
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

798 | P a g e  

www.ijacsa.thesai.org 

Elevator Abnormal State Detection Based on 

Vibration Analysis and IF Algorithm 

Zhaoxiu Wang 

Department of Electronics and Information, Zhangzhou Institute of Technology, Zhangzhou, 363000, China 

 

 
Abstract—Elevators play a crucial role in daily life, and their 

safety directly impacts the personal and property safety of users. 

To detect abnormal states of elevators and ensure people's 

personal safety, the acceleration signal of elevators is decomposed 

and Weiszfeld algorithm is used to estimate gravity acceleration. 

In addition, the study also introduces Kalman filtering to reduce 

error accumulation. To estimate the operating position of 

elevators, a method based on information fusion is studied and 

designed to construct a mapping relationship between elevator 

vibration energy and position, and to locate the height of elevator 

faults. Finally, an anomaly detection model combining vibration 

analysis and the Isolated Forest algorithm is developed. The 

results showed that the main distribution range of acceleration 

values in the horizontal direction was between 0.02 m2/s and -0.02 

m2/s. The average estimation error and root mean square error of 

the research designed elevator position estimation method were 

0.109 m and 0.113 m, respectively, which could solve the problem 

of accumulated position errors. The abnormal vibration energy 

and height corresponding to different operating conditions of 

elevators were different. The normal value ratios of the anomaly 

detection model under different sliding windows were 99.91% and 

99.57%, respectively. The anomaly detection model designed for 

research has good performance and can provide technical support 

for the detection of elevator operation status. 

Keywords—Vibration analysis; IF algorithm; elevator; 

abnormal; detection 

I. INTRODUCTION 

As a vertical transportation tool, elevators are used in 
various places in daily life, such as office buildings, residences, 
hotels, large libraries, and industrial and mining enterprises [1]. 
Elevators are frequently used in people's daily lives, and once 
any elevator malfunctions, it can pose a serious threat to 
people's safety. Therefore, timely and accurate detection of 
elevator abnormal states is crucial. The commonly used 
methods for elevator status detection include grey prediction 
model, genetic algorithm, and particle swarm algorithm [2-3]. 

Skog I designed a new non-invasive elevator fault detection 
method and corresponding efficient algorithm for detecting 
elevator faults. This method modeled the traffic load on the 
elevator through a non-homogeneous Poisson process and 

described the process using a generalized linear model. The 
results showed that the method achieved an accuracy of 0.82 
with a recall probability of 0.80 [4]. Oya J R G et al. designed 
a system based on time-domain reflectometry technology to 
detect elevator belt faults, and constructed a receiver based on 
compressive sensing to improve positioning capability. The 
results showed that this method could recover time-domain 
sparse signals and effectively detect elevator belt faults [5]. 
Ippili S et al. constructed a one-dimensional convolutional 
neural network based on sound signals for early identification 
of faults in rotating machinery, and used this network to process 
the original time signals. The results showed that this method 
had good performance in the early identification of rotating 
machinery faults, and its performance was significantly better 
than the accelerometer based method [6]. Mian T et al. designed 
a multi-sensor fault diagnosis system based on infrared thermal 
imaging and vibration sensors for diagnosing faults in rotating 
machines. In addition, the study also utilized deep 
convolutional neural networks, support vector machines, and 
principal component analysis. The results showed that this 
method could effectively diagnose faults in rotating machines 
under all working conditions [7]. 

However, these methods also have certain issues, such as 
the stronger dependence of model-based methods on specific 
parameters of elevator systems compared to data-driven 
methods on data training. To detect abnormal states in elevators, 
an anomaly detection model based on vibration analysis of 
horizontal vibration signals and Isolation Forest (IF) algorithm 
is designed. Methods are also designed to reduce the 
accumulation of position errors and estimate elevator dynamic 
characteristics. The research aims to improve the accuracy of 
elevator anomaly detection, avoid serious elevator accidents, 
and ensure people's personal safety. The innovation of the 
research is reflected in the combination of vibration analysis 
and IF algorithm, which reduces the cumulative position error 
and improves the efficiency of elevator anomaly detection. To 
better demonstrate the advantages of the design method 
proposed in this article, the study will compare it with existing 
methods in terms of performance indicators, scalability, and 
limitations. The comparison results are shown in Table I.
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TABLE I. COMPARISON WITH RELATED WORK 

