
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

842 | P a g e

www.ijacsa.thesai.org

A Novel Hybrid Algorithm Based on Butterfly and

Flower Pollination Algorithms for Scheduling

Independent Tasks on Cloud Computing

Huiying SHAO

Hebei Vocational University of Technology and Engineering, Xingtai 054000, China

Abstract—Cloud computing is an Internet-based computing

paradigm where virtual servers or workstations are offered as

platforms, software, infrastructure, and resources. Task

scheduling is considered one of the major NP-hard problems in

cloud environments, posing several challenges to efficient resource

allocation. Many metaheuristic algorithms have been extensively

employed to address these task-scheduling problems as discrete

optimization problems and have given rise to some proposals.

However, these algorithms have inherent limitations due to local

optima and convergence to poor results. This paper suggests a

hybrid strategy for organizing independent tasks in heterogeneous

cloud resources by incorporating the Butterfly Optimization

Algorithm (BOA) and Flower Pollination Algorithm (FPA).

Although BOA suffers from local optima and loss of diversity,

which may cause an early convergence of the swarm, our hybrid

approach outperforms such weaknesses by exploiting a

mutualism-based mechanism. Indeed, the proposed hybrid

algorithm outperforms existing methods while considering

different task quantities with better scalability. Experiments are

conducted within the CloudSim simulation framework with many

task instances. Statistical analysis is performed to test the

significance of the obtained results, which confirms that the

suggested algorithm is effective at solving cloud-based task

scheduling issues. The study findings indicate that the hybrid

metaheuristic algorithm could be a promising approach to

improving resource utilization and optimizing cloud task

scheduling.

Keywords—Task scheduling; cloud computing; butterfly

optimization algorithm; flower pollination algorithm; mutualism

I. INTRODUCTION

Cloud computing is an Internet-based approach that enables
elastic, easy-to-scale access to a broad set of resources,
including storage, computing, and networking applications
delivered via the Internet [1]. In contrast to traditional systems,
dependent on locally stored resources, cloud computing allows
flexible and scalable access to resources from any location.
There are three main service configurations: Platform as a
Service (PaaS), Infrastructure as a Service (IaaS), and Software
as a Service (SaaS) [2]. IaaS involves virtualized assets
accessible through the internet, offering elementary amenities
like servers, storage facilities, and networking, empowering
companies to expand slanted utopias without trusting physical
devices [3].

While IaaS provides virtualized computing resources, PaaS
is an extension that offers developers a platform complete with

tools and frameworks [4]. This allows the developer to create,
evaluate, and launch applications without explicitly managing
the underlying infrastructure. SaaS directly delivers ready-to-
consumer applications to end-users, including email, CRM, and
collaborative software, accessed via web browsers [5].
Together, these models catalyze innovation and cost-efficiency
in sectors by allowing companies to lessen their IT overhead,
hasten product deployment, and respond dynamically to market
demands.

Scheduling tasks in cloud computing belongs to
fundamental NP-hard problems that need to be solved to ensure
better efficiency in resource allocation within virtual
environments [6]. This problem falls under the combinatorial
optimization class wherein multiple heterogeneous tasks must
be assigned to available resources for maximum efficiency [7].
As finding an optimal resource allocation problem in
scheduling tasks with different requirements is often
combinatorial, more advanced strategies provide an alternative
to conventional approaches. Common objectives in task
scheduling include reducing execution time (or makespan) to
ensure tasks are completed as quickly as possible, which
enhances user satisfaction and system performance [8].

The other objective is to perform load balancing, in which
tasks should be allocated to resources to avoid bottleneck
situations and overutilization of particular servers, providing
better system resiliency [9]. Last but not least, efficient usage
of resources will prevent the idleness of resources and minimize
operational costs by utilizing the maximum availability of
infrastructure [10]. Therefore, efficient scheduling strategies
are crucial for cloud environments, where dynamic scaling of
resources relies on accurate and adaptive scheduling to
accommodate the diversified requirements of end-users and
applications.

Simultaneously, advancements in mobile robotics,
particularly in navigation and mapping, provide valuable
insights into addressing dynamic resource allocation challenges
in cloud environments. Techniques such as reinforcement
learning have demonstrated the potential to enhance decision-
making and adaptability in complex scenarios [11]. These
insights could inspire novel approaches to optimizing task
scheduling in cloud computing, where dynamic and
unpredictable demands necessitate intelligent and resilient
solutions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

843 | P a g e

www.ijacsa.thesai.org

Metaheuristic algorithms, including the Flower Pollination
Algorithm (FPA) and Butterfly Optimization Algorithm
(BOA), are employed in cloud task scheduling because of their
flexibility in handling complicated optimization challenges
[12]. BOA is inspired by butterflies' sensory communication
through fragrance. The fragrance guides each solution or
member chemically to an optimal solution, mirroring the prey's
natural process. This mechanism will help explore potential
solutions within the search space and zoom into promising,
high-quality areas [13]. On the other hand, FPA draws
inspiration from flowers' pollination behavior, combining local
and global pollination processes to examine the solution
domain effectively. The global pollination phase facilitates the
exploration of diverse solutions, while local pollination fine-
tunes promising areas [14].

