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Abstract—Cardiovascular disease is a critical threat to human 

health, as most death cases are due to heart disease. Although 

several doctors employ stethoscopes to auscultate heart sounds to 

detect abnormalities, the accuracy of the approach is 

considerably dependent upon the experience and skills of the 

physician. Consequently, optimal methods are required to 

analyse and classify heart sounds with Phonocardiogram (PCG) 

signal-based machine learning methods. The current study 

formulated a binary classification model by subjecting PCG 

signals to hyper-filtering with low-pass and cosine filters. 

Subsequently, numerous features are extracted with the Wavelet 

Scattering Transform (WST) method. During the feature 

selection stage, several metaheuristic methods, including Harris 

Hawks Optimisation (HHO), Dragonfly Algorithm (DA), Grey 

Wolf Optimiser (GWO), Salp Swarm Algorithm (SSA), and 

Whale Optimisation Algorithm (WOA), are employed to 

compare the attributes separately and determine the ideal 

characteristics for improved classification accuracy. Finally, the 

selected features were applied as input for the Bidirectional Long 

Short-Term Memory (Bi-LSTM) algorithm, simplifying the 

classification process for distinguishing normal and abnormal 

heart sounds. The present study assessed three PCG datasets: 

PhysioNet 2016, Yaseen Khan 2018, and PhysioNet 2022, 

documenting 94.85%, 100%, and 66.87% accuracy rates with 

127-SSA, 168-HHO, and 163-HHO, respectively. Based on the 

results of the PhysioNet 2016 and 2022 datasets, the proposed 

method with hyperparameters demonstrated superior 

performance to those with default parameters in categorising 

normal and abnormal heart sounds appropriately. 
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I. INTRODUCTION 

Diagnosis with heart sounds has drawn much attention in 
the biomedical research area because of the crucial nature of 
the heart and the high mortality rates associated with 
cardiovascular diseases. Heart sounds are the mechanical 
activities of the heart, which vary according to pathological 
conditions affecting it [1]. Currently, the two major expensive 
technologies for detecting heart diseases are echocardiography 
and cardiac Magnetic Resonance Imaging (MRI) [2]. 
Auscultation is a basic diagnostic technique commonly used to 
assess heart function and quality [3]. It involves the listening of 

heart sounds directly by placing a stethoscope at various points 
in the chest. Nonetheless, it is subjective and highly dependent 
on the acuteness of hearing and experience of the physician. 
Therefore, there is a need to develop a system that can 
objectively process heart sounds, enabling faster and more 
accurate diagnoses. 

There are two major sounds produced by a normally 
functioning heart. The first heart sound (S1) and the second 
heart sound (S2). Closing of the mitral and tricuspid valves 
causes the first sound, S1, while the second sound, S2, is a 
result of the aortic and pulmonary valves closing at the end of 
the systolic phase. Sound identification can be one essential 
part of the heart disease diagnosis since the nature and other 
characteristics of the heart murmurs can vary from one to 
another as per concise disease conditions. In most instances, 
differences in heart sound patterns between healthy and 
unhealthy states are distinguished on the basis of changes in 
intensity, timing, location, etc., among other factors [4]. 

Several researchers have worked on the study and 
categorisation of Phonocardiogram (PCG) signals using 
various machine learning techniques [5]; particularly, two main 
areas have been focused on: Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs) [6], [7]. 
However, these studies often require extraction of a wide array 
of features, which can complicate the training phase when 
dealing with heart sound signals. Also, these studies involve 
issues of existing noise in PCG signals and imbalanced 
datasets, leading to the extraction of unnecessary features [8]. 
Therefore, the contribution of this study is as follows: 

 To introduce low-pass and cosine hyper-filters during 
preprocessing to reduce background noise from PCG 
signals. 

 To extract various features from the PCG signals with 
Wavelet Scattering Transform (WST). 

 To develop metaheuristic methods with 
hyperparameters to select optimal features for refined 
features from an initial set of features, therefore 
reducing computational complexity and improving 
classification performance by diminishing the search 
space. 

 To execute high-performance heart sound classification 
with the Bidirectional Long Short-Term Memory (Bi-
LSTM) classifier. 
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Section II of this study discusses related articles on heart 
sound classification. Details on the WST characteristics, the 
proposed methodology with several metaheuristic methods, 
and the Bi-LSTM algorithm are included in Section III. In 
Section IV, the results, including the dataset employed for 
comparison with existing literature, are discussed. The 
conclusions of this study are mentioned in Section V. 
Recommendations for future research are also included. 

II. RELEVANT WORK 

In the biomedical field, several techniques have been 
proposed to classify normal and abnormal heart sounds, 
emphasising Phonocardiogram (PCG) signal processing. 
Generally, the signals are preprocessed to filter out extraneous 
high-frequency noises. Subsequently, characteristic features are 
extracted and utilised as input data to construct or develop 
mathematical models intended for diagnosing heart conditions 
[8], [9]. 

Preprocessing is fundamental in PCG categorisation. The 
step involves three primary tasks: baseline wander removal, 
background noise reduction, and normalisation. Baseline 
wander is a common issue in low-frequency PCG recordings. 
This issue shifts the baseline reference level, which hinders 
accurate signal property extraction [10], [11]. Background 
noise is prevalent in high-frequency PCG recordings [12] and 
can degrade signal quality. Normalisation scales sample values 
in the dataset to a standard range (typically 0-1 or -1 to 1), 
ensuring that amplitude discrepancies do not distort feature 
extraction and classification processes [13]. This 
standardisation prevents bias in the model due to variations in 
recording amplitudes [14]. 

Potes et al. [15] classified heart sound recordings from the 
PhysioNet Challenge 2016 into normal and abnormal classes 
with an ensemble classifier. The report applied the Butterworth 
bandpass filter and extracted 124 features from PCG signals 
with Mel Frequency Cepstral Coefficients (MFCCs). The 
approach achieved an 86.02% accuracy rate without employing 
any feature reduction technique. The study also achieved first 
place in the PhysioNet Challenge 2016. 

In 2017, Kay and Agarwal [16] applied a hidden semi-
Markov model for segmentation before extracting temporal and 
spectral features utilising continuous WST and MFCCs from 
the PhysioNet Challenge 2016 dataset. Subsequently, Principal 
Component Analysis (PCA) was employed to reduce data 
dimensionality. Finally, the information was fed into an 
Artificial Neural Network (ANN), yielding an 85.2% accuracy. 
In another study, Bao et al. revealed that the Bi-LSTM 
classifier performed better than CNN on an identical dataset. 
Accuracy, sensitivity, and specificity rates of 92.64%, 84.77%, 
and 95.14%, respectively, were noted [17]. 

Li et al. [18] utilised the Twin SVM (TWSVM) classifier to 
compare the performance of multi-dimensional scaling and 
PCA for feature selection on the PhysioNet Challenge 2016 
dataset. The Multi-Dimensional Scaling (MDS) outperformed 
PCA with 98.58%, 98.58%, 98.57%, and 99% in respective 
accuracy, sensitivity, specificity, and F1 score. Meanwhile, 
Alshamma et al. (2019) applied a high-pass filter on each PCG 
signal before employing a normalisation method based on zero 

mean and standard deviation. Subsequently, different K-
Nearest Neighbours (KNN) and Support Vector Machines 
(SVM) classifiers were compared with the PhysioNet 
Challenge 2016 dataset. The fine-KNN classifier documented 
interesting results with a 93.5% accuracy [11]. 

