
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

851 | P a g e  

www.ijacsa.thesai.org 

Task Scheduling in Fog Computing-Powered Internet 

of Things Networks: A Review on Recent 

Techniques, Classification, and Upcoming Trends 

Dongge TIAN 

Department of Information Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang 050000, China 

 

 
Abstract—The Internet of Things (IoT) phenomenon 

influences daily activities by transforming physical equipment into 

smart objects. The IoT has achieved a wealth of technological 

innovations that were previously unimaginable. IoT application 

areas cover various sectors, including medical care, home 

automation, smart grids, and industrial operations. The massive 

growth of IoT applications causes network congestion because of 

the large volume of IoT tasks pushed to the cloud. Fog computing 

mitigates these transfers by placing resources near the edge. 

However, new challenges arise, such as limited computing power, 

high complexity, and the distributed characteristics of fog devices, 

negatively affecting the Quality of Service (QoS). Much research 

has been conducted to address these challenges in designing QoS-

aware task scheduling optimization techniques. This paper 

comprehensively reviews task scheduling techniques in fog 

computing-powered IoT networks. We classify these techniques 

into heuristic-based, metaheuristic-based, and machine learning-

based algorithms, evaluating their objectives, advantages, 

weaknesses, and performance metrics. Additionally, we highlight 

research gaps and propose actionable recommendations to 

address emerging challenges. Our findings offer a structured 

framework for researchers and practitioners to develop efficient, 

QoS-aware task scheduling solutions in fog computing 

environments. 
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I. INTRODUCTION 

The Internet of Things (IoT) phenomenon has changed the 
real world into a smart environment by turning everyday 
objects into smart objects/agents. This is accomplished by 
integrating sensors or microchips into these devices, along with 
internet connectivity [1]. These smart objects can 
independently interact and collect data, performing assigned 
duties [2]. The IoT is perceived as the upcoming model for 
ubiquitous computing and communication in the current 
technological environment. This ever-evolving environment is 
a network of billions of diverse, smart, connected devices that 
can revolutionize applications [3]. The applications of IoT 
range from individual home automation (smart homes) to 
overall city management (smart cities) [4]. It encompasses a 
variety of applications, including tracking high-precision 
agriculture and large-scale agricultural operations [5], 
monitoring individual building energy usage [6], and analyzing 
intelligent power grids [7].  

The IoT also affects healthcare, providing personalized 
services for patients and the general public [8]. In addition, it 

also drives automation in industries and provides business 
information [9]. Moreover, IoT applications exist in weather 
forecasting and monitoring tools locally and remotely [10]. 
Cloud, fog, and edge technologies enable deploying distributed 
data processing solutions essential for the IoT paradigm [11]. 

Fog computing is a variation of cloud computing that 
distributes data across several geographical regions [12]. It 
positions the processing and communication resources closer to 
the network boundary, where several fog hubs are located. 
Proximity to end-users and IoT devices enhances performance 
and responsiveness [13]. Many applications are limited by 
cloud-centric architectures, particularly those demanding real-
time performance within smart cities and buildings [14]. In such 
conditions, most data require processing, analysis, and storage 
on remote cloud servers. This dependency on remote resources 
may have detrimental effects on response time, privacy, 
elasticity, and system integrity [15].  

The emergence of delay-sensitive and location-aware 
applications similarly reveals the weaknesses of cloud-based 
approaches, which often fail to meet their demands for high 
efficiency and low latency [16]. The presence of fog layers near 
IoT objects within a smart city environment decreases latency. 
This feature enables fog computing to meet demanding latency 
criteria effectively. Fog computing functions as a 
supplementary layer to the cloud, allowing advanced 
applications and services to be created and implemented [17]. 

Integrating IoT, fog, and cloud computing paradigms 
requires efficient task scheduling techniques. While these 
intricate and vast ecosystems emerge, it becomes essential to 
improve the entire tone of the environment, reduce delays, and 
efficiently utilize resources. Task scheduling solutions are 
required to control and allocate computational processes in 
clouds and other processing nodes, such as edges and IoT 
gadgets. As the demand for such environments increases, 
developing innovative and highly effective task scheduling 
initiatives to improve the performance and efficiency of IoT, 
fog, and cloud-based systems becomes crucial. To tackle this 
challenge, the current research adopts a multifaceted approach. 
The main contributions of this paper are as follows: 

 We offer a detailed classification of task scheduling 
algorithms based on their impact on Quality of Service 
(QoS) for both users and fog service providers, 
providing a clear framework for understanding various 
approaches. 
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 Our study includes an extensive review of existing 
research, evaluating objectives, advantages, 
weaknesses, performance metrics, computing 
environments, and future work, thus providing a holistic 
view of the field. 

 We identify current research gaps in the area of QoS-
aware task scheduling in fog computing, offering a clear 
direction for future studies to address these gaps and 
advance the field. 

 We provide explicit and actionable recommendations for 
future research based on identified trends and gaps, 
guiding scholars and practitioners in their efforts to 
develop more effective and efficient task scheduling 
algorithms. 

Various performance metrics evaluate task-scheduling 
techniques, resulting in optimal resource utilization and 
efficient system performance. The most important factors are 
makespan, representing the total time taken to execute tasks; 
energy consumption, evaluating the power efficiency of the 
system; throughput, measuring how many tasks can be 
efficiently processed within a certain amount of time; 
reliability, guaranteeing no failure during the execution of a 
task; and latency, reflecting the reflection of delay time during 
the processing of tasks. These metrics are important in 
developing the effectiveness of task-scheduling approaches for 
IoT networks powered by fog computing and serve as a basis 
for our evaluation and classification in the study. 

This investigation will reveal emerging research issues and 
future research prospects. To ensure this methodology remains 
coherent and specific, the following questions serve as a 
guideline for this research. 

 What are the key performance metrics used to assess 
different task scheduling techniques? 