Serial number 
Performance index 

Scalability Limitation 
F1 Accuracy 

[4] 0.800 0.820 F1 drops to 0.685 on larger datasets Model complexity and difficulty in parameter estimation 

[5] 0.847 0.886 
When facing multiple types of elevator belts, a 

significant amount of customized training is required 
Limited measurement accuracy and signal quality issues 

[6] 0.929 0.936 Cannot be compatible with new data types Insufficient utilization of sequence order information 

[7] 0.935 0.941 Difficulty in expanding sensor types 
Easy overfitting and high computational resource 
consumption 

Manuscript 0.988 0.992 Low cost, strong universality and scalability 
Not much consideration has been given to the fault 

detection of elevator door systems 
 

II. METHODS AND MATERIALS 

To detect abnormal states in elevators, an anomaly detection 
method based on vibration analysis and IF algorithm is studied 
and designed. Due to the use of horizontal acceleration signals 
for anomaly detection, the study also designs a method for 
estimating elevator gravity acceleration and dynamic 
characteristics. In addition, the study also designs a method for 
estimating the operating position of elevators. 

A. Design of Estimation Method for Elevator Gravity 

Acceleration and Dynamic Characteristics 

To detect abnormal states in elevators, a gravity acceleration 
and dynamic feature estimation method is first designed to 
reduce error accumulation and improve detection accuracy. 
Secondly, a method for estimating the operating position of 
elevators is studied and designed to facilitate the construction 
of the mapping relationship between elevator vibration energy 
and position in the future. Finally, an anomaly detection method 
based on vibration analysis and IF algorithm is studied and 
designed. The study uses a three-axis acceleration sensor 
(MPU6050) to collect three-dimensional acceleration signals 
from the elevator, and decomposes the acceleration three-
dimensional vector based on the gravity acceleration vector 
calibrated by the sensor. After that, the components in the 
direction of gravity acceleration can be obtained. The Weiszfeld 
algorithm is adopted for the estimation of elevator gravity 
acceleration. The Weiszfeld algorithm is a classic iterative 
algorithm for solving single facility site selection problems, 
which can obtain the optimal solution of the problem, and the 
essence of this algorithm is a steepest descent method. The 
Weiszfeld algorithm, as a repeated weighted least squares 
method, has the advantage of being able to handle weighted 
point sets and gradually converge to the optimal solution during 
the iteration process [8-9]. In addition, unlike some methods 
that rely on specific prior knowledge or assumptions, the 
Weiszfeld algorithm does not require extensive knowledge of 
the elevator's operating status, system parameters, etc. when 
estimating elevator gravity acceleration, and has a wider 
applicability [10-11]. The solution for this algorithm is shown 
in Eq. (1). 
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In Eq. (1),  , ,k k kx y z  represents the median center solved 

by Weiszfeld algorithm after the k th iteration, and x , y , 

and z are vectors on the x-axis, y-axis, and z-axis, respectively. 
a  represents the number of measured gravitational 

acceleration vectors, and  , ,i i ib c d  is the gravitational 

acceleration vector obtained from the i  measurement. 

 , ,i k k kE x y z  represents the distance between  , ,i i ib c d  and 

the median center obtained from the k  iteration. 

 1 1 1, ,  k k kx y z  represents the new median center. The 

calculation of  , ,i k k kE x y z  is shown in Eq. (2). 

     , , , , , , i k k k i i i k k kE x y z b c d x y z   (2) 

The operation process of an elevator can be mainly divided 
into four states: stationary, accelerating, uniform, and 
decelerating, and the acceleration in all four ideal states remains 
constant [12]. To estimate the kinematic characteristics of 
elevators, the Kalman filtering method is used in the study. The 
advantage of the Kalman filtering method is that it can update 
the state estimation based on previous estimates and current 
measurements, and has strong robustness and adaptability [13-
14]. The representation of elevator dynamic characteristics is 
shown in Eq. (3). 

1   k k k kF       (3) 

In Eq. (3), k
 represents the system state vector, 

kF  

represents the state transition function, and k
 represents the 

process noise vector. The expression of k
 is shown in Eq. (4). 

𝑥𝑘 ≜ [

𝑥  𝑘
′

𝑥   𝑘
′′

𝑥     𝑘
′′′

]     (4) 

In Eq. (4), ≜represents the identity equation, while ' k
, 

'' k
, and ''' k

 represent velocity, acceleration, and jerk, 

respectively. The expression of 
kF  is shown in Eq. (5). 