In 2020, Singh and Majumder obtained short and non-
segmented signals from the PhysioNet Challenge 2016 dataset. 
High noise frequencies were filtered with the Butterworth low-
pass filter before filtering 27 features with MFCCs. Post-
training with an ensemble classifier, the features recorded 
92.47% accuracy, 94.08% sensitivity, and 91.95% specificity 
[19]. 

An energy envelogram was employed to extract PCG 
signals from the PhysioNet Challenge 2016 dataset (Potdar, 
2021) [20]. The traits were procured with Discrete Wavelet 
Transform (DWT), selected utilising PCA, and fed into a fine-
tuned Bayesian-optimised SVM algorithm. On the other hand, 
Milani et al. (2021) applied Springer's segmentation algorithm 
to preprocess the PhysioNet Challenge 2016 dataset, extracting 
the attributes with MFCCs. Subsequently, Linear Discriminant 
Analysis (LDA) was applied to further diminish 
dimensionality. The ANN-based classification recorded a 
93.33% accuracy [12]. 

In 2022, Zhang et al. extracted numerous features in two-
dimensional convolution from the PhysioNet Challenge 2016 
dataset. Subsequently, the Particle Swarm Optimisation (PSO) 
was subjected to feature selection before being trained with the 
convolutional Bi-LSTM network. The report documented 
accuracy, sensitivity, and specificity of 91.93%, 91.58%, and 
92.27%, respectively [14]. 

A recent study [21] employed a VGG16 model during the 
spectrogram trait extraction of 1,330 PCG signals from the 
PhysioNet Challenge 2016 dataset, achieving an 88.84% 
accuracy. Nevertheless, the authors concluded that the 
accuracy level was insufficient for reliable patient diagnosis, 
requiring a more substantial and balanced dataset for 
performance enhancement. Although the original dataset was 
extensive, its imbalance might result in biased results. 
Consequently, implementing more sophisticated balancing 
techniques rather than simple down-sampling could improve 
the outcomes. Moreover, the report did not remove noise, a 
critical aspect of real-world PCG analysis. 

Son and Kwon (2018) [22] constructed the Yaseen Khan 
2018 dataset, consisting of 1,000 PCG signals. The report 
classified heart sounds via three algorithms: SVM, KNN, 
and Deep Neural Network (DNN). The MFCCs and DWT 
were also applied during feature extraction. The SVM 
exhibited the best performance, recording accuracy, 
sensitivity, and specificity of 97.9%, 98.2%, and 99.4%, 
respectively. 

Flores-Alonso et al. applied a smoothing filter, normalised, 
and segmented the noisy Yaseen Khan 2018 dataset. The report 
integrated features for classification utilising CNN and Multi-
Layer Perceptron (MLP), including MFCCs, DWT, and 
Continuous Wavelet Transform (CWT). The report recorded an 
accuracy of 99.8% [23]. In another study, [24] utilised 957 
PCG signals from an identical dataset. Nonetheless, the study 
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excluded samples under 2 s. Multiple features were extracted 
with MFCCs and DWT. The data obtained was then employed 
to train classification models with five machine learning 
algorithms: Random Forests (RF), KNN, SVM, Naive Bayes 
(NB), and MLP. A remarkably high accuracy of 99.89% in 
diagnosing normal and abnormal heart sounds with the RF 
algorithm was procured. 

McDonald et al. [25] focused on segmentation techniques 
in PCG signals, separating data into S1, S2, systole, and 
diastole. The study also applied hidden semi-Markov models to 
the PhysioNet Challenge 2022 dataset. Furthermore, a 
classification model was developed utilising a Bi-GRU 
algorithm. The 60.2% accuracy documented led the study to 
win the competition. Meanwhile, Singh et al. [26] applied Mel-
spectrograms to extract features from the same dataset. The 
extracted features were classified with the U-Net method. The 
report achieved 56.8%, 54.77%, 59.29%, and 58.33% 
accuracy, sensitivity, specificity, and F1 score, respectively. 

During the past five years, most research employed the 
Butterworth filter for background noise reduction [19], [27] 
and segmentation techniques [12], [20] for preprocessing. 
Nonetheless, segmenting non-linear PCG datasets remains 
challenging as it might lead to valuable information loss 
through abstract feature extractions [19], [28]. Moreover, a 
Wavelet Transform (WT) method has been broadly applied to 
extract PCG signal features. Nevertheless, the technique often 
extracts redundant traits, further degrading model performance 
[29], resulting in numerous research studies focusing on 
traditional feature extraction selection methods, such as LDA 
and PCA [12], [16]. The recent review by study [8] suggested 
using the WT method with metaheuristic methods for feature 
analysis from PCG signals, which allows the LSTM algorithm 
to generate the optimal model that can achieve a high 
classification accuracy. 

Based on the literature reviewed in this section, heart sound 
classification was performed through various approaches. An 
increasing interest in feature selection and optimisation 
techniques to improve classification accuracy has also been 
observed. Although substantial strides have been achieved, 
handling and minimising non-linear PCG dataset feature 
redundancies are still challenging. 

Consequently, advanced preprocessing and feature 
selection methodologies necessitate further exploration to 
improve the accuracy and reliability of heart sound 
classification systems. Preprocessing heart sounds to eliminate 
noise is a promising avenue for future studies. Furthermore, 
combining multiple extracted features into a single 
representation and training the model on the enriched data 
might yield superior results. 

III. PROPOSED METHODOLOGY 

The current study reduced PCG signal noise in the 
preprocessing with Butterworth and cosine filters. 
Subsequently, the signal attributes were automatically 
extracted utilising WST. The characteristics were optimally 
selected through several metaheuristic methods, including 
Harris Hawks Optimisation (HHO), Dragonfly Algorithm 
(DA), Grey Wolf Optimiser (GWO), Salp Swarm Algorithm 

(SSA), and Whale Optimisation Algorithm (WOA), 
contributing to feature selection. 

The results revealed that the proposed method could 
achieve excellent classification accuracy with a few feature 
sets. The suggested model also involved three processes: 
preprocessing, feature extraction and selection, and 
classification, as shown in Fig. 1. Each procedure is detailed in 
subsections A to D. 

 
Fig. 1. The general process diagram of the current study. 

A. Preprocessing of the PCG Signal 

The preprocessing phase is vital in improving 
Phonocardiogram (PCG) signal quality before extracting and 
classifying any features. The following lists the steps necessary 
during the procedure. 

1) Baseline wander removal: Baseline wander refers to 

low-frequency noise typically arising from respiratory 

movements or patient motion. The noises might distort PCG 

signals. Consequently, a high-pass Butterworth filter with a 

0.5 Hz cut-off frequency was employed to overcome the 

matter. The filter effectively attenuated frequencies 

associated with baseline drift. Moreover, heart sound signals 

predominantly detected between 20 and 150 Hz were 

preserved. The findings indicated that removing low-

frequency noise is critical to avoid interference during 

the feature extraction phase. 

