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Abstract—Cloud computing is an Internet-based computing 

paradigm where virtual servers or workstations are offered as 

platforms, software, infrastructure, and resources. Task 

scheduling is considered one of the major NP-hard problems in 

cloud environments, posing several challenges to efficient resource 

allocation. Many metaheuristic algorithms have been extensively 

employed to address these task-scheduling problems as discrete 

optimization problems and have given rise to some proposals. 

However, these algorithms have inherent limitations due to local 

optima and convergence to poor results. This paper suggests a 

hybrid strategy for organizing independent tasks in heterogeneous 

cloud resources by incorporating the Butterfly Optimization 

Algorithm (BOA) and Flower Pollination Algorithm (FPA). 

Although BOA suffers from local optima and loss of diversity, 

which may cause an early convergence of the swarm, our hybrid 

approach outperforms such weaknesses by exploiting a 

mutualism-based mechanism. Indeed, the proposed hybrid 

algorithm outperforms existing methods while considering 

different task quantities with better scalability. Experiments are 

conducted within the CloudSim simulation framework with many 

task instances. Statistical analysis is performed to test the 

significance of the obtained results, which confirms that the 

suggested algorithm is effective at solving cloud-based task 

scheduling issues. The study findings indicate that the hybrid 

metaheuristic algorithm could be a promising approach to 

improving resource utilization and optimizing cloud task 

scheduling. 
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I. INTRODUCTION 

Cloud computing is an Internet-based approach that enables 
elastic, easy-to-scale access to a broad set of resources, 
including storage, computing, and networking applications 
delivered via the Internet [1]. In contrast to traditional systems, 
dependent on locally stored resources, cloud computing allows 
flexible and scalable access to resources from any location. 
There are three main service configurations: Platform as a 
Service (PaaS), Infrastructure as a Service (IaaS), and Software 
as a Service (SaaS) [2]. IaaS involves virtualized assets 
accessible through the internet, offering elementary amenities 
like servers, storage facilities, and networking, empowering 
companies to expand slanted utopias without trusting physical 
devices [3].  

While IaaS provides virtualized computing resources, PaaS 
is an extension that offers developers a platform complete with 

tools and frameworks [4]. This allows the developer to create, 
evaluate, and launch applications without explicitly managing 
the underlying infrastructure. SaaS directly delivers ready-to-
consumer applications to end-users, including email, CRM, and 
collaborative software, accessed via web browsers [5]. 
Together, these models catalyze innovation and cost-efficiency 
in sectors by allowing companies to lessen their IT overhead, 
hasten product deployment, and respond dynamically to market 
demands. 

Scheduling tasks in cloud computing belongs to 
fundamental NP-hard problems that need to be solved to ensure 
better efficiency in resource allocation within virtual 
environments [6]. This problem falls under the combinatorial 
optimization class wherein multiple heterogeneous tasks must 
be assigned to available resources for maximum efficiency [7]. 
As finding an optimal resource allocation problem in 
scheduling tasks with different requirements is often 
combinatorial, more advanced strategies provide an alternative 
to conventional approaches. Common objectives in task 
scheduling include reducing execution time (or makespan) to 
ensure tasks are completed as quickly as possible, which 
enhances user satisfaction and system performance [8].  

The other objective is to perform load balancing, in which 
tasks should be allocated to resources to avoid bottleneck 
situations and overutilization of particular servers, providing 
better system resiliency [9]. Last but not least, efficient usage 
of resources will prevent the idleness of resources and minimize 
operational costs by utilizing the maximum availability of 
infrastructure [10]. Therefore, efficient scheduling strategies 
are crucial for cloud environments, where dynamic scaling of 
resources relies on accurate and adaptive scheduling to 
accommodate the diversified requirements of end-users and 
applications.  