While BOA and FPA have emerged as promising
optimization techniques, they face significant limitations when
applied to task scheduling. BOA often experiences early
convergence and can become trapped in local optima due to its
limited ability to fully utilize the optimal solution. Additionally,
BOA’s phase-switching mechanism may become disoriented,
deviating from the best global solutions. Similarly, FPA,
despite its strength in balancing exploration and exploitation,
can suffer from reduced diversity over time, limiting its
capacity to explore novel solutions. To overcome these
challenges, this study introduces a novel hybrid algorithm that
integrates BOA and FPA through a mutualism mechanism
inspired by ecological interactions.

In this context, the strengths of one algorithm offset the
weaknesses of the other, creating a synergistic optimization

process. Furthermore, we propose an adaptive switching
probability mechanism, a key innovation of this study, which
dynamically adjusts the balance between the exploitation and
exploration phases. This unique combination enhances the
search process, improves convergence, and significantly
optimizes cloud-based task scheduling, marking a substantial
contribution to cloud computing optimization.

The remainder of the paper is organized as follows: The
state-of-the-art review is outlined in Section II, about different
existing cloud task-scheduling approaches as well as different
meta-heuristic algorithms. This is followed by describing, in
Section III, the problem statement, which includes the
challenges and objectives that characterize cloud task
scheduling. Section IV outlines our hybrid novel algorithm,
illustrating its various components, including the mechanism
behind the mutualism and switching probability adaptation
process. Section V describes the experimental setup and
discusses the results of the simulation. The implications of the
findings are discussed in detail in Section VI. Finally, the paper
concludes by summarizing the contributions in Section VII and
presenting possible further research.

II. RELATED WORK

This section summarizes recent advancements in cloud task
scheduling algorithms, as summarized in Table I. Various
hybrid and metaheuristic approaches are highlighted, focusing
on optimizing makespan, resource utilization, and load
balancing to handle scheduling challenges in cloud computing
environments.

TABLE I. SUMMARY OF RELATED WORKS ON CLOUD TASK SCHEDULING ALGORITHMS

Research Description Performance metrics Key Findings

[15]

Genetic algorithm and multi-verse optimization are

integrated to optimize task scheduling, focusing on

bandwidth, virtualization, task counts, and sizes in cloud

environments.

Time minimization

and task transfer

efficiency

Shows promising results in minimizing time for massive

tasks by optimizing resource allocation.

[16]

Combination of genetic algorithm and thermodynamic

simulated annealing, with crossover operator and

thermodynamic mechanisms for balanced exploration and

exploitation.

Effectiveness,

speedup, schedule

duration, and

makespan

Effective in balancing exploration and exploitation and

reducing makespan compared to other approaches.

[17]

Multiple objective task scheduling using grey wolf

optimization, prioritizing tasks based on resource status

and demand using HPC2N and NASA workload archives.

Makespan and

resource allocation

efficiency

Achieves significant improvements in scheduling

parameters and adapts well to workload variability.

[18]

A novel method merging particle swarm optimization and

genetic algorithms using phagocytosis-inspired merging

for population diversity with a feedback mechanism.

Task completion time

and convergence

accuracy

Enhances task completion time and accuracy by guiding

population movement toward optimal solutions.

[19] Hybrid grey wolf optimization and genetic algorithm
Makespan, cost, and

energy consumption

Outperforms GWO, GA, and PSO in minimizing

makespan, energy use, and cost for large scheduling

tasks.

[20]

The chameleon and remora search optimization algorithm

integrates CSA and RSOA with a greedy approach

focusing on MIPS and network bandwidth.

Makespan, load

balancing, and cost

Effectively minimizes completion time and balances VM

load, outperforming baseline approaches.

[21]

Uses dense spatial clustering to schedule tasks, aiming to

optimize execution time and enhance the quality of

service for user tasks.

Execution time,

average start time, and

completion time

Achieved a 13% reduction in execution time and a 49%

improvement in start and completion times over ACO and

PSO algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

844 | P a g e

www.ijacsa.thesai.org

Abualigah and Alkhrabsheh [15] presented MVO-GA, a
hybrid multi-verse optimizer and genetic algorithm to optimize
task scheduling. In such a way, this approach enhances task
transfer efficiency in a cloud system by investigating various
aspects of cloud assets, including bandwidth, virtualization,
task counts, and task sizes. The technique has shown promising
results in minimizing the time used for massive cloud tasks.

