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Abstract—The Internet of Things (IoT) has shifted how devices 

and services interact, resulting in diverse innovations ranging 

from health and smart cities to industrial automation. 

Nevertheless, at its core, IoT continues to face one of the major 

tough tasks of Quality of Service-aware Service Composition 

(QoS-SC), as these IoT settings are normally transient and 

unpredictable. This paper proposes an improved Jaya algorithm 

for QoS-SC and focuses on optimizing service selection with a 

balance between the main QoS attributes: execution time, cost, 

reliability, and scalability. The proposed approach was designed 

with adaptive mechanisms to avoid local optima stagnation and 

slow convergence and thus assure robust exploration and 

exploitation of the solution area. Incorporating these 

enhancements, the proposed algorithm outperforms prior 

metaheuristic approaches regarding QoS satisfaction and 

computational efficiency. Extensive experiments conducted over 

diverse IoT scenarios show the algorithm's scalability, 

demonstrating that it can achieve faster convergence with superior 

QoS optimization. 

Keywords—Service composition; internet of things; quality of 

service; Jaya algorithm; optimization 

I. INTRODUCTION 

The Internet of Things (IoT) is a transformational paradigm 
connecting diverse devices through a harmonious and 
interoperable structure [1]. This would enable cooperation 
among many smart devices to deliver innovative services, 
including those within the domains of healthcare and smart 
cities, as well as industrial automation [2]. With the fast 
proliferation of these connected gadgets, IoT holds promise for 
an array of applications driven by the urge for sufficient 
communication and function [3]. However, device 
functionalities are highly diverse and limited by resource 
constraints such as battery life and processing capacity [4]. In 
this respect, integrating services from heterogeneous IoT 
devices into composite applications is essential for seamless 
service delivery while meeting user needs efficiently within set 
energy and resource constraints [5]. In addition, constitutive 
models for the simulation of weak rock masses can be applied 
to obtain insights into resource optimization and structural 
robustness in IoT-driven systems involving infrastructure and 
industrial automation [6]. 

In IoT environments, most individual atomic services are 
not competent at delivering complex user requirements 
independently [7]. Thus, combining atomic services with 
varying Quality of Service (QoS) attributes or characteristics 
like cost, reliability, and scalability leads to composite services 
[8]. The fulfillment of composite services depends on Service-
Oriented Computing (SOC) principles, allowing the 

composition of services into workflows that match a wide range 
of applications [9]. Indeed, this involves selecting an optimum 
from many service candidates considering constraints related to 
energy consumption, which are constantly changing with ever-
changing user preferences and dynamic network conditions. 
With such enlargement and complications in IoT systems, 
guaranteeing service quality and dependability is challenging. 

As a matter of fact, QoS-aware Service Composition (QoS-
SC) involves selecting the best services from a vast pool of 
candidates while optimizing conflicting QoS criteria such as 
execution time, cost, and reliability [10]. The problem is 
compounded by its combinatorial nature, which makes it NP-
hard [11]. Traditional metaheuristic methods often struggle 
with local optima stagnation and slow convergence, limiting 
their ability to address large-scale, dynamic IoT environments 
efficiently. To overcome these challenges, this study proposes 
an enhanced Jaya algorithm designed explicitly for QoS-SC in 
IoT. The algorithm balances exploration and exploitation by 
incorporating adaptive mechanisms and a stagnation-recovery 
strategy, improving convergence speed and solution quality. It 
also adapts to varying workflows, including sequential, parallel, 
and loop-based structures, to effectively model diverse IoT 
scenarios. 

The contributions of this work are fourfold: (1) introducing 
an enhanced Jaya algorithm with adaptive mechanisms for 
QoS-SC, (2) developing a stagnation-recovery technique to 
overcome local optima, (3) evaluating the algorithm’s 
performance against state-of-the-art methods across diverse IoT 
scenarios, and (4) demonstrating the scalability and 
computational efficiency of the proposed approach. This study 
presents a robust approach for optimizing service composition 
in dynamic IoT ecosystems. 