𝐹𝑘 ≜ [
1 𝑔 

𝑔2

2

   1  𝑔

        1

]    (5) 

In Eq. (5), g  represents the sampling time interval. To 

output the system state vector, the Kalman filtering method 
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needs to perform optimal estimation based on the prediction 
step and update step. Optimization estimation mainly includes 

four steps. The first step is to solve g  and adjust 
kF  and 

process noise covariance 
kQ  based on g . The second step is 

to predict the state of the next time step and estimate the system 

covariance 
kP . The third step is to solve the Kalman gain 

kK , 

and the fourth step is to solve the novel 
kY . The fifth step is to 

adjust the state prediction value and prediction covariance, and 
refresh the system state. The processing of the covariance 

matrix 
kP  is shown in Eq. (6). 

         
T T

k k k k k k k k kP I K H P I K H K R K  (6) 

In Eq. (6), I  is the identity matrix, 
kH  represents the 

measurement function, and 
kR  represents the observed noise 

variance. Since the measured values of acceleration sensors 
during elevator operations are typically non-zero, threshold 
values and corresponding constraints are introduced in the study. 
The automatic correction process of gravity acceleration is 
shown in Fig. 1. 

From Fig. 1, the automatic correction process of gravity 
acceleration mainly consists of six steps. The first step is to 
determine whether the elevator is stationary. If it is stationary, 
slide the window to collect data, otherwise the process ends. 
The second step is to filter out outliers, and the third step is to 
use the Weiszfeld algorithm. The fourth step is to update the 
gravitational acceleration, and the fifth step is to determine 
whether the elevator is moving. If it is running, the process ends; 
otherwise, the sliding window continues to collect data. 

B. Design of Elevator Operation Position Estimation Method 

To locate the operating position of the elevator, the study 
first models the elevator floor information through acceleration 
sensors and Simultaneous Localization and Mapping (SLAM) 
algorithm. Secondly, the study uses a pressure sensor to solve 
the operating height of the elevator. Finally, a method for 
estimating the operating position of elevators based on 
information fusion is studied and designed. The elevator 
displacement solved by acceleration sensors has the advantage 
of high short-term accuracy, but there is also a drawback of fast 
error accumulation. Therefore, the SLAM algorithm is 
introduced to compensate for this deficiency. The advantage of 
the SLAM algorithm is its ability to integrate multiple sources 

of information and incorporate Kalman filtering technology 
[15]. By using the Kalman filter in the SLAM algorithm, it is 
possible to obtain the floor spacing and floor height. The 
expression for the distance of elevator operation between two 
stops is shown in Eq. (7). 

1   k k k k k kS F S B u        (7) 

In Eq. (7), 
ku  is the control vector, 

kB  is the control 

matrix, and 
kS  represents the displacement of the elevator 

from rest. The expression of 
kB  is shown in Eq. (8). 
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The initialization process of elevator floor information 
mainly consists of seven steps, including acceleration data 
collection, elevator motion judgment, calculation of elevator 
displacement and displacement error, judgment of whether the 
elevator is going up, judgment of whether the elevator is 
stationary, updating map information, and judgment of whether 
the set number of times has been reached. To solve the 
operating height of the elevator, a pressure sensor is used in the 
study. The advantage of air pressure sensors is that they can 
directly obtain real-time altitude information of elevators, and 
the error accumulation is slow [16-17]. The difference   

between the starting and measuring heights is solved as shown 
in Eq. (9). 
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In Eq. (9), 
0  and   represent the atmospheric pressure 

at the starting and measuring heights, respectively, and N  

represents the molar mass of air. J  represents the universal 

gas constant, L  represents the measured air temperature, and 
W  represents the gravitational acceleration of the Earth’s 

surface. The solution for the current altitude   is shown in Eq. 

(10) [18-19]. 
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Fig. 1. Automatic correction process of gravity acceleration. 
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The solution of   can be simplified as shown in Eq. (11). 

0         (11) 

In Eq. (11), 
0  represents the altitude of the reference 

position. To preprocess the obtained height data and reduce the 
impact of noise, a first-order exponential smoothing method is 
used in the study. The advantage of this method is that it makes 
extrapolation predictions more realistic and has high 
practicality and effectiveness in time series prediction [20]. The 

current time step estimation value t
 is solved as shown in Eq. 

(12). 

