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Abstract—Palembang Songket is an essential part of 

Indonesian cultural heritage, and its introduction and 

preservation present challenges, particularly in recognizing 

various motifs. This research introduces a novel strategy to 

optimize the performance of Convolutional Neural Networks 

(CNNs) by presenting a hierarchical integration of Ghost Module 

operations and Max Pooling, referred as Ghost Feature Maps. 

While the Ghost Module is effective in reducing parameters and 

enhancing feature extraction, it has limitations in filtering 

irrelevant information. To address this shortcoming, we propose a 

hierarchy in which Max Pooling works in conjunction with the 

Ghost Module, strengthening its performance by not only 

extracting dominant features but also eliminating excess, non-

essential information. This hierarchical design enables more 

efficient feature extraction, thus enhancing the model's 

recognition accuracy. By combining Ghost Modules and Max 

Pooling in a structured manner, this approach advances 

established methodologies and offers a new perspective on feature 

representation within CNN architectures. Utilizing a dataset of 10 

augmented classes of Palembang Songket motifs totaling 1000 

images, we conducted experiments using varying ratios of Ghost 

Feature Maps. The results indicate that a ratio of 2 achieves an 

impressive accuracy of 0.98 with minimal parameter reduction. 

Additionally, a ratio of 3 results in a 34% decrease in parameters 

while maintaining a competitive accuracy of 0.95. Ratios of 4 and 

5 continue to demonstrate robust performance, achieving 

accuracy levels of 0.93 while delivering over 60% reductions in 

model size and parameters. This research not only contributes to 

the optimization of CNN architectures but also supports the 

preservation of cultural heritage by improving the recognition 

capabilities of Palembang Songket motifs. 

Keywords—Convolutional neural network; ghost module; 

palembang songket motif; recognition 

I. INTRODUCTION 

One of the artistically significant pieces of Indonesian 
cultural heritage is Songket. The term "sungkit" which 
describes the process of embroidering gold and silver threads, 
is the source of the word "songket" [1]. Ten connected steps are 
involved in the production of Songket fabric, including thread 
dyeing, klose processing, lungsin coating, thread type selection, 
and weaving designs with lidi. Songket fabric has different 
characteristics and philosophies depending on its region of 
origin [2]. One of the Songket fabrics registered as an 
Indonesian Intangible Cultural Heritage is Palembang Songket 
[3]. Palembang Songket has various types of motifs. The motifs 
of Palembang Songket reflect its beauty, uniqueness, and 
traditional values. Palembang Songket faces challenges in its 
preservation because the motif recognition process still relies 

on manual or semi-automatic approaches that are vulnerable to 
human error and limitations. Successfully recognizing and 
understanding Palembang Songket motifs is essential for 
preserving local art and culture and has significant economic 
impacts through promoting Songket products in the global 
market. 

The problem of identifying Songket motifs has been 
addressed in the past by a number of feature extraction 
techniques, including Felzenzswalb segmentation [4], and Gray 
Level Co-occurrence Matrix (GLCM) [5]. These techniques are 
then combined with a variety of classifier algorithms, including 
Naive Bayes [6], Decision Tree [6], and Support Vector 
Machine (SVM) [5]. Even while these techniques have 
produced acceptable outcomes in certain situations, there are 
still a number of important drawbacks. The primary drawback 
of these methods is their dependence on manual feature 
extraction, which frequently results in challenges in capturing 
the crucial elements of the complex Songket motifs. 

Enhancement of motif identification performance is a 
promising area in deep learning. Convolutional Neural Network 
(CNN) models have demonstrated their capacity to recognize 
patterns in a variety of domains, including the identification of 
images. CNN has a lot of potential to improve Songket motif 
recognition. Applying CNN to motif recognition has the benefit 
of minimizing reliance on manual feature extraction by 
automatically extracting pertinent characteristics from data. 
Although there has been some prior research, not much has 
been accomplished in terms of training CNN to identify 
Songket motifs [7], [8]. The primary constraint is to the model's 
capability to manage intricate motif modifications, such as 
rotation, scaling, and distortion. The intricacy of Palembang 
Songket patterns is too great for a conventional CNN training 
model to handle. 

Due to their numerous convolution layers, CNNs have 
substantial computational costs. In each convolution layer, 
mathematical operations are conducted to each input in order to 
extract important properties from the input data. The number of 
convolution layers that are conducted therefore increases the 
amount of computing operations needed, which could result in 
significant computational expenses in terms of processing time 
and energy consumption [9], [10], [11].  Thus, the convolution 
operations of CNN can be assumed by the Ghost Module. By 
using a method called the Ghost Module, which involves 
joining convolution filters with smaller "ghost filters", the CNN 
model is able to retain a significant amount of representation 
information while requiring fewer calculations and parameters 
[12]. In order to improve the performance of Palembang 
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Songket motif recognition, this research suggests a novel 
method that incorporates the Ghost Module into the CNN 
architecture. 

The main contribution in this research is the introduction of 
Ghost Feature Maps through the integration of Ghost Module 
as a substitute for conventional convolutional layers, with Max 
Pooling applied hierarchically afterward. Ghost Feature Maps 
function to facilitate feature learning in CNN models, with the 
aim of increasing the efficiency of Palembang Songket motif 
recognition. In this hierarchical approach, Ghost Module is 
applied first to improve feature extraction efficiency by 
reducing computational complexity. Afterward, Max Pooling is 
used to further reduce spatial dimensions, enhancing 
computational efficiency and focusing on dominant features 
while suppressing irrelevant information. This combination 
reduces the number of parameters and model size while 
increasing accuracy performance. In addition, this study offers 
a solution to the challenge of recognizing complex Songket 
motif variations, such as rotation, scale, and deformation. This 
approach provides an innovative solution in addressing 
problems that have not been fully resolved in Palembang 
Songket motif recognition. 