The remainder of this paper is structured in the following 
way. Section II summarizes related research on QoS-aware 
service composition and optimization methods. The problem is 
formulated in Section III. Section IV describes the proposed 
algorithm in detail. Section V presents the experimental setup, 
outcomes, and comparisons with existing methodologies. 
Finally, Section VI summarizes the main conclusions and 
recommendations for further study. 

II. RELATED WORK 

The solutions to QoS-SC have been addressed in many 
research works by applying different optimization methods. For 
example, Sefati and Navimipour [12] presented a hybrid 
method using Hidden Markov Models (HMM) and Ant Colony 
Optimization (ACO) to address partial challenges in the 
composition of IoT services. HMM predicts QoS attributes by 
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learning the optimal emission and transition matrices via the 
Viterbi algorithm, while ACO estimates QoS to find the best 
service paths. 

Vakili, et al. [13] proposed a service composition strategy 
based on the Grey Wolf Optimization (GWO) algorithm under 
the MapReduce methodology. This significantly improves cost, 
availability, and response time QoS attributes when discovering 
an optimal set of atomic services. In the end, the simulation 
results reduce cost and response time and improve the amount 
of energy saved regarding availability. 

Asghari, et al. [14] propose a hybrid evolutionary algorithm 
(SFLA-GA) for privacy-preserving cloud service composition. 
A computational scheme selects the optimal QoS aggregation 
selection, while services are categorized according to their 
privacy level. Results indicated better fitness values and service 
selection compared to the existing algorithms. 

Xiao [15] presented a service composition method 
leveraging cloud and fog computing and an improved Artificial 
Bee Colony (ABC) algorithm. The approach introduced a 
scheme for Dynamic Reduction to enhance convergence and 
balance exploration and diversification. Evaluations show 
reduced energy consumption compared to traditional 
algorithms and increased reliability and, thus, cost 
optimization. 

Rajendran, et al. [16] proposed an enhanced eagle strategy 
algorithm for large-scale Dynamic Web Service Composition 
(DWSC) in cloud-based IoT environments, bio-inspired and 
much more computationally efficient with huge repository 
challenges. Therefore, the computation time would be faster 
and the QoS metrics much improved. 

Tang, et al. [17] suggested an Improved Shuffled Frog 
Leaping Algorithm (ISFLA) using chaos and reverse learning 
theories to enhance population initialization and diversity. This 
technique used Gaussian mutation and a local update method to 
find the optimum IoT service composition. The simulation 
shows superior fitness values, quicker convergence, and better 
solution quality than SFLA and related techniques. 

Ait Hacène Ouhadda, et al. [18] presented the Discrete 
Adaptive Lion Optimization Algorithm (DALOA), which is 
empowered by operators of exploration-exploitation strategies: 
roaming, mating, and migration. The approach divided the 
population into two groups: pride and nomads, to balance 
diversity with efficiency. These results indicated that DALOA 
provided near-optimal solutions within acceptable execution 
times and that this method outperformed the rest of the analyzed 
algorithms. 

As highlighted in Table I, existing IoT service composition 
solutions still have a few highly valued shortcomings that can 
be improved in dynamic/large-scale environments. Most 
current solutions focus on optimizing single QoS attributes, 
such as response time or cost, in a non-holistic manner. 
Scalability remains a persistent problem, especially in methods 
like HMM-ACO and the Improved Eagle Strategy, when 
dealing with large-scale IoT repositories. Balancing exploration 
and exploitation is a core limitation in approaches such as 

SFLA-GA and ISFLA; this often leads to convergence at 
premature stages or very suboptimal solutions. Most algorithms 
have underexplored privacy concerns, addressed in only a few 
methods, such as SFLA-GA. To address these lacunae, the 
current paper proposes an improved variant of the Jaya 
algorithm with an adaptive mechanism and stagnation-recovery 
strategy. This approach will maintain an equilibrium between 
exploration and exploitation while guaranteeing scalability, 
accelerated convergence, and holistic QoS optimization, 
considering dynamic repository updates and privacy issues. 