 What are the recent trends and potential prospects in 
research on task scheduling for fog computing? 

 What approaches and parameters can be used to tune fog 
computing task scheduling algorithms to achieve 
optimal resource utilization, throughput, and reliability 
without compromising energy consumption, makespan, 
and delay? 

The remaining sections are organized in the following 
manner. Section II presents the basic insights on the effect of 
the IoT and a brief introduction to fog computing. Section III 
presents the classification of task scheduling techniques, 
including heuristic-based, metaheuristic-based, and machine 
learning-based algorithms. Section IV summarizes results from 
previous studies and their implications. Section V discusses 
potential future research for bridging identified gaps. Finally, 
Section VI concludes with actionable recommendations to 
further advance task scheduling for fog computing. 

II. BACKGROUND 

A. IoT and its Impact 

Numerous components, such as sensors, actuators, 
smartphones, and intelligent vehicles, are equipped with unique 

identities in IoT environments [18]. IoT optimizes daily 
activities by utilizing data to facilitate remote access control 
and configuration via cloud-based platforms. However, the 
increasing number of IoT devices poses a challenge: effective 
load balancing across these devices is essential to ensure 
optimal network performance [19]. This task is complicated 
primarily due to changing traffic patterns and the lack of a 
centralized network structure. Therefore, non-optimal load 
balancing is a major concern, which has motivated researchers 
to develop IoT load balancing and routing solutions. 

The rapid proliferation of gadgets in modern networks and 
infrastructures has created a highly complex digital world. 
These systems create content having various packet sizes, inter-
packet arrival intervals, and transmission lengths [20]. 
Therefore, managing and controlling traffic have emerged as 
significant concerns in many areas, such as healthcare, data 
centers, big data, smart cities, and other fields. Different 
communication protocols have been adopted to accommodate 
these diverse networks. Nevertheless, the lack of defined data 
formats and protocols poses a major obstacle to traffic control 
in traditional IoT architectures. The absence of consistency in 
communication protocols used by different IoT devices 
impedes the comprehensive analysis of data gathered from 
several sources [21]. 

The main responsibilities involve coordinating data 
transfer, ensuring it is timely, and optimizing network 
utilization while reducing bottlenecks, delays, and 
inefficiencies. Traffic management extends beyond particular 
settings and includes intelligent healthcare systems, urban 
environments, big data applications, and numerous other areas. 
Urban settings and smart healthcare utilize networked sensors 
and gadgets to acquire and collect relevant information. 
Therefore, it is necessary to deploy smart traffic control 
strategies to satisfy QoS criteria for these diverse technologies. 
To effectively control traffic flows in healthcare and automated 
transportation systems while also considering environmental 
sustainability, it is necessary to build complex algorithms and 
real-time data analytics to handle mobile IoT devices. 

The IoT grows through the interconnectedness of numerous 
devices and sensors, resulting in ever-increasing data 
communication. The large amount of data might cause network 
congestion, especially in wireless networks with a natural 
tendency to encounter transmission obstacles [22]. Congestion 
in an IoT environment arises when the quantities of transmitted 
data are larger than the capacities of available transmission 
resources. This phenomenon has significant implications for 
load balancing routing protocols. There are two main forms of 
congestion: link-level and node-level.  

At the link level, congestion can be defined as the arrival 
rate of the packets is more than the rate at which the packets are 
served, resulting in buffer overflow. This scenario is similar to 
one in which the amount of water pouring in exceeds the 
drainage system capacity [23]. On the other hand, node-level 
congestion happens when many active sensor nodes transmit 
packets simultaneously on the same channel, causing 
interference and preventing successful transmission [24].  

The limited energy resources of devices present a 
substantial obstacle to implementing IoT networks. Energy-
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conscious routing protocols must confront complex issues 
associated with energy usage during sensing, data transmission, 
and receiving [25]. Data aggregation techniques can help 
reduce transmissions, but establishing the best level of 
aggregation is a complex operation that requires efficient 
solutions to maximize network device lifespan [26]. The natural 
diversity of IoT devices causes energy usage problems. These 
gadgets demonstrate notable disparities in computing power, 
energy profiles, and connectivity capabilities. Integrating these 
varied attributes into routing decisions is a considerable 
obstacle.  

B. Introduction to Fog Computing 

IoT deployment benefits from cloud computing in terms of 
computation, storage resources, and QoS constraints. It 
involves moving data to other servers at data centers, which is 
processed and returned to the end user [27]. Cloud computing 
also provides centralized virtual servers for data processing, 
storage, and analysis. These services are available on demand 
and are categorized as Software as a Service (SaaS), Platform 
as a Service (PaaS), and Infrastructure as a Service (IaaS).  

Nevertheless, IoT and the cloud components exchange more 
tasks and data, affecting the overall response time and resulting 
in network latency. The substantial physical separation between 
cloud-based IoT devices causes security problems. These 
delays can have severe consequences, especially in extremely 
sensitive tasks, such as real-time health monitoring, posing a 
danger to patients. Therefore, architectural plans are shifting 
from centralized data centers to distributed computing devices 
at the edge of the network. The decentralized nature of this 
mechanism also aims to eliminate the mentioned delays and 
security concerns. 

Researchers have recently focused on investigating fog 
computing, a novel paradigm bridging the gap between IoT 
platforms and cloud computing. Fog computing leverages a 
decentralized architecture to reduce task transmission delays 
while upholding QoS requirements. Thus, this approach has 
developed into a sensible strategy for time-constrained 
operations within the IoT context. Unlike cloud computing, 
which relies on centralized servers to perform computations and 
relay outcomes to IoT devices, fog computing distributes these 
processes to fog nodes close to IoT devices to reduce latencies 
and enable increased response times in IoT applications. 

The proximity of fog nodes to IoT devices provides further 
advantages, such as reduced total delay and increased 
protection of transmitted information. However, the resource 
limitations of fog devices necessitate offloading 
computationally intensive workloads to the cloud. Fig. 1 
illustrates the overall structure, depicting the placement of IoT 
and edge devices with varying computational capabilities, 
cloud computing, and fog layers. 