2) Background noise removal: The PCG signals are 

susceptible to various noise sources, including ambient, 

lung, and muscle contraction sounds. Accordingly, this study 

applied a two-stage filtering process to enhance the Signal-

to-Noise Ratio (SNR). Firstly, a Butterworth low-pass filter 

at a 150 Hz cut-off frequency was employed to eliminate 

high-frequency noises. Subsequently, the Adaptive Noise 

Cancellation (ANC) utilised allowed noise component 

estimations within the PCG signal by referencing a separate 

noise signal and subtracting them from the PCG data. The 

two-phase approach effectively isolated relevant heart sound 

components from the background noise, facilitating accurate 

feature extraction and classification. 

3) Data normalisation: The PCG signal amplitudes vary 

significantly depending on the recording environment, 

device, and patient physiology. Consequently, this study 

employed data normalisation to address the issue. The 

procedure scaled signal amplitudes to a common range, 

typically between 0 and 1 or −1 and 1. The min-max 

normalisation in the present study was calculated according 

to following the equation. 

𝑥′ =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
 (1) 

Feature extraction 

and selection 
Preprocessing Classification 
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Where 𝑥′ refers to normalised PCG signals, 𝑥 denotes the 
original PCG signal, 𝑚𝑎𝑥(𝑥)  represents the maximum PCG 
value, and 𝑚𝑖𝑛(𝑥) is the minimum PCG value. 

B. Feature Extraction 

Feature extraction transforms preprocessed PCG signals 
into classification-appropriate representations. Various 
methods, including MFCCs, DWT, and WST, have been 
employed in previous studies. 

1) Mel-frequanct Cepstral Coefficient (MFCC): The 
MFCCs capture spectral PCG signal properties by emphasising 
perceptually relevant frequency bands. The process involves the 
following steps [19]: 

a) Framing - Dividing the filtered PCG signal into 

overlapping 5-s frames. 

b) Spectrum estimation - Calculating the amplitude 

spectrum of each frame. 

c) Windowing - Multiplying each frame by a Hamming 

window to reduce spectral leakage through signal end section 

attenuation to zero. 

d) Fourier transform - Applying the Fast Fourier 

Transform (FFT) to convert the time-domain signal into the 

frequency domain. 

e) Mel Filterbank - Passing the spectrum through a 

series of triangular bandpass filters spaced according to the 

Mel scale. 

f) Logarithm – Computing the Mel Filterbank output 

algorithm to mimic the human auditory system perception. 

g) Discrete Cosine Transform (DCT) – Applying the 

DCT to the log-filterbank outputs to decorrelate the 

coefficients. Resultantly, 27 MFCCs in the time-frequency 

domain for each PCG signal were obtained. Fig. 2 

demonstrates the MFCCs extraction phases, which were 

determined based on following the equation. 

 
Fig. 2. The MFCC method for feature extraction. 

𝑀𝐹𝐶𝐶𝑛 = ∑ 𝑙𝑜𝑔(𝑆𝑘)𝐾
𝑘=1 ⋅ 𝑐𝑜𝑠 (

𝜋𝑛(𝑘−0.5)

𝐾
)         (2) 

Where 𝑆𝑘 is the log power at each Mel frequency k, K refers 
to the total number of Mel frequency bands, and N denotes the 
number of MFCCs to retain. 

2) Discrete Wavelet Transform (DWT): The current 

study utilised DWT to analyse the non-stationary nature of 

the PCG signals by iteratively decomposing them into time-

frequency domains through wavelet filters [30]. The 

technique fuses low- and high-pass filters, providing 

approximation and detail coefficients from the PCG signal 

[31]. 

The DWT enables high-frequency energy in systolic and 
diastolic heart sound alteration representations [32]. The 
approach captures high-frequency components (details) and 
low-frequency components (approximations), crucial for 
detecting anomalies in heart sounds. Meanwhile, following the 

equation determines wavelet coefficients by projecting x(t) 
signals onto scaled and shifted wavelet ψ(t) function versions. 

𝐷𝑊𝑇(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)

∞

−∞
𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡               (3) 

Where 𝐷𝑊𝑇(𝑎, 𝑏)  represents the wavelet coefficient at 
scale a and position b, x(t) is the input signal, ψ∗ denotes the 
complex conjugate of the wavelet function ψ, a represents the 
scaling parameter, and b is the translation parameter. 

In this study, the approximation coefficient (c, 𝐴-𝑛.) and 
the detail coefficient (𝑐, 𝐷-𝑛.) of each level, n, was established 
with following the equation. The DWT applied in the present 
study had 15 decomposition levels for each cycle. The signal 
energy, entropy, and standard deviation were procured as 16-
time features, while the waveform length and wavelet variance 
estimates were obtained as 16-frequency features. 

𝐴 = 𝑐𝐴𝑛 ∑ 𝑐𝐷𝑛
𝑛
𝑘=0  (4) 

Where A represents the wavelet coefficient values, while n 
indicates the approximate level number. 

Utilising the DWT method, 80 features were extracted from 
the 15 approximation coefficients for each cycle per the 
guidelines outlined by [31]. The coefficients were calculated 
based on the Shannon energy. Fig. 3 represents a generalised 
flow of the wavelet decomposition from the PCG signal. 

 
Fig. 3. The wavelet decomposition from the PCG signal. 

3) Wavelet Scattering Transform (WST): The WST is an 

advanced technique that captures stable, hierarchical time-

frequency features from PCG signals. The method involves 

the following steps [18][33]: 

 Convolution of PCG signals with a wavelet family of 
varying scales. 

 The application of non-linear modulus operators to the 
convolved signals to obtain scattering coefficients. 

 The coefficients are averaged over time to produce the 
final scattering form, retaining translation-invariant and 
stable attributes. 

In WST, the x(t) signal is convolved with a wavelet 
function, ψ1, before being further convolved with additional 
wavelet functions, ψ2, …, ψJ. Eq. (5) is the mathematical 
representation of WST. The phase enables multi-scale and 
multi-resolution feature extractions as illustrated in Fig. 4. 

𝑆𝐽(𝑥(𝑡)) = |𝑥 ∗ 𝜓1| ∗ 𝜓2 ∗. . .∗ 𝜓𝐽                (5) 

Where 𝑆𝐽(𝑥(𝑡)) denotes the wavelet scattering coefficients 

at level 𝐽, 𝑥(𝑡) represents the input signal, and ψ1, ψ2, …, ψJ 
are the wavelet functions at different scales. 
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Fig. 4. The wavelet scattering transforms on PCG signal. 

C. Feature Selection 

Feature selection aims to eliminate duplicate or non-
informative features, which reduces the excess amount of input 
features, leading to achieving an optimal model. Hence, feature 
selection is critical in ensuring that only the most relevant 
information is passed to the classifier [8]. In the current study, 
five metaheuristic algorithms for feature selection were 
employed: HHO, DA, GWO, SSA, and WOA. 