Tanha, et al. [16] developed a combined meta-heuristic
algorithm using the thermodynamic simulated annealing and
genetic algorithms to resolve the cloud task scheduling issue.
The performance of the algorithm is improved by a crossover
operator and thermodynamic simulated annealing. In this
approach, there is a reasonable equilibrium between exploration
and exploitation.

Mangalampalli, et al. [17] suggested the multi-objective
task scheduling grey wolf optimization algorithm,
MOTSGWO, in which tasks are prioritized based on cloud
resource status and workload demand. This approach is
implemented in the Cloudsim toolkit with workloads generated
from the HPC2N and NASA parallel workload archives. The
experiments show the outstanding performance of
MOTSGWO.

Fu, et al. [18] created a novel methodology using
phagocytosis combined with particle swarm optimization and
genetic algorithms. The method divides particles, adjusts their
positions, and merges subpopulations for diversity. It uses a
feedback mechanism to ensure the population moves towards
the optimal solution. Simulations show it enhances cloud task
completion time and convergence accuracy.

Behera and Sobhanayak [19] developed an algorithm that
combines the Grey Wolf Optimization Algorithm (GWO) and
Genetic Algorithm (GA) to improve cloud computing task
scheduling. It aims to minimize cost, makespan, and energy
usage while leveraging the GA-driven GWO algorithm's
accelerated convergence in significant scheduling challenges.

Pabitha, et al. [20] developed a Chameleon and Remora
Search Optimization Algorithm (CRSOA) to optimize cloud
task scheduling by considering MIPS and network bandwidth.
The CRSOA model, a multi-objective model, integrates the
strengths of the Chameleon Search Algorithm (CSA) and
Remora Search Optimization Algorithm (RSOA) through a
greedy strategy. Simulation results showed that the CRSOA
approach minimizes completion time and effectively handles
load balancing between available VMs. The experimental
investigation confirmed its effectiveness in reducing makespan,
cost, and imbalance levels over baseline approaches.

Mustapha and Gupta [21] designed an approach based on
DBSCAN (Density-Based Spatial Clustering) for task
scheduling to ensure optimal effectiveness. DBSCAN-based
task scheduling methodology enhances user satisfaction and
optimises execution times, average start times, and end times.
The experimental results reveal that the suggested model
surpasses the current PSO and ACO, demonstrating 15% better
execution times and 48% better start and completion times.

III. PROBLEM STATEMENT

The cloud task scheduling problem revolves around
efficiently assigning multiple tasks to Virtual Machines (VMs)
within a Cloud System (CS) to achieve the shortest possible
execution time [22]. An overview of the proposed task
scheduling system for a CS is shown in Fig. 1. The task
manager component in this system collects tasks from different
users. Upon receiving user tasks, the task manager arranges and
forwards them to the scheduler component. The task manager
also knows the basis for VMs' information. As a result, it
supplies the task scheduler component with information about
the status of VMs and task requests. In this context, the CS is
represented by multiple Physical Machines (PMs), each
housing several VMs [23], expressed as follows:

Fig. 1. System model for cloud task scheduling.

𝐶𝑆 = {𝑃𝑀1, 𝑃𝑀2, … , 𝑃𝑀𝑖, … , 𝑃𝑀𝑚} (1)

Where m reflects the number of PMs in the system, and each
PM i comprises a set of VMs as follows:

𝑃𝑀 = {𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑘, … , 𝑉𝑀𝑛} (2)

Where n denotes the number of VMs within a particular
PM. Each VMk is defined by its processing speed MIPSk
(measured in millions of instructions per second) and unique

identifier SIDVMk [24]. The tasks to be scheduled in the cloud
are detailed as follows:

𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑙 , … , 𝑇𝑧} (3)

Where z stands for the total number of tasks, and each task
Tl is described by an identifier SIDTl, its length in terms of
instructions (task_length), the expected completion time ECTl,
and priority PI. The expected completion time for a task Tl on
VMk is calculated using Eq. (4) [25].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

845 | P a g e

www.ijacsa.thesai.org

𝐸𝐶𝑇𝑙𝑘 =
𝑇_𝑙𝑒𝑛𝑔𝑡ℎ𝑙

𝑀𝐼𝑃𝑆𝑘
 (4)

This scheduling problem is, therefore, formulated as an
optimization problem. The objective is to distribute tasks across
VMs to minimize total execution time, thereby maximizing
resource utilization. The objective function to shorten the
overall makespan can be expressed as:

𝑓𝑖𝑡 = min (max
𝑘=1,2,…,𝑛

∑ 𝐸𝐶𝑇𝑙𝑘
𝑧
𝑙=1) (5)

This approach aims to balance the load across virtual
machines and optimize resource usage within the cloud
infrastructure.