The remaining content of the paper is organized as follows: 
Section II  discusses the related works in the field of Palembang 
Songket Motif, CNN and Ghost Module. Section III presents a 
detailed explanation of the proposed method. Section IV 
presents results and discussion, and performance. The last 
Section V summarizes the overall conclusion of the paper. 

II. LITERATURE REVIEW 

This section discusses the literature review of the 
Indonesian traditional fabrics, CNN, and Ghost Module 
research. 

A. Image-based Recognition of Indonesian Traditional 

Fabrics 

Sriani, Hasibuan, and Ananda [5] used SVM to classify 
Batu Bara Songket motifs, which are characterized by 
distinctive patterns such as Bunga Tanjung, Pucuk Betikam, 
Pucuk Cempaka, Pucuk Pandan, Tampuk Manggis, and Tolab 
Berantai. Gray-level texture features were extracted using the 
Co-Occurrence Matrix method, considering parameters like 
Contrast, Correlation, Energy, and Homogeneity. These 
extracted features were then processed as input for 
classification using the SVM. Despite the challenges, the study 
achieved a classification accuracy of 57% with 60 training data 
and 30 test data. 

Aprianti et al. [6] classified Lombok songket fabric motifs, 
which are characterized by geometric patterns, varying density, 
color, and motif positioning. The algorithms used included 
Naive Bayes and Decision Tree, tested with different pixel sizes 
to compare accuracy levels. The results showed that the Naive 
Bayes algorithm achieved the highest accuracy of 90% at a 
100×100 pixel size, while the Decision Tree algorithm was 
optimal at 400×400 pixels with the same accuracy. This 
approach demonstrated that combining algorithms with pixel 
size adjustments could significantly enhance motif recognition 
accuracy. 

Ariessaputra et al. [7] classified Lombok songket motifs 
using a Convolutional Neural Network (CNN) algorithm, 
demonstrating the potential of image processing for traditional 
fabric pattern recognition. The dataset consisted of 20 Lombok 
Songket images with identical motifs and colors, 14 with the 
same but different colors, and 10 with various motifs and 
colors. In the preprocessing phase, each image underwent 
resizing, followed by CNN layers for convolution, pooling, and 
fully connected operations. Data augmentation through 150-
degree rotations was applied to enhance model robustness. The 
results indicated that motif classification with consistent colors 
achieved an accuracy of 84%, highlighting the effectiveness of 
CNNs for identifying and distinguishing Lombok Songket 
motifs across varying visual parameters. 

Hambali, Mahayadi, and Imran [8] applied CNN to classify 
Lombok Songket motifs, focusing on Songket from two 
prominent Lombok regions, Sade and Pringgasela. The study 
utilized a dataset of 64 images, comprising 40 samples from 
Sade and 24 from Pringgasela. The model's testing results 
showed an accuracy of 86%, with 87% precision and 86% 
recall. These results demonstrated CNN's effectiveness in 
differentiating textures within traditional Songket fabrics, 
offering valuable insights for preserving and recognizing 
regional textile characteristics. 

Andrian et al. [13] used CNN architectures, including 
AlexNet, EfficientNet, LeNet, and MobileNet, to classify 
Lampung Batik motifs. The study utilized a dataset of 1000 
images representing ten distinct motifs, enhanced through 
preprocessing techniques like rotation, shifting, brightness 
adjustment, and zooming. The results showed that LeNet 
achieved the highest accuracy of 99.33%, highlighting its 
suitability for small datasets, while other architectures also 
demonstrated strong performance despite occasional 
classification errors due to motif similarities. 

Elvitaria et al. [14] proposed an ensemble deep learning 
method for batik image classification that combines texture 
feature extraction using Gray Level Co-occurrence Matrix 
(GLCM) with the Residual Neural Network (ResNet) 
classification model. By extracting texture features such as 
contrast, dissimilarity, and entropy using GLCM and 
combining them with ResNet, the proposed ensemble method 
achieved high performance, with accuracy, precision, recall, 
and F1-score all above 90%. The study demonstrated that the 
ensemble deep learning approach, particularly with the standard 
deviation feature, improved classification accuracy and can be 
applied to preserve batik culture digitally. 

Muliono, Iranita, and Syah [15] proposed a deep learning 
model for classifying traditional Batak Ulos fabrics, utilizing 
CNN to recognize and classify different Ulos motifs. The study 
employed the Modular Neural Network (MNN) to simplify 
complex computations, achieving an accuracy of 97.83% with 
a loss value of 0.0793 during training. The validation results 
showed a validation loss of 2.1885 and a validation accuracy of 
74.29%, demonstrating the model's strong performance while 
indicating areas for potential improvement in generalization. 

Overall, the studies reviewed highlight significant 
advancements in image-based recognition techniques for 
recognizing Indonesian traditional fabrics, such as Songket and 
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Batik. Various machine learning models, including SVM, 
Naive Bayes, Decision Trees, CNN, and ensemble deep 
learning methods, have been applied to address the challenges 
of recognizing intricate fabric patterns characterized by texture, 
color, and motif positioning. These findings underscore the 
potential of image-based recognition systems in advancing the 
digital preservation and recognition of traditional Indonesian 
fabrics, offering valuable contributions to the cultural heritage 
field. 

B. Ghost Module and CNN 

Han et al. [12] proposed the Ghost Module in their research 
to produce feature maps with low computational costs, thereby 
simplifying the architecture of conventional CNN. GhostNet, 
built using the Ghost Module, demonstrated better recognition 
performance than MobileNetV3, with an accuracy of 75.7% on 
the ImageNet ILSVRC-2012 dataset. According to these 
results, the Ghost Module has the potential to be an efficient 
solution that can be added to current CNN networks. 