III. PROBLEM DESCRIPTION 

QoS-SC in IoT concerns integrating abstract services 
provided by different providers into workflows to fulfill users' 
needs. Workflow are series of expert-level services that are 
needed for task execution. Typical applications of such 
workflows in smart city contexts are journey-planning 
applications, whereby different sub-services, including booking 
transportation, route planning, and even some payment 
systems, are all composed into one integrated single service. In 
general, selecting a concrete option with many sub-services and 
various QoS attributes will be complex and dynamic. The 
process of QoS-SC is shown in Fig. 1. 

TABLE I. PREVIOUS IOT SERVICE COMPOSITION METHODS 

Study Main contribution 
Shortcomings addressed 

in our study 

HMM-ACO 

[12] 

Combined HMM for QoS 

prediction and ACO for 

optimal pathfinding, 
improving QoS metrics 

like availability and cost. 

Lack of dynamic adaptation 

and scalability to large-

scale IoT repositories, 
addressed by integrating 

adaptive mechanisms. 

GWO with 
MapReduce 

[13] 

Integrated GWO with 

MapReduce to optimize 

QoS attributes like energy, 
cost, and response time. 

Narrow focus on specific 
QoS attributes; our study 

proposes a holistic QoS 

optimization framework 
considering diverse 

attributes. 

SFLA-GA 

[14] 

Proposed a hybrid 

privacy-aware service 
composition using SFLA 

and GA, optimizing QoS 

while addressing privacy. 

Insufficient balance 
between exploration and 

exploitation; our method 

enhances this balance for 
better convergence and 

solutions. 

Enhanced 

ABC with fog 
and cloud [15] 

Leveraged cloud and fog 

computing with ABC and 

dynamic reduction for 
improved convergence 

and energy efficiency. 

Limited adaptability to 

dynamic IoT environments; 

our study integrates real-
time optimization 

mechanisms. 

Improved 

eagle strategy 

[16] 

Addressed large-scale 
DWSC with a bio-inspired 

algorithm, improving 

computation time and QoS 
metrics. 

Ineffective for handling 
real-time service updates; 

our algorithm ensures 

scalability and adaptability 
to dynamic conditions. 

ISFLA [17] 

Enhanced SFLA with 

chaos theory and reverse 
learning for better 

population diversity and 

fitness. 

High computational 

complexity for large IoT 
networks; our approach 

improves efficiency while 

maintaining scalability. 

DALOA [18] 

Introduced DALOA with 
strong exploration and 

exploitation balance using 

sub-population strategies. 

Longer execution time for 

large-scale repositories; our 

study emphasizes faster 
convergence and scalability 

in diverse scenarios. 
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Fig. 1. An overview of QoS-SC process.

This inherent complexity naturally arises from the fact that 
functionally equivalent services feature distinct QoS metrics, 
namely response time, cost, and reliability. To handle this, IoT 
service composition is made up of five layers: a perception 
layer responsible for sensing; a network layer transferring 
services to the cloud; a cloud layer providing service databases; 
a composition layer that selects and composes services; and an 
application layer that enables users to interact. These layers 
have similarities to the structure of ISO network layers.  

QoS evaluation is an indispensable process in service 
selection and composition in IoT environments, relying on 
seven key characteristics representative of various performance 
metrics and user requirements: 

 Execution time: The time that elapses between a user 
request and the system's response. The shorter the 
execution time, the better the performance. 

 Reliability: The ratio of completed service requests to 
the total number of requests, reflecting the dependability 
of the service. 

 Execution cost: Represents the cost of utilizing a 
service. Lower costs are preferred. 