  11      t t t       (12) 

In Eq. (12), 
1 t

 represents the estimated value of the 

previous time step,   represents the smoothing coefficient, 

and  0,1   and  t
 are the measured values of the current 

time step. t  stands for Time. To estimate the operating 

position of the elevator, a combination of acceleration sensors 
and air pressure sensors is studied, and floor information is also 
introduced. Unscented Kalman Filter (UKF) is used to apply 
this information. Therefore, the solution for the operating 

height 
  of the elevator at   time is shown in Eq. (13). 

1     k k kB u     (13) 

The state transition function of the elevator system is 
expressed as Eq. (14). 
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In Eq. (14),  jf  represents the height of the car relative 

to the reference point, j  is the number of heights, U  is the 

symbol for the set, and 
jf  represents the prior measurement 

error. The core of UKF is the traceless transformation, as shown 
in Fig. 2. 

In Fig. 2,   represents a set of sigma points, and   

represents a new set of points after nonlinear changes. The 
green and orange dots in the blue background represent the 
mean and covariance of the transformation point set, 
respectively, and are considered as new predicted values. To 
select sigma points, a symmetric sampling strategy is adopted 
in the study. The elevator position tracking process based on 
UKF is shown in Fig. 3. 
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Fig. 2. Diagram of unscented transformation. 
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Fig. 3. Elevator position tracking process based on UKF. 

From Fig. 3, the first step of the elevator position tracking 
process based on UKF is initialization, and the second step is 
sigma point sampling. The third step is to predict updates, and 
the fourth step is to measure updates. The fifth step is to 

determine whether 
kY  is smaller than 2 kP . If it is less than, 

proceed to step six; otherwise, amplify the process noise before 
proceeding to step six. The sixth step is to determine whether 
the flag is equal to 0. If it is equal, proceed to step seven; 
otherwise, reduce the process noise before proceeding to step 
seven. The seventh step is to determine whether the elevator is 
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stationary. If it is stationary, calculate the  jf  of the nearest 

floor. Otherwise, use it as input for the next time step of 
  

and 
kP . The eighth step is to determine whether 

  belongs 

to  ,  
jj fU f . If it belongs, update the elevator floor 

information. Otherwise, output an abnormal stop alarm. The 
ninth step is to perform sensor calibration, and the tenth step is 

to determine whether 
  and 

kP  are the final time steps. If 

so, the process ends. Otherwise, 
  and 

kP  are inputted for 

the next time step, and then return to the second step. 

C. Design of Elevator Abnormal State Detection Method 

To detect abnormal states in elevators, the study first 
constructs a mapping of elevator vibration energy and position 
based on vibration analysis. Secondly, the study uses the IF 
algorithm to train the elevator anomaly detection model. To 
determine the operating status of the elevator, the study 
considers the vibration of the elevator car as an important 
feature. To determine whether the data is abnormal, a baseline 
is constructed for elevator normal operation. In addition, the 
study uses horizontal acceleration signals to detect abnormal 
vibrations. The steps of the baseline generation method are 
shown in Fig. 4. 

From Fig. 4, the first step in baseline generation is data 
collection, and the second step is to determine whether the 
baseline has been generated. If it has been generated, end the 
process; otherwise, perform data preprocessing and feature 
extraction. The third step is to obtain horizontal vibration 
energy, and the fourth step is to obtain cluster data. The fifth 
step is to calculate the moving average, and the sixth step is to 
calculate the moving average error. The seventh step is to 
determine whether the slope of the moving average error is 
approximately equal to 0. If it is, a baseline is generated and the 
process ends. Otherwise, the process returns to the first step. 

The solution for the moving average 
nMA  is shown in Eq. (15) 

[21]. 
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In Eq. (15), n  represents the number of collected signals, 

r
 represents the root mean square of the r  horizontal 

vibration signal, and r  is the signal number. To clarify the 
abnormal state of the elevator, the intrinsic feature scale 
decomposition method is used to decompose the horizontal 
vibration signal, and envelope spectrum analysis is used to 
detect the impact signal to eliminate false alarms. To suppress 
the endpoint effect, the method of mirror extension is used in 
the study. To construct a mapping between elevator vibration 
energy and position to detect the vibration state of the guide rail 
on the highest and lowest floors, a horizontal acceleration signal 
is used and solved using the established elevator acceleration 
and position estimation method. To further detect outliers, the 
study adopts the IF algorithm and trains the outlier detection 
model through the IF algorithm. The IF algorithm, as an 
unsupervised method, has the advantages of low computational 
cost, linear time complexity, and does not rely on abnormal 
samples [22]. In addition, compared with similar outlier 
detection methods, the IF algorithm does not require calculating 
the distance or density between data points like some distance 
or density-based methods, has lower time complexity, and does 
not rely on data distribution assumptions. It is relatively 
insensitive to noise and outliers in the data, and can effectively 
identify true outliers, making it less susceptible to noise 
interference and misjudgment [23-24]. The IF algorithm uses 
the idea of ensemble learning and requires the construction of 
isolated trees. The construction process of an isolated tree is 
shown in Fig. 5. 
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Fig. 4. Steps of baseline generation method. 
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Fig. 5. The construction process of isolated trees. 

