
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

748 | P a g e

www.ijacsa.thesai.org

Enhanced Jaya Algorithm for Quality-of-Service-

Aware Service Composition in the Internet of Things

Yan SHI

Hebei Chemical & Pharmaceutical College, Shi Jiazhuang 050026, China

Abstract—The Internet of Things (IoT) has shifted how devices

and services interact, resulting in diverse innovations ranging

from health and smart cities to industrial automation.

Nevertheless, at its core, IoT continues to face one of the major

tough tasks of Quality of Service-aware Service Composition

(QoS-SC), as these IoT settings are normally transient and

unpredictable. This paper proposes an improved Jaya algorithm

for QoS-SC and focuses on optimizing service selection with a

balance between the main QoS attributes: execution time, cost,

reliability, and scalability. The proposed approach was designed

with adaptive mechanisms to avoid local optima stagnation and

slow convergence and thus assure robust exploration and

exploitation of the solution area. Incorporating these

enhancements, the proposed algorithm outperforms prior

metaheuristic approaches regarding QoS satisfaction and

computational efficiency. Extensive experiments conducted over

diverse IoT scenarios show the algorithm's scalability,

demonstrating that it can achieve faster convergence with superior

QoS optimization.

Keywords—Service composition; internet of things; quality of

service; Jaya algorithm; optimization

I. INTRODUCTION

The Internet of Things (IoT) is a transformational paradigm
connecting diverse devices through a harmonious and
interoperable structure [1]. This would enable cooperation
among many smart devices to deliver innovative services,
including those within the domains of healthcare and smart
cities, as well as industrial automation [2]. With the fast
proliferation of these connected gadgets, IoT holds promise for
an array of applications driven by the urge for sufficient
communication and function [3]. However, device
functionalities are highly diverse and limited by resource
constraints such as battery life and processing capacity [4]. In
this respect, integrating services from heterogeneous IoT
devices into composite applications is essential for seamless
service delivery while meeting user needs efficiently within set
energy and resource constraints [5]. In addition, constitutive
models for the simulation of weak rock masses can be applied
to obtain insights into resource optimization and structural
robustness in IoT-driven systems involving infrastructure and
industrial automation [6].

In IoT environments, most individual atomic services are
not competent at delivering complex user requirements
independently [7]. Thus, combining atomic services with
varying Quality of Service (QoS) attributes or characteristics
like cost, reliability, and scalability leads to composite services
[8]. The fulfillment of composite services depends on Service-
Oriented Computing (SOC) principles, allowing the

composition of services into workflows that match a wide range
of applications [9]. Indeed, this involves selecting an optimum
from many service candidates considering constraints related to
energy consumption, which are constantly changing with ever-
changing user preferences and dynamic network conditions.
With such enlargement and complications in IoT systems,
guaranteeing service quality and dependability is challenging.

As a matter of fact, QoS-aware Service Composition (QoS-
SC) involves selecting the best services from a vast pool of
candidates while optimizing conflicting QoS criteria such as
execution time, cost, and reliability [10]. The problem is
compounded by its combinatorial nature, which makes it NP-
hard [11]. Traditional metaheuristic methods often struggle
with local optima stagnation and slow convergence, limiting
their ability to address large-scale, dynamic IoT environments
efficiently. To overcome these challenges, this study proposes
an enhanced Jaya algorithm designed explicitly for QoS-SC in
IoT. The algorithm balances exploration and exploitation by
incorporating adaptive mechanisms and a stagnation-recovery
strategy, improving convergence speed and solution quality. It
also adapts to varying workflows, including sequential, parallel,
and loop-based structures, to effectively model diverse IoT
scenarios.

The contributions of this work are fourfold: (1) introducing
an enhanced Jaya algorithm with adaptive mechanisms for
QoS-SC, (2) developing a stagnation-recovery technique to
overcome local optima, (3) evaluating the algorithm’s
performance against state-of-the-art methods across diverse IoT
scenarios, and (4) demonstrating the scalability and
computational efficiency of the proposed approach. This study
presents a robust approach for optimizing service composition
in dynamic IoT ecosystems.