Simultaneously, advancements in mobile robotics, 
particularly in navigation and mapping, provide valuable 
insights into addressing dynamic resource allocation challenges 
in cloud environments. Techniques such as reinforcement 
learning have demonstrated the potential to enhance decision-
making and adaptability in complex scenarios [11]. These 
insights could inspire novel approaches to optimizing task 
scheduling in cloud computing, where dynamic and 
unpredictable demands necessitate intelligent and resilient 
solutions. 
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Metaheuristic algorithms, including the Flower Pollination 
Algorithm (FPA) and Butterfly Optimization Algorithm 
(BOA), are employed in cloud task scheduling because of their 
flexibility in handling complicated optimization challenges 
[12]. BOA is inspired by butterflies' sensory communication 
through fragrance. The fragrance guides each solution or 
member chemically to an optimal solution, mirroring the prey's 
natural process. This mechanism will help explore potential 
solutions within the search space and zoom into promising, 
high-quality areas [13]. On the other hand, FPA draws 
inspiration from flowers' pollination behavior, combining local 
and global pollination processes to examine the solution 
domain effectively. The global pollination phase facilitates the 
exploration of diverse solutions, while local pollination fine-
tunes promising areas [14].  

While BOA and FPA have emerged as promising 
optimization techniques, they face significant limitations when 
applied to task scheduling. BOA often experiences early 
convergence and can become trapped in local optima due to its 
limited ability to fully utilize the optimal solution. Additionally, 
BOA’s phase-switching mechanism may become disoriented, 
deviating from the best global solutions. Similarly, FPA, 
despite its strength in balancing exploration and exploitation, 
can suffer from reduced diversity over time, limiting its 
capacity to explore novel solutions. To overcome these 
challenges, this study introduces a novel hybrid algorithm that 
integrates BOA and FPA through a mutualism mechanism 
inspired by ecological interactions.  

In this context, the strengths of one algorithm offset the 
weaknesses of the other, creating a synergistic optimization 

process. Furthermore, we propose an adaptive switching 
probability mechanism, a key innovation of this study, which 
dynamically adjusts the balance between the exploitation and 
exploration phases. This unique combination enhances the 
search process, improves convergence, and significantly 
optimizes cloud-based task scheduling, marking a substantial 
contribution to cloud computing optimization. 

The remainder of the paper is organized as follows: The 
state-of-the-art review is outlined in Section II, about different 
existing cloud task-scheduling approaches as well as different 
meta-heuristic algorithms. This is followed by describing, in 
Section III, the problem statement, which includes the 
challenges and objectives that characterize cloud task 
scheduling. Section IV outlines our hybrid novel algorithm, 
illustrating its various components, including the mechanism 
behind the mutualism and switching probability adaptation 
process. Section V describes the experimental setup and 
discusses the results of the simulation. The implications of the 
findings are discussed in detail in Section VI. Finally, the paper 
concludes by summarizing the contributions in Section VII and 
presenting possible further research. 

II. RELATED WORK 

This section summarizes recent advancements in cloud task 
scheduling algorithms, as summarized in Table I. Various 
hybrid and metaheuristic approaches are highlighted, focusing 
on optimizing makespan, resource utilization, and load 
balancing to handle scheduling challenges in cloud computing 
environments. 

TABLE I. SUMMARY OF RELATED WORKS ON CLOUD TASK SCHEDULING ALGORITHMS 

Research Description Performance metrics Key Findings 

[15] 

Genetic algorithm and multi-verse optimization are 

integrated to optimize task scheduling, focusing on 

bandwidth, virtualization, task counts, and sizes in cloud 

environments. 

Time minimization 

and task transfer 

efficiency 

Shows promising results in minimizing time for massive 

tasks by optimizing resource allocation. 

[16] 

Combination of genetic algorithm and thermodynamic 

simulated annealing, with crossover operator and 

thermodynamic mechanisms for balanced exploration and 

exploitation. 

Effectiveness, 

speedup, schedule 

duration, and 

makespan 

Effective in balancing exploration and exploitation and 

reducing makespan compared to other approaches. 