Wang and Li [16] discussed the creation of a CNN model to 
enhance recognition systems' efficiency. This study used the 
GhostNet and Convolutional Block Attention Module (CBAM) 
methods. GhostNet and Ghost Bottleneck improved the model's 
capacity to extract significant image characteristics. 
Furthermore, employing GhostNet resulted in fewer parameters 
while retaining good accuracy. 

Zhao and Cheng [17] proposed a more efficient approach 
that minimizes computation compared to traditional CNN by 
merging the Yolov5 model and GhostNet. This method 
increases processing speed and accuracy. The proposed 
approach's performance test showed that it achieved high 
detection accuracy while needing less memory and compute. 
Overall, this study provides a solution for image identification 
for human security screening purposes. This framework is also 
done for vehicle detection [18]. 

Huangfu, Li, and Yan [19] proposes the Ghost-YOLO v8 
algorithm to improve the detection of surface floating litter in 
artificial lakes. This efficient and lightweight algorithm 
includes an SE mechanism for better feature extraction, a small-
target detection layer to reduce semantic loss, and a GhostConv 
module to decrease computational demands. 

Fang, Chen, and He [20] suggested an efficient CNN 
solution for facial expression recognition called Ghost-based 
Convolutional Neural Network (GCNN). This approach seeks 
to overcome CNN-related overfitting concerns. The Ghost 
Module architecture is less computationally expensive since it 
may minimize the number of parameters while producing more 
feature maps than CNN approaches. Based on this research, 
GCNN can efficiently extract and classify face expression 
features. 

Alansari et al. [21] introduced Lightweight Face 
Recognition using GhostFaceNets, which requires less 
processing than normal CNN models. GhostFaceNets is a very 
accurate and efficient face recognition system. The proposed 
method was tested using a variety of datasets, including LFW, 
AgeDB-30, IJB-B, IJB-C, and MegaFace. GhostFaceNets uses 
the Ghost Module method to execute linear modifications on 

feature maps, resulting in better and more thorough feature 
extraction. 

Luan, Mu, and Yuan [22] addresses challenges in Online 
Signature Verification (OSV), by proposing the one-
dimensional Ghost-ACmix Residual Network (1D-ACGRNet). 
The network is designed to combine convolution with a self-
attention mechanism to effectively capture both global and 
local signature features. Simplification of operations is 
achieved through the Ghost-based Convolution and Self-
Attention (ACG) block, which reduces computational load. 
Significant accuracy improvements are shown in experiments 
on the MCYT-100 and SVC-2004 Task2 datasets, with equal 
error rates reaching as low as 0.91% for genuine and forged 
signatures. 

Paoletti et al. [23] conducted Hyperspectral Image 
Classification (HSI) which is one of the remote sensing 
techniques used in Earth observation for health, robotic vision, 
and quality control. The challenge in HSI is that each HSI 
image has hundreds of spectral bands that produce large 
amounts of data, requiring high computation. This study 
introduces an approach by combining ghost-module 
architecture and CNN. Test results show that using Ghost 
module can reduce HSI's cost and computation time. 

Tang et al. [24] proposed an efficient mechanism called 
DFC attention is proposed, using GhostNetV2. GhostNetV2 
can overcome limitations in conventional CNN methods. In 
testing, GhostNetV2 showed better performance than CNN 
architecture, achieving an accuracy of 75.3% on the ImageNet 
dataset, with efficient FLOPs. Therefore, GhostNetV2 is the 
right choice for mobile applications requiring efficiency and 
high performance. 

Liu et al. [25] investigated effective training strategies for 
compact neural networks to address performance gaps and 
proposed GhostNetV3. The strategy focused on essential 
methods, including re-parameterization to improve efficiency, 
knowledge distillation to enhance smaller model performance 
through learning from larger models, and optimized learning 
schedules and data augmentation to increase training data 
diversity. As a result, GhostNetV3 achieves an optimal balance 
between accuracy and inference costs. 

He et al. [26] proposed the Ghost module-based convolution 
network approach for superresolution (SR) in satellite video in 
this research. This approach is called Ghost module-based 
video SR (GVSR) and consists of two main modules: the 
preliminary image generation module and the SR results' 
reconstruction module. Experimental results on Jilin-1 and 
OVS-1 videos show that this method is superior in quality and 
quantity to other Deep Learning methods. 

Liu et al. [27] introduced a new approach for hyperspectral 
image classification called Ghost module extended 
morphological profile (GhostEMP), which employs Ghost 
Module and extended morphological profile (EMP) features. 
This method can reduce model complexity and the amount of 
calculations, hence increasing operational efficiency. The 
experimental results suggest that this strategy effectively 
preserves model performance by maximizing hyperspectral 
data features. Not only does it apply to hyperspectral data, but 
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it also utilizes the Ghost Features Network (GFN) for super-
resolution by cascading residual-in-residual ghost blocks [28]. 

The studies emphasize the effectiveness of the Ghost 
Module in enhancing the efficiency of deep learning models for 
diverse applications, including image recognition and 
hyperspectral image processing. GhostNet and its variants, such 
as GhostNetV2 and GhostNetV3, have significantly improved 
accuracy while reducing computational complexity. These 
advancements make Ghost Module in GhostNet architecture a 
valuable solution for high-performing applications with 
minimal resource usage. 

