically, the softmax function is utilized to compute the 
final attributes. In this research, the extraction of severity levels 
is framed as a sequential labelling task. The resulting output is 
represented by Eq. (6), in which O denotes the masking 
function and 𝑟𝑠 ∈ 𝑅𝑛+𝑚 signifies a sample based on the 
Bernoulli pattern. 

0〈𝑡1, 𝑡2, 𝑠𝑝〉𝑤𝑡. (𝑐 𝜊 𝑟𝑠) + 𝑏  (6) 

The dataset comprising patient records encompasses a 
diverse range of attributes associated with severity levels, 
although variations in the specific attributes are relevant to each 
severity group. Moreover, the attributes representing severity 
encompass various types of severity. Hence, it becomes 
imperative to cluster the pertinent attributes and establish 
mappings between the extracted severity-related attributes and 
their respective counterparts. The standard Linear Discriminant 
Analysis (LDA) method is employed to identify the relevant 
characteristics from the standardized dataset. Leveraging the 
LDA method enables segregating specific severity levels into 
distinct groups. Notably, the LDA method incorporates 
considerations of spatial and temporal factors, representing an 
improvement over prior approaches. 

Predicting disease severity entails clustering pertinent 
features and calculating polarity scores for each severity level. 
Severity level ratings within a rating matrix are determined by 
computing polarity scores corresponding to severity levels and 
considering the resulting polarity score. This methodology 
calculates the rating for each disease severity based on relevant 
attributes associated with the dataset. The severity level rating 
is computed using Equation (7), where Wk denotes the word set 
DSij linked to severity score ak, and SVL(w) represents the 
attribute polarity based on their semantic content. 

𝑟𝑖𝑗𝑘〈𝑡1, 𝑡2, 𝑠𝑝〉 =
∑ (𝐷𝑆𝑖𝑗)𝑆𝑉𝐿(𝑤)𝑤∈𝑊𝑘

𝑊𝑘(𝐷𝑆𝑖𝑗)
  (7) 

A severity-based weight estimation process is employed to 
determine severity-associated attribute weights, utilizing a 
three-dimensional attribute-factor (AF) tensor, WT. This tensor 
encapsulates the intricate relationships between attributes, 
users, and disease severity levels. The tensor WT undergoes 
decomposition as outlined in Eq. (8), where R signifies the top-
rank component count, and the symbol o represents the outer 
product. The column vectors within factor matrices X, Y, and Z 
are denoted by xr, yr, and zr, respectively. The dimensions of X, 
Y, and Z are 𝐼 × 𝑅, 𝐽 × 𝑅, and 𝐾 × 𝑅, correspondingly. Eq. (9) 
presents an element-wise equivalent of Eq. (8). 

𝑤𝑡 ≈ ∑ 𝑥𝑟
°𝑅

𝑟=1 𝑦𝑟
°𝑧𝑟  (8) 

𝑤𝑡𝑖𝑗𝑘 = (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) = ∑ 𝑥𝑖𝑟 . 𝑦𝑗𝑟 . 𝑧𝑘𝑟
𝑅
𝑟=1  (9) 

Each row within the matrices xr, yr, and zr corresponds to 
weight factors associated with patients, attributes, and severity 
levels, respectively. Disease prediction ratings, denoted as rij, 
are computed using the proposed prediction model, 

incorporating severity levels and weight vectors as defined in 
Eq. (10). 

𝑟𝑖𝑗 =
𝑇
𝑤 
𝑖𝑗

𝑟𝑖𝑗 = ∑ 𝑤𝑖𝑗𝑘 . 𝑟𝑖𝑗𝑘
𝐾
𝑘=1   (10) 

IV. EXPERIMENTAL RESULTS 

The proposed disease monitoring system was engineered 
using Java within the NetBeans Integrated Development 
Environment (IDE) and leveraged the CloudSim simulation 
toolkit for performance evaluation. The system incorporates a 
standardized dataset from the University of California, Irvine 
(UCI) Machine Learning Repository, encompassing various 
diseases such as cardiovascular conditions, diabetes, and 
cancer. Analyzing this dataset provides a user-friendly 
approach to assessing disease severity, thereby contributing to 
the prevention of life-threatening ailments. 