[17] 

Multiple objective task scheduling using grey wolf 

optimization, prioritizing tasks based on resource status 

and demand using HPC2N and NASA workload archives. 

Makespan and 

resource allocation 

efficiency 

Achieves significant improvements in scheduling 

parameters and adapts well to workload variability. 

[18] 

A novel method merging particle swarm optimization and 

genetic algorithms using phagocytosis-inspired merging 

for population diversity with a feedback mechanism. 

Task completion time 

and convergence 

accuracy 

Enhances task completion time and accuracy by guiding 

population movement toward optimal solutions. 

[19] Hybrid grey wolf optimization and genetic algorithm 
Makespan, cost, and 

energy consumption 

Outperforms GWO, GA, and PSO in minimizing 

makespan, energy use, and cost for large scheduling 

tasks. 

[20] 

The chameleon and remora search optimization algorithm 

integrates CSA and RSOA with a greedy approach 

focusing on MIPS and network bandwidth. 

Makespan, load 

balancing, and cost 

Effectively minimizes completion time and balances VM 

load, outperforming baseline approaches. 

[21] 

Uses dense spatial clustering to schedule tasks, aiming to 

optimize execution time and enhance the quality of 

service for user tasks. 

Execution time, 

average start time, and 

completion time 

Achieved a 13% reduction in execution time and a 49% 

improvement in start and completion times over ACO and  

PSO algorithms. 
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Abualigah and Alkhrabsheh [15] presented MVO-GA, a 
hybrid multi-verse optimizer and genetic algorithm to optimize 
task scheduling. In such a way, this approach enhances task 
transfer efficiency in a cloud system by investigating various 
aspects of cloud assets, including bandwidth, virtualization, 
task counts, and task sizes. The technique has shown promising 
results in minimizing the time used for massive cloud tasks. 

Tanha, et al. [16] developed a combined meta-heuristic 
algorithm using the thermodynamic simulated annealing and 
genetic algorithms to resolve the cloud task scheduling issue. 
The performance of the algorithm is improved by a crossover 
operator and thermodynamic simulated annealing. In this 
approach, there is a reasonable equilibrium between exploration 
and exploitation.  

Mangalampalli, et al. [17] suggested the multi-objective 
task scheduling grey wolf optimization algorithm, 
MOTSGWO, in which tasks are prioritized based on cloud 
resource status and workload demand. This approach is 
implemented in the Cloudsim toolkit with workloads generated 
from the HPC2N and NASA parallel workload archives. The 
experiments show the outstanding performance of 
MOTSGWO. 

Fu, et al. [18] created a novel methodology using 
phagocytosis combined with particle swarm optimization and 
genetic algorithms. The method divides particles, adjusts their 
positions, and merges subpopulations for diversity. It uses a 
feedback mechanism to ensure the population moves towards 
the optimal solution. Simulations show it enhances cloud task 
completion time and convergence accuracy. 

Behera and Sobhanayak [19] developed an algorithm that 
combines the Grey Wolf Optimization Algorithm (GWO) and 
Genetic Algorithm (GA) to improve cloud computing task 
scheduling. It aims to minimize cost, makespan, and energy 
usage while leveraging the GA-driven GWO algorithm's 
accelerated convergence in significant scheduling challenges.  

Pabitha, et al. [20] developed a Chameleon and Remora 
Search Optimization Algorithm (CRSOA) to optimize cloud 
task scheduling by considering MIPS and network bandwidth. 
The CRSOA model, a multi-objective model, integrates the 
strengths of the Chameleon Search Algorithm (CSA) and 
Remora Search Optimization Algorithm (RSOA) through a 
greedy strategy. Simulation results showed that the CRSOA 
approach minimizes completion time and effectively handles 
load balancing between available VMs. The experimental 
investigation confirmed its effectiveness in reducing makespan, 
cost, and imbalance levels over baseline approaches. 