The goal of fog computing is to bring storage, transmission, 
and computing services closer to the network's edge. The 
proximity of the data center facilitates efficient data processing, 
low delays, and minimal bandwidth consumption. Fog devices, 
conversely, are characterized by lower processing, storage, and 
bandwidth capabilities due to their compact size. It is, therefore, 
important that all these constraints are considered when 

scheduling tasks to have an effective scheduling strategy. This 
problem is defined as non-deterministic polynomial-time hard 
(NP-hard) due to the optimization of the problem with many 
parameters, including energy consumption, task deadlines, 
cost, makespan, and response time. This designation indicates 
that finding the optimal solution becomes computationally 
intractable as the problem grows.  

Certain constraints are crucial for both end-users and system 
designers. For instance, task deadlines represent a critical QoS 
parameter for end-users, while energy usage of fog nodes is a 
QoS requirement of concern for the fog service provider. 
Consequently, assigning IoT tasks to fog nodes and the cloud 
necessitates careful consideration of these diverse constraints. 

III. CLASSIFICATION OF TASK SCHEDULING TECHNIQUES 

This research adopts a systematic review approach to 
analyzing and classifying various task scheduling techniques in 
IoT networks powered by fog computing. Related literature 
concerning task scheduling and QoS improvements was 
searched from reputable databases such as IEEE Xplore, 
Springer, and Elsevier. Techniques identified were further 
classified into heuristic-based, metaheuristic-based, and 
machine learning-based approaches and assessed based on the 
key performance metrics of latency, energy consumption, 
throughput, and reliability. Critical reviews have been done 
regarding the objectives, advantages, and limitations of each 
technique. Research gaps were identified, with 
recommendations for improvement also given for actionable 
purposes. 

 

Fig. 1. IoT, edge, fog computing, and cloud computing architecture. 

A. Heuristic-based Algorithms 

As summarized in Table I, heuristic-based algorithms offer 
approximate solutions for computationally complex task 
scheduling problems within fog computing environments. 
These algorithms are specifically designed to efficiently 
manage the dynamic and heterogeneous characteristics inherent 
to fog environments. 

Krivic, et al. [28] established the classification of IoT 
services, a crucial factor that directly influences scheduling 
algorithms. In addition, they introduced an innovative 
scheduling method that considers service context, user context, 
and processing devices. This approach allows for the efficient 
calculation of the most efficient schedule for executing service 
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components in a distributed fog-to-cloud context. The 
effectiveness of the suggested algorithm was confirmed by 
simulations, in which its distinguishing innovation and 
dynamic scheduling were particularly highlighted.  

Aburukba, et al. [29] formulated scheduling IoT service 
queries as an optimization problem to shorten the total service 
request latency. They employed integer programming to model 
the problem; however, due to its NP-hard nature, this approach 
becomes impractical for large-scale scenarios. To solve this 
problem, they combined an individualized version of the 
Genetic Algorithm (GA) as an efficient heuristic for scheduling 
IoT tasks, considering holistic latency optimization. They 
evaluated the performance of the designed GA using an 
evolutionary simulation model, which reflects the inherent 
dynamism of real IoT environments.  

Ibrahim, et al. [30] introduce a load-balanced and delay-
aware scheduling model for fog computing environments, 
particularly for critical IoT applications. The developed 
mechanism prioritizes minimizing task execution delays and 
maximizing task acceptance rates. Furthermore, the mechanism 
is designed to output an optimal outcome by ensuring uniform 
and minimal load imbalances to fog resources to improve 
resource utilization and lower the average response time. 

Wireless Sensor Networks (WSNs) generate many tasks 
with varying priorities and durations in healthcare monitoring, 

transmitting them concurrently to fog computing platforms. 
This necessitates the implementation of an effective task 
scheduling algorithm capable of accurately prioritizing tasks 
according to their priority, regardless of their duration. 
Aladwani [31] introduced the Tasks Classification and Virtual 
Machines Categorization (TCVC) approach to improve the 
performance of static task scheduling algorithms. It classifies 
tasks by importance to patient health. The new method divides 
incoming IoT tasks into three levels of importance: high, 
average, and low.  

Effective resource management is paramount for achieving 
optimal system performance, particularly concerning latency, 
within fog-cloud computing environments. Resource planning 
in such environments presents a computationally complex 
problem, classified as NP-hard. Khezri, et al. [32] investigated 
the optimization challenges associated with scheduling data-
intensive jobs within fog-cloud based IoT systems, specifically 
focusing on maximizing job longevity. The proposed method 
starts by formulating the problem into an Integer Linear 
Programming (ILP) optimization scheme. Subsequently, a 
heuristic algorithm, Data-Locality Aware Job Scheduling in 
Fog-Cloud (DLJSF), is designed. Performance evaluations 
demonstrated that the proposed DLJSF algorithm achieves 
results closely approximating those obtained through the ILP 
model, with an average deviation of only 13. 

TABLE I. SUMMARY OF HEURISTIC-BASED ALGORITHMS 

Reference Approach Advantage Disadvantage 

[28] 

Dynamic scheduling algorithm considering 

processing devices, user context, and service 
context 

Significant increase in performance 

efficiency; adaptability to time-varying 
network conditions and QoS parameter 

changes 

Complexity in implementation due to the 

need for constant monitoring and 
adjustments to QoS parameters 

[29] 
Individualized genetic algorithm for 
minimizing overall service request latency 

Reduced overall latency 

The genetic algorithm might be 

computationally expensive for large-scale 

scenarios 

[30] 
Load balancing mechanism prioritizing task 

execution delays and task acceptance rate 

Improved resource utilization and lower 

average response time 

Potential overhead in managing load 

balancing and ensuring task acceptance rates 

[31] 
Tasks classification and virtual machines 
categorization using the MAX-MIN 

scheduling algorithm 

Improved performance in algorithm 
complexity, resource availability, execution 

time, waiting time, and finish time 

The static nature of the approach might not 
handle highly dynamic environments 

effectively 

[32] 
Data-locality aware task scheduling in fog-
cloud derived from an ILP optimization 

model 

Results closely approximate the ILP model 
with a 13% average deviation; outperforms 

local processing by 99.16% 

The ILP-based model might be complex, 
computationally intensive, and requires 

effective data locality awareness. 