III. METHODOLOGY 

A. Dataset 

The dataset used in this research consists of 10 classes of 
Palembang Songket motifs, namely Bintang Berantai, Bunga 
Cina, Bunga Jatuh, Cantik Manis, Jando Beraes, Kenanga 
Makan Ulat, Naga Besaung, Nampan Perak, Pacar Cina, and 
Pulir. The motif images were captured using a Canon 7D DSLR 
camera equipped with a Canon EF 70-200mm F2.8 lens, Canon 
Speedlite 600 Mark II, and tripod, with a consistent portrait 
distance of 45 cm from the object and a front-facing angle of 0 
degrees. A total of 50 Songket fabrics were photographed and 
thoroughly validated by a Songket motif expert. The expert 
ensured that each image was following the traditions and 
authenticity of Palembang Songket culture. 

 

Fig. 1. Dataset of palembang songket motif. 

The Palembang Songket motif photos were cropped to 2048 
x 2048 pixel size with 300 dpi resolution, and then augmented. 

Augmentation techniques applied include rotation, scaling, and 
horizontal and vertical flipping, as these techniques are more 
suitable for the complex patterns of Songket and do not alter the 
basic motif design. This augmentation technique produces a 
total of 1000 images, with each motif containing 100 images 
that correspond to the Palembang Songket motif collection with 
geometric patterns, as shown in Fig. 1. Afterwards, the images 
were resized to 256 × 256 for use as input in the CNN 
architecture with Ghost Feature Maps. As part of the 
preprocessing stage, each Songket motif image was resized to 
256 x 256 pixels to ensure uniform image sizes. 

B. Proposed Method 

The proposed model architecture can be divided into two 
major components, namely feature learning and classification, 
each responsible for different aspects of its functionality. Fig. 2 
illustrates the architecture of the proposed model. 

 

Fig. 2. CNN architecture with ghost feature maps. 

1) Feature Learning: The process starts with applying 

Ghost Feature Maps. This layer is designed to extract feature 

maps efficiently by generating primary feature maps and 

applying simple transformations to produce additional maps. 

The objective here is to capture essential patterns in the data 

while minimizing computational resources and parameters, 

making the approach both efficient and effective. Following 

this, the extracted feature maps are processed by a Flatten layer. 

The Flatten layer transforms these high-dimensional feature 

maps into a one-dimensional vector, which is necessary for 

subsequent classification layers. The Flatten layer ensures that 

all the spatial information captured during the feature learning 

process is retained but represented in a format compatible with 

fully connected (dense) layers. 

2) Classification: The classification phase includes three 

Fully Connected (Dense) layers. The first two Dense layers 

each consist of 512 neurons and use the ReLU activation 

function to introduce non-linearity, enabling the model to learn 
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more complex relationships in the data. These layers take the 

flattened feature vector from the feature learning phase and 

process it further to identify the patterns necessary for 

classification. To address the risk of overfitting, the model 

incorporates two Dropout layers after the first and second 

Dense layers. Dropout randomly turns off 50% of the neurons 

during each training iteration, encouraging the model to learn 

more robust and generalized features by not overly relying on 

specific neurons. The final step involves a third Dense layer, 

the output layer. This layer contains ten neurons, corresponding 

to the 10 Palembang Songket motifs being classified. It uses the 

softmax activation function to generate a probability 

distribution across the ten classes, with the class having the 

highest probability selected as the predicted motif. 

C. Ghost Module 

The GhostNet architecture, which features a layer known as 
the Ghost bottleneck, was the primary inspiration for this work. 
The Ghost bottleneck combines the Ghost module, a batch 
normalization, two or three Ghost Modules in a row, and then 
interleaved depthwise convolution, batch normalization, and 
ReLU activation [12]. However, in this research, only the Ghost 
module is employed without the full implementation of the 
Ghost bottleneck. 

The dataset is a Palembang Songket pattern and it is unique 
and thus very rare, so it is hard to get a lot of data. Batch 
normalization was excluded from the Ghost Module. Instead, 
the Ghost Module was used alone, assuming that its simplicity 
would adequately convey the distinctive qualities of the 
Palembang Songket motifs without the added complication of 
the Ghost bottleneck. 

The Ghost module consists of multiple phases, including 
primary convolution, cheap convolution, feature concatenation, 
and channel trimming. Each of these levels contributes 
significantly to the module's efficiency by reducing the amount 
of parameters and computational complexity while maintaining 
overall network performance. The Ghost module is a way to 
create more feature maps while doing fewer computations than 
usual, which is very helpful in deep learning models. Fig. 3 
shows how the Ghost module works. 

 

Fig. 3. Ghost module workflow. 

1) Primary convolution: In the initial stage, the Ghost 

module conducts feature extraction through a primary 

convolution operation. This convolutional process decreases 

the number of output channels by a defined reduction ratio, 

denoted as 𝑟, which indicates the degree of parameter reduction 

in comparison to a typical convolution operation. If the desired 

number of output channels is 𝐶𝑜𝑢𝑡, the output channels from the 

primary convolution, 𝐶𝑐ℎ𝑒𝑎𝑝 are calculated in Eq. (1). 

 𝐶𝑐ℎ𝑒𝑎𝑝 =
𝐶𝑜𝑢𝑡

𝑟
 (1) 

This convolution employs a kernel size of 𝑘 × 𝑘, where 𝑘 
represents the kernel dimension. It is applied with the same 
padding to maintain the input's spatial dimensions. A ReLU 
activation function is applied after the convolution to introduce 
non-linearity, enabling the model to capture more complex 
patterns. The mathematical expression for this step is calculated 
in Eq. (2). 

 𝑷 = 𝜎(𝑿 ∗ 𝑾𝟏 + 𝒃) (2) 

Where, 𝑿 is the input, 𝑾𝟏 is the convolution filter of size 
𝑘 , 𝒃  is the bias term, and 𝜎  represents the ReLU activation 
function. The result of this process, 𝑷, contains features with 
𝐶𝑐ℎ𝑒𝑎𝑝  channels, representing a portion of the total desired 

channels, 𝐶𝑜𝑢𝑡. 