Mustapha and Gupta [21] designed an approach based on 
DBSCAN (Density-Based Spatial Clustering) for task 
scheduling to ensure optimal effectiveness. DBSCAN-based 
task scheduling methodology enhances user satisfaction and 
optimises execution times, average start times, and end times. 
The experimental results reveal that the suggested model 
surpasses the current PSO and ACO, demonstrating 15% better 
execution times and 48% better start and completion times. 

III. PROBLEM STATEMENT 

The cloud task scheduling problem revolves around 
efficiently assigning multiple tasks to Virtual Machines (VMs) 
within a Cloud System (CS) to achieve the shortest possible 
execution time [22]. An overview of the proposed task 
scheduling system for a CS is shown in Fig. 1. The task 
manager component in this system collects tasks from different 
users. Upon receiving user tasks, the task manager arranges and 
forwards them to the scheduler component. The task manager 
also knows the basis for VMs' information. As a result, it 
supplies the task scheduler component with information about 
the status of VMs and task requests. In this context, the CS is 
represented by multiple Physical Machines (PMs), each 
housing several VMs [23], expressed as follows: 

 
Fig. 1. System model for cloud task scheduling.

𝐶𝑆 = {𝑃𝑀1, 𝑃𝑀2, … , 𝑃𝑀𝑖, … , 𝑃𝑀𝑚}               (1) 

Where m reflects the number of PMs in the system, and each 
PM i comprises a set of VMs as follows: 

𝑃𝑀 = {𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑘, … , 𝑉𝑀𝑛}               (2) 

Where n denotes the number of VMs within a particular 
PM. Each VMk is defined by its processing speed MIPSk 
(measured in millions of instructions per second) and unique 

identifier SIDVMk [24]. The tasks to be scheduled in the cloud 
are detailed as follows: 

𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑙 , … , 𝑇𝑧}                               (3) 

Where z stands for the total number of tasks, and each task 
Tl is described by an identifier SIDTl, its length in terms of 
instructions (task_length), the expected completion time ECTl, 
and priority PI. The expected completion time for a task Tl on 
VMk is calculated using Eq. (4) [25]. 
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𝐸𝐶𝑇𝑙𝑘 =
𝑇_𝑙𝑒𝑛𝑔𝑡ℎ𝑙

𝑀𝐼𝑃𝑆𝑘
                                       (4) 

This scheduling problem is, therefore, formulated as an 
optimization problem. The objective is to distribute tasks across 
VMs to minimize total execution time, thereby maximizing 
resource utilization. The objective function to shorten the 
overall makespan can be expressed as: 

𝑓𝑖𝑡 = min ( max
𝑘=1,2,…,𝑛

∑ 𝐸𝐶𝑇𝑙𝑘
𝑧
𝑙=1 )                       (5) 

This approach aims to balance the load across virtual 
machines and optimize resource usage within the cloud 
infrastructure. 

IV. METHODOLOGY 

A. Butterfly Optimization Algorithm   

BOA is a metaheuristic algorithm inspired by butterflies' 
cooperative foraging behavior. In the BOA, butterflies can find 
optimal solutions based on a fragrance function, influenced by 
parameters such as power exponent (a) and sensory modality 
(c) [26]. This fragrance, which represents the butterfly's fitness, 
is defined by Eq. (6). 

𝑓(𝑡) = 𝑐 ⋅ 𝐼(𝑡)𝑎                                (6) 

Where I(t) denotes the stimulus intensity at a given step t, 
controlled by the sensory modality and power exponent. The 
fragrance emitted by each butterfly attracts others and guides 
their movement through the solution space.  