The remainder of this paper is structured in the following
way. Section II summarizes related research on QoS-aware
service composition and optimization methods. The problem is
formulated in Section III. Section IV describes the proposed
algorithm in detail. Section V presents the experimental setup,
outcomes, and comparisons with existing methodologies.
Finally, Section VI summarizes the main conclusions and
recommendations for further study.

II. RELATED WORK

The solutions to QoS-SC have been addressed in many
research works by applying different optimization methods. For
example, Sefati and Navimipour [12] presented a hybrid
method using Hidden Markov Models (HMM) and Ant Colony
Optimization (ACO) to address partial challenges in the
composition of IoT services. HMM predicts QoS attributes by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

749 | P a g e

www.ijacsa.thesai.org

learning the optimal emission and transition matrices via the
Viterbi algorithm, while ACO estimates QoS to find the best
service paths.

Vakili, et al. [13] proposed a service composition strategy
based on the Grey Wolf Optimization (GWO) algorithm under
the MapReduce methodology. This significantly improves cost,
availability, and response time QoS attributes when discovering
an optimal set of atomic services. In the end, the simulation
results reduce cost and response time and improve the amount
of energy saved regarding availability.

Asghari, et al. [14] propose a hybrid evolutionary algorithm
(SFLA-GA) for privacy-preserving cloud service composition.
A computational scheme selects the optimal QoS aggregation
selection, while services are categorized according to their
privacy level. Results indicated better fitness values and service
selection compared to the existing algorithms.

Xiao [15] presented a service composition method
leveraging cloud and fog computing and an improved Artificial
Bee Colony (ABC) algorithm. The approach introduced a
scheme for Dynamic Reduction to enhance convergence and
balance exploration and diversification. Evaluations show
reduced energy consumption compared to traditional
algorithms and increased reliability and, thus, cost
optimization.

Rajendran, et al. [16] proposed an enhanced eagle strategy
algorithm for large-scale Dynamic Web Service Composition
(DWSC) in cloud-based IoT environments, bio-inspired and
much more computationally efficient with huge repository
challenges. Therefore, the computation time would be faster
and the QoS metrics much improved.

Tang, et al. [17] suggested an Improved Shuffled Frog
Leaping Algorithm (ISFLA) using chaos and reverse learning
theories to enhance population initialization and diversity. This
technique used Gaussian mutation and a local update method to
find the optimum IoT service composition. The simulation
shows superior fitness values, quicker convergence, and better
solution quality than SFLA and related techniques.

Ait Hacène Ouhadda, et al. [18] presented the Discrete
Adaptive Lion Optimization Algorithm (DALOA), which is
empowered by operators of exploration-exploitation strategies:
roaming, mating, and migration. The approach divided the
population into two groups: pride and nomads, to balance
diversity with efficiency. These results indicated that DALOA
provided near-optimal solutions within acceptable execution
times and that this method outperformed the rest of the analyzed
algorithms.

As highlighted in Table I, existing IoT service composition
solutions still have a few highly valued shortcomings that can
be improved in dynamic/large-scale environments. Most
current solutions focus on optimizing single QoS attributes,
such as response time or cost, in a non-holistic manner.
Scalability remains a persistent problem, especially in methods
like HMM-ACO and the Improved Eagle Strategy, when
dealing with large-scale IoT repositories. Balancing exploration
and exploitation is a core limitation in approaches such as

SFLA-GA and ISFLA; this often leads to convergence at
premature stages or very suboptimal solutions. Most algorithms
have underexplored privacy concerns, addressed in only a few
methods, such as SFLA-GA. To address these lacunae, the
current paper proposes an improved variant of the Jaya
algorithm with an adaptive mechanism and stagnation-recovery
strategy. This approach will maintain an equilibrium between
exploration and exploitation while guaranteeing scalability,
accelerated convergence, and holistic QoS optimization,
considering dynamic repository updates and privacy issues.