IV. METHODOLOGY

A. Butterfly Optimization Algorithm

BOA is a metaheuristic algorithm inspired by butterflies'
cooperative foraging behavior. In the BOA, butterflies can find
optimal solutions based on a fragrance function, influenced by
parameters such as power exponent (a) and sensory modality
(c) [26]. This fragrance, which represents the butterfly's fitness,
is defined by Eq. (6).

𝑓(𝑡) = 𝑐 ⋅ 𝐼(𝑡)𝑎 (6)

Where I(t) denotes the stimulus intensity at a given step t,
controlled by the sensory modality and power exponent. The
fragrance emitted by each butterfly attracts others and guides
their movement through the solution space.

BOA operates in three primary phases: initialization,
iteration, and finalization [27]. During the initialization
process, the objective function and the solution area are
defined, generating a population of butterflies. Each butterfly’s
position is set, and fitness and fragrance scores are computed.
In the iteration stage, BOA alternates between global and local
key search strategies. Based on Eq. (7), each butterfly is guided
toward the fittest solution ∗ in the global search.

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 ⋅ (𝑔∗ − 𝑥𝑖
𝑡)) ⋅ 𝑓𝑖 (7)

Where 𝑥𝑖
𝑡 represents the position of the ith butterfly at

iteration t, g∗ denotes the best current solution, fi is the
fragrance of the ith butterfly, and r is a random number between
0 and 1. In the local search mode, butterflies move based on the
influence of nearby individuals. The position update is given
by:

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + (𝑟2 ⋅ (𝑥𝑗
𝑡 − 𝑥𝑘

𝑡)) ⋅ 𝑓𝑖 (8)

Where 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡 are positions of two randomly selected

butterflies in the population. This local interaction allows BOA
to explore diverse regions within the solution space.

A switch probability (p) controls the balance between global
and local searches, enabling the algorithm to dynamically shift
from broad exploration to intense local refinement. This
adaptive strategy helps BOA avoid premature convergence and
enhances its ability to find optimal solutions effectively,
making it suitable for complex optimization tasks such as cloud
scheduling.

Generally, BOA involves five steps. The first step is
initializing all BOA and problem parameters. BOA has five
parameters: population size (N), number of iterations (Itr), c, a,
and p. In the second step, the BOA generates all solutions
randomly. The solutions take the form of length vectors with
the same dimension as the problem dimension d. A matrix
containing all the solutions creates the population as follows.

The BOA typically consists of five sequential steps. The
initial step involves setting up all BOA-related parameters and
problem-specific variables. BOA utilizes five key parameters:
population size (𝑁), number of iterations (𝐼𝑡𝑟), and the
constants 𝑐, 𝑎, and 𝑝. During the second step, BOA generates
all solutions randomly. These solutions are represented as
vectors of equal length, corresponding to the dimensionality of
the problem (𝑑). The collection of these solution vectors forms
a population matrix, structured as follows.

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =

[

𝑥1

1 𝑥2
1 ⋯ 𝑥𝑑

1

𝑥1
2 𝑥2

2 ⋯ 𝑥𝑑
2

⋮ ⋮ ⋯ ⋮
𝑥1

𝑁 𝑥2
𝑁 ⋯ 𝑥𝑑

𝑁]

 (9)

The optimization problem's objective function serves to
assess all potential solutions during the third step.
Subsequently, the best-performing solution is designated as 𝑔∗.
In the fourth step, all solutions are revised according to the
fitness values determined in the previous phase. To guide the
search process locally or globally, a random number 𝑟 r is
generated and compared to the threshold 𝑝. If 𝑟 is smaller than
𝑝, the butterfly executes a global movement following Equation
7; otherwise, it performs a local movement based on Equation
8. If the newly generated solution outperforms the previous one,
it replaces the earlier solution. The value of 𝑔∗ is then updated
accordingly. Finally, the termination condition is evaluated.
The pseudo-code outlining the general steps of the BOA is
presented in Fig. 2.

Fig. 2. Pseudo-code of BOA.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

846 | P a g e

www.ijacsa.thesai.org

B. Flower Pollination Algorithm

FPA is a metaheuristic technique designed to solve complex
optimization problems mimicking natural pollination. FPA
follows the principles of two types of pollination found in
nature: local and global pollination. Global pollination
promotes exploration, allowing the algorithm to escape local
optima, while local pollination emphasizes exploitation,
speeding up convergence. The algorithm performs exploration
or exploitation for each iteration based on a switching
probability p, ensuring optimal solutions are found efficiently.