BOA operates in three primary phases: initialization, 
iteration, and finalization [27]. During the initialization 
process, the objective function and the solution area are 
defined, generating a population of butterflies. Each butterfly’s 
position is set, and fitness and fragrance scores are computed. 
In the iteration stage, BOA alternates between global and local 
key search strategies. Based on Eq. (7), each butterfly is guided 
toward the fittest solution ∗ in the global search. 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 ⋅ (𝑔∗ − 𝑥𝑖
𝑡)) ⋅ 𝑓𝑖                  (7) 

Where 𝑥𝑖
𝑡  represents the position of the ith butterfly at 

iteration t, g∗ denotes the best current solution, fi is the 
fragrance of the ith butterfly, and r is a random number between 
0 and 1. In the local search mode, butterflies move based on the 
influence of nearby individuals. The position update is given 
by: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 ⋅ (𝑥𝑗
𝑡 − 𝑥𝑘

𝑡)) ⋅ 𝑓𝑖                       (8) 

Where 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡  are positions of two randomly selected 

butterflies in the population. This local interaction allows BOA 
to explore diverse regions within the solution space.  

A switch probability (p) controls the balance between global 
and local searches, enabling the algorithm to dynamically shift 
from broad exploration to intense local refinement. This 
adaptive strategy helps BOA avoid premature convergence and 
enhances its ability to find optimal solutions effectively, 
making it suitable for complex optimization tasks such as cloud 
scheduling. 

Generally, BOA involves five steps. The first step is 
initializing all BOA and problem parameters. BOA has five 
parameters: population size (N), number of iterations (Itr), c, a, 
and p. In the second step, the BOA generates all solutions 
randomly. The solutions take the form of length vectors with 
the same dimension as the problem dimension d. A matrix 
containing all the solutions creates the population as follows. 

The BOA typically consists of five sequential steps. The 
initial step involves setting up all BOA-related parameters and 
problem-specific variables. BOA utilizes five key parameters: 
population size (𝑁), number of iterations (𝐼𝑡𝑟), and the 
constants 𝑐, 𝑎, and 𝑝. During the second step, BOA generates 
all solutions randomly. These solutions are represented as 
vectors of equal length, corresponding to the dimensionality of 
the problem (𝑑). The collection of these solution vectors forms 
a population matrix, structured as follows. 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =

[
 
 
 
𝑥1

1 𝑥2
1 ⋯ 𝑥𝑑

1

𝑥1
2 𝑥2

2 ⋯ 𝑥𝑑
2

⋮ ⋮ ⋯ ⋮
𝑥1

𝑁 𝑥2
𝑁 ⋯ 𝑥𝑑

𝑁]
 
 
 

                    (9) 

The optimization problem's objective function serves to 
assess all potential solutions during the third step. 
Subsequently, the best-performing solution is designated as 𝑔∗. 
In the fourth step, all solutions are revised according to the 
fitness values determined in the previous phase. To guide the 
search process locally or globally, a random number 𝑟 r is 
generated and compared to the threshold 𝑝. If 𝑟 is smaller than 
𝑝, the butterfly executes a global movement following Equation 
7; otherwise, it performs a local movement based on Equation 
8. If the newly generated solution outperforms the previous one, 
it replaces the earlier solution. The value of 𝑔∗ is then updated 
accordingly. Finally, the termination condition is evaluated. 
The pseudo-code outlining the general steps of the BOA is 
presented in Fig. 2. 

 
Fig. 2. Pseudo-code of BOA. 
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B. Flower Pollination Algorithm   

FPA is a metaheuristic technique designed to solve complex 
optimization problems mimicking natural pollination. FPA 
follows the principles of two types of pollination found in 
nature: local and global pollination. Global pollination 
promotes exploration, allowing the algorithm to escape local 
optima, while local pollination emphasizes exploitation, 
speeding up convergence. The algorithm performs exploration 
or exploitation for each iteration based on a switching 
probability p, ensuring optimal solutions are found efficiently. 

The algorithm searches for the global most attractive flower 
for each candidate solution in FPA, representing a flower in a 
d-dimensional space. This search is carried out to minimize the 
fitness function and locate the flower with the lowest fitness 
score, corresponding to the optimal solution. Four main steps 
are involved in the FPA's operation: initialization, fitness 
evaluation, pollination process, and selection. At first, the 
population of flowers F is defined using Eq. (10). Then, each 
solution Xij within the defined search bounds is initialized using 
Eq. (11). 