III. PROBLEM DESCRIPTION

QoS-SC in IoT concerns integrating abstract services
provided by different providers into workflows to fulfill users'
needs. Workflow are series of expert-level services that are
needed for task execution. Typical applications of such
workflows in smart city contexts are journey-planning
applications, whereby different sub-services, including booking
transportation, route planning, and even some payment
systems, are all composed into one integrated single service. In
general, selecting a concrete option with many sub-services and
various QoS attributes will be complex and dynamic. The
process of QoS-SC is shown in Fig. 1.

TABLE I. PREVIOUS IOT SERVICE COMPOSITION METHODS

Study Main contribution
Shortcomings addressed

in our study

HMM-ACO

[12]

Combined HMM for QoS

prediction and ACO for

optimal pathfinding,
improving QoS metrics

like availability and cost.

Lack of dynamic adaptation

and scalability to large-

scale IoT repositories,
addressed by integrating

adaptive mechanisms.

GWO with
MapReduce

[13]

Integrated GWO with

MapReduce to optimize

QoS attributes like energy,
cost, and response time.

Narrow focus on specific
QoS attributes; our study

proposes a holistic QoS

optimization framework
considering diverse

attributes.

SFLA-GA

[14]

Proposed a hybrid

privacy-aware service
composition using SFLA

and GA, optimizing QoS

while addressing privacy.

Insufficient balance
between exploration and

exploitation; our method

enhances this balance for
better convergence and

solutions.

Enhanced

ABC with fog
and cloud [15]

Leveraged cloud and fog

computing with ABC and

dynamic reduction for
improved convergence

and energy efficiency.

Limited adaptability to

dynamic IoT environments;

our study integrates real-
time optimization

mechanisms.

Improved

eagle strategy

[16]

Addressed large-scale
DWSC with a bio-inspired

algorithm, improving

computation time and QoS
metrics.

Ineffective for handling
real-time service updates;

our algorithm ensures

scalability and adaptability
to dynamic conditions.

ISFLA [17]

Enhanced SFLA with

chaos theory and reverse
learning for better

population diversity and

fitness.

High computational

complexity for large IoT
networks; our approach

improves efficiency while

maintaining scalability.

DALOA [18]

Introduced DALOA with
strong exploration and

exploitation balance using

sub-population strategies.

Longer execution time for

large-scale repositories; our

study emphasizes faster
convergence and scalability

in diverse scenarios.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

750 | P a g e

www.ijacsa.thesai.org

Fig. 1. An overview of QoS-SC process.

This inherent complexity naturally arises from the fact that
functionally equivalent services feature distinct QoS metrics,
namely response time, cost, and reliability. To handle this, IoT
service composition is made up of five layers: a perception
layer responsible for sensing; a network layer transferring
services to the cloud; a cloud layer providing service databases;
a composition layer that selects and composes services; and an
application layer that enables users to interact. These layers
have similarities to the structure of ISO network layers.

QoS evaluation is an indispensable process in service
selection and composition in IoT environments, relying on
seven key characteristics representative of various performance
metrics and user requirements:

 Execution time: The time that elapses between a user
request and the system's response. The shorter the
execution time, the better the performance.

 Reliability: The ratio of completed service requests to
the total number of requests, reflecting the dependability
of the service.

 Execution cost: Represents the cost of utilizing a
service. Lower costs are preferred.

 Availability: This gives the percentage of time a service
continues to be operational and available over a given
period.

 Scalability: The service's ability to adapt and function
efficiently under changing demands or conditions.

 Reputation: A trust metric derived from user feedback;
it can fall into the "very high," "high," "normal," "poor,"
or "very poor" categories.