[33] 
Priority-Aware Semi-Greedy (PSG) and 

PSG with Multistart (PSG-M) procedures 

High performance on makespan, deadline 
violation time, energy consumption, and 

deadline compliance 

Balancing multiple objectives (energy usage 
and QoS) can be challenging and may 

require fine-tuning for different scenarios 

[34] 
Heuristic for dynamic resource scheduling 

and allocation of real-time IoT workflows 

Superior performance compared to static 

provisioning; real-time data awareness 

Complexity in implementing dynamic 
resource provisioning and maintaining real-

time data awareness. 

Azizi, et al. [33] explored the issue of task scheduling in fog 
computing to find a compromise between reducing energy 
consumption in fog points and maintaining the QoS standards 
for IoT operations. They mathematically model the problem of 
optimizing these conflicting criteria as a multi-objective 
optimization problem. They also focused on minimizing 
deadline violation time in their approach, which they handled 
by proposing two new semi-greedy based algorithms: Priority-
Aware Semi-Greedy (PSG) algorithm and a PSG with 
Multistart (PSG-M) procedure.  

Stavrinides and Karatza [34] proposed a dynamic resource 
provisioning mechanism for cloud resources within a three-
layer IoT-fog-cloud framework. This approach prioritizes real-
time data awareness and dynamic scaling to optimize resource 
allocation. Additionally, they introduced a heuristic for 
scheduling instant IoT tasks. The efficacy of the suggested 
scheme was measured through experiments that compared its 
performance against a static provisioning strategy. These 
simulations employed various workload patterns to assess the 
impact on the framework's performance under different 
provisioning scenarios. 
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B. Metaheuristic-based Algorithms 

Building upon heuristic approaches, metaheuristic-based 
algorithms leverage advanced strategies to efficiently explore 
and exploit the search space. These algorithms strive to identify 
near-optimal solutions while exhibiting improved convergence 
rates, as shown in Table II. 

Abdel-Basset, et al. [35] introduced an energy-conscious 
task scheduling method for fog environments based on the 
Harris Hawks Optimization (HHO) algorithm integrated with 
Local Search, called HHOLS. HHOLS optimizes the QoS in 
IoT applications by focusing on energy efficiency. Their work 
commences with a detailed description of the highly virtualized 
layered fog computing model, emphasizing its heterogeneous 
architectural characteristics. To address the non-linear 
character of the task scheduling problem, they incorporated a 
scaling and normalization stage to adapt the standard Harris 
Hawks optimization algorithm.  

Service execution plays a vital role in IoT networks, which 
is also an important problem in scheduling services in fog 

computing. Consequently, fog infrastructure provides the 
execution environment for devices with limited computational 
capability. A fog environment comprises many fog nodes that 
can be some-edge servers, cloudlets, small-size ISPs, and 
caching nodes offering user-requested services. Najafizadeh, et 
al. [36] offered a privacy-preserving task scheduling 
architecture for IoT systems based on service execution to 
overcome these problems. In this design, a multi-objective 
algorithm is proposed to lower both service cost and execution 
time simultaneously.  

Abd Elaziz, et al. [37] suggested AEOSSA, an alternative 
task scheduling approach for managing IoT tasks within a 
cloud-fog computing context. This approach builds upon a 
modified Artificial Ecosystem-Based Optimization (AEO) 
algorithm. The modified algorithm incorporates operators 
derived from the Salp Swarm Algorithm (SSA) to augment the 
exploitation capabilities of AEO in the search for optimum 
results for the task scheduling problem. An evaluation of 
AEOSSA is performed on some synthetic and real datasets that 
include a variety of computation sizes.  

TABLE II. SUMMARY OF METAHEURISTIC-BASED ALGORITHMS 

Reference Approach Advantage Disadvantage 

[35] 
Harris hawks optimization with local 

search 

Optimizes QoS in IoT applications 

focusing on energy efficiency 

Complexity due to normalization, scaling, 

and local search phases 

[36] 
Multi-objective algorithm for privacy-
preserving task scheduling 

Minimizes service execution time and cost; 

maintains the privacy of IoT devices; 
performs well across different service 

composition complexities 

Higher computational overhead due to 
multi-objective optimization 

[37] 
Modified artificial ecosystem-based 

optimization with salp swarm algorithm 

Superior performance in makespan and 
throughput; effective for synthetic and real 

datasets 

Potentially higher resource consumption 

due to extensive exploitation capabilities 

[38] 
Energy-aware model with arithmetic 
optimization algorithm and marine 

predators algorithm 

Significant reductions in energy 

consumption and makespan 

Increased complexity and potential for 

higher computational cost 

[39] 
Multi-cloud to multi-fog architecture with 
dynamic threshold strategy 

Decreases service latency and increases fog 
node efficiency; achieves energy balance 

Complexity in implementation and real-
time dynamic scheduling 

[40] 
CHMPAD algorithm combining marine 

predators algorithm and disruption operator 

Prevents local optimization; improves 

exploitation properties; significant 
reductions in makespan and throughput 

Increased complexity and resource 

demands 

[41] 