𝐹 = (

𝑓1
𝑓2

⋮
𝑓𝑛

) = (

𝑥1,1 … 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 … 𝑥𝑛,𝑑

)                      (10) 

𝑋𝑖𝑗 = 𝑥𝑚𝑖𝑛 + (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛). 𝜇                     (11) 

Where μ varies between 0 and 1. Eq. (12) refers to the 
objective function to evaluate fitness. 

f(x),    X  =  (x1,  x2,   … ,  xd)                        (12) 

The fitness of each flower is determined, and the current 
optimal solution g∗ is identified, which has the lowest fitness 
value among all flowers. A random number rand is determined 
by a uniform distribution between (0,1) for each flower. If 
rand>p, global pollination is accomplished as follows: 

Xi
t+1  =  Xi

t   +  L  ⋅  (Xi
t  −  g∗)                      (13) 

Where L follows a Lévy flight distribution to simulate long-
distance pollination, represented as follows: 

𝐿(λ) ∼
λΓ(λ) sin(πλ/2)

π
⋅

1

𝑠1+λ                            (14) 

With λ=1.5 and s>0 as the step size. If rand≤p, local 
pollination occurs, and the flower’s position is updated based 
on the positions of two randomly selected solutions as follows: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + ϵ ⋅ (𝑋𝑗
𝑡 − 𝑋𝑘

𝑡)                           (15) 

Where ϵ comes from the [0,1] range, and Xj and Xk 
correspond to randomly chosen flowers. Each flower is rounded 
up to the closest valid position. The new positions are evaluated 
for fitness and each flower is updated if fitness has improved. 
The best solution g∗ is also updated if a better solution is found. 

C. Mutualism-based Hybrid Approach 

MHA aims to enhance BOA's exploration and exploitation 
abilities by combining this algorithm with the FPA. Previous 
studies, such as BOA/DE and BOA/ABC, have shown that 
hybridizing BOA with other algorithms can balance exploration 

(exploring the solution space broadly) and exploitation 
(improving solutions locally). However, these approaches still 
need more diversity, as they can become overly focused on 
high-performing solutions early on, leading to premature 
convergence. 

The effectiveness of metaheuristic algorithms is determined 
by their capacity to maintain harmony throughout exploration 
and exploitation. Exploration refers to the search for solutions 
across the entire space while exploitation fine-tunes solutions 
around promising areas. Our approach introduces mutualism, a 
cooperative interaction between BOA and FPA to address this 
balance. This interaction allows the two algorithms to 
complement each other, with BOA providing global search 
capability and FPA enhancing local search. 

MHA divides the population into two subgroups: butterflies 
and flowers. Each subgroup evolves independently, benefiting 
from BOA and FPA search properties. Dynamic switching 
probability is applied to determine when individuals should 
alternate between global and local searches, adapting based on 
the current optimization stage. 

Mutualism in this context refers to the mutual benefit 
observed between butterflies and flowers in ecosystems. For 
instance, butterflies aid in pollination, while flowers provide 
nectar, benefiting both species. The hybrid algorithm simulates 
this mutualism using the Symbiotic Organisms Search (SOS) 
algorithm, which models ecosystem cooperation through 
mutualism, communalism, and parasitism. The mutualism 
stage, in particular, facilitates collaboration between two 
solutions by averaging their traits as follows: 

𝑀𝑢𝑡𝑢𝑎𝑙𝑎𝑔𝑒𝑛𝑡 =
𝑋𝑖

𝑡+𝑋𝑗
𝑡

2
                          (16) 

The positions of the two interacting solutions Xi and Xj are 
then updated as follows: 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + rand[0,1] × (𝑔∗ − 𝑀𝑢𝑡𝑢𝑎𝑙𝑎𝑔𝑒𝑛𝑡 × 𝐵𝐹1)    (17) 