 Response time: The time interval between a user’s
inquiry and the system’s delivery of the requested
service.

These attributes can be classified into two categories: cost
indicators, where lower values are preferred, such as cost and
execution time, and benefit indicators, where higher values are
desired, including reliability and availability. Normalization
ensures consistent evaluation. Raw QoS values are adjusted
based on their minimum and maximum possible values. For
cost-related QoS attributes (𝑐𝑖), the normalization can be
represented as by Eq. (1).

𝑁(𝑐𝑖) = {

𝑚𝑎𝑥(𝐶)−𝐶(𝑐𝑖)

𝑚𝑎𝑥(𝐶)−𝑚𝑖𝑛(𝐶)
, 𝑖𝑓 𝑚𝑎𝑥(𝐶) ≠ 𝑚𝑖𝑛(𝐶)

1, 𝑖𝑓 𝑚𝑎𝑥(𝐶) = 𝑚𝑖𝑛(𝐶)
 (1)

Where 𝐶(𝑐𝑖) stands for the current cost value for the 𝑖th QoS
attribute, max(𝐶) refers to the maximum cost value across all
QoS attributes, and min(𝐶) denotes the minimum cost value
across all QoS attributes. For benefit-related QoS attributes (𝑏𝑖),
the normalization can be expressed using Eq. (2).

𝑁(𝑏𝑖) = {

𝐵(𝑏𝑖)−𝑚𝑖𝑛(𝐵)

𝑚𝑎𝑥(𝐵)−𝑚𝑖𝑛(𝐵)
, 𝑖𝑓 𝑚𝑎𝑥(𝐵) ≠ 𝑚𝑖𝑛(𝐵)

1, 𝑖𝑓 𝑚𝑎𝑥(𝐵) = 𝑚𝑖𝑛(𝐵)
 (2)

Where (𝑏𝑖) specifies the current benefit value for the 𝑖th QoS
attribute. max(𝐵) and min(𝐵) refer to maximum and minimum
benefit value across all QoS attributes, respectively. Eq. (3)
computes the fitness value for service composition by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

751 | P a g e

www.ijacsa.thesai.org

weighting these normalized QoS values according to user
preferences (𝑤𝑖).

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ 𝑤𝑖 . 𝑁(𝑞𝑖)𝑟
𝑖=1 (3)

Where 𝑁(𝑞𝑖) refers to the normalized value of the 𝑖th QoS
attribute (either cost or benefit) and r represents the total
number of QoS factors considered.

Service composition workflows describe how atomic
services are arranged to form composite services. These
workflows can significantly affect the aggregated QoS values.
As shown in Fig. 2, the most common types are:

 Sequential workflow: Services are executed one after the
other in a sequence. QoS attributes like response time are
typically aggregated using summation.

 Loop workflow: Services are repeated multiple times,
with QoS attributes like response time multiplied by the
number of iterations.

 Parallel workflow: Multiple services are executed
simultaneously, with QoS attributes such as reliability
aggregated using the maximum value.

 Switch workflow: Represents conditional execution paths
where only one of the services is selected based on certain
conditions.

Fig. 2. Different workflow patterns for service composition: (a) Sequential, (b) Loop, (c) Parallel, and (d) Conditional (Switch).

The aggregation functions for different QoS attributes vary
by workflow type, as summarized in Table II, where 𝐿 refers to
the number of iterations in a loop, and 𝑡𝑟,𝑖,𝑗, 𝑐𝑟,𝑖,𝑗, 𝑎𝑟,𝑖,𝑗, 𝑟𝑟,𝑖,𝑗

correspond to response time, execution cost, availability, and
reliability, respectively, for the 𝑖th task and 𝑗th candidate service.