 Availability: This gives the percentage of time a service 
continues to be operational and available over a given 
period. 

 Scalability: The service's ability to adapt and function 
efficiently under changing demands or conditions. 

 Reputation: A trust metric derived from user feedback; 
it can fall into the "very high," "high," "normal," "poor," 
or "very poor" categories. 

 Response time: The time interval between a user’s 
inquiry and the system’s delivery of the requested 
service. 

These attributes can be classified into two categories: cost 
indicators, where lower values are preferred, such as cost and 
execution time, and benefit indicators, where higher values are 
desired, including reliability and availability. Normalization 
ensures consistent evaluation. Raw QoS values are adjusted 
based on their minimum and maximum possible values. For 
cost-related QoS attributes (𝑐𝑖), the normalization can be 
represented as by Eq. (1). 

𝑁(𝑐𝑖) = {

𝑚𝑎𝑥(𝐶)−𝐶(𝑐𝑖)

𝑚𝑎𝑥(𝐶)−𝑚𝑖𝑛(𝐶)
,    𝑖𝑓 𝑚𝑎𝑥(𝐶) ≠ 𝑚𝑖𝑛(𝐶)

1,                                𝑖𝑓 𝑚𝑎𝑥(𝐶) = 𝑚𝑖𝑛(𝐶)
       (1) 

Where 𝐶(𝑐𝑖) stands for the current cost value for the 𝑖th QoS 
attribute, max(𝐶) refers to the maximum cost value across all 
QoS attributes, and min(𝐶) denotes the minimum cost value 
across all QoS attributes. For benefit-related QoS attributes (𝑏𝑖), 
the normalization can be expressed using Eq. (2). 

𝑁(𝑏𝑖) = {

𝐵(𝑏𝑖)−𝑚𝑖𝑛(𝐵)

𝑚𝑎𝑥(𝐵)−𝑚𝑖𝑛(𝐵)
,    𝑖𝑓 𝑚𝑎𝑥(𝐵) ≠ 𝑚𝑖𝑛(𝐵)

1,                                𝑖𝑓 𝑚𝑎𝑥(𝐵) = 𝑚𝑖𝑛(𝐵)
     (2) 

Where (𝑏𝑖) specifies the current benefit value for the 𝑖th QoS 
attribute. max(𝐵) and min(𝐵) refer to maximum and minimum 
benefit value across all QoS attributes, respectively. Eq. (3) 
computes the fitness value for service composition by 
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weighting these normalized QoS values according to user 
preferences (𝑤𝑖). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ 𝑤𝑖 . 𝑁(𝑞𝑖)𝑟
𝑖=1                            (3) 

Where 𝑁(𝑞𝑖) refers to the normalized value of the 𝑖th QoS 
attribute (either cost or benefit) and r represents the total 
number of QoS factors considered. 

Service composition workflows describe how atomic 
services are arranged to form composite services. These 
workflows can significantly affect the aggregated QoS values. 
As shown in Fig. 2, the most common types are: 

 Sequential workflow: Services are executed one after the 
other in a sequence. QoS attributes like response time are 
typically aggregated using summation. 

 Loop workflow: Services are repeated multiple times, 
with QoS attributes like response time multiplied by the 
number of iterations. 

 Parallel workflow: Multiple services are executed 
simultaneously, with QoS attributes such as reliability 
aggregated using the maximum value. 

 Switch workflow: Represents conditional execution paths 
where only one of the services is selected based on certain 
conditions.

 

Fig. 2. Different workflow patterns for service composition: (a) Sequential, (b) Loop, (c) Parallel, and (d) Conditional (Switch).

The aggregation functions for different QoS attributes vary 
by workflow type, as summarized in Table II, where 𝐿 refers to 
the number of iterations in a loop, and 𝑡𝑟,𝑖,𝑗, 𝑐𝑟,𝑖,𝑗, 𝑎𝑟,𝑖,𝑗, 𝑟𝑟,𝑖,𝑗 

correspond to response time, execution cost, availability, and 
reliability, respectively, for the 𝑖th task and 𝑗th candidate service. 