From Fig. 5, the first step in constructing an isolated tree is 
to train the data, and the second step is to randomly select the 
attribute  . The third step is to randomly select the partition 

value  , and the fourth step is to determine whether   is 

greater than  . If it is judged as yes, place it in the left child 

node; otherwise, place it in the right child node. The fifth step 
is to determine whether it is a leaf node. If it is, the process ends; 
otherwise, the next step is to proceed. The sixth step is to 
determine whether all data are equal. If they are equal, the 
process ends; otherwise, it enters the seventh step. The seventh 
step is to determine whether the preset maximum depth has 
been reached. If it has been reached, the process ends. 
Otherwise, it returns to the first step and repeats the process 
until it ends. The process of elevator anomaly detection method 
based on vibration analysis and IF algorithm is shown in Fig. 6. 

From Fig. 6, the first step of the elevator anomaly detection 
method is to collect acceleration signals, and the second step is 
to estimate the elevator position. The third step is to establish a 
baseline, and the fourth step is envelope spectrum analysis. The 
fifth step is to generate data records, and the sixth step is to 
determine whether the sliding window is full. If it is full, the 
detection model is used for anomaly detection. Otherwise, the 
process returns to the fifth step. The seventh step is to determine 
if the anomaly rate is too high. If it is too high, an alarm will be 
triggered and the process will end. Otherwise, the data will be 
added to the buffer. The eighth step is to determine whether the 
number of records is greater than the set threshold. If it is, the 
detection model will be retrained based on the training data. 
Otherwise, it will return to the data buffer. 
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Fig. 6. The process of elevator anomaly detection method based on vibration analysis and IF algorithm. 

III. RESULTS 

To analyze the detection results of elevator abnormal states, 
the study explained the experimental data collection equipment, 
experimental environment, and other experimental devices, and 
analyzed the results of acceleration information decomposition. 
Afterwards, the study analyzed the results of elevator position 
tracking and constructed the relationship between elevator 
vibration energy and position mapping. Finally, the study 
validated the performance of the IF model in detecting elevator 
abnormal states. 

A. Acceleration Information Decomposition and Motion 

Feature Estimation Results 

To collect elevator data, the study used Raspberry Pi 4B and 
added MPU6050 acceleration sensor, BMP180 air pressure 
sensor, and touch switch. The experimental environment used 
was the elevator in the experimental building. The operating 
system used in the experiment was Raspbian, the built-in 
operating system of Raspberry Pi. The processor was 
Broadcom BCM2711, with a clock speed of 1.5GHz, a 
maximum supported memory capacity of 4GB, and a thermal 
design power consumption of 7.5W. The collected signal would 
be decomposed, and the decomposition result is shown in Fig. 
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Fig. 7. The result of signal decomposition. 

In information decomposition, the study first collected the 
residual distribution of the acceleration signal minus the 
calibrated gravity acceleration in three-dimensional space. 
Secondly, the distribution was decomposed into vertical and 
horizontal acceleration signals in three-dimensional space, as 
shown in Fig. 7 (a) and Fig. 7 (b). According to Fig. 7 (a), after 
decomposing the acceleration information, the maximum and 
minimum vertical acceleration values were 0.09375 m2/s and -
0.09063 m2/s, respectively. As time increased, the vertical 
acceleration value exhibited a fluctuating trend of gentle, 
upward, and downward fluctuations. According to Fig. 7 (b), in 
the horizontal direction, the maximum acceleration value was 
0.0450 m2/s and the minimum value was -0.0457 m2/s. As time 
gradually increased, the horizontal acceleration value exhibited 
a fluctuating upward and downward trend. In addition, the main 
distribution range of acceleration values in the horizontal 
direction was between 0.02 m2/s and -0.02 m2/s. Through signal 
decomposition, three-dimensional data can be transformed into 
one-dimensional data. This not only facilitates the installation 
of sensors, but also enhances the robustness of the system. The 
analysis of motion characteristics is shown in Fig. 8. 