TABLE II. AGGREGATION FUNCTIONS FOR QOS ATTRIBUTES

Quality indicator Loop Parallel Switch Sequential

Reliability 𝑟𝑟,𝑖,𝑗
𝐿 𝑚𝑎𝑥 𝑟𝑟,𝑖,𝑗 ∏ 𝑟𝑟,𝑖,𝑗 ∏ 𝑟𝑟,𝑖,𝑗

Availability 𝛼𝑟,𝑖,𝑗
𝐿 𝑚𝑎𝑥 𝛼𝑟,𝑖,𝑗 ∏ 𝛼𝑟,𝑖,𝑗 ∏ 𝛼𝑟,𝑖,𝑗

Execution time 𝐿. 𝑐𝑟,𝑖,𝑗 𝑚𝑖𝑛 𝑐𝑟,𝑖,𝑗 ∑ 𝑐𝑟,𝑖,𝑗 ∑ 𝑐𝑟,𝑖,𝑗

Response time 𝐿. 𝑡𝑟,𝑖,𝑗 𝑚𝑖𝑛 𝑡𝑟,𝑖,𝑗 ∑ 𝑡𝑟,𝑖,𝑗 ∑ 𝑡𝑟,𝑖,𝑗

IV. ENHANCED JAYA ALGORITHM

The Enhanced Jaya Algorithm (EJAYA) was developed to
address significant deficiencies in the traditional Jaya
algorithm. Despite many applications to various optimization
problems, Jaya's potential drawbacks include the possibility of
convergence to a premature optimal solution due to its
dependence on the information of the local optimum with
reduced diversity while exploring the solution space for an
appropriate solution [19]. These challenges could be overcome
by EJAYA through several strategies directed toward local
improvement of intensification and global improvement of
exploration, ensuring an improvement by a factor greater than
overall search efficiency and robustness. Such improvements
seek to provide more enhanced balancing between
diversification-segregated searching across extensive areas
over the solution space and intensified structuring down into

up-coming regions. The traditional Jaya algorithm updates the
position of a solution (𝑥𝑖) within a population (𝑁) using Eq. (4).

𝑣𝑖 = 𝑥𝑖 + λ1(𝑥Best − |𝑥𝑖|) − λ2(𝑥Worst − |𝑥𝑖|), 𝑖 =
1,2, … , 𝑁 (4)

Where 𝑥Best and 𝑥Worst are the best and worst solutions in the
current population, 𝜆1 and 𝜆2 are random numbers in the range
[0,1], and 𝑣𝑖 is the updated solution.

The decision to retain or discard the updated solution is
based on its fitness value calculated by Eq. (5).

𝑥𝑖 = {
𝑣𝑖 , 𝑖𝑓 𝑓(𝑣𝑖) ≤ 𝑓(𝑥𝑖)

𝑥𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

This update process is straightforward but can lead to
reduced population diversity, particularly in later iterations,
when solutions begin to converge near the global best. The
limitations of the basic Jaya algorithm include:

 Local optima stagnation: As the algorithm heavily relies
on 𝑥𝐵𝑒𝑠𝑡 and 𝑥𝑤𝑜𝑟𝑠𝑡 , the population may become
trapped in local optima, reducing the probability of
finding the global optimum.

 Reduced diversity: The absolute value symbol in the
update equation contributes to a loss of diversity,
making it challenging to explore new regions in the
solution space effectively.

 Imbalance of exploration and exploitation: Basic Jaya
lacks mechanisms to dynamically balance the search
space exploration and the refinement of promising
solutions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

752 | P a g e

www.ijacsa.thesai.org

To address these challenges, EJAYA introduces advanced
strategies for local exploitation and global exploration,
significantly improving its performance on complex
optimization problems. Original JAYA locally updates the
solutions by considering an upper attract point, 𝑃𝑢, and a lower
attract point, 𝑃𝑙, so that the solution is attracted to more
promising areas of the feasible solution space:

Upper attract point Eq. (6):

𝑃𝑢 = λ3 ⋅ 𝑥Best + (1 − λ3) ⋅ 𝑀 (6)

Where 𝑀 is the mean solution of the current population
calculated using Eq. (7).