1) Harris Hawks Optimisation (HHO): The HHO is a 

swarm intelligence algorithm published by [34] in 2019. The 

model was inspired by nature, mimicking the cooperative 

hunting strategy of Harris hawks. Balancing exploration and 

exploitation, the algorithm simulates different prey-hunting 

phases, such as surprise pounce and soft besiege. 

The current study employed HHO to determine the most 
suitable optimal features. The approach is characterised by 
rapid large solution space explorations with substantial 
accuracy and rapid convergence, maintaining exploration and 
exploitation equilibrium. Post-feature extraction, the initial 
parameters were applied to establish a random position for 
HHO within the search bounds. 

The HHO algorithm determines the best position for prey. 
The exploration phase is denoted by prey energy values over 1 
(E > 1), where HHO is still in the searching mode. Meanwhile, 
a slight energy drop below 1 (E < 1) denotes the model 
entering the exploitation stage. During the soft siege (E ≥ 0.5), 
HHO continually updates the position of the prey 
demonstrating energy to escape. Nevertheless, HHO dives 
around the target in a hard siege once the energy falls below 
0.5 with a significant escape probability. 

Features within the optimal range and low error rate are 
selected at each stage. During the final cycle, the selected PCG 
attributes are optimised and employed as input for the 
classification model. The HHO process [35] is illustrated in 
Fig. 5. 

The technique is particularly effective for selecting features 
from the WST as it efficiently handles the hierarchical and 
multi-scale data. Feature selection was calculated according to 
following the equation. 

𝑋(𝑡 + 1) =

{
𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1. |𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2. 𝑋(𝑡)|         𝐸 ≥ 0.5

𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋(𝑡) − 𝑟3. |𝑋𝑝𝑟𝑒𝑦(𝑡) − 𝑋(𝑡)|   𝐸 < 0.5
      (6) 

Where 𝑋(𝑡 + 1)  refers to the next position of the hawk, 
Xrand and Xprey represent random and prey positions, while r1, 
r2, and r3 are random numbers. 

2) Dragonfly Algorithm (DA): Introduced in 2016 by 

[36], DA is a metaheuristic optimisation algorithm based on 

the static and dynamic swarming behaviours of dragonflies. 

The model utilises five key factors: separation, alignment, 

cohesion, attraction to food, and distraction from enemies. 

 
Fig. 5. The HHO working principle. 

The DA defines a neighbourhood of radius r according to 
how it works. Neighbourhood sizes are scaled up based on a 
linear relation with the iteration counter during exploration to 
exploitation transitions. Consequently, static swarms are 
transformed into dynamic swarming. In the final optimisation 
stage, each dragonfly solution is joined to form an active 
unified swarm, which converges towards the best global 
solution at the end of the convergence [37], [38], [39]. The 
feature selection for the technique is represented by following 
the equation. The DA was also applied in this study during the 
feature selection stage (see Fig. 6). 

𝛥𝑋 = ∑ (𝑆𝑖 + 𝐴𝑖 + 𝐶𝑖 + 𝐹𝑖 + 𝐸𝑖)𝑁
𝑖=1               (7) 

Where 𝑆  is separation, 𝐴  denotes alignment, 𝐶  represents 
cohesion, 𝐹  is food attraction, and 𝐸  denotes enemy 
distraction. The working principle of DA. 

3) Gray Wolf Optimiser (GWO): Mirjalili et al. [40] 

proposed GWO, a swarm intelligence-based metaheuristic 

algorithm, in 2014. The algorithm was based on the grey 

wolf leadership hierarchy and hunting strategy. Based on the 

grey wolves hierarchical system [35], the alpha (α), or the 

most dominant wolf in the pack, leads the other wolves 

during food hunting and finding. During the absence of the 

alpha wolf, the beta (β) becomes the pack leader. In the 

hierarchy, the power levels of the delta (δ) and omega (ω) 

groups are significantly less apparent than their nearest rival 

(see Fig. 7). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

781 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 6. The working principle of DA. 

 
Fig. 7. The GWO hierarchical levels. 

The mechanism of the GWO algorithm in the sociological 
agenda is complex social intelligence. Grey wolves exhibit 
remarkable hunting strategies by chasing, encircling, and 
attacking their prey [41], [42], [43]. Successful pursuits lead 
them to the optimal solution through successive phases with 
distinctive efficiencies, encouraging others to adopt similar 
cooperative actions [35]. Fig. 8 outlines the GWO feature 
selection process, while the following equation was employed 
to determine feature selection. 

�⃗�(𝑡 + 1) =
�⃗⃗�𝛼+�⃗⃗�𝛽+�⃗⃗�𝛿

3
 (8) 

Where 𝑋(𝑡 + 1) refers to the next position of the wolf, and 

�⃗�𝛼 , �⃗�𝛽 , �⃗�𝛿  are the positions of the top three wolves. 

 
Fig. 8. The GWO working principle. 

4) Salp Swarm Algorithm (SSA): In 2017, SSA, a novel 
nature-inspired optimiser, was proposed by Mirjalili et al. 
[44]. The model mimics the collective behaviour of salps, 
which are marine wildlife. The SSA is versatile, efficient, 
straightforward, and applicable to parallel and serial modes. 
Furthermore, the algorithm has a single adaptively 
decreasing parameter, contributing to optimal diversification 
and intensification tendencies balancing. 

Salps move dynamically and update their positions through 
mutual interactions to avoid being trapped in local optima. The 
SSA behaviour is recognised by the salp chain algorithm, 
searching and selecting optimal food sources effectively. The 
swarm aims to identify and locate a specific food source within 
the search space. 

The salps in the SSA approach are categorised as either 
"leaders" or "followers" based on their position in the chain. 
Follower salps rely on the actions of their leader for guidance. 
The flowchart of the SSA processes is demonstrated in Fig. 9 
[45]. In this study, feature selection utilising SSA was 
established according to following the equation. 

𝑋𝑖,𝑗(𝑡 + 1) = {
𝑋𝑗(𝑡) + 𝑐1. (𝑈𝑗 − 𝐿𝑗) + 𝐿𝑗𝑖 = 1

𝑋𝑖,𝑗(𝑡)+𝑋𝑖−1,𝑗(𝑡)

2
 𝑖 > 1

        (9) 

Where 𝑋𝑗  is the food source in the 𝑗 dimension, 𝑈𝑗  and 𝐿𝑗 

refer to the upper and lower bounds of the 𝑗  dimension, 
respectively, and 𝑐1  denotes a random number. 
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Fig. 9. The working principle of SSA. 

5) Whale Optimisation Algorithm (WOA): The WOA 

algorithm was developed by Mirjalili and Lewis [46] in 

2016. The model was the first metaheuristic approach 

applicable to comprehensive optimisations. The WOA 

algorithm involves two primary phases based on the bubble-

net hunting strategy of humpback whales. 

Firstly, humpback whales hunt and encircle their prey. 
Similarly, the WOA algorithm assumes that the best solution is 
unknown, thus identifying the optimal candidate solution as the 
target prey or close to it. Subsequently, additional search 
agents adjust their positions to match the best search agent, 
shrinking the search space effectively. 