𝑋𝑗
𝑡+1 = 𝑋𝑖

𝑡 + rand[0,1] × (𝑔∗ − 𝑀𝑢𝑡𝑢𝑎𝑙𝑎𝑔𝑒𝑛𝑡 × 𝐵𝐹2)    (18) 

Where g∗ represents the most optimal solution in the 
population, BF1 and BF2 refer to attraction variables, and 
rand[0,1] gives a random value to introduce variability. In 
addition, a dynamic switching probability p regulates the 
equilibrium between exploration and exploitation, calculated 
by Eq. (19). 

𝑝 = 0.8 − 0.1 ×
(𝑀𝑎𝑥𝑖𝑡𝑒𝑟−𝑖𝑡𝑒𝑟)

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
                      (19) 

Where Max_iter indicates the total number of iterations and 
iter denotes the ongoing iteration. This probability decreases 
over time, favoring exploration early in the search and shifting 
towards exploitation as the algorithm progresses.  

As shown in Fig. 3, through mutualism and adaptive 
switching, this hybrid strategy effectively incorporates the best 
features of both BOA and FPA, enhancing the diversity and 
convergence rate of the solution population. This hybrid 
method improves task scheduling performance by ensuring a 
comprehensive search in the solution space and optimizing the 
allocation of resources in cloud computing. 
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Fig. 3. Flowchart for proposed hybrid algorithm.

V. PERFORMANCE EVALUATION 

To assess the performance of the algorithm, MHA, for cloud 
environments, simulations were performed on a synthetic 
dataset using MATLAB2018b on a PC powered by an Intel 
Core i5 3.5GHz CPU and 8GB RAM, running Windows 10. 
The experimental configuration, including the range of 
parameter values, is detailed in Table II. MHA was 
benchmarked against other algorithms, such as the Whale 
Optimization Algorithm (WOA), BOA, and FBA, using several 
key metrics: Makespan, Resource Utilization (RU), and 
imbalance degree.  

TABLE II. EXPERIMENTAL CONFIGURATION AND PARAMETER RANGES 

Parameter Value range 

Bandwidth 500 Mbps 

VM Memory (RAM) 1 GB 

VM CPU Speed (MIPS) 3,000 to 5,000 

No. of VMs 20 

Task Size (Million instructions) 1,000 to 20,000 

No. of tasks 100 to 1,000 

Makespan, the interval between task starts and endpoints, 
measures scheduling efficiency. Fig. 4 compares average 
makespan values across different algorithms. For 100 tasks, 
MHA achieved an average makespan of approximately 15.2, 
outperforming comparative algorithms. MHA maintained 
lower makespan values as task sizes increased to 500 and 1000, 
with 71.4 and 140.2, respectively. Regarding large-scale cloud 
scheduling, MHA is significantly better at handling larger task 
sets. Imbalance degree measures the stability and balance of 
workload distribution across VMs. A lower value indicates 
better balance, reducing overload risk. This metric is calculated 
as follows: 

ID =
𝐸𝑇𝑚𝑎𝑥−𝐸𝑇𝑚𝑖𝑛

𝐸𝑇𝑎𝑣𝑔
                                  (20) 

Where 𝐸𝑇𝑚𝑖𝑛  and 𝐸𝑇𝑚𝑎𝑥  are the minimum and maximum 
execution times across VMs, and 𝐸𝑇𝑎𝑣𝑔  is the average 

execution time. Fig. 5 shows ID comparisons for different 
algorithms. For 100 tasks, MHA achieved an imbalance degree 
of 0.71, lower than other algorithms. This trend of lower 
imbalance degree persisted as the number of tasks increased, 
demonstrating MHA’s ability to maintain balanced workloads 
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across VMs. RU measures the extent of VM utilization during 
task scheduling and is given by: 

𝑅𝑈 =
∑ 𝐸𝑇𝑗

𝑛
𝑗=1

makespan×𝑚
                                          (21) 

Where ETj refers to the execution time of each VM and m 
represents the number of VMs. Fig. 6 illustrates that MHA 
achieved the highest RU values, indicating better resource 
usage.  