According to Fig. 8 (a), in terms of acceleration 
characteristics, the maximum and minimum values of the 
source data were 1.0 m2/s and -0.75 m2/s, respectively. The 
maximum and minimum values of the filtered data's maximum 
acceleration were 0.71 m2/s and -0.72 m2/s, respectively. The 
maximum and minimum values of the maximum deceleration 
were 0.76 m2/s and -0.75 m2/s, respectively. From Fig. 8 (b), at 
95% of the sampled data, the maximum values of acceleration 
and deceleration were 0.75 m2/s and 0.68 m2/s, respectively, 
with a difference of 0.07 m2/s between the two. In addition, the 
minimum acceleration value was -0.74 m2/s, which differed 
from the minimum deceleration value of -0.59 m2/s by 0.15 
m2/s. In Fig. 8 (c), with the increase of time, the elevator speed 
exhibited a cyclic upward and downward trend. In addition, the 
maximum and minimum values of the velocity characteristics 
were 1.81 m2/s and -1.89 m2/s, respectively. Both the 
acceleration and deceleration, as well as the maximum 
acceleration and deceleration, were within the standard range. 

-0.4

0.0

(a) Acceleration characteristics

1.2

-1.2

Time/s

400 1200 1600

0.4

0.8

V
al

u
e/

(m
2
/s

)

8000

-0.8

200 1000600 1400

Source data Filter data Maximum acceleration Maximum deceleration

-0.4

0.0

(b) On the acceleration and deceleration of 95% sampled data

1.2

-1.2

Time/s

400 1200 1600

0.4

0.8

V
al

u
e/

(m
2
/s

)

8000

-0.8

200 1000600 1400

Source data Filter data Acceleration Deceleration

-1

0

(c) Speed characteristics

3

-3

Time/s

400 1200 1600

1

2

V
al

u
e/

(m
/s

)

8000

-2

200 1000600 1400

 

Fig. 8. Analysis of motion characteristics. 

B. Analysis of Elevator Position Tracking Results 

To track the position of the elevator, the study used the same 
Raspberry Pi and sensors to collect elevator data. The operating 
position of the elevator in the experimental building was a total 
of 8 floors, and the floor height and spacing were generally 
around 4 meters. The scanning range of SLAM was 0.1-30 
meters, with a measurement accuracy of ±2 centimeters, a time 
interval of 50Hz, and a positioning accuracy of 10 centimeters. 
The measurement matrix of UKF was 1, the sampling time 
interval was 0.5s, the process noise covariance was 1, and the 
measurement noise covariance matrix was 0.01. Based on the 
collected information from acceleration sensors and air 
pressure sensors, the study combined these two types of 
information through UKF and obtained the tracking results and 
estimation errors of the elevator position, as shown in Figure 9. 

From Fig. 9 (a), the maximum value of elevator position 
using only the UKF method was 31.3m, and the minimum value 
was -0.8m. The maximum values of elevator position using 
UKF+automatic calibration method and UKF+ automatic 
calibration+SLAM method were 29.3m and 28.5m, 
respectively, with a difference of 0.8m between the two, and the 
minimum value of elevator position under both methods was 
0m. The automatic calibration method and SLAM effectively 
reduced the errors observed in the UKF method. In Fig. 9 (b), 
the cumulative probability of errors at different positions varied 
under different methods. For example, when the position error 
was 0.5m, the cumulative probabilities of the UKF method, 
UKF+automatic calibration method, and UKF+automatic 
calibration+SLAM method were 0.327, 0.684, and 1.00, 
respectively. In addition, the average estimation errors of the 
three methods were 0.923m, 0.395m, and 0.109m, respectively, 
and the root mean square errors were 0.943m, 0.404m, and 
0.113m, respectively. The UKF+automatic calibration+SLAM 
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method had the smallest estimation error, followed by the 
UKF+ automatic calibration method. In summary, the 
UKF+automatic calibration+SLAM method can effectively 

solve the problem of accumulated position errors and accurately 
track the operating position of elevators. 
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Fig. 9. Tracking results and estimation errors of elevator position. 