Two-tiered approach with PSO and particle 

swarm genetic joint optimization artificial 
bee colony 

Optimal load balancing and task 

scheduling; lower delay and energy 
consumption 

Higher computational complexity due to 

multi-tiered strategy 

[42] 
Multi-tiered scheduling framework with 

Naïve Bayes classifier 

Effective task classification and placement; 

enhances QoS parameters 

Requires precise training data for classifier 

accuracy 

[43] 
Directed non-dominated sorting genetic 
algorithm 

Minimizes energy consumption and 

response times; balances exploration and 

exploitation 

Potential for higher computational 
overhead 

[44] 
Hunger games search with marine 
predators algorithm 

Reduces energy consumption and 

makespan; effective for various workload 

traces 

Complexity in algorithm integration and 
evaluation 

[45] 
Multi-objective gravitational search 

algorithm with star-quake operator 

Reduces makespan, energy consumption, 

and cost; prevents local optima 

Increased computational complexity and 

resource demands 

[46] 
Various algorithms, including machine 

learning and nature-inspired metaheuristics 

Optimizes resource allocation, minimizes 

energy consumption and latency, and meets 

deadlines; consistent performance 

improvements 

Varied complexity depending on the 

specific algorithm used 

Abd Elaziz, et al. [38] overcame the task scheduling issue 
in fog computing by proposing an energy-aware model using a 
variant of the Arithmetic Optimization Algorithm (AOA) 
known as AOAM. Optimizing the makespan metric, they 
ensured that user QoS was the top priority. The authors 
integrated search operators inspired by the Marine Predators 
Algorithm (MPA) to overcome the limitations of the traditional 

AOA. This modification encourages a wider range of solutions 
and avoids becoming stuck in suboptimal solutions. The 
efficacy of the proposed AOAM was validated through 
simulations that employed various parameters.  

Luo, et al. [39] have suggested a unique multi-cloud to 
multi-fog model that involves two service models with 
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containerization technology, aiming to optimize fog resource 
usage and control service latency. On the other hand, the task 
scheduling algorithm provided in their proposal is particularly 
suitable for achieving an energy balance. Additionally, the 
algorithm takes the terminal device transmission energy 
requirements into account. It applies a flexible threshold 
algorithm to achieve real-time request scheduling while 
ensuring an energy balance state of the terminal device, thereby 
effectively avoiding transmission delays. 

Attiya, et al. [40] presented a novel fog computing 
application-aware task scheduling algorithm called CHMPAD. 
It overcomes existing issues with the Chimp Optimization 
Algorithm by combining two key components of different 
algorithms: the Marine Predators Algorithm and a disruption 
operator. CHMPAD aims to prevent local optimization and 
improve the exploitation properties of the base ChOA 
algorithm. The applicability and effectiveness of CHMPAD are 
evaluated through extensive experiments performed on 
synthetic and real-world workloads. 

Liu, et al. [41] developed a novel resource scheduling 
strategy for fog computing environments. This two-tiered 
approach optimizes load balancing and task scheduling to 
decrease energy consumption and execution time. The first tier 
leverages the Particle Swarm Optimization (PSO) algorithm for 
balancing loads within a fog cluster. This optimization seeks to 
identify the ideal distribution of tasks across fog nodes, 
minimizing computation time and energy usage. Building upon 
this foundation, the authors propose a novel Particle Swarm 
Genetic Joint Optimization Artificial Bee Colony (PGABC) 
algorithm. PGABC tackles the challenge of task scheduling 
across multiple fog clusters, utilizing the time and energy 
consumption data obtained from the initial load balancing 
phase. 

Kaur, et al. [42] proposed a multi-tiered scheduling 
framework for managing IoT application tasks. This framework 
prioritizes QoS parameters to achieve optimal task placement. 
The framework operates on two levels: fog environment and 
fog node selection. The specific fog environment in which the 
task will be executed is set at the first level. Several factors, 
such as availability, physical distance, latency, and throughput, 
are used to choose an environment. After choosing the fog 
environment, a particular fog node is selected for analysis. They 
implemented a Naïve Bayes classifier to classify the task 
category (Compute-intensive, Memory-intensive, or GPU-
intensive) based on the probability triad (C, M, G). 

Mousavi, et al. [43] formulated a constrained bi-objective 
optimization problem for task scheduling in fog computing 
environments. This formulation aims to achieve two critical 
goals simultaneously: minimizing server energy consumption 
and reducing overall response times. To address this challenge, 
the authors proposed a novel Directed Non-dominated Sorting 
Genetic Algorithm (D-NSGA-II). This algorithm builds upon 
the foundation of NSGA-II, a well-established multi-objective 
optimization technique. The key innovation lies in the 
introduction of a new recombination operator. This operator 
empowers D-NSGA-II to regulate the selection pressure 
exerted on candidate solutions, thereby striking a balance 

between the algorithm's exploration and exploitation 
capabilities.  

Attiya, et al. [44] proposed a novel task scheduling 
algorithm, HGSMPA, specifically designed for cloud-fog 
computing environments within the IoT domain. Their 
approach leverages the Hunger Games Search (HGS) algorithm 
as a foundation. The authors incorporated elements from the 
MPA to enhance the exploitation capabilities inherent in HGS. 
The efficacy of HGSMPA was validated through experimental 
evaluations that employed various workload traces, both 
synthetic and real-world. The results convincingly demonstrate 
the superiority of HGSMPA compared to existing scheduling 
algorithms. 

Ahmadabadi, et al. [45] introduced a novel multi-objective 
task scheduling approach for fog-cloud computing systems. 
Their approach addresses three critical objectives 
simultaneously: minimizing monetary cost, energy 
consumption, and makespan. To achieve these goals, the 
authors proposed a new multi-objective function that 
incorporates all three objectives. Furthermore, they introduced 
a novel operator called star-quake, specifically designed for the 
Multi-Objective Gravitational Search Algorithm (MOGSA). 
This operator balances the algorithm's capabilities, such as 
selection pressure, exploration, and exploitation. 