TABLE II. AGGREGATION FUNCTIONS FOR QOS ATTRIBUTES 

Quality indicator Loop Parallel Switch Sequential 

Reliability 𝑟𝑟,𝑖,𝑗
𝐿  𝑚𝑎𝑥 𝑟𝑟,𝑖,𝑗 ∏ 𝑟𝑟,𝑖,𝑗 ∏ 𝑟𝑟,𝑖,𝑗 

Availability 𝛼𝑟,𝑖,𝑗
𝐿  𝑚𝑎𝑥 𝛼𝑟,𝑖,𝑗 ∏ 𝛼𝑟,𝑖,𝑗 ∏ 𝛼𝑟,𝑖,𝑗 

Execution time 𝐿. 𝑐𝑟,𝑖,𝑗 𝑚𝑖𝑛 𝑐𝑟,𝑖,𝑗 ∑ 𝑐𝑟,𝑖,𝑗  ∑ 𝑐𝑟,𝑖,𝑗  

Response time 𝐿. 𝑡𝑟,𝑖,𝑗 𝑚𝑖𝑛 𝑡𝑟,𝑖,𝑗 ∑ 𝑡𝑟,𝑖,𝑗 ∑ 𝑡𝑟,𝑖,𝑗 

IV. ENHANCED JAYA ALGORITHM 

The Enhanced Jaya Algorithm (EJAYA) was developed to 
address significant deficiencies in the traditional Jaya 
algorithm. Despite many applications to various optimization 
problems, Jaya's potential drawbacks include the possibility of 
convergence to a premature optimal solution due to its 
dependence on the information of the local optimum with 
reduced diversity while exploring the solution space for an 
appropriate solution [19]. These challenges could be overcome 
by EJAYA through several strategies directed toward local 
improvement of intensification and global improvement of 
exploration, ensuring an improvement by a factor greater than 
overall search efficiency and robustness. Such improvements 
seek to provide more enhanced balancing between 
diversification-segregated searching across extensive areas 
over the solution space and intensified structuring down into 

up-coming regions. The traditional Jaya algorithm updates the 
position of a solution (𝑥𝑖) within a population (𝑁) using Eq. (4). 

𝑣𝑖 = 𝑥𝑖 + λ1(𝑥Best − |𝑥𝑖|) − λ2(𝑥Worst − |𝑥𝑖|),  𝑖 =
1,2, … , 𝑁                          (4) 

Where 𝑥Best and 𝑥Worst are the best and worst solutions in the 
current population, 𝜆1 and 𝜆2 are random numbers in the range 
[0,1], and 𝑣𝑖 is the updated solution.  

The decision to retain or discard the updated solution is 
based on its fitness value calculated by Eq. (5). 

𝑥𝑖 = {
𝑣𝑖 ,     𝑖𝑓 𝑓(𝑣𝑖) ≤ 𝑓(𝑥𝑖)

𝑥𝑖 ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
                   (5) 

This update process is straightforward but can lead to 
reduced population diversity, particularly in later iterations, 
when solutions begin to converge near the global best. The 
limitations of the basic Jaya algorithm include: 

 Local optima stagnation: As the algorithm heavily relies 
on 𝑥𝐵𝑒𝑠𝑡   and 𝑥𝑤𝑜𝑟𝑠𝑡 , the population may become 
trapped in local optima, reducing the probability of 
finding the global optimum. 

 Reduced diversity: The absolute value symbol in the 
update equation contributes to a loss of diversity, 
making it challenging to explore new regions in the 
solution space effectively. 