Fig. 10 depicts the second phase of the nut strategy, the 
bubble-net attacking stage. During the step, the whales reduce 
the predator chain around the prey and move in a spiral 
attacking pattern. Meanwhile, random humpback whales 
calculate new positions instead of relying solely on the globally 
best-known position in the update phase [47], [48]. Eq. (10) 
was employed to determine the feature selection in this study, 
and the selection process is illustrated in Fig. 11. 

�⃗�(𝑡 + 1) = {
𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡) − 𝐴. 𝐷                           𝑝 < 0.5

𝐷′. 𝑒𝑏𝑙. 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗ ⃗(𝑡)    𝑝 ≥ 0.5
     (10) 

 
Fig. 10. The WOA behaviour. 

 

Fig. 11. The working principle of WOA. 

Where X(t + 1) is the updated position of the whale, X∗(t) 
represents the position of the best solution (prey), A and D are 

coefficient vectors calculated as A = 2a⋅r−a and D =∣
C⋅X∗(t)−X(t)∣, D′=∣X∗(t)−X(t)∣ denotes the distance to 

the prey, p is a random number between 0 and 1 that 
determines the exploitation or exploration phase, b is attributed 
to a constant defining the shape of the logarithmic spiral, and l 
represents a random number between −1 and 1. 

D. Classification 

During the classification model design, the selected 
features were classified with a 17-layered Recurrent Neural 
Network (RNN), which included Bi-LSTM. The architecture 
was designed to capture dependencies in sequential heart sound 
data (past and future), enabling the model to differentiate 
normal and abnormal sounds with significant accuracy. 

 
Fig. 12. The Bi-LSTM block digram. 

The model design is illustrated in Fig. 12. The description 
of each layer in the proposed model is presented as follows: 

 The input layer receives selected features. 

 The input features were converted into dense vectors in 
the embedding layer. 

 Bi-LSTM Layer: Processes input in the forward and 
backward directions to capture temporal dependencies. 
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 The dropout layers were applied following the Bi-
LSTM and dense layers to prevent overfitting. 

 A total of 13 dense layers followed were included to 
transform the features. 

 A final dense layer, the output layer, contains softmax 
activation for normal or abnormal heart sound 
categorisation. 

 The forward and backward Bi-LSTM passes are 
presented by equations (11) and (12), respectively. This 
study utilised the Bi-LSTM layer model due to its 
bidirectional dependencies in PCG signals, essential for 
accurately categorising heart sounds. Its 17-layer 
structure also allows the model to learn complex 
patterns, improving classification performance. The 
proposed model architecture is illustrated in Fig. 13. 

ℎ⃗⃗𝑡 = 𝜎(𝑊ℎ. [ℎ⃗⃗𝑡−1, 𝑥𝑡] + 𝑏ℎ)                  (11) 

ℎ́𝑡 = 𝜎(𝑊ℎ. [ℎ́𝑡+1, 𝑥𝑡] + 𝑏ℎ)                 (12) 

Where ℎ⃗⃗𝑡 and ℎ́𝑡 represent hidden states in the forward and 
backward directions, respectively. 

 
Fig. 13. The Bi-LSTM-incorporated RNN architecture. 

IV. EXPERIMENTS AND RESULTS 

The dataset and evaluation criteria employed in this study 
are discussed in this section. The experiments were conducted 
according to the specified criteria, and the results obtained are 
also included. 

A. Dataset 

The current study explored three datasets commonly 
applied in related research: PhysioNet 2016 [49] and 2022 [50] 
and Yaseen Khan 2018 [22]. The PhysioNet 2016 dataset 
consists of 3,240 PCG signals from global volunteers. The 
duration of the heart sounds in the dataset ranged between 5 
and 120 sec (s) recorded at 2,000 Hz. Furthermore, the dataset 
includes normal and abnormal heart sounds. 

The Yaseen Khan 2018 dataset comprises 1,000 2-s PCG 
signals. The sounds were sampled at 8,000 Hz with binary and 
multi-class labels. The third dataset, PhysioNet 2022, contains 
3,163 PCG signals of 5 to 65 s recorded at 4,000 Hz. In this 
study, each dataset was split with the k-fold and stratified k-
fold (K = 5 and 10) Cross-Validation (CV) methods. 

B. Performance Evaluation Metrics 

The accuracy, sensitivity, specificity, and F1 score were the 
evaluation criteria of the proposed model. Each criterion was 
determined according to Eq. (13)–(16). Meanwhile, Fig. 14 
demonstrates the confusion matrix-based evaluation procedure 
applied in the present study [50].  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
                (13) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (14) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
         (15) 

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
              (16) 

 

Fig. 14. Evaluation measures using confusion matrix. 

C. Experimental Results 

A comprehensive explanation of the results is included in 
this section, documenting the performance of the proposed 
method. The suggested model was implemented with 
MATLAB 2023, while training and testing were conducted on 
a system equipped with an Intel Core i7 processor (2.6 GHz), 
32 GB RAM, and NVIDIA RTX 960M GPU (4 GB). 

During the initial experiments (baseline), 3,240, 1,000, and 
3,163 PCG signals from PhysioNet 2016, Yaseen Khan 2018, 
and PhysioNet Challenge 2022, respectively, were assessed. 
The datasets were split with hold-out CV, with 85% utilised as 
training, while 15% were employed during the testing stage. 

A 5-s time window applied on the PhysioNet 2016 dataset 
produced 10,000 samples at 2,000 Hz frequency, while the 
PhysioNet Challenge 2022 generated 20,000 records at 4 kHz. 
Meanwhile, 8,000 samples recorded at 8 kHz were procured 
from the Yaseen Khan 2018 with a 1-s interval. 

Several methods, including MFCC, DWT, and WST, were 
employed to extract raw features from each dataset at varying 
window sizes (5, 10, and 8 WS). The present study also utilised 
the Bi-LSTM algorithm with 17 layers for training, applying 
K-fold and stratified (S) K-fold (K = 5 and 10) CV approaches 
to mitigate data imbalance. Classification performance was 
then evaluated based on accuracy, sensitivity (Sen%), 
specificity (Spec%), and F1 score (F1%). Whereas, WL stands 
for window length, WS stands for window size, and L stands 
for the number of decomposition levels of DWT. 
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Table I summarises the time and frequency domains of the 
PCG signals acquired from the three datasets evaluated. The 
findings indicated that each dataset required separate training. 
The WST technique extracted numerous features from the PCG 
signals, achieving the highest baseline accuracy. Nonetheless, 
the accuracy of the model required improvement due to 

background noise in the PCG signals and irrelevant extracted 
features, which affect classification precision. Moreover, the 
stratified 10-fold CV recorded a notable accuracy rate when the 
datasets were individually assessed. Consequently, the 
approach was utilised in the proposed experiment, applying 
different window sizes for each dataset (see Table II). 