2) Cheap convolution: In the next stage, the features 

produced by the primary convolution undergo a second 

convolution process using a depthwise convolution. This 

operation processes each feature channel independently, 

meaning each channel is convolved with a separate filter, which 

reduces computational cost while generating additional feature 

details. The depthwise convolution is applied with a kernel size 

of 𝑘 × 𝑘 , where 𝑘  is the size of the depthwise kernel. The 

output of this process can be calculated in Eq. (3). 

 𝑪 = 𝜎(𝑷 ∗ 𝑾𝟐) (3) 

Where 𝑾𝟐  is the depthwise convolution filter applied to 
each feature channel in 𝑷, and 𝑪 represents the output of this 
operation. A ReLU activation function (𝜎) is also applied to 
maintain non-linearity in the feature representation. The Ghost 
module enriches the features with minimal computational 
overhead compared to full convolutions by using depthwise 
convolution, contributing to a more efficient model. 

3) Feature Concatenation: Following the two convolution 

processes, the outputs from the primary and depthwise 

convolutions are aggregated. Feature aggregation combines 

these outputs to create a richer feature representation, merging 

primary and additional features into a single output set. If the 

output of the primary convolution is denoted as P and the output 

of the depthwise convolution as C, the aggregation process can 

be expressed mathematically in Eq. (4). 

 𝑶 = [𝑷, 𝑪] (4) 

Where 𝑶  represents the aggregation output, and the 
notation [. , . ]  signifies concatenation along the channel 
dimension. This aggregation ensures that the final feature set 
captures both the main and additional details from the input, 
leading to a more informative feature representation without 
significantly increasing computational complexity. 
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4) Channel Trimming: The final stage is channel trimming 

to ensure that the number of output channels corresponds to the 

target, 𝐶𝑜𝑢𝑡. After feature aggregation, the number of channels 

may surpass the target number. Channel trimming is done to 

keep only the necessary 𝐶𝑜𝑢𝑡 channels. If the aggregated feature 

map 𝑶 has 𝐶𝑐𝑜𝑛𝑐𝑎𝑡  channels, where 𝐶𝑐𝑜𝑛𝑐𝑎𝑡 > 𝐶𝑜𝑢𝑡, only retain 

the first 𝐶𝑜𝑢𝑡 channels that can be represented as in Eq. (5). 

 𝒀(𝑖, 𝑗) = 𝑶(𝑖, 𝑗, 1: 𝐶𝑜𝑢𝑡) (5) 

Where, 𝑶(𝑖, 𝑗, 1: 𝐶𝑜𝑢𝑡)  denotes selecting the first 𝐶𝑜𝑢𝑡 
channels from the aggregated feature map 𝑶, where 𝑖 and 𝑗 are 
the spatial indices of the feature map. The operation trims the 
excess channels, ensuring the correct output dimensionality, 
thus providing an output feature map 𝒀 with dimensions 𝐻 ×
𝑊 × 𝑁, where 𝐻 and 𝑊 are the height and width of the spatial 
dimensions, and 𝑁  is the number of required channels. This 
trimming guarantees that the final output size is consistent with 
the architecture's design without unnecessarily increasing 
computational costs. 

D. Ghost Feature Maps 

The proposed Ghost feature maps, illustrated in Fig. 4, 
integrate Ghost modules with Max Pooling. In CNNs, multiple 
filters are applied within each convolutional layer to extract 
various features [29]. These convolutional and pooling layers 
are arranged sequentially, forming a hierarchical structure that 
progressively captures and reduces feature dimensions [30]. In 
this research, traditional convolutional layers are replaced by 
Ghost modules, which provide a more efficient alternative 
while maintaining the standard CNN architecture. Utilizing a 
ratio (𝑟) parameter can generate more features from input with 
significantly fewer parameters. This research uses a kernel size 
𝑘 of 3 for both the primary [12] and depthwise convolution in 
the Ghost module, with the bias 𝒃 set to 0. For instance, in the 
first layer, Ghost Module (32, r = 2) produces 32 features using 
only half the parameters conventional convolution requires. 
This not only accelerates training but also reduces the risk of 
overfitting. Additionally, as the number of features increases in 
subsequent Ghost Modules (32, 64, 128, 512), the model 
captures more complex variations in the input data. Increasing 
the feature channels as the network deepens enriches 
representation and allows the model to learn more abstract 
features. 

Max pooling then is strategically applied after each Ghost 
module to reduce the dimensionality of the features 
significantly extracted. It also greatly reduces computational 
complexity in later layers, allowing the model to focus on the 
most dominant features, significantly improving its 
generalization ability. Max pooling's function in promoting 
invariance makes the model much more robust to small 
rotational or translational changes in the input data, which is 
very important in pattern recognition problems, where such 
variations are the norm. This makes the audience feel more 
confident that the model is not only efficient but strong as well. 

 

Fig. 4. Ghost feature maps workflow. 

Doing that four times, Ghost module and max pooling, 
gives even more advantages. Every pair builds a pyramid of 
feature representation. As the layers get deeper, the learned 
feature hierarchies become more and more complex, starting 
from simple features in the lower layers to more abstract 
representations in the higher layers. The architecture actually 
exploits this by using a Ghost module and then max pooling 
right after to ensure maximum feature extraction, but without 
losing any computational efficiency. 