Alsamarai, et al. [46] have significantly improved task 
scheduling in fog-cloud computing environments for IoT 
applications. Their proposed algorithms address various 
challenges, including optimizing resource allocation (e.g., 
CHMPAD, DLJSF), minimizing energy consumption and 
latency (e.g., PGABC, Quality-aware Energy Efficient 
Scheduling), and meeting task deadlines (e.g., Bandwidth-
Deadline Algorithm). They leverage a variety of techniques, 
including machine learning (PSO, ANN), heuristic approaches 
(genetic algorithms), and nature-inspired metaheuristics 
(Gravitational Search Algorithm, Ant Colony Optimization) to 
achieve these improvements. 

C. Machine Learning-based Algorithms 

Machine learning-based algorithms exploit historical data 
and learning models to predict near-optimal scheduling 
decisions [47]. Techniques such as reinforcement learning and 
neural networks have demonstrated significant potential in 
adapting to the dynamic characteristics of fog computing 
environments [48], as shown in Table III. 

Bhatia, et al. [49] proposed a novel quantized approach for 
scheduling heterogeneous tasks within fog computing 
applications. The approach is built on a node-specific metric, 
the Node Computing Index (NCI), used to measure individual 
fog nodes' computational capability. They also proposed a QCI-
Neural Network Model that forecasts the best available fog 
node for real-time execution of heterogeneous tasks. To 
validate the proposed approach, the authors conducted 
simulations in different scenarios. 

Ali, et al. [50] tackled enhancing the overall efficiency of 
executing tasks for IoT applications. Their methodology 
revolves around selecting real-time jobs well-suited for 
execution at the fog layer. A fuzzy logic-based task scheduling 
algorithm is modeled for a fog-cloud computing environment. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

857 | P a g e  

www.ijacsa.thesai.org 

This algorithm offers a smart scheme of allocating submitted 
tasks to the processing units within the fog layer. 
Heterogeneous resources can be found in fog.  

Lim [51] addressed the low latency task execution in small-
scale fog computing deployments. Their approach is based on 
a novel task scheduling strategy using partitioned Artificial 
Neural Networks (ANNs). Such partition allows parallel 
learning and hyperparameter optimization across different edge 
servers. This parallelism significantly reduces scheduling times 
and contributes to achieving desired service level objectives.  

Aburukba, et al. [52] proposed a task scheduling solution 
for a three-tier fog computing architecture. This approach 
prioritizes maximizing the number of requests that meet their 
deadline requirements. To achieve this goal, the authors 
introduce an optimization model formulated using Mixed 
Integer Programming (MIP). This model aims to minimize the 
number of missed deadlines. The efficacy of the model was 
validated using an exact solution technique. However, the 
authors acknowledge that the task scheduling problem is NP-
hard, rendering exact solutions impractical for typical fog 
computing environments due to problem size.  

TABLE III. SUMMARY OF MACHINE LEARNING-BASED ALGORITHMS 

Reference Approach Advantage Disadvantage 

[49] 
Node computing index and QCI-neural 

network model 

Significantly improved performance in 
execution delay, sensitivity, and precision; 

suitable for heterogeneous tasks 

High computational complexity may require 

substantial training data. 

[50] Fuzzy logic-based task scheduling algorithm 

Outperformed existing algorithms in task 

success ratio, makespan, average turnaround 

time, and delay rate; efficient for 
heterogeneous resources 

Potential complexity in defining fuzzy rules 

may not scale well with large task sets. 

[51] Partitioned artificial neural network 

Reduced scheduling times, maintained low 

energy consumption, achieved desired 
service level objectives 

Limited scalability to larger fog computing 

environments, potential overhead in 
partitioning. 

[52] 
Mixed Integer Programming and genetic 
algorithm 

Significant reduction in missed deadlines, 

effective for NP-hard scheduling problems; 
superior performance compared to round-

robin and priority scheduling 

The exact solution technique is impractical 

for large problem sizes, and the heuristic 
approach may not always find the global 

optimum. 

[53] 
Statistical techniques (moving averages, 

Heikin-Ashi patterns) 

Enhanced precision in scheduling times, 

optimized task allocation across edge and 
fog nodes 

The applicability of financial patterns to 
computing tasks may not be universally 

effective, and there is potential for increased 

computational overhead. 

[54] K-Means clustering and fuzzy logic 

Accurate identification of groups, adapts to 

changing task distributions, improved 

execution time, response time, and network 
usage 

Complexity in implementation and potential 
high computational overhead in large-scale 

dynamic environments 

[55] 

Distributed deep reinforcement learning 

with asynchronous proximal policy 
optimization 

Fast convergence rate, high flexibility, 

upgradeability, and better time complexity 
in execution 

Greedy nature of existing techniques and 

complexity in managing distributed 
experience trajectories 

[56] 
A2C-DRL based real-time task scheduling 

for edge-cloud environments 

Simultaneous learning at multiple servers, 

flexibility with assignable hyperparameters, 
and superior load balancing 

Complexity in defining reward functions 

and update policies 

[57] 
DRL-based algorithm for scheduling IoT 

applications 

Adaptive response time, load balancing, 

significant cost reduction in execution and 
load balancing 

Initial training phase might be resource-

intensive, complexity in implementation on 
different platforms 

The rapid rise in bandwidth requirements and 
computational load of the IoT has created opportunities for fog 
computing. However, maintaining the QoS of the data transfer 
process at an efficient cost in fog-based IoT networks remains 
a significant challenge. Potu, et al. [53] propose a novel 
scheduling algorithm that optimizes task allocation across edge 
and fog nodes. The proposed model integrates various 
statistical techniques, including moving averages and Heikin-
Ashi patterns frequently employed in financial markets to 
visualize trends.  