C. Analysis of Elevator Abnormal State Detection Results 

To detect abnormal states in elevators, the same 
experimental environment and setup were used in the study. In 
collecting data, the experiment also used Raspberry Pi and 
sensors. In the collected baseline data, the sub healthy line was 
0.140m/s2 and the fault line was 0.162m/s2. In addition, the 
study also removed useless attributes of the data, such as 
running time, and only retained the maximum 
acceleration/deceleration, maximum speed, 95th percentile of 

acceleration, and 5th percentile of deceleration. The total 
number of isolated trees was 120, the threshold for outliers was 
-0.18, the maximum sampling number was 267, and the 
proportion of outliers in the training data was 99.69%. The 
width of the sliding window was 800, and the study selected the 
outlier distribution of the third and ninth windows for analysis. 
The envelope spectrum analysis was conducted on the first 
product component of the vibration signal, and the amplitude 
before and after analysis is shown in Fig. 10. 
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Fig. 10. The amplitude before and after the envelope spectrum analysis of the first product component. 
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According to Fig. 10 (a), before demodulating the product 
component 1, its corresponding amplitude was mainly 
concentrated between 0.5m/s-2 and -0.7m/s-2, and the maximum 
and minimum amplitudes were 0.208m/s-2 and -0.273m/s-2, 
respectively. As time went by, the vibration kept rising, falling, 
and fluctuating repeatedly. From Fig. 10 (b), after demodulating 
the product component 1, as the frequency increased, the 
vibration gradually decreased, and the range of up and down 
fluctuations also narrowed. The maximum and minimum 
amplitude values were 9.98m/s2 and 0.00m/s2, respectively. In 
addition, the vibration energy of the signal was primarily 
concentrated in the low-frequency range, with fewer high-
frequency impulsive signals. This indicated that the outlier was 
false and consistent with the actual situation. The relationship 
between elevator vibration energy and position mapping is 
shown in Fig. 11. 

5

10

(a) Upward acceleration

30

0

Vibration energy/(m4/s-2)
2 5 7

20

15

25

H
ei

g
h
t/

m

4 60 1 3

5

10

(b) Downward acceleration

30

0

Vibration energy/(m4/s-2)
4 10 14

20

15

25

H
ei

g
h
t/

m

8 120 2 6

5

10

(c) Upward uniform speed

30

0

Vibration energy/(m4/s-2)
2 5 7

20

15

25

H
ei

g
h
t/

m

4 60 1 3

5

10

(d) Downward uniform speed

30

0

Vibration energy/(m4/s-2)
6 15 21

20

15

25

H
ei

g
h
t/

m

12 180 3 9

5

10

(e) Upstream deceleration

30

0

Vibration energy/(m4/s-2)
4 10 14

20

15

25

H
ei

g
h
t/

m

8 120 2 6

5

10

(f) Downward deceleration

30

0

Vibration energy/(m4/s-2)
1.2 3.0

20

15

25

H
ei

g
h
t/

m

2.40 0.6 1.8

 

Fig. 11. The relationship between elevator vibration energy and position 

mapping. 

In Fig. 11, the vertical axis represents the operating position 
of the elevator, and the horizontal axis represents the vibration 
energy at the corresponding position. The peaks in the spectrum 
are the abnormal vibrations generated by simulated faults. From 
Fig. 11 (a), when the elevator accelerated upwards, the 
abnormal vibration energy generated during the simulated fault 
was 6.02m4/s-2, and the corresponding height at this time was 
0m. From Fig. 11 (b), 11 (c), 11 (d), 11 (e), and 11 (f), peaks 
appeared during the elevator's downward acceleration, upward 
uniform speed, downward uniform speed, upward deceleration, 
and downward deceleration. This indicated that abnormal 
vibrations occurred in the elevator in all five cases, and the 
vibration energy and fault height varied in different situations. 
For example, if the elevator was moving at a constant speed, the 
abnormal vibration energy corresponding to the up and down 
directions of the elevator was 4.78m4/s-2 and 16.8m4/s-2, 
respectively, and the corresponding fault heights were 10m and 
18m, respectively. It can be seen that the occurrence of 
simulated faults could be clearly detected at various stages of 
elevator operation, and the position of the car where the fault 
occurred, that is, the position where the guide rail may have 
malfunctioned, could be located, providing important 
information for the maintenance of the elevator system and the 
rescue of trapped personnel. The distribution of outliers for 
different sliding windows is shown in Fig. 12. 