E. Parameter Distribution of Proposed Model Architecture 

The distribution of parameters in the proposed CNN 
model's layer structure is presented in Fig. 5. Fig. 5 illustrates a 
comparative analysis of the total number of parameters between 
standard 2D convolutional (Conv2D) and Ghost module layers 
with varying expansion ratios (2 to 5). The Conv2D layer has 
the highest parameter count at 683,584, indicating its 
substantial computational complexity. In contrast, the Ghost 
module layers demonstrate a progressive reduction in the 
number of parameters as the expansion ratio increases, with 
344,736 parameters at a ratio of 2; 150,633 at a ratio of 3; 
87,120 at a ratio of 4, and 54,603 at a ratio of 5. This trend 
highlights the efficiency of Ghost module in significantly 
reducing parameter count while maintaining performance. The 
results suggest that higher Ghost module ratios can drastically 
minimize the model's computational load, offering a more 
resource-efficient alternative to traditional Conv2D layers. This 
parameter reduction is advantageous for applications with 
limited computational resources without compromising the 
model's representative capacity. 
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Fig. 5. Comparison of total parameters by layer type. 

F. Experimental Setup 

The experimental setup is to test the Ghost Feature Maps 
with ratios of 2, 3, 4, and 5 [12] versus Conv2D layers for image 
classification. The research will utilize a dataset of Palembang 
Songket motif images organized into ten distinct classes, with 
the data split structured as 80% for training, 10% for validation, 
and 10% for testing purposes. A single learning rate of 0.001 
and a batch size of 32 will be employed, with the Adam 
optimizer selected for model training over 50 epochs. 

The model architectures will encompass Ghost Modules for 
each specified ratio, followed by a Flatten layer, three Dense 
layers, and a Dropout for regularization. In parallel, a standard 
2D convolutional model will be constructed with a similar 
architectural framework to facilitate direct comparison. 

The evaluation will follow some standards: accuracy, 
precision, recall, and F1-score. The experimental procedure 
will also preprocess the data so the dataset is normalized and a 
consistent input is entered into the model. After training, 
however, all models will be tested thoroughly on the test set, 
and a complete analysis will be done comparing Ghost Feature 
Maps to normal convolutional layers and examining how 
variations in hyperparameters affect the model's overall 
performance. 

G. Classification Performance 

Many different performance measures are used to assess the 
classification models effectiveness. Some more common ones 
are accuracy, precision, recall, F1-score, and overall accuracy. 
They all express the model's capability to classify the 
Palembang Songket patterns differently.  

1) Accuracy: simply the ratio of correct predictions to the 

total number of instances [31]. The accuracy value can be 

calculated using Eq. (6). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6) 

2) Precision: a measure used to determine how accurate the 

model is in its predictions. It is calculated by dividing the 

number of true positives by the number of predicted positives. 

Precision is the number of true positives divided by the total 

number of positives the model predicted [31]. The precision 

value can be calculated using Eq. (7).  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7) 

3) Recall: is the model's ability to find all the true positives. 

It is the percentage of positive examples that the model 

correctly labels [31]. The recall value can be calculated using 

Eq. (8). 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (8) 

4) F1-Score: is the harmonic mean of precision and recall, 

used as a single value to balance precision and recall [31]. It can 

be calculated using Eq. (9). 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

5) Overall accuracy: is simply the number of correct 

predictions divided by the total number of samples over all of 

the classes. It is especially useful when performing multiclass 

classification [31]. The overall accuracy value can be calculated 

using Eq. (10). 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃+∑ 𝑇𝑁

∑ 𝑇𝑃+∑ 𝑇𝑁+∑ 𝐹𝑃+∑ 𝐹𝑁
 (10) 

IV. RESULTS AND DISCUSSION 

A. Results 

A comparison of two Convolutional Neural Network 
models using Conv2D layers optimized with Ghost Module 
produces significant differences. This difference can be seen 
from the pattern of accuracy or loss that is difficult to stabilize 
and fluctuations increase towards several epochs when 
considering training and validation data. The Conv2D model 
(Fig. 6) in the accuracy and loss graph has four sharp 
fluctuations in several epochs. The increasing loss and accuracy 
fluctuations indicate that the model chooses unstable 
predictions under certain conditions. This pattern indicates the 
difficulty of the model in identifying patterns in data that are 
consistent for each epoch in training and validation data. This 
condition affects the process to remain stable so that the model 
cannot generalize to new data.  

When given the Ghost Module (Fig. 7), some fluctuations 
in the learning process appear better. The number of sharp 
fluctuations decreases from four to two, and all remaining 
conditions are flatter. This effect indicates that the Ghost 
Module can make the model stable for each epoch so that the 
trend of decreasing loss becomes more stable and accuracy 
increases continuously. The remaining training and validation 
data provide smoother and less extreme patterns like the 
Conv2D model so that it can detect better patterns each epoch. 
In addition, the validation data also looks better by decreasing 
the trend in several epochs. Accuracy increases more stably, 
and the loss decreases, making the learning model more 
effective on data without overfitting training and validation 
data. Overall, Ghost Module can provide a stable model and 
reduce sharp fluctuations as evidenced by more stable accuracy 
and decreased loss in training and validation datasets. 
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Fig. 6. Training and validation performance, Conv2D. 

 
Fig. 7. Training and validation performance, Ghost Feature Maps (r = 2). 

Furthermore, based on Fig. 8, the accuracy and loss results 
for the training and validation process of the Ghost Module 
model with a ratio of 3 are similar to the Ghost Module model 
with a ratio of 2. However, at ratio 3, the graph shows slightly 
inconsistent accuracy and loss fluctuation in training and 
validation. This occurs at epochs 40 to 50, where a gap begins 
to widen slightly in the accuracy and loss values for the training 
and validation processes. From the training model graph results, 
it can be seen that this model can still learn the Palembang 
Songket motif data well, where there are still similarities in the 
fluctuations in accuracy and loss values with the Ghost module 
ratio 2. 