The algorithm searches for the global most attractive flower
for each candidate solution in FPA, representing a flower in a
d-dimensional space. This search is carried out to minimize the
fitness function and locate the flower with the lowest fitness
score, corresponding to the optimal solution. Four main steps
are involved in the FPA's operation: initialization, fitness
evaluation, pollination process, and selection. At first, the
population of flowers F is defined using Eq. (10). Then, each
solution Xij within the defined search bounds is initialized using
Eq. (11).

𝐹 = (

𝑓1
𝑓2

⋮
𝑓𝑛

) = (

𝑥1,1 … 𝑥1,𝑑

⋮ ⋱ ⋮
𝑥𝑛,1 … 𝑥𝑛,𝑑

) (10)

𝑋𝑖𝑗 = 𝑥𝑚𝑖𝑛 + (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛). 𝜇 (11)

Where μ varies between 0 and 1. Eq. (12) refers to the
objective function to evaluate fitness.

f(x),    X  =  (x1,  x2,   … ,  xd) (12)

The fitness of each flower is determined, and the current
optimal solution g∗ is identified, which has the lowest fitness
value among all flowers. A random number rand is determined
by a uniform distribution between (0,1) for each flower. If
rand>p, global pollination is accomplished as follows:

Xi
t+1  =  Xi

t   +  L  ⋅  (Xi
t  −  g∗) (13)

Where L follows a Lévy flight distribution to simulate long-
distance pollination, represented as follows:

𝐿(λ) ∼
λΓ(λ) sin(πλ/2)

π
⋅

1

𝑠1+λ (14)

With λ=1.5 and s>0 as the step size. If rand≤p, local
pollination occurs, and the flower’s position is updated based
on the positions of two randomly selected solutions as follows:

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + ϵ ⋅ (𝑋𝑗
𝑡 − 𝑋𝑘

𝑡) (15)

Where ϵ comes from the [0,1] range, and Xj and Xk
correspond to randomly chosen flowers. Each flower is rounded
up to the closest valid position. The new positions are evaluated
for fitness and each flower is updated if fitness has improved.
The best solution g∗ is also updated if a better solution is found.

C. Mutualism-based Hybrid Approach

MHA aims to enhance BOA's exploration and exploitation
abilities by combining this algorithm with the FPA. Previous
studies, such as BOA/DE and BOA/ABC, have shown that
hybridizing BOA with other algorithms can balance exploration

(exploring the solution space broadly) and exploitation
(improving solutions locally). However, these approaches still
need more diversity, as they can become overly focused on
high-performing solutions early on, leading to premature
convergence.

The effectiveness of metaheuristic algorithms is determined
by their capacity to maintain harmony throughout exploration
and exploitation. Exploration refers to the search for solutions
across the entire space while exploitation fine-tunes solutions
around promising areas. Our approach introduces mutualism, a
cooperative interaction between BOA and FPA to address this
balance. This interaction allows the two algorithms to
complement each other, with BOA providing global search
capability and FPA enhancing local search.

MHA divides the population into two subgroups: butterflies
and flowers. Each subgroup evolves independently, benefiting
from BOA and FPA search properties. Dynamic switching
probability is applied to determine when individuals should
alternate between global and local searches, adapting based on
the current optimization stage.

Mutualism in this context refers to the mutual benefit
observed between butterflies and flowers in ecosystems. For
instance, butterflies aid in pollination, while flowers provide
nectar, benefiting both species. The hybrid algorithm simulates
this mutualism using the Symbiotic Organisms Search (SOS)
algorithm, which models ecosystem cooperation through
mutualism, communalism, and parasitism. The mutualism
stage, in particular, facilitates collaboration between two
solutions by averaging their traits as follows:

𝑀𝑢𝑡𝑢𝑎𝑙𝑎𝑔𝑒𝑛𝑡 =
𝑋𝑖

𝑡+𝑋𝑗
𝑡

2
 (16)

The positions of the two interacting solutions Xi and Xj are
then updated as follows:

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + rand[0,1] × (𝑔∗ − 𝑀𝑢𝑡𝑢𝑎𝑙𝑎𝑔𝑒𝑛𝑡 × 𝐵𝐹1) (17)

𝑋𝑗
𝑡+1 = 𝑋𝑖

𝑡 + rand[0,1] × (𝑔∗ − 𝑀𝑢𝑡𝑢𝑎𝑙𝑎𝑔𝑒𝑛𝑡 × 𝐵𝐹2) (18)

Where g∗ represents the most optimal solution in the
population, BF1 and BF2 refer to attraction variables, and
rand[0,1] gives a random value to introduce variability. In
addition, a dynamic switching probability p regulates the
equilibrium between exploration and exploitation, calculated
by Eq. (19).