This section provides a detailed overview of the medical 
datasets employed in this study, specifically focusing on heart 
disease, diabetes, and cancer. Furthermore, the performance 
metrics utilized to evaluate the proposed health monitoring 
system are outlined, followed by a comprehensive presentation 
of experimental results. The evaluation of the suggested 
approach is divided into two primary domains: disease 
prediction and safe storage. Each domain is assessed using 
specific evaluation parameters. 

The assessment of the secured storage component within the 

disease prediction system encompasses factors including 

decryption time, encryption time, and key generation time. The 

formulas for computing these times are delineated in Eq. (11), 

(12), and (13), respectively. 

𝐾 = 𝐷𝑇𝑇 + 𝐸𝑇   (11) 

𝐸𝑇 = 𝐸𝐷𝑇 − 𝑆𝑇𝑇  (12) 

𝐷𝑇 = 𝐸𝐷𝑇 − 𝑆𝑇𝑇  (13) 

In Eq. (11), DTT represents the data transferring time, while 
ET denotes the time required to encrypt the data. The 
encryption time is determined by the duration of converting the 
original data into its encrypted form. Fig. 2 depicts the analysis 
of crucial generation time for the developed secured storage 
system. The figure illustrates the results of five experiments 
conducted with varying numbers of cloud users (200, 400, 600, 
800, and 1000). As observed from the graph, as the number of 
cloud consumers increases, the key generation time also 
increases. 

In Eq. (12), EDT represents the end time of the encryption 
process, while STT signifies the start time. DT denotes the user's 
time spent decrypting the encrypted data, measured in 
milliseconds and expressed as Eq. (13). 

Fig. 3 presents an analysis of the proposed algorithm's 
encryption time. To assess the model's performance, the 
evaluation involved five experiments using data sets of varying 
sizes: 200 KB, 400 KB, 600 KB, 800 KB, and 1 MB. As 
expected, the encryption time exhibited a positive correlation 
with data size. This is likely caused by the inherent properties 
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of elliptic curve cryptography used in the algorithm and the 
two-stage nature of the encryption and decryption processes. 

Similar to the encryption process, Fig. 4 analyzes the 
decryption time associated with the proposed secure storage 
algorithm. The evaluation employed the same five data set sizes 
to evaluate decryption efficiency. The results demonstrate that 
decryption time scales proportionally with the size of the data 
being handled. This characteristic can be attributed to the two-
stage nature of the decryption scheme employed in the method. 

Fig. 5 compares the computational time required by the 
suggested secure storage approach and several existing 
systems. The evaluation employed a fixed data size of 10 GB 

across five scenarios. The results indicate that the proposed 
algorithm exhibits lower computational time than existing 
systems. 

Fig. 6 compares the security performance of the developed 
secure storage algorithm (ECRS-DDA& ECC-TSEA) with 
several existing algorithms. The evaluation involved five 
experiments designed to assess the relative security of each 
approach. The results demonstrate that the proposed algorithm 
offers a superior level of protection compared to existing 
solutions. 

 

Fig. 2. Key generation time comparison. 

 

Fig. 3. Encryption time comparison. 
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Fig. 4. Decryption time comparison. 

 

Fig. 5. Computation time comparison. 

 

Fig. 6. Security level comparison. 
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V. CONCLUSION 

In this research, an innovative healthcare surveillance 
system has been developed and deployed to assess the severity 
of critical illnesses, including diabetes and cardiovascular 
conditions. The system utilizes original data collected from 
patients residing in remote areas to predict disease levels. 
Additionally, a secure data storage model has been developed 
and integrated into the system to ensure the safe storage of 
patient data in cloud databases. Three novel algorithms have 
been formulated for key generation, encryption, and decryption 
procedures within the secure storage framework to bolster the 
system's security. These algorithms aim to protect sensitive 
patient information and prevent unauthorized access. A novel 
deep learning algorithm named IoT-CDLDPM has also been 
created and incorporated into the healthcare monitoring system. 
This algorithm enhances the efficiency of disease-level 
prediction by leveraging the power of deep learning techniques. 
The experimental outcomes derived from a series of trials in 
this study indicate the efficacy of the proposed healthcare 
system. The system achieved a prediction accuracy of 99.4%, 
demonstrating its high precision in assessing disease severity 
levels. Moreover, the system's security level is evaluated to be 
99.7%, surpassing the performance of other healthcare systems. 
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