 

Fig. 8. Training and validation performance, Ghost Feature Maps (r = 3). 

For the performance results of the Ghost module with a ratio 
of 4 in Fig. 9, the fluctuations in loss values for the training and 
validation processes begin to increase. At least starting from 
epochs 10 to 20, there have been quite large fluctuations, but 
for the following epochs up to 50, the loss value begins to 
decrease. Compared to ratio 3, the Ghost module for ratio 4 
tends to be less stable at epochs 30 to 50. In this epoch range, a 
gap begins to move away from the accuracy and loss values. 
The results of ratio four show that the training model began to 
experience a decrease in performance for the classification of 
Palembang Songket motifs compared to ratio 3. 

 
Fig. 9. Training and validation performance, Ghost Feature Maps (r = 4). 
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Fig. 10. Training and validation performance, Ghost Feature Maps (r = 5). 

At ratio five shown in Fig. 10, the performance of the Ghost 
Module shows a wider gap for accuracy and loss values. This is 
almost the same as ratio four, where the condition of the 
training model experienced quite large fluctuations from epoch 
30 to 50. However, more significant fluctuations occurred in 
epoch 40 to 50 compared to ratios 2, 3, and 4. This is due to a 
significant reduction in the number of parameters in the Ghost 
module, so it cannot capture the pattern of the Palembang 
Songket motif features. 

 
Fig. 11. Visualization of Conv2D feature maps. 

 
Fig. 12. Visualization of Ghost Feature Maps. 

Another way to test the model is to visualize the feature 
maps and see what kind of features the model has learned from 
the Palembang Songket motif image. The visualization results 
are then compared with the CNN model with standard Conv2D 
and Ghost Feature Maps. As shown in Fig. 11, the visualization 
results of the feature maps that the CNN model with Conv2D 
produced have a lot of dark spots and only a few obvious motif 
feature patterns using this trained model. It turns out that even 
with the trained model it is still hard to get the Palembang 
Songket motif pattern. 

As seen in Fig. 12, unlike the regular CNN model with 
Conv2D, the CNN model with Ghost Feature Maps can actually 
yield clearer feature maps than the regular CNN model. As 
evidence by the feature map of the Ghost feature map, it 
performs better than the normal Conv2D. The CNN model with 
ghost really brings out the Songket motif pattern in many 
places. The shape and edge features are more distinct than in 
the regular CNN model. This is good because it will allow the 
model to learn to recognize the intricate Palembang Songket 
pattern much more accurately than the old Conv2D model. 

Table I shows the results of the comparison of the 
classification performance of the CNN model with Ghost 
Feature for 10 classes of Palembang Songket motifs. Compared 
to CNN with Conv2D, CNN with Ghost feature (ratio 2) is able 
to provide better classification performance. This is proven by 
the increase in accuracy, precision, recall, and f1-score for all 
classes of Palembang Songket motifs. For the Songket Bintang 
Berantai motif, there was an increase in accuracy from 0.94 to 
0.98, precision from 0.63 to 0.83, recall remained at 1.00, and 
f1-score from 0.77 to 0.91. Furthermore, the Bunga Jatuh motif 
increased with accuracy from 0.99 to 1.00, precision remained 
at 1.00, recall from 0.90 to 1.00, and f1-score from 0.95 to 1.00. 
Then, the Kenanga Makan Ulat motif increased with accuracy 
from 0.98 to 1.00; precision remained at 1.00, recall from 0.80 
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to 1.00, and f1-score from 0.89 to 1.00. After that, for the Naga 
Besaung motif, accuracy increased from 0.95 to 0.98, precision 
from 0.86 to 1.00, recall from 0.60 to 0.80, and f1-score from 
0.71 to 0.89. Then, for the Nampan Perak motif, there was an 
increase in accuracy from 0.98 to 1.00, precision from 0.90 to 
1.00, recall from 0.90 to 1.00, and f1-score from 0.90 to 1.00. 
The rest, the Bunga Cina, Cantik Manis, Jando Beraes, Pacar 
Cina, and Pulir motifs, did not increase because they were 
already very well recognized. 

Table II shows the results of the overall comparison of the 
performance of the CNN model with Ghost Feature. The 

comparison consists of total parameters, overall accuracy, and 
model size. The total parameters referred to are the overall 
parameters used from the input layer to the output layer, namely 
ghost feature maps, flatten, up to the fully connected layer. 
Based on the results in Table II, it was found that the CNN 
model with Ghost Feature provided an overall accuracy of 0.98 
with fewer total parameters compared to the CNN model with 
Conv2D which had an overall accuracy of 0.92. In addition, the 
CNN model with Ghost Feature ratios of 4 and 5 was able to 
provide the same overall accuracy of 0.93 with much more 
reduced parameters with a smaller model size.

TABLE I.  COMPARISON OF MODEL PERFORMANCE BASED ON PALEMBANG SONGKET MOTIF CLASS 

Songket Motif 

Accuracy Precision Recall F1 – Score 

Conv2D 
Ghost 

Feature 
Conv2D 

Ghost 

Feature 
Conv2D 

Ghost 

Feature 
Conv2D 

Ghost 

Feature 

Bintang Berantai 0.94   0.98  0.63   0.83  1.00   1.00  0.77   0.91  

Bunga Cina 1.00   1.00  1.00   1.00  1.00   1.00  1.00   1.00  

Bunga Jatuh 0.99   1.00  1.00   1.00  0.90   1.00  0.95   1.00  

Cantik Manis 1.00   1.00  1.00   1.00  1.00   1.00  1.00   1.00  

Jando Beraes 1.00   1.00  1.00   1.00  1.00   1.00  1.00   1.00  

Kenanga Makan Ulat 0.98   1.00  1.00   1.00  0.80   1.00  0.89   1.00  

Naga Besaung 0.95   0.98  0.86   1.00  0.60   0.80  0.71   0.89  

Nampan Perak 0.98   1.00  0.90   1.00  0.90   1.00  0.90   1.00  

Pacar Cina 1.00   1.00  1.00   1.00  1.00   1.00  1.00   1.00  

Pulir 1.00   1.00  1.00   1.00  1.00   1.00  1.00   1.00  

TABLE II.  COMPARATIVE RESULTS OF THE PROPOSED METHOD 

Model 
Total 

Parameters 

Overall 

Accuracy 

Model Size 

(MB) 

