
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

913 | P a g e

www.ijacsa.thesai.org

Modified Moth-Flame Optimization Algorithm for

Service Composition in Cloud Computing

Environments

Yeling YANG*, Miao SONG

College of Computer and Internet of Things, Chongqing Institute of Engineering, Chongqing, 400056, China

Abstract—Cloud computing service composition integrates

services, distributed and diverse by nature, into an integrated

entity that can meet a user's requirement with better effectiveness.

However, some obstacles regarding high latency and suboptimal

Quality of Service (QoS) still exist in a dynamic multi-cloud

environment. This study addresses the limitations of traditional

optimization algorithms in service composition, specifically the

premature convergence and lack of population diversity in the

Moth-Flame Optimization (MFO) algorithm. We propose the

modified MFO algorithm with a new mechanism called Stagnation

Finding and Replacement (SFR) to enhance the diversity of the

population. It finds the static solutions based on a distance metric

from globally optimal representative solutions and replaces them.

MFO-SFR drastically improved all QoS metrics, such as response

time, delay, and service stability. Empirical evaluations prove that

MFO-SFR outperforms the baseline methods of multi-cloud

service composition. It provides a computationally efficient and

adaptive solution to cloud service composition problems, ensuring

better resource utilization and higher user satisfaction in dynamic

multi-cloud environments.

Keywords—Cloud computing; quality of service; service

composition; edge cloud; moth-flame optimization

I. INTRODUCTION

Due to the growing demand for high-performance
computing resources, the computing infrastructure has been
transformed over the last several years [1]. Several new
computational environments, ranging from cluster to grid and
cloud computing models, have been created due to
technological innovation [2]. As an architectural model, cloud
computing provides users with shared computing capabilities
available on-demand, with minimal Cloud Service Provider
(CSP) interaction [3]. The main goal of this infrastructure is to
consolidate geographically distributed resources to achieve
greater efficiency, reliability, and performance [4]. Cloud
computing facilitates the sharing of services and offers a
diverse range of services that can be accessed from any location
worldwide [5].

Cloud deployment models can generally be classified into
four categories: public, private, hybrid, and community [6]. In
public cloud deployments, multiple organizations subscribe to
and utilize the exact cloud resources through a shared
infrastructure model [7]. This method encourages cost-
effectiveness as businesses only bear expenses for their
particular resource usage. Private cloud deployments offer
dedicated infrastructure environments for a single organization
[8]. This model emphasizes heightened security and control as

it houses sensitive applications and data within the company's
private cloud environment.

Hybrid cloud setups incorporate aspects of both public and
private cloud designs. Companies can benefit from this method
by having the flexibility to strategically place data and
applications according to their sensitivity and processing needs
[9]. Sensitive data that requires high security can be stored in
the private cloud, while the public cloud can be utilized for cost-
efficient and scalable computing operations. Community cloud
deployments aim at a particular community of users with
common interests or objectives [10]. These designs offer a
shared infrastructure setting for numerous organizations in the
community and may encourage cooperation and efficient use of
resources.

Cloud computing services are broken down into three major
classes: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) [11]. PaaS offers
businesses and developers a robust platform for deploying and
hosting software [12]. IaaS allows companies to monitor and
control their network, storage, and servers using cloud
computing [13]. SaaS involves the provision of software or
applications as a service. External providers manage these
programs [14]. Users can run applications and software through
their web browsers without installing them on their devices.

As the said cloud service model evolves and expands
worldwide, it can improve how services are delivered and
controlled, allowing the CSP to respond to the different needs
of the Cloud Service User (CSU). Service Level Agreements
(SLAs) are essential in this situation as they define the desired
level of service quality between the CSP and CSU. An SLA is
a legally enforceable contract or formally negotiated agreement
establishing the understanding and objectives between the CSP
and the CSU. The document describes the specific terms and
circumstances that govern the provision of services by the CSP.