𝑝 = 0.8 − 0.1 ×
(𝑀𝑎𝑥𝑖𝑡𝑒𝑟−𝑖𝑡𝑒𝑟)

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
 (19)

Where Max_iter indicates the total number of iterations and
iter denotes the ongoing iteration. This probability decreases
over time, favoring exploration early in the search and shifting
towards exploitation as the algorithm progresses.

As shown in Fig. 3, through mutualism and adaptive
switching, this hybrid strategy effectively incorporates the best
features of both BOA and FPA, enhancing the diversity and
convergence rate of the solution population. This hybrid
method improves task scheduling performance by ensuring a
comprehensive search in the solution space and optimizing the
allocation of resources in cloud computing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

847 | P a g e

www.ijacsa.thesai.org

Fig. 3. Flowchart for proposed hybrid algorithm.

V. PERFORMANCE EVALUATION

To assess the performance of the algorithm, MHA, for cloud
environments, simulations were performed on a synthetic
dataset using MATLAB2018b on a PC powered by an Intel
Core i5 3.5GHz CPU and 8GB RAM, running Windows 10.
The experimental configuration, including the range of
parameter values, is detailed in Table II. MHA was
benchmarked against other algorithms, such as the Whale
Optimization Algorithm (WOA), BOA, and FBA, using several
key metrics: Makespan, Resource Utilization (RU), and
imbalance degree.

TABLE II. EXPERIMENTAL CONFIGURATION AND PARAMETER RANGES

Parameter Value range

Bandwidth 500 Mbps

VM Memory (RAM) 1 GB

VM CPU Speed (MIPS) 3,000 to 5,000

No. of VMs 20

Task Size (Million instructions) 1,000 to 20,000

No. of tasks 100 to 1,000

Makespan, the interval between task starts and endpoints,
measures scheduling efficiency. Fig. 4 compares average
makespan values across different algorithms. For 100 tasks,
MHA achieved an average makespan of approximately 15.2,
outperforming comparative algorithms. MHA maintained
lower makespan values as task sizes increased to 500 and 1000,
with 71.4 and 140.2, respectively. Regarding large-scale cloud
scheduling, MHA is significantly better at handling larger task
sets. Imbalance degree measures the stability and balance of
workload distribution across VMs. A lower value indicates
better balance, reducing overload risk. This metric is calculated
as follows:

ID =
𝐸𝑇𝑚𝑎𝑥−𝐸𝑇𝑚𝑖𝑛

𝐸𝑇𝑎𝑣𝑔
 (20)

Where 𝐸𝑇𝑚𝑖𝑛 and 𝐸𝑇𝑚𝑎𝑥 are the minimum and maximum
execution times across VMs, and 𝐸𝑇𝑎𝑣𝑔 is the average

execution time. Fig. 5 shows ID comparisons for different
algorithms. For 100 tasks, MHA achieved an imbalance degree
of 0.71, lower than other algorithms. This trend of lower
imbalance degree persisted as the number of tasks increased,
demonstrating MHA’s ability to maintain balanced workloads

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

848 | P a g e

www.ijacsa.thesai.org

across VMs. RU measures the extent of VM utilization during
task scheduling and is given by:

𝑅𝑈 =
∑ 𝐸𝑇𝑗

𝑛
𝑗=1

makespan×𝑚
 (21)

Where ETj refers to the execution time of each VM and m
represents the number of VMs. Fig. 6 illustrates that MHA
achieved the highest RU values, indicating better resource
usage.

Fig. 4. Makespan results.

Fig. 5. Imbalance degree results.

Fig. 6. Resource utilization results.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

849 | P a g e

www.ijacsa.thesai.org

VI. DISCUSSION

The proposed hybrid algorithm significantly enhanced the
challenge of cloud-based task scheduling. This section presents
the implications of the results, the strengths of the proposed
approach, and future avenues.

The hybridization of BOA and FPA through a mutualism-
inspired mechanism addresses the individual limitations of each
algorithm. BOA’s tendency to converge prematurely is
mitigated by FPA’s enhanced diversity in exploration, while
FPA’s limited exploitation capabilities are bolstered by BOA’s
local search strengths. The introduction of an adaptive
switching probability further enhances the balance between
exploration and exploitation, allowing the algorithm to
dynamically adjust its search strategy based on the progress of
the optimization process. This innovative mechanism ensures
robust performance, reducing the likelihood of stagnation in
local optima and improving convergence speed.