𝑀 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 (7)

Lower attract point (Eq. 8):

𝑃𝑙 = λ4 ⋅ 𝑥Worst + (1 − λ4) ⋅ 𝑀 (8)

These attract points provide additional flexibility, allowing
solutions to gravitate toward the best and worst solutions while
maintaining a strong connection to the mean of the population.
This mechanism reduces premature convergence and improves
diversity. The updated solution is calculated using Eq. (9):

𝑣𝑖 = 𝑥𝑖 + λ5(𝑃𝑢 − 𝑥𝑖) − λ6(𝑃𝑙 − 𝑥𝑖), 𝑖 = 1,2, … , 𝑁 (9)

Where 𝜆5 and 𝜆6 are random numbers in the range [0,1].

To enhance exploration, EJAYA incorporates a historical
population (𝑋old) and a switch probability (𝑃switch), ensuring
greater diversity and escaping local optima:

Historical population: The historical population is generated
using Eq. 10.

𝑋𝑜𝑙𝑑 = {
𝑋, 𝑖𝑓 𝑃𝑠𝑤𝑖𝑡𝑐ℎ ≤ 0.5

𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑋), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10)

Where 𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑋) represents a random reordering of the
population, introducing randomness and diversity.

Global exploration update: The solution is updated using
Eq. (11).

𝑣𝑖 = 𝑥𝑖 + κ(𝑥old,𝑖 − 𝑥𝑖), 𝑖 = 1,2, … , 𝑁 (11)

Where 𝜅 is a random number sampled from a standard
normal distribution. This process assures that the algorithm
investigates unexplored areas in the solution space. Fig. 3
illustrates the pseudocode of EJAYA.

Fig. 3. The pseudocode of EJAYA.

V. EXPERIMENTAL RESULTS

The proposed EJAYA was evaluated for IoT service
selection and composition using real datasets, containing 25
scenarios. Each dataset contained about 2500 real tasks,
characterized by criteria such as cost, response time,
availability, and dependability. In generating these scenarios,
different numbers of abstract tasks n and concrete services m

for each abstract task were considered. The experiment
analyzed the effectiveness of EJAYA in comparison with five
algorithms: ABC, Particle Swarm Optimization (PSO),
Discrete Dragonfly Algorithm (DDA), Genetic Algorithm
(GA), and Ant Colony Optimization (ACO).

The computation environment used was on a Windows OS
system with Intel Core i5 at 3.2 GHz, with 16 GB RAM. All

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

753 | P a g e

www.ijacsa.thesai.org

algorithms were implemented in MATLAB version 2020a.
Each algorithm has been executed with a population size of 30
and for 30 runs, up to a maximum number of 1000 iterations for
each execution. The performance of EJAYA was evaluated
based on QoS fitness value that measures the QoS selection
based on weighted QoS attribute; execution time, the time taken
to converge to an optimal solution; and convergence rate, the
ability of the algorithm to escape local optima and achieve
better solutions over iterations.

EJAYA consistently outperformed all other algorithms
across all scenarios. For example, as shown in Fig. 4, when the
number of tasks varied from 10 to 100 and the number of
concrete services ranged from 10 to 100, EJAYA achieved
higher fitness values than other algorithms. Also, with a fixed
n=20 and m ranging from 200 to 1000, EJAYA maintained
superior performance, as illustrated in Fig. 5.

Fig. 4. Fitness values for algorithms (Scenario 1).

Fig. 5. Fitness values for algorithms (Scenario 2).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

754 | P a g e

www.ijacsa.thesai.org

Fig. 6 shows the convergence curves, where EJAYA never
got stuck and thus escaped from the local optima, where other
algorithms were not capable of improving their solution after a
number of iterations. EJAYA illustrated a gradually increasing
trend over iterations in fitness values which describes that
superior solutions are more quickly obtained.