The basic scheduling strategies designed for specials global 
cloud model do not really cope with static nature, 
heterogeneity, and resource constraints of the fog nodes. 
Sheikh, et al. [54] have addressed these limitations through the 
development of a new machine learning based approach that is 
aimed at dynamically allocating tasks in respect of the evolving 
status in the fog environment. Their approach builds on basics 
of K-Means clustering algorithm substantiated by fuzzy logic, 

which can be considered an example of an unsupervised 
learning. Overall, this approach economically categories fog 
nodes based on resource and workload distribution. The 
proposed method builds on the strong points of the K-Means 
clustering that provides accurate identification of groups and 
fuzzy logic that allows one to adapt to changes concerning the 
distribution of tasks among the fog nodes.  

Deep Reinforcement Learning (DRL) has recently gained 
traction in addressing complex service offloading problems. 
However, existing techniques are greedy in nature and are 
primarily designed for centralized problem formulation which 
results in slow convergence towards the global solution. In 
addition, data dependencies that are preconceived and QoS 
requirements inherent within the service components do not 
facilitate offloading. To overcome such limitations, Goudarzi, 
et al. [55] developed a distributed DRL strategy formulated 
through an actor-critic architecture named Asynchronous 
Proximal Policy Optimization (APPO). Thereby, it contributes 
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to creating a multitude of possible distributed experience 
trajectories to take place. Moreover, the authors use off-policy 
correction methods we have reviewed include PPO clipping and 
V-trape so as to enhance the rate of convergence to the optimal 
service offloading solutions.  

Resource management in mobile edge and cloud systems 
often presents complex online decision-making challenges. 
Effective solutions necessitate real-time understanding of both 
workload and environment to facilitate the efficient utilization 
of distributed resources. However, geographically dispersed 
resources, limited capacity, unpredictable task characteristics, 
and network hierarchy inherent to edge environments 
significantly hinder efficient job scheduling. The above 
dynamic scenarios make heuristic-based methods inadequate 
since they are not easy to generalize or modify as would be 
required at times. One such unutilized yet potentially very 
beneficial technique is the DRL that names Advantage Actor-
Critic (A2C). A2C learns quickly in environments with little 
data while DRL gains its knowledge from situations within the 
environment and applies them to make a decision. To address 
these challenges, Lu, et al. [56] propose an A2C-DRL based 
real-time task scheduling technique specifically designed for 
stochastic edge-cloud environments.  

Wang, et al. [57] introduced a Deep Reinforcement 
Learning (DRL)-based algorithm for scheduling IoT 
applications, termed DRLIS. This approach is targeted to 
provide adaptive and efficient response time for wide range of 
IoT applications as well as the load balancing among the 
edge/fog servers. The authors incorporated DRLIS as an 
operational scheduler in the FogBus2, which is a function-as-a-
service platform in the development of moving from edge to 
fog to cloud serverless computing model. The results of varied 
experiences indicate that the DRLIS bears a higher impact on 
the improvement of the execution cost of IoT applications.  

IV. RESULTS AND DISCUSSION 

A review and analysis of different task-scheduling 
techniques reveal tremendous variability in their performance 
based on the underlying methodologies and QoS metrics they 
try to optimize. Due to their simplicity, heuristic-based 
algorithms utilize low computational overhead; thus, they can 
be applied to only small-scale and resource-limited 
environments. Most of these techniques fail to optimize 
multiple QoS parameters like latency, energy consumption, and 
throughput simultaneously; hence, their usage is quite 
impractical in dynamic and large-scale fog computing 
scenarios. Contrarily, metaheuristic-based algorithms 
demonstrate much stronger adaptability in finding near-optimal 
solutions for complex scheduling problems. Despite the better 
performance, these algorithms usually introduce higher 
computation overhead, which may not be affordable for real-
time applications. 

While advanced algorithms based on machine learning 
leverage predictive and adaptive capabilities to optimize task 
scheduling dynamically, techniques such as reinforcement 
learning and deep neural networks have been promising in 
achieving significant reductions in latency and energy 
consumption while maintaining high throughput. For example, 
reinforcement learning-based models can predict the pattern of 

task arrivals and resource availability to enable proactive 
scheduling. However, most machine learning techniques are 
implemented in a fog computing environment with extensive 
training in complex data computation resources and feature 
engineering, challenging widespread adaptation. Besides, 
machine learning interpretability may be one of the barriers if 
transparency in decision-making is essential. 

Comparative analyses reveal that no method covers the fog 
computing-powered IoT network to date for all the challenges 
combined. Instead, heuristic and metaheuristic algorithms are 
more appropriate for scenarios with specific resource 
constraints, while machine learning-based approaches best 
apply to dynamic and complex environments. The 
hybridization of such techniques, though in very few instances, 
points out a bright future direction that can leverage the 
simplicity and efficiency of the heuristic approach together with 
adaptability and optimization capabilities from the 
metaheuristic and machine-learning-based techniques. 
Furthermore, much emphasis on standard frameworks is 
required to evaluate the benchmark techniques with regard to 
task scheduling properly; this ensures coherence in the 
performances reported through different scenarios. These 
insights emphasize the vital need for further research that 
should result in novel hybrid techniques applicable to the new 
demands put forward by IoT systems driven by fog computing. 

Through extensive analysis of various methods for task 
scheduling in fog-cloud computing environments for IoT 
applications, several research gaps and limitations in prior 
studies have been identified. These limitations can include high 
run times, failure to meet the study's objectives, or negative 
impacts on other performance metrics. Common shortcomings 
include missing details on simulation parameters, comparisons 
with outdated algorithms, using small datasets for evaluation, 
omitting definitions of evaluation parameters and equations, 
neglecting relevant evaluation factors, and lacking results to 
support performance claims. 

A critical limitation identified is using outdated benchmark 
algorithms for comparison in some studies. This makes it 
difficult to assess the efficiency of the proposed methods 
definitively. Additionally, several studies employed small 
datasets (fewer than 100 tasks) or omitted data set size 
information entirely. This raises concerns about the proposed 
algorithms' ability to handle real-world workloads with high 
throughput. 