TABLE I.  THE BASELINE EXPERIMENTAL RESULTS FOR HEART SOUND ANALYSIS 

Dataset WL-feature extraction method CV Acc% Sen% Spe% F1% 

PhysioNet 2016, 
3,240 PCG signals 

5s-WL, 27-MFCC 

5-folds 84.74 60.90 92.53 66.29 

10-folds 88.29 67.90 94.95 74.07 

S-5-folds 89 76.33 93.14 77.37 

S-10-folds 87.32 68.72 93.40 72.76 

5s-10WS-
DWT 

265 (L52) 5-folds 91.09 72.18 95.74 76.19 

115 (L22) 10-folds 91.41 70.62 96.53 76.48 

75 (L14) S-5-folds 91.54 72.18 96.30 77.12 

80 (L15) S-10-folds 91.25 76.04 95.00 77.45 

5s-10WS 263-WST 

5-folds 92.48 75.93 96.56 79.97 

10-folds 91.76 71.14 96.84 77.34 

S-5-folds 92.53 75.10 96.82 79.88 

S-10-folds 92.69 74.79 97.10 80.17 

Yaseen Khan 2018, 
1,000 PCG signals 

1s-WL, 27-MFCC 

5-folds 99.66 100 97.61 99.80 

10-folds 99.66 99.61 100 99.80 

S-5-folds 99.66 99.61 100 99.80 

S-10-folds 99.66 99.61 100 99.80 

1s-8WS-
DWT 

30 (L5) 5-folds 100 100 100 100 

40 (L7) 10-folds 100 100 100 100 

45 (L8) S-5-folds 100 100 100 100 

30 (L5) S-10-folds 100 100 100 100 

1s-8WS 261-WST 

5-folds 99.91 99.90 100 99.95 

10-folds 99.91 99.90 100 99.95 

S-5-folds 100 100 100 100 

S-10-folds 100 100 100 100 

PhysioNet 2022, 
3,163 PCG signals 

5s-WL, 27-MFCC 

5-folds 50.61 30.36 69.58 37.28 

10-folds 50.56 49.57 51.49 49.23 

S-5-folds 53.79 59.97 48.01 55.66 

S-10-folds 51.64 36.51 65.80 42.20 

5s-5WS-
DWT 

20 (L3) 5-folds 57.17 47.43 66.04 51.36 

30 (L5) 10-folds 59.49 59.11 59.83 58.18 

200 (L39) S-5-folds 60.59 78.23 44.51 65.43 

65 (L12) S-10-folds 61.56 65.30 58.14 61.83 

5s-5WS 348-WST 

5-folds 57.84 58.23 57.50 56.84 

10-folds 61.43 60.44 62.33 59.91 

S-5-folds 59.87 61.15 58.70 59.23 

S-10-folds 62.82 65.13 60.72 62.55 

TABLE II.  THE WINDOW SIZE RECOMMENDATION FOR THE DATASETS 

Dataset Time and frequency domains Feature extraction method Window size Classifier CV 

PhysioNet 2016 5 sec, 2,000 Hz 

WST 

10 
Bi-LSTM algorithm 

(17 layers) 
Stratified 10-fold Yaseen Khan 2018 2 sec, 8,000 Hz 8 

PhysioNet 2022 5 sec, 4,000 Hz 5 
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TABLE III.  THE METAHEURISTIC RESULTS UNDER DEFAULT PARAMETERS 

Dataset Preprocessing WL-feature extraction and selection method Acc% Sen% Spe% F1% 

PhysioNet 2016, 3,240 

PCG signals 

Butterworth filter (low-

pass),  cosine filter (low-
pass), normalisation (-1, 1) 

5s-

10WS-

263WST 

132-HHO 92.44 77.39 96.15 80.19 

141-DA 92.55 75.41 96.76 80.00 

122-GWO 92.32 78.02 95.84 80.06 

126-SSA 92.24 75.72 96.30 79.41 

132-WOA 92.59 78.95 95.94 80.81 

Yaseen Khan 2018, 

1,000 PCG signals 

Butterworth filter (low-

pass),  cosine filter (low-

pass), normalisation (-1, 1), 
and zero padding 

2s-8WS-

330WST 

168-HHO 100 100 100 100 

175-DA 100 100 100 100 

155-GWO 100 100 100 100 

151-SSA 100 100 100 100 

59-WOA 100 100 100 100 

PhysioNet 2022, 3,163 

PCG signals 

Butterworth filter (low-

pass), cosine filter (high-
pass), normalisation (-1, 1) 

5s-5WS-

348WST 

195-HHO 60.67 69.20 52.90 62.66 

193-DA 59.62 60.61 58.70 58.87 

185-GWO 57.17 56.54 57.74 55.73 

175-SSA 61.68 55.39 67.41 57.96 

181-WOA 60.59 57.87 63.06 58.34 
 

During the evaluations, each dataset was assessed 
independently and split with holdout CV (see Table III). Low-
pass Butterworth and cosine filters were applied during 
preprocessing to reduce high-frequency intensities from the 
PhysioNet 2016 and Yaseen Khan 2018 datasets at 200 Hz and 
800 Hz, respectively, cut-off frequencies. Meanwhile, the 
PhysioNet 2022 dataset was subjected to low-pass Butterworth 
and high-pass cosine filters within the 15–400 Hz cut-off 
frequency. 

After preprocessing, each dataset was normalised to a range 
of −1 to 1. A 5-s duration was applied to the PhysioNet 2016 
and 2022 datasets, while Yaseen Khan 2018 was subjected to 
2-s intervals with zero padding. Subsequently, the features 
were extracted with the WST. Resultantly, 263 WST features 
with 10-WS were procured from the PhysioNet 2016 dataset, 
330 WST features with 8-WS from Yaseen Khan 2018, and 
348 WST features with 5-WS from PhysioNet 2022. 
Metaheuristic techniques were employed during feature 
selection, including HHO, DA, GWO, SSA, and WOA. 
Default parameters and hyperparameters were applied to 
enhance classification accuracy. 

Initially, all metaheuristic approaches were employed under 
default parameters of 10 maximum iterations, a 10-population 
size, and a 5 K-value for the KNN classifier. Holdout CV of 

80% training and 20% testing, 0.99 alpha (α), and 0.01 beta (β) 
were also applied per the information reported in previous 
studies. 

The 17-layer Bi-LSTM architecture developed in this study 
was utilised to train the classification model. A stratified 10-
fold CV was also applied to overcome the class imbalance. The 
metaheuristic methods were then evaluated with test data with 
classification accuracy as the key performance metric. The 
results are listed in Table III. 

Under default parameters, the proposed model documented 
significant results with 100% accuracy when applied to the 
Yaseen Khan 2018 dataset utilising all metaheuristic 
techniques. Conversely, the accuracy of the PhysioNet 2016 
and 2022 datasets was not considerably higher than the 
baseline. Consequently, the current study employed 
hyperparameters for all metaheuristic methods in the second 
task of the proposed model as indicated in Table IV. 

Preprocessing methods under hyperparameter settings and 
training step with the Bi-LSTM classifier (17 layers) were 
applied to the PhysioNet 2016 and 2022 datasets to create the 
classification model in this study. A stratified 10-fold CV was 
employed during training. Fig. 15 and Fig. 16 demonstrate the 
findings from the PhysioNet 2016 and 2022 datasets, 
respectively.