Fig. 7 compares the execution time of EJAYA with those of
other algorithms for an increasing number of concrete services
when n=20. Note that EJAYA showed competitive
computational efficiency, while its execution times were below
those of most algorithms. For instance, for m=1000, its
execution time in EJAYA was about 1.65 s, much faster
compared to the other algorithms.

Fig. 6. Convergence curves.

Fig. 7. Execution time comparison.

The experimental observations reveal that EJAYA
outperforms most QoS-SC scenarios, indicating its strength in
IoT environments. Compared to its competitors, EJAYA
consistently delivers higher QoS fitness values, suggesting it
can optimize service composition effectively. This is due to the
adaptive mechanisms and stagnation recovery strategies of
EJAYA, enabling it to escape local optimum and converge on
better solutions. For example, in scenarios involving different
numbers of tasks and concrete services, EJAYA reached higher
fitness values, proving it is more scalable and flexible for
different IoT settings. The above results confirm findings from

recent related work, which establishes the importance of
adaptability and convergence in dynamic optimization
problems, further asserting EJAYA's relevance as one of the
methods for QoS-SC.

Most importantly, computational efficiency establishes the
applicability of EJAYA in real-world applications. It provides
faster convergence times, especially for large datasets, making
it superior to other algorithms in terms of execution speed. This
is consistent with the literature that suggests execution time is
one of the most critical considerations in dynamic IoT

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

755 | P a g e

www.ijacsa.thesai.org

environments wherein the process of service composition
should be executed fairly quickly. In addition, convergence
curves illustrate that EJAYA improves performance steadily in
each iteration and, therefore, avoids stagnation and achieves the
best solutions. These results validate the design objectives of
the algorithm and highlight its potential contributions to the
area of QoS-aware service composition in IoT ecosystems.

VI. CONCLUSION

In this paper, we proposed the EJAYA, a robust
optimization for QoS-SC in IoT environments. EJAYA has
been developed to incorporate an advanced local exploitation
strategy and a global exploration strategy to overcome some
major drawbacks of the original Jaya algorithm, such as local
optima susceptibility and reduced diversity. The algorithm
employed upper and lower attract points, enhancing local
search using historical populations for better global exploration.
It was balanced between exploration and exploitation. The
experimental outcomes proved that EJAYA outperformed the
existing optimization algorithms, such as ACO, GA, DDA,
PSO, and ABC. EJAYA achieved the highest QoS fitness
values for all the tested datasets, escaped stagnation, and
remained competitive in execution time. These results verify
the efficiency of EJAYA in dealing with the complexities of
large-scale service composition problems and obtaining
optimal solutions with improved performance stability. EJAYA
will be extended in the future for resource allocation problems
in both edge and fog computing environments while
incorporating dynamic scenarios to meet IoT real-time
requirements. Besides, integrating machine learning techniques
for further optimization and adaptability might result in a more
solidification of the algorithm in the performance of highly
dynamic IoT ecosystems.

ACKNOWLEDGMENT

This work was funded by Science Research Project of Hebei
Education Department (No. ZC2022024).

REFERENCES

[1] A. Shoomal, M. Jahanbakht, P. J. Componation, and D. Ozay, "Enhancing
supply chain resilience and efficiency through internet of things
integration: Challenges and opportunities," Internet of Things, p. 101324,
2024.

[2] B. Pourghebleh, N. Hekmati, Z. Davoudnia, and M. Sadeghi, "A roadmap
towards energy‐efficient data fusion methods in the Internet of Things,"
Concurrency and Computation: Practice and Experience, vol. 34, no. 15,
p. e6959, 2022.

[3] B. Pourghebleh and V. Hayyolalam, "A comprehensive and systematic
review of the load balancing mechanisms in the Internet of Things,"
Cluster Computing, vol. 23, no. 2, pp. 641-661, 2020.