Our analysis also revealed a focus on specific objectives and 
performance metrics. Energy consumption emerged as the 
primary objective in many studies, followed by minimizing 
makespan, delay, and cost. Conversely, response time, resource 
utilization, deadline violation, security, and reliability received 
less attention. This focus is reflected in the most studied 
metrics: makespan, energy consumption, and cost. Most of the 
investigated algorithms were multi-objective, focusing on 
optimizing combinations like makespan and cost, makespan 
and energy, or delay and energy simultaneously. 

V. FUTURE DIRECTIONS 

As fog computing continues to evolve, several emerging 
trends and research directions are shaping the landscape of task 
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scheduling algorithms. These advancements aim to enhance the 
efficiency, scalability, and adaptability of fog computing 
systems to meet the growing demands of IoT applications. The 
future of task scheduling in fog computing is poised to leverage 
more sophisticated machine learning and Artificial Intelligence 
(AI) techniques. Reinforcement learning, deep learning, and 
federated learning are expected to play a significant role in 
developing more adaptive and intelligent scheduling 
algorithms. These approaches can enable real-time learning and 
decision-making, improving the allocation of resources and the 
overall performance of fog environments. 

The collaboration between edge and cloud resources is 
anticipated to become more seamless, providing a hybrid model 
that optimally distributes tasks based on their computational 
and latency requirements. Future research will focus on 
developing algorithms that dynamically balance the load 
between edge and cloud, considering network conditions, 
energy consumption, and application-specific constraints. 
Energy efficiency will remain a critical concern in fog 
computing, particularly with the increasing number of 
connected devices and data-intensive applications. The 
research will continue to explore energy-aware scheduling 
algorithms that minimize power consumption without 
compromising performance. Sustainable computing practices, 
such as using renewable energy sources and energy-harvesting 
techniques, will also gain more attention. 

With the proliferation of IoT devices and the sensitivity of 
the data they generate, ensuring security and privacy in task 
scheduling is paramount. Future research will delve into 
developing secure scheduling algorithms that incorporate 
encryption, anonymization, and other privacy-preserving 
techniques. These solutions must safeguard data integrity and 
confidentiality while maintaining efficient resource utilization. 
Integrating real-time analytics and predictive modeling into 
task scheduling algorithms will enhance responsiveness and 
accuracy. Using historical data and real-time monitoring, these 
algorithms can predict workload patterns, detect anomalies, and 
proactively adjust resource allocation, improving system 
reliability and performance. 

Future scheduling algorithms will increasingly adopt multi-
objective optimization techniques to balance various 
conflicting performance metrics, such as latency, throughput, 
energy consumption, and cost. Research will focus on 
developing algorithms that can effectively navigate the trade-
offs between these objectives, providing optimal solutions that 
meet diverse application requirements. As quantum computing 
technologies mature, their integration into fog computing task 
scheduling could revolutionize the field. Quantum algorithms 
have the potential to solve complex optimization problems 
more efficiently than classical algorithms, offering 
unprecedented improvements in scheduling performance and 
resource utilization. 

Developing standardized frameworks and protocols for task 
scheduling in fog computing ensures interoperability between 
different devices and platforms. Future research will explore 
ways to create universally accepted standards that facilitate 
seamless integration and collaboration across heterogeneous 
fog and edge environments. User-centric and context-aware 

scheduling algorithms that consider the specific needs and 
preferences of end-users will become more prevalent. These 
algorithms will consider contextual information, such as user 
location, device capabilities, and application-specific 
requirements, to deliver personalized and efficient task 
scheduling solutions. 

Federated learning, a decentralized machine learning 
approach where model training occurs locally on edge devices, 
will gain prominence in fog computing environments. The 
research will explore federated learning techniques for 
collaborative model training across distributed edge nodes, 
enabling privacy-preserving and resource-efficient machine 
learning. These approaches will empower edge devices to 
perform predictive analytics and decision-making tasks 
autonomously without relying heavily on centralized cloud 
servers. The integration of blockchain technology into task 
scheduling algorithms will enhance security, transparency, and 
trust in fog computing environments. Future research will 
investigate blockchain-based scheduling mechanisms that 
ensure verifiable task execution, prevent tampering or 
manipulation of scheduling decisions, and enable secure peer-
to-peer transactions between edge devices. These blockchain-
enabled solutions will facilitate decentralized task allocation 
and resource sharing while preserving data integrity and 
privacy. 

VI. CONCLUSION 

IoT technology applies to promote immense 
interconnectedness to data-driven functions like smart homes, 
cities, industrial automation, and health services. At the time of 
growth, this explosive creation of data created newer challenges 
for traditional models in cloud computing: latencies at high 
traffic volume and constricts scalability. Emerging as 
complementary mechanisms to remedy several limitations 
brought upon by traditional clouds in view of the huge impact 
created by IoT sensors continuously generating huge loads of 
information that requires computation, sometimes really 
urgent, Fog Computing extends the computational processes 
further toward network boundaries. 

The present research gave an extensive review of different 
techniques for task scheduling in fog computing environments 
and broadly classified these techniques into three main 
categories, namely heuristic-based approaches, metaheuristic-
based methods, and machine learning-based approaches. This 
research further analyzed the effects of different techniques on 
key QoS metrics related to latency, energy consumption, 
makespan, and reliability and, therefore, provided pragmatic 
insights into strengths, weaknesses, and applicability. The 
results revealed that these techniques can adapt dynamically to 
changing network conditions and workload demands, 
optimizing resource utilization and service quality in fog-
enabled IoT systems. 

Apart from indicating gaps, the study also identified several 
innovative solutions with regard to needs in proposals on hybrid 
techniques, along with standardized frameworks concerning the 
evaluation perspective. These lessons then provided concrete 
guidelines for both the researcher and the practitioner in 
creating algorithms on next-generation task scheduling at fog 
computing-powered IoT with efficiency and scalability, thus 
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guaranteeing enhanced QoS toward paving the right path for R-
IoT. 
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