TABLE IV.  THE HYPERPARAMETERS-USED FOR THE PHYSIONET 2016 AND 2022 DATASETS 

Parameters PhysioNet 2016 PhysioNet 2022 

Cross-Validation Holdout (85% training, 15% testing) Holdout (80% training, 20% testing) 

Fitness Value β = 1e-10 - 1e-1 β = 0.01 - 0.1 

Population Size 10 

Classifier KNN 

k-value 11 5 

Max iterations (M-iters) 10 
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Fig. 15. The best fitness value and accuracy from the PhysioNet 2016 dataset when hyperparameter settings were applied for HHO, DA, GWO,  SSA, and WOA.  

 
Fig. 16. The optimal fitness value and accuracy of the PhysioNet 2022 dataset were evaluated with HHO, DA, GWO, SSA, and WOA under hyperparameter 

settings. 

Based on Fig. 15 and Fig. 16, improved classification 
accuracy was observed when the hyperparameters for the 
Physionet 2016 and 2022 datasets were adjusted. The datasets 
recorded excellent accuracy rates at SSA and HHO tuned to 
94.34% and 66.83%, respectively. The data were considered 
more accurate than the baseline and default parameters. The 
findings are summarised in Table V. Fig. 17 to Fig. 19 and 
Table VI illustrate the results of real-world experiments 
through majority voting of the datasets employed. 

According to Table VI, a 94.85% final accuracy rate was 
recorded by the PhysioNet 2016 dataset in real-world 
evaluations without voting ties (NoUniqueMode = 0). During 
the assessment, WST (263 extracted features, 5 sec) and SSA 
(127 selected features) with the Bi-LSTM (17 layers) algorithm 
were applied (see Fig. 17). 

TABLE V.  SUMMARY OF THE METAHEURISTIC RESULTS UNDER HYPERPARAMETERS 

Dataset WL-feature extraction and selection method Optimal-fitness value (β) k/M-iters Acc% Sen% Spe% F1% 

PhysioNet 2016, 

3,240 PCG signals 
5s-10WS-263WST 

142-HHO 1E-9 

11/10 

93.78 81.87 96.71 83.88 

137-DA 1E-9 93.16 81.77 95.97 82.54 

128-GWO 1E-5 93.41 81.45 96.35 83.01 

127-SSA 1E-9 94.34 82.29 97.30 85.17 

147-WOA 1E-4 93.41 79.47 96.84 82.66 

PhysioNet 2022, 
3,163 PCG signals 

5s-5WS-348WST 

163-HHO 0.04 

5/10 

66.83 60.70 72.41 63.57 

178-DA 0.04 62.02 57.61 66.04 59.12 

183-GWO 0.09 60.50 55.92 64.67 57.45 

173-SSA 0.07 64.43 62.74 65.96 62.71 

181-WOA 0.03 64.89 61.59 67.90 62.58 
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TABLE VI.  SUMMARY OF THE FINAL EXPERIMENTAL RESULTS OF THE PROPOSED METHOD 

Dataset Feature extraction and selection method Acc% Sen% Spe% F1% 

PhysioNet 2016, 3,240 PCG signals 263-WST, 127-SSA 94.85 83.33 97.69 86.48 

Yaseen Khan 2018, 1,000 PCG signals 330-WST, All metaheuristic methods 100 100 100 100 

PhysioNet 2022, 3,163 PCG signals 348-WST, 163-HHO 66.87 60.61 72.58 63.57 

 
Fig. 17. The final experimental results for the PhysioNet 2016 dataset evaluated under hyperparameters by 127-SSA. 

 
Fig. 18. The final experimental findings for the Yaseen Khan 2018 dataset with default parameters in all metaheuristic methods. 
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Fig. 19. The final experimental results for the PhysioNet 2022 dataset assessed with hyperparameter settings by 163-HHO. 

In the Yaseen Khan 2018 real-world evaluation, the 2-s 
proposed model with WST and all metaheuristic methods 
achieved substantial results with 100% accuracy without any 
prediction ties. The results are summarised in Fig. 18. 
Meanwhile, the PhysioNet 2022 dataset achieved a final 
accuracy of 66.87% in the real-world assessment with the WST 
(348 extracted features, 5 sec) and HHO (163 selected features) 
methods. The data was considered more accurate than the 
baseline and default parameter values. The superiority was due 
to reduced redundant features without any ties in the voting 
classes, as illustrated in Fig. 19. 

D. Discussion 

Overall, HHO, DA, GWO, SSA, and WOA algorithms 
were more sensitive and negatively affected in imbalanced 
datasets. The metaheuristic techniques revealed similar 
efficiency and convergence speed limitations and global 
solution procurement issues. Furthermore, randomisation is 
crucial during the exploration and exploitation phases. 
Accordingly, increased randomisation would lead to 
classification accuracy from elevated computational time. 

Based on the results, the SSA approach improved the 
accuracy and performance of the classification model in the 
PhysioNet 2016 dataset. The method exhibited superior 
exploration abilities for features at low frequencies than the 
other metaheuristic methods employed in this study. 

All metaheuristic techniques utilised in the current study 
achieved a considerable accuracy rate when applied to the 
Yaseen Khan 2018 dataset. Meanwhile, the HHO approach 
performed better than GWO, SSA, and WOA on the PhysioNet 
2022 dataset. The findings might be due to the significant 
exploration capabilities for features at high frequencies of 
HHO. 

In this study, the performance of the proposed method 
utilising the metaheuristic techniques was compared to recently 
published reports that aimed to diagnose heart sounds utilising 
PCG signals (see Table VII). The highest accuracy rates 
achieved with the PhysioNet 2016 dataset were reported by 
[11] and [12] at 93.5% and 93.33%, respectively. Nonetheless, 
[11] primarily focused on extracting 527 features without 
applying any technique to eliminate irrelevant features. 
Whereas [12] procured 130 features with MFCCs and the 
traditional LDA technique to select optimal attributes. 

For the 1,000 PCG Yaseen Khan 2018 dataset, [18] and 
[47] documented the highest scores, 99.80% and 99.90%, 
respectively. Nevertheless, [23] only employed MFCC, DWT, 
and CWT to extract several features. Conversely, the proposed 
method was based on the WST. All metaheuristic approaches 
also recorded a significant accuracy rate of 100% when applied 
to the same dataset. 

Reports on applying feature selection methods to PCG 
signals, particularly metaheuristic approaches, are limited. For 
instance, [14] extracted deep features and employed PSO for 
improvement before utilising the Bi-LSTM algorithm, 
recording a 91.93% accuracy rate. Consequently, the present 
study aimed to close the knowledge gap, focusing on selecting 
optimal features based on metaheuristic approaches to improve 
the performance of the model. 