 Imbalance of exploration and exploitation: Basic Jaya 
lacks mechanisms to dynamically balance the search 
space exploration and the refinement of promising 
solutions. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

752 | P a g e  

www.ijacsa.thesai.org 

To address these challenges, EJAYA introduces advanced 
strategies for local exploitation and global exploration, 
significantly improving its performance on complex 
optimization problems. Original JAYA locally updates the 
solutions by considering an upper attract point, 𝑃𝑢, and a lower 
attract point, 𝑃𝑙, so that the solution is attracted to more 
promising areas of the feasible solution space: 

Upper attract point Eq. (6): 

𝑃𝑢 = λ3 ⋅ 𝑥Best + (1 − λ3) ⋅ 𝑀                   (6) 

Where 𝑀 is the mean solution of the current population 
calculated using Eq. (7). 

𝑀 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                                 (7) 

Lower attract point (Eq. 8): 

𝑃𝑙 = λ4 ⋅ 𝑥Worst + (1 − λ4) ⋅ 𝑀                    (8) 

These attract points provide additional flexibility, allowing 
solutions to gravitate toward the best and worst solutions while 
maintaining a strong connection to the mean of the population. 
This mechanism reduces premature convergence and improves 
diversity. The updated solution is calculated using Eq. (9): 

𝑣𝑖 = 𝑥𝑖 + λ5(𝑃𝑢 − 𝑥𝑖) − λ6(𝑃𝑙 − 𝑥𝑖),  𝑖 = 1,2, … , 𝑁   (9) 

Where 𝜆5 and 𝜆6 are random numbers in the range [0,1]. 

To enhance exploration, EJAYA incorporates a historical 
population (𝑋old) and a switch probability (𝑃switch), ensuring 
greater diversity and escaping local optima: 

Historical population: The historical population is generated 
using Eq. 10. 

𝑋𝑜𝑙𝑑 = {
𝑋,                          𝑖𝑓 𝑃𝑠𝑤𝑖𝑡𝑐ℎ ≤ 0.5   

𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑋),    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            
      (10) 

Where 𝑝𝑒𝑟𝑚𝑢𝑡𝑒 (𝑋) represents a random reordering of the 
population, introducing randomness and diversity. 

Global exploration update: The solution is updated using 
Eq. (11). 

𝑣𝑖 = 𝑥𝑖 + κ(𝑥old,𝑖 − 𝑥𝑖),  𝑖 = 1,2, … , 𝑁         (11) 

Where 𝜅 is a random number sampled from a standard 
normal distribution. This process assures that the algorithm 
investigates unexplored areas in the solution space. Fig. 3 
illustrates the pseudocode of EJAYA.

 
Fig. 3. The pseudocode of EJAYA.

V. EXPERIMENTAL RESULTS 

The proposed EJAYA was evaluated for IoT service 
selection and composition using real datasets, containing 25 
scenarios. Each dataset contained about 2500 real tasks, 
characterized by criteria such as cost, response time, 
availability, and dependability. In generating these scenarios, 
different numbers of abstract tasks n and concrete services m 

for each abstract task were considered. The experiment 
analyzed the effectiveness of EJAYA in comparison with five 
algorithms: ABC, Particle Swarm Optimization (PSO), 
Discrete Dragonfly Algorithm (DDA), Genetic Algorithm 
(GA), and Ant Colony Optimization (ACO). 

The computation environment used was on a Windows OS 
system with Intel Core i5 at 3.2 GHz, with 16 GB RAM. All 
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algorithms were implemented in MATLAB version 2020a. 
Each algorithm has been executed with a population size of 30 
and for 30 runs, up to a maximum number of 1000 iterations for 
each execution. The performance of EJAYA was evaluated 
based on QoS fitness value that measures the QoS selection 
based on weighted QoS attribute; execution time, the time taken 
to converge to an optimal solution; and convergence rate, the 
ability of the algorithm to escape local optima and achieve 
better solutions over iterations. 