 

Fig. 4. Makespan results. 

 
Fig. 5. Imbalance degree results. 

 
Fig. 6. Resource utilization results.
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VI. DISCUSSION 

The proposed hybrid algorithm significantly enhanced the 
challenge of cloud-based task scheduling. This section presents 
the implications of the results, the strengths of the proposed 
approach, and future avenues. 

The hybridization of BOA and FPA through a mutualism-
inspired mechanism addresses the individual limitations of each 
algorithm. BOA’s tendency to converge prematurely is 
mitigated by FPA’s enhanced diversity in exploration, while 
FPA’s limited exploitation capabilities are bolstered by BOA’s 
local search strengths. The introduction of an adaptive 
switching probability further enhances the balance between 
exploration and exploitation, allowing the algorithm to 
dynamically adjust its search strategy based on the progress of 
the optimization process. This innovative mechanism ensures 
robust performance, reducing the likelihood of stagnation in 
local optima and improving convergence speed. 

Experimental results showed that the proposed hybrid 
algorithm achieved much better performance when compared 
to the benchmark methods on important metrics in this area, 
namely, makespan, resource utilization, and load balancing. 
Significance statistical tests are carried out that further establish 
the proposed algorithm's efficiency in handling diversified and 
dynamic challenges of task scheduling problems in cloud 
environments. The algorithm was found to work well with 
increased loads and much better performance according to 
scalability tests, hence its applicability to real-world 
applications. 

The ability of the hybrid algorithm to optimize task 
scheduling has great implications for cloud computing 
environments. It can reduce operational costs, improve user 
satisfaction, and enhance system performance by efficiently 
allocating resources. Besides, it is a promising solution due to 
its adaptability and scalability in heterogeneous and dynamic 
cloud infrastructures. 

Although the proposed algorithm outperforms the other 
methods by a great margin, some limitations must be conceded. 
Its performance is related to some parameters that might be 
fine-tuned in some situations. Therefore, Future work could 
address the proposition of automatic parameter-tuning 
mechanisms to make them more usable. Future work might also 
explore the effectiveness of the proposed hybrid approach for 
other optimization problems, such as load balancing in a 
distributed system or energy-aware scheduling. 

VII. CONCLUSION 

The paper proposed a new hybrid task scheduling algorithm 
called MHA, which combines BOA and FPA within a 
mutualism-based mechanism. MHA can effectively meet the 
most important challenges during Cloud platforms for effective 
task scheduling, such as minimizing makespan, maintaining 
workload balance across virtual machines, maximizing 
resource utilization, and improving overall scheduling 
performance. It achieves an excellent balance between 
exploration and exploitation through effective exploitation of 
BOA and FPA, with a guaranteed optimal distribution while the 
scheduling tasks continue to increase in scale and complexity. 
As reported from simulations, results show the outperformance 

of the MHA compared to traditional algorithms, proven by 
comparisons, which always have the best makespan with 
reduced imbalance degree and resource utilization. More 
specifically, the rate of performance improvement proves that 
MHA has considerably improved scheduling efficiency. 

The adaptive dynamic switching probability in MHA 
enables the algorithm to scale up efficiently for large task sizes, 
presenting a robust approach for real-world cloud computing 
environments where dynamic and efficient task allocation is 
paramount. These results reflect that MHA can solve the current 
cloud scheduling requirements and provide a base for further 
enhancements in resource allocation strategies. Future research 
will be done on further hybridization with other metaheuristic 
algorithms, deep learning usage in the process for predictive 
scheduling, or even extending MHA to multi-objective 
optimization frameworks. These will eventually enhance 
scalability, adaptability, and efficiency in task scheduling in 
complex cloud computing scenarios. 
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