This study achieved the best performance with 94.85%, 
83.33%, 97.69%, and 86.48% accuracy, sensitivity, and 
specificity rates and F1 score. The WST based on the SSA 
method was employed. The data supported the superiority of 
the suggested model. 
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TABLE VII.  RESULTS COMPARISON BETWEEN THE PROPOSED METHOD AND PREVIOUS STUDIES 

Author Dataset used 
Feature 

extraction method 

Feature 

selection 

method 

Classifier 
CV 

method 
Acc (%) Sen (%) Spe (%) F1 (%) 

[11] 
PhysioNet 2016 dataset 

(3,240 PCG signals) 

Multi-domain 

features (527 
features) 

Not used Fine KNN Hold-out 93.5 - - - 

[12] 
PhysioNet 2016 dataset 

(3,126 PCG signals) 

MFCCs (130 

features) 
LDA ANN Hold-out 93.33 - - - 

[14] 
PhysioNet 2016 dataset 
(3,240 PCG signals) 

Deep features PSO Bi-LSTM 5-fold 91.93 91.58 92.27 - 

[16] 
PhysioNet 2016 dataset 

(3,153 PCG signals) 

CWT and MFCC 

(675 features) 
PCA ANN 10-fold 85.2 - - - 

[19] 
PhysioNet 2016 dataset 
(3,240 PCG signals) 

MFCCs (27 
features) 

Not used 
Ensemble 
classifier 

5-fold 92.47 94.08 91.95 - 

[21] 
PhysioNet 2016 (1,330 

PCG signals) 

Spectrogram 

feature 
Not used VGG16 - 88.84 87.23 86.55 87.87 

[22] Own dataset 
MFCCs + DWT 
(43 features) 

Not used SVM 5-fold 97.9 98.2 99.4 99.7 

[23] 

Yaseen Khan 2018 

dataset (1,000 PCG 
signals) 

MFCC, DWT, and 

CWT 
Not used CNN and MLP Hold-out 99.8 99.8 99.8 - 

[24] 

Yaseen Khan 2018 

dataset (957 PCG 

signals) 

Multiple features 

using MFCC and 

DWT methods 

Not used RF - 99.89 99.90 99.60 99.90 

[25] 
PhysioNet 2022 dataset 

(3,163 PCG signals) 

Spectrogram 

feature 
Not used Bi-GRU 5-fold 60.2 - - 54.9 

[26] 
PhysioNet 2022  dataset 

(3,163 PCG signals) 
Mel-spectrograms Not used U-Net Hold-out 08.65 54.77 59.29 58.33 

[28] 
PhysioNet 2016 (2,435 
PCG signals) 

Merage short- and 

long-term features 

(33 features) 

Not used 

Subspace K-

Nearest 

Neighbor 

Hold-out 92.7 96 82 - 

[51] 
Yaseen Khan 2018 
dataset (1,000 PCG 

signals) 

Deep features Not used 
Vision 
Transformer 

(ViT) 

10-fold 99.90 99.95 99.95 99.95 

[52] 
PhysioNet 2016 dataset 

(3,153 PCG signals) 

Multiple features 

(515 features) 

Selected 
features 

randomly 

(400 features) 

SVM 10-fold 88 88 87 - 

[53] 
PhysioNet 2016 dataset 
(3,126 PCG signals) 

Zero crossing rate 

(ZCR), discrete 

fourier transform 
(DFT), and 

MFCCs (315 

features) 

Genetic 

Algorithm 
(GA) (15 

features) 

LightGBM 

(Light Gradient 

Boosting) 

10-fold 92.3 91.06 93.54 - 

[54] 
Yaseen Khan 2018 
dataset (1,000 PCG 

signals) 

Time-varying 
spectral feature (35 

features) 

Not used KNN 5-fold 99.6 99.79 98.83 99.75 

[55] 
Yaseen Khan 2018 
dataset (1,000 PCG 

signals) 

Chirplet Transform 

(CT) (300 features) 
Not used 

Composite 

Classifier 
Hold-out 98.33 - - - 

[56] 
PhysioNet 2022  dataset 

(3,163 PCG signals) 

MFCCs (25 

features) 
Not used 

Ensemble 

classifier 
10-fold 56.8 - - 52.8 

Propose 

Methods 

PhysioNet 2016  

dataset (3,240 PCG 

signals) 

WST (263 

features) 

SSA (127 

features) 

Bi-LSTM (17 

layers) 

Stratified 

10-fold 

94.85 83.33 97.69 86.48 

Yaseen Khan 2018 

(1,000 PCG signals) 

WST (330 

features) 

HHO, DA, 

GWO, SSA, 

and WOA 

100 100 100 100 

PhysioNet 2022 (3,163 

PCG signals) 

WST (348 

features) 

HHO (163 

features) 
66.87 60.61 72.58 63.57 

 

The study in [25] documented an accuracy of 60.2% for the 
PhysioNet Challenge 2022 dataset with spectrogram features. 
The less accurate results were from the substantially noisy 
PCG signals, rendering the extraction of vital features and 
improvement of the classification model challenging. 
Nonetheless, the proposed design achieved an optimal solution 
by obtaining an accuracy rate of 66.87% when applied to the 

same dataset. Furthermore, the current study effectively 
determined the sensitivity, specificity, and F1 scores, yielding 
60.61%, 72.58%, and 63.57%, respectively. The suggested 
method diminished the number of extracted features, positively 
affecting convergence speed during the training process 
and achieving excellent performance. 
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V. CONCLUSION AND FUTURE DIRECTIONS 

Medically, diagnosing heart sounds faces significant 
obstacles, particularly PCG signal processing, due to noise, 
imbalanced datasets, and the considerable extracted feature 
search space. Numerous researchers have addressed the issues 
and developed various solutions. Nonetheless, related reports 
on applying metaheuristic techniques to PCG signals are 
scarce. The non-linear nature of the data and its complicated 
relationships have contributed to the knowledge gap. 

The current study proposed a model employing WST to 
address the challenges posed by noise signals and irrelevant 
extracted features. Hyper-filters were applied to mitigate the 
impact of noise, while metaheuristic optimisation techniques, 
HHO, DA, GWO, SSA, and WOA, were utilised to select the 
most informative WST features. The selected features then 
served as input to a Bi-LSTM algorithm to produce the 
classification model. Moreover, a stratified 10-fold cross-
validation was implemented to mitigate the effects of 
imbalanced datasets and overfitting. Resultantly, the 
metaheuristic methods documented potential, exhibiting 100% 
accuracy with the Yaseen Khan 2018 dataset with default 
parameters. Meanwhile, the classification accuracy of the 
suggested model on the PhysioNet 2016 and 2022 datasets 
under hyperparameter settings was 94.85% and 66.87% with 
SSA and HHO, respectively. 

Overall, the proposed method documented superior results 
to previous research. The suggested model might also improve 
clinical finding reliability. However, the limitations are still 
having in this study, such as noise in PCG signals, imbalanced 
datasets, and unnecessary features. Consequently, future 
studies should enhance the attribute by focusing on several key 
areas. For instance, utilising a more significant PCG signal 
dataset and refining the preprocessing techniques by applying 
deep filters to reduce noise. The imbalanced classes issue could 
also be mitigated by enhancing the stratified K-fold CV 
process. Furthermore, extracting multiple features with CWT, 
DWT, and WST techniques could be considered. Finally, an 
improved model performance might be achieved by applying 
hybrid metaheuristic optimisation methods, such as HHO-SSA, 
to select optimal features efficiently. 
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