Experimental results showed that the proposed hybrid
algorithm achieved much better performance when compared
to the benchmark methods on important metrics in this area,
namely, makespan, resource utilization, and load balancing.
Significance statistical tests are carried out that further establish
the proposed algorithm's efficiency in handling diversified and
dynamic challenges of task scheduling problems in cloud
environments. The algorithm was found to work well with
increased loads and much better performance according to
scalability tests, hence its applicability to real-world
applications.

The ability of the hybrid algorithm to optimize task
scheduling has great implications for cloud computing
environments. It can reduce operational costs, improve user
satisfaction, and enhance system performance by efficiently
allocating resources. Besides, it is a promising solution due to
its adaptability and scalability in heterogeneous and dynamic
cloud infrastructures.

Although the proposed algorithm outperforms the other
methods by a great margin, some limitations must be conceded.
Its performance is related to some parameters that might be
fine-tuned in some situations. Therefore, Future work could
address the proposition of automatic parameter-tuning
mechanisms to make them more usable. Future work might also
explore the effectiveness of the proposed hybrid approach for
other optimization problems, such as load balancing in a
distributed system or energy-aware scheduling.

VII. CONCLUSION

The paper proposed a new hybrid task scheduling algorithm
called MHA, which combines BOA and FPA within a
mutualism-based mechanism. MHA can effectively meet the
most important challenges during Cloud platforms for effective
task scheduling, such as minimizing makespan, maintaining
workload balance across virtual machines, maximizing
resource utilization, and improving overall scheduling
performance. It achieves an excellent balance between
exploration and exploitation through effective exploitation of
BOA and FPA, with a guaranteed optimal distribution while the
scheduling tasks continue to increase in scale and complexity.
As reported from simulations, results show the outperformance

of the MHA compared to traditional algorithms, proven by
comparisons, which always have the best makespan with
reduced imbalance degree and resource utilization. More
specifically, the rate of performance improvement proves that
MHA has considerably improved scheduling efficiency.

The adaptive dynamic switching probability in MHA
enables the algorithm to scale up efficiently for large task sizes,
presenting a robust approach for real-world cloud computing
environments where dynamic and efficient task allocation is
paramount. These results reflect that MHA can solve the current
cloud scheduling requirements and provide a base for further
enhancements in resource allocation strategies. Future research
will be done on further hybridization with other metaheuristic
algorithms, deep learning usage in the process for predictive
scheduling, or even extending MHA to multi-objective
optimization frameworks. These will eventually enhance
scalability, adaptability, and efficiency in task scheduling in
complex cloud computing scenarios.

REFERENCES

[1] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022.

[2] B. Pourghebleh, A. Aghaei Anvigh, A. R. Ramtin, and B. Mohammadi,
"The importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, vol. 24, no. 3, pp. 2673-2696, 2021.

[3] A. Katal, S. Dahiya, and T. Choudhury, "Energy efficiency in cloud
computing data centers: a survey on software technologies," Cluster
Computing, vol. 26, no. 3, pp. 1845-1875, 2023.

[4] D. Mušić, J. Hribar, and C. Fortuna, "Digital transformation with a
lightweight on-premise PaaS," Future Generation Computer Systems,
2024.

[5] M. Saleem, M. Warsi, and S. Islam, "Secure information processing for
multimedia forensics using zero-trust security model for large scale data
analytics in SaaS cloud computing environment," Journal of Information
Security and Applications, vol. 72, p. 103389, 2023.

[6] V. Hayyolalam, B. Pourghebleh, A. A. Pourhaji Kazem, and A. Ghaffari,
"Exploring the state-of-the-art service composition approaches in cloud
manufacturing systems to enhance upcoming techniques," The
International Journal of Advanced Manufacturing Technology, vol. 105,
pp. 471-498, 2019.

[7] K. Saidi and D. Bardou, "Task scheduling and VM placement to resource
allocation in Cloud computing: challenges and opportunities," Cluster
Computing, vol. 26, no. 5, pp. 3069-3087, 2023.

[8] F. S. Prity, M. H. Gazi, and K. A. Uddin, "A review of task scheduling in
cloud computing based on nature-inspired optimization algorithm,"
Cluster computing, vol. 26, no. 5, pp. 3037-3067, 2023.

[9] M.-L. Chiang, H.-C. Hsieh, Y.-H. Cheng, W.-L. Lin, and B.-H. Zeng,
"Improvement of tasks scheduling algorithm based on load balancing
candidate method under cloud computing environment," Expert Systems
with Applications, vol. 212, p. 118714, 2023.