In Fig. 12 (a), under the third sliding window, the abnormal 
scores were mainly concentrated in the range of 0.10 and 0.15. 
In addition, the proportion of normal values greater than the 
threshold of -0.18 outliers was approximately 99.91%. 
According to Fig. 12 (b), in the 9th sliding window, the 
proportion of normal values greater than the outlier threshold 
was about 99.57%, and the outlier scored with more than 10 
data points were mainly concentrated in the range of 0.067 to 
0.15. In addition, the maximum number of outlier data points 
was 58, corresponding to outlier scores of 0.123 and 0.147. 
Overall, the IF model could effectively detect the operational 
status of elevators. 
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Fig. 12. Outlier distribution of different sliding windows. 
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IV. DISCUSSION AND CONCLUSION 

Aiming at the problem of detecting abnormal states in 
elevators, a dynamic prediction method for elevators and an 
information fusion-based elevator operation position tracking 
method were studied and designed. An anomaly detection 
model based on vibration analysis and IF algorithm was also 
constructed. The results showed that after signal decomposition, 
the maximum acceleration values corresponding to the vertical 
and horizontal directions were 0.09375 m2/s and 0.0450 m2/s, 
respectively, and the minimum acceleration values were -
0.09063 m2/s and -0.0457 m2/s, respectively. Signal 
decomposition could transform three-dimensional data into 
one-dimensional data, enhancing the robustness of the system. 
The average estimation errors of UKF method, UKF+automatic 
calibration method, and UKF+automatic calibration+SLAM 
method were 0.923m, 0.395m, and 0.109m, respectively, with 
root mean square errors of 0.943m, 0.404m, and 0.113m, 
respectively. This indicated that both automatic calibration and 
SLAM algorithms could to some extent solve the problem of 
accumulated position errors. The maximum amplitude values 
of product component 1 before and after demodulation were 
0.208m/s-2 and 9.98m/s-2, respectively, and the vibration energy 
of the demodulated signal was mainly concentrated in the low-
frequency range, with less high-frequency impulsive signals, 
which was in line with the actual situation. Under different 
operating conditions of the elevator, simulated faults had 
corresponding peak signals, and the vibration energy and height 
corresponding to the peak signals were also different under 
different operating conditions. In the third and fifth sliding 
windows, the proportion of normal values greater than the 
outlier threshold was 99.91% and 99.57%, respectively. The 
research designed anomaly detection models had good 
performance. This method could monitor and analyze the 
acceleration signals and vibration data of the equipment in real 
time, predict potential faults, and thus improve safety. It can be 
applied to elevators in construction sites, mine elevators, rail 
transit systems, industrial automation equipment, key 
components in the aerospace industry, lifting systems in marine 
engineering, as well as medical and emergency rescue 
equipment, ensuring the stability and safety of these systems 
during operation, reducing accident risks, and has significant 
practical application value. 

However, there are also certain limitations to the research. 
Firstly, there was not much consideration given to the fault 
detection of elevator door systems in research. Technologies 
such as photosensitive sensors or image-based door anomaly 
detection are important components in addressing the safety of 
elevator door systems. Light sensors can monitor the status of 
elevator doors by sensing light, while image-based door 
anomaly detection technology requires advanced image 
processing algorithms and computer vision technology. 
Secondly, the study used unsupervised IF algorithm. However, 
relying solely on Unsupervised Learning is difficult to fully 
explore the deep information of data. Future research can 
combine Unsupervised Learning and Supervised Learning to 
further improve the detection accuracy and robustness of the 
model, especially in the case of labeled datasets. Thirdly, sensor 
data may be affected by environmental noise, which can affect 
the accuracy of elevator status monitoring. Future research 

could consider deep learning techniques to address noise issues, 
improving noise processing accuracy by learning the features 
and patterns of noise. Fourthly, although UKF theoretically has 
high accuracy, it may face computational efficiency challenges 
in practical applications, especially in scenarios with large data 
volumes or high real-time requirements. Future research can 
explore model light weighting to reduce the time and resources 
required for retraining models on new tasks, as well as reduce 
the difficulty of model optimization and improve application 
efficiency through automated joint optimization. Fifthly, the 
deployment of this method in real environments will face 
complex building environments, especially large buildings with 
complex internal structures that may include multiple elevator 
shafts, different floors, and complex building layouts, leading 
to interference in sensor signals. Future research can optimize 
the layout and selection of sensors, reduce space occupation, 
and choose high-quality sensors. Shielding and filtering 
techniques can also be used to reduce interference. 
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