[4] S. Singh, P. K. Sharma, S. Y. Moon, and J. H. Park, "Advanced lightweight

encryption algorithms for IoT devices: survey, challenges and solutions,"
Journal of Ambient Intelligence and Humanized Computing, pp. 1-18,
2024.

[5] K. Halba, E. Griffor, A. Lbath, and A. Dahbura, "IoT capabilities
omposition and decomposition: A systematic review," IEEE Access, vol.
11, pp. 29959-30007, 2023.

[6] A. Azadi and M. Momayez, "Review on Constitutive Model for
Simulation of Weak Rock Mass," Geotechnics, vol. 4, no. 3, pp. 872-892,
2024, doi: https://doi.org/10.3390/geotechnics4030045.

[7] D. Rastogi, P. Johri, S. Verma, V. Garg, and H. Kumar, "IoT Technology
Enables Sophisticated Energy Management in Smart Factory," Cyber
Physical Energy Systems, pp. 147-181, 2024.

[8] B. Pourghebleh, V. Hayyolalam, and A. Aghaei Anvigh, "Service
discovery in the Internet of Things: review of current trends and research
challenges," Wireless Networks, vol. 26, no. 7, pp. 5371-5391, 2020.

[9] S. K. Mishra and A. Sarkar, "An efficient clustering mechanism towards
large scale service composition in IoT," International Journal of Web and
Grid Services, vol. 19, no. 2, pp. 185-210, 2023.

[10] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022.

[11] V. Hayyolalam, B. Pourghebleh, A. A. Pourhaji Kazem, and A. Ghaffari,
"Exploring the state-of-the-art service composition approaches in cloud
manufacturing systems to enhance upcoming techniques," The
International Journal of Advanced Manufacturing Technology, vol. 105,
pp. 471-498, 2019.

[12] S. Sefati and N. J. Navimipour, "A qos-aware service composition
mechanism in the internet of things using a hidden-markov-model-based
optimization algorithm," IEEE Internet of Things Journal, vol. 8, no. 20,
pp. 15620-15627, 2021.

[13] A. Vakili, H. M. R. Al‐Khafaji, M. Darbandi, A. Heidari, N. Jafari
Navimipour, and M. Unal, "A new service composition method in the
cloud‐based internet of things environment using a grey wolf optimization
algorithm and MapReduce framework," Concurrency and Computation:
Practice and Experience, vol. 36, no. 16, p. e8091, 2024.

[14] P. Asghari, A. M. Rahmani, and H. H. S. Javadi, "Privacy-aware cloud
service composition based on QoS optimization in Internet of Things,"
Journal of Ambient Intelligence and Humanized Computing, vol. 13, no.
11, pp. 5295-5320, 2022.

[15] G. Xiao, "Toward Optimal Service Composition in the Internet of Things
via Cloud-Fog Integration and Improved Artificial Bee Colony
Algorithm," International Journal of Advanced Computer Science &
Applications, vol. 15, no. 5, 2024.

[16] V. Rajendran, R. K. Ramasamy, and W.-N. Mohd-Isa, "Improved eagle
strategy algorithm for dynamic web service composition in the IoT: a
conceptual approach," Future Internet, vol. 14, no. 2, p. 56, 2022.

[17] Z. Tang, Y. Wu, J. Wang, and T. Ma, "IoT service composition based on
improved Shuffled Frog Leaping Algorithm," Heliyon, vol. 10, no. 7,
2024.

[18] S. Ait Hacène Ouhadda, S. Chibani Sadouki, A. Achroufene, and A. Tari,
"A Discrete Adaptive Lion Optimization Algorithm for QoS-Driven IoT
Service Composition with Global Constraints," Journal of Network and
Systems Management, vol. 32, no. 2, p. 34, 2024.

[19] E. H. Houssein, A. G. Gad, and Y. M. Wazery, "Jaya algorithm and
applications: A comprehensive review," Metaheuristics and Optimization
in Computer and Electrical Engineering, pp. 3-24, 2021.