[10] G. Saravanan, S. Neelakandan, P. Ezhumalai, and S. Maurya, "Improved
wild horse optimization with levy flight algorithm for effective task
scheduling in cloud computing," Journal of Cloud Computing, vol. 12,
no. 1, p. 24, 2023.

[11] M. D. Tezerjani, M. Khoshnazar, M. Tangestanizadeh, and Q. Yang, "A
Survey on Reinforcement Learning Applications in SLAM," arXiv
preprint arXiv:2408.14518, 2024, doi:
https://doi.org/10.48550/arXiv.2408.14518.

[12] A. N. Malti, B. Benmammar, and M. Hakem, "Task Scheduling
Optimization in Cloud Computing: A Comparative Study Between
Flower Pollination and Butterfly Optimization Algorithms," in 2023 5th

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

850 | P a g e

www.ijacsa.thesai.org

International Conference on Pattern Analysis and Intelligent Systems
(PAIS), 2023: IEEE, pp. 1-7.

[13] S. Arora and S. Singh, "Butterfly optimization algorithm: a novel
approach for global optimization," Soft computing, vol. 23, pp. 715-734,
2019.

[14] X.-S. Yang, M. Karamanoglu, and X. He, "Flower pollination algorithm:
a novel approach for multiobjective optimization," Engineering
optimization, vol. 46, no. 9, pp. 1222-1237, 2014.

[15] L. Abualigah and M. Alkhrabsheh, "Amended hybrid multi-verse
optimizer with genetic algorithm for solving task scheduling problem in
cloud computing," The Journal of Supercomputing, vol. 78, no. 1, pp.
740-765, 2022.

[16] M. Tanha, M. Hosseini Shirvani, and A. M. Rahmani, "A hybrid meta-
heuristic task scheduling algorithm based on genetic and thermodynamic
simulated annealing algorithms in cloud computing environments,"
Neural Computing and Applications, vol. 33, pp. 16951-16984, 2021.

[17] S. Mangalampalli, G. R. Karri, and U. Kose, "Multi Objective Trust aware
task scheduling algorithm in cloud computing using Whale
Optimization," Journal of King Saud University-Computer and
Information Sciences, vol. 35, no. 2, pp. 791-809, 2023.

[18] X. Fu, Y. Sun, H. Wang, and H. Li, "Task scheduling of cloud computing
based on hybrid particle swarm algorithm and genetic algorithm," Cluster
Computing, vol. 26, no. 5, pp. 2479-2488, 2023.

[19] I. Behera and S. Sobhanayak, "Task scheduling optimization in
heterogeneous cloud computing environments: A hybrid GA-GWO
approach," Journal of Parallel and Distributed Computing, vol. 183, p.
104766, 2024.

[20] P. Pabitha, K. Nivitha, C. Gunavathi, and B. Panjavarnam, "A chameleon
and remora search optimization algorithm for handling task scheduling
uncertainty problem in cloud computing," Sustainable Computing:
Informatics and Systems, vol. 41, p. 100944, 2024.

[21] S. D. S. Mustapha and P. Gupta, "DBSCAN inspired task scheduling
algorithm for cloud infrastructure," Internet of Things and Cyber-Physical
Systems, vol. 4, pp. 32-39, 2024.

[22] S. Gupta and S. Tripathi, "A comprehensive survey on cloud computing
scheduling techniques," Multimedia Tools and Applications, vol. 83, no.
18, pp. 53581-53634, 2024.

[23] O. L. Abraham, M. A. Ngadi, J. B. M. Sharif, and M. K. M. Sidik, "Multi-
Objective Optimization Techniques in Cloud Task Scheduling: A
Systematic Literature Review," IEEE Access, 2025.

[24] S. Durairaj and R. Sridhar, "Coherent virtual machine provisioning based
on balanced optimization using entropy-based conjectured scheduling in
cloud environment," Engineering Applications of Artificial Intelligence,
vol. 132, p. 108423, 2024.

[25] S. A. Murad et al., "Priority based job scheduling technique that utilizes
gaps to increase the efficiency of job distribution in cloud computing,"
Sustainable Computing: Informatics and Systems, vol. 41, p. 100942,
2024.

[26] M. Alweshah, S. A. Khalaileh, B. B. Gupta, A. Almomani, A. I.
Hammouri, and M. A. Al-Betar, "The monarch butterfly optimization
algorithm for solving feature selection problems," Neural Computing and
Applications, pp. 1-15, 2022.

[27] P. Chakraborty, S. Sharma, and A. K. Saha, "Convergence analysis of
butterfly optimization algorithm," Soft Computing, vol. 27, no. 11, pp.
7245-7257, 2023.