EJAYA consistently outperformed all other algorithms 
across all scenarios. For example, as shown in Fig. 4, when the 
number of tasks varied from 10 to 100 and the number of 
concrete services ranged from 10 to 100, EJAYA achieved 
higher fitness values than other algorithms. Also, with a fixed 
n=20 and m ranging from 200 to 1000, EJAYA maintained 
superior performance, as illustrated in Fig. 5.

 

Fig. 4. Fitness values for algorithms (Scenario 1). 

 

Fig. 5. Fitness values for algorithms (Scenario 2).
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Fig. 6 shows the convergence curves, where EJAYA never 
got stuck and thus escaped from the local optima, where other 
algorithms were not capable of improving their solution after a 
number of iterations. EJAYA illustrated a gradually increasing 
trend over iterations in fitness values which describes that 
superior solutions are more quickly obtained. 

Fig. 7 compares the execution time of EJAYA with those of 
other algorithms for an increasing number of concrete services 
when n=20. Note that EJAYA showed competitive 
computational efficiency, while its execution times were below 
those of most algorithms. For instance, for m=1000, its 
execution time in EJAYA was about 1.65 s, much faster 
compared to the other algorithms. 

 

Fig. 6. Convergence curves. 

 

Fig. 7. Execution time comparison.

The experimental observations reveal that EJAYA 
outperforms most QoS-SC scenarios, indicating its strength in 
IoT environments. Compared to its competitors, EJAYA 
consistently delivers higher QoS fitness values, suggesting it 
can optimize service composition effectively. This is due to the 
adaptive mechanisms and stagnation recovery strategies of 
EJAYA, enabling it to escape local optimum and converge on 
better solutions. For example, in scenarios involving different 
numbers of tasks and concrete services, EJAYA reached higher 
fitness values, proving it is more scalable and flexible for 
different IoT settings. The above results confirm findings from 

recent related work, which establishes the importance of 
adaptability and convergence in dynamic optimization 
problems, further asserting EJAYA's relevance as one of the 
methods for QoS-SC. 

Most importantly, computational efficiency establishes the 
applicability of EJAYA in real-world applications. It provides 
faster convergence times, especially for large datasets, making 
it superior to other algorithms in terms of execution speed. This 
is consistent with the literature that suggests execution time is 
one of the most critical considerations in dynamic IoT 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

755 | P a g e  

www.ijacsa.thesai.org 

environments wherein the process of service composition 
should be executed fairly quickly. In addition, convergence 
curves illustrate that EJAYA improves performance steadily in 
each iteration and, therefore, avoids stagnation and achieves the 
best solutions. These results validate the design objectives of 
the algorithm and highlight its potential contributions to the 
area of QoS-aware service composition in IoT ecosystems. 

VI. CONCLUSION 

In this paper, we proposed the EJAYA, a robust 
optimization for QoS-SC in IoT environments. EJAYA has 
been developed to incorporate an advanced local exploitation 
strategy and a global exploration strategy to overcome some 
major drawbacks of the original Jaya algorithm, such as local 
optima susceptibility and reduced diversity. The algorithm 
employed upper and lower attract points, enhancing local 
search using historical populations for better global exploration. 
It was balanced between exploration and exploitation. The 
experimental outcomes proved that EJAYA outperformed the 
existing optimization algorithms, such as ACO, GA, DDA, 
PSO, and ABC. EJAYA achieved the highest QoS fitness 
values for all the tested datasets, escaped stagnation, and 
remained competitive in execution time. These results verify 
the efficiency of EJAYA in dealing with the complexities of 
large-scale service composition problems and obtaining 
optimal solutions with improved performance stability. EJAYA 
will be extended in the future for resource allocation problems 
in both edge and fog computing environments while 
incorporating dynamic scenarios to meet IoT real-time 
requirements. Besides, integrating machine learning techniques 
for further optimization and adaptability might result in a more 
solidification of the algorithm in the performance of highly 
dynamic IoT ecosystems. 
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