CNN with Conv2D 68,060,746 0.92 259.63 

CNN with Ghost 

Feature (r = 2) 
67,721,898 0.98 258.34 

CNN with Ghost 

Feature (r = 3) 
44,983,411 0.95 171.60 

CNN with Ghost 

Feature (r = 4) 
33,909,850 0.93 129.36 

CNN with Ghost 

Feature (r = 5) 
27,061,049 0.93 103.23 

B. Discussion 

A comparison was also conducted with two previous studies 
on Songket motif classification using CNN-based methods, as 
summarized in Table III. Ariessaputra et al. [7] utilized a CNN 
architecture comprising Conv2D, Max Pooling, and Fully 
Connected layers, while Hambali et al. [8] implemented a CNN 
model with additional Dropout layers to enhance 
generalization. Both approaches leveraged CNN's feature 
extraction and classification capability for traditional fabric 
patterns. These studies highlight the relevance of CNN 
architectures for motif recognition, providing a contextual 
foundation for evaluating the proposed method's design and 
performance. 

TABLE III.  METHOD COMPARISON 

Authors Methods Dataset 
Overall 

Accuracy 

Ariessaputra et al. 

[7] 

CNN (Conv2D, 

MaxPooling, 

Fully 
Connected) 

Lombok 

Songket 

Motifs 
0.84 

Hambali et al. [8] 

CNN (Conv2D, 

MaxPooling, 

Dropout, Fully 

Connected) 

Lombok 

Songket 
Motifs 

0.86 

Ours 

CNN with 

Ghost Feature 

(r = 2) 

Songket 

Palembang 

Motifs 

0.98 

Each method has its strengths and limitations. However, the 
proposed approach, which retains the basic CNN architecture 
with Dropout but replaces Conv2D and Max Pooling with 
Ghost Feature maps involving the Ghost Module and Max 
Pooling, shows improved performance over the previous 
studies. The hierarchical combination of Ghost Module and 
Max Pooling in the proposed method leads to better 
classification results compared to the state-of-the-art methods 
from Ariessaputra et al. [7] and Hambali et al. [8]. This 
improvement highlights the effectiveness of the proposed 
method in enhancing motif recognition accuracy. 

In addition to key parameters such as the learning rate and 
batch size, the experiment also involved setting a Dropout rate 
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of 0.5 in the dense layer. This configuration aimed to improve 
the model's generalization in recognizing complex and diverse 
Songket motifs. During training, Dropout randomly deactivates 
units, helping the model learn feature representations that are 
more adaptive to the distinctive patterns of Songket motifs, 
such as geometric curves and overlapping color variations. 

The proposed model addresses the limitations of previous 
approaches by integrating the Ghost Module and a hierarchical 
combination of Max Pooling, which significantly enhances the 
efficiency of dominant feature extraction without losing the 
primary characteristics of motif patterns. Unlike conventional 
convolutional layers that rely on a large number of parameters, 
this model leverages the Ghost Module for a more lightweight 
feature generation mechanism, while the hierarchical 
integration of Max Pooling reduces redundancy and ensures a 
more focused feature extraction process. This approach not 
only improves efficiency in filtering less relevant features but 
also strengthens the model's ability to capture intricate patterns, 
especially in motifs with significant visual similarities and 
minor variations. With this structure, the model demonstrates 
enhanced efficiency and effectiveness in recognizing Songket 
motifs. 

V. CONCLUSION 

The use of Ghost feature maps, which involve the Ghost 
module, in the CNN model leads to a significant reduction in 
the number of parameters and the model size compared to 
traditional CNNs utilizing Conv2D. This efficiency is 
highlighted by the model achieving an impressive accuracy of 
0.98 at a ratio of 2, with only a minor parameter reduction of 
about 0.5% and a slightly smaller model size. However, as the 
ratio of Ghost feature maps increases, a further decrease in 
parameters and model size occurs, accompanied by a decline in 
accuracy. Specifically, a ratio of 3 results in a 34% reduction in 
parameters but lowers accuracy to 0.95. Ratios 4 and 5 stabilize 
accuracy at 0.93 while achieving over 60% reductions in model 
size and parameters compared to the Conv2D model. Thus, a 
trade-off between accuracy and model size becomes evident, 
particularly at a ratio of 3, where significant size reductions are 
achieved with only a slight impact on accuracy. 

The proposed Ghost Feature maps in this model are 
constructed hierarchically through a combination of Ghost 
Modules and Max Pooling, applied four times. Each pair forms 
a pyramid-like feature representation, allowing the model to 
learn increasingly complex feature hierarchies as the depth of 
the layers increases. However, the optimal number of feature 
repetition levels required for achieving the best performance 
remains to be explored. Future research should investigate 
whether adding deeper hierarchical layers could reduce 
performance or significantly improve recognition accuracy. 
Therefore, further development of deeper architectures and 
evaluation at various layer depths is necessary to determine 
whether this approach can significantly improve Songket motif 
recognition. 
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