Cloud computing relies on ensuring accessibility and
efficient allocation of all necessary services [15]. There are two
main challenges to overcome: first, it is difficult to anticipate
the full range of potential service demands, particularly for
software services. To solve this problem, complex services
must be broken down into more straightforward, discrete, and
essential components offered by different providers. Second,
selecting the best combination of individual services from
multiple providers with varying QoS attributes is an NP-hard
optimization problem. Both challenges can be addressed
through service composition. To guarantee user satisfaction,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

914 | P a g e

www.ijacsa.thesai.org

this approach includes service selection from a diverse pool,
adherence to composition constraints, identification of crucial
QoS indicators, and accommodating the dynamism of services
and network conditions.

The dynamic nature of cloud computing environments
necessitates effective service composition strategies [16].
While heuristics, metaheuristics, and machine learning
algorithms have been employed to address this challenge, each
presents distinct advantages and limitations [17]. Heuristic
approaches, often limited to single-objective optimization, may
struggle with multi-objective problems [18]. Machine learning
techniques, such as Deep Q Network (DQN), ADEC, and
DQTS, have shown promise in solving multi-objective service
composition problems [19]. However, their reliance on
extensive training data can be prohibitive, particularly in
complex scenarios. Metaheuristic algorithms, including
evolutionary and swarm-based methods, offer a versatile and
scalable approach to multi-objective optimization [20].

This paper proposes a novel service composition method for
cloud computing environments enhancing the Moth-Flame
Optimization (MFO) algorithm. By integrating a Stagnation
Finding and Replacing (SFR) mechanism, the MFO algorithm
addresses the common challenge of stagnation during
optimization processes. This innovative approach dynamically
detects and replaces stagnant solutions, effectively rejuvenating
the search process and preventing the algorithm from
converging prematurely on suboptimal solutions. Briefly, this
research contributes to the following areas.

 We propose a novel service composition strategy
designed explicitly for multiple-cloud environments.
This strategy capitalizes on the distributed
characteristics of service elements across multiple
clouds to improve service quality.

 We introduce the MFO-SFR algorithm, a significant
advancement over the traditional MFO algorithm. The
MFO-SFR algorithm demonstrates demonstrably
improved performance and diversification capabilities.

 A key innovation of our approach is the SFR strategy.
This strategy dynamically detects and replaces stagnant
solutions within the optimization process, leading to an
overall improvement in performance.

 We incorporate an archive mechanism to enhance
solution diversity further and ensure a more
comprehensive search space exploration. This
mechanism integrates both representative and globally
optimal solutions encountered during the search
process.

The rest of the paper is organized as follows. Section II
presents related work on service composition and optimization
techniques, identifying the gaps the current study intends to fill.
Section III includes the simulation setup, results, and analysis
to illustrate the efficiency of the proposed approach for
improving key QoS metrics. Lastly, Section IV concludes the
study with an overview of key results and contributions and
suggests possible directions for further investigation.

II. RELATED WORK

Cloud computing environments demand real-time
execution for quality-of-service conscious service composition.
This entails maintaining coordination between achieving the
best service configurations and ensuring efficient execution
times for service composition. Prior research thoroughly
examined combinatorial optimization methods to identify
optimal service compositions within a specified time constraint.
Nevertheless, the continuous expansion of cloud services
results in a proportional increase in the problem's search space
size. Consequently, these conventional methods are less
effective at efficiently combining services within acceptable
time limits.

As outlined in Table I, Karimi, et al. [21] suggested utilizing
a genetic algorithm-based method to attain global optimization
while complying with SLAs. Their methodology involves using
service clustering to decrease the complexity of the search
space and using association rule mining to improve service
composition efficiency based on historical service consumption
data. Experimental evaluations show that the proposed strategy
is more efficient than comparable efforts.

TABLE I. OPTIMIZATION TECHNIQUES FOR SERVICE COMPOSITION IN

CLOUD COMPUTING ENVIRONMENTS

Reference Methodology Key features Limitations

[21]

Genetic

algorithm with
service clustering

and association

rule mining

Decreases
complexity of

search space;

improves
efficiency with

historical data

Potential

scalability issues

with growing
service datasets

[22]

The hybrid of the

artificial bee
colony and

genetic algorithm

Two-stage

optimization: GA
for fitness, ABC

for selection

High

computational

complexity

[23]
Capuchin search
algorithm

Inspired by
capuchin

monkeys' social

foraging
behavior,

focusing on both

global and local
optimization

It may require

fine-tuning for
different cloud

environments

[24]

Honeybee mating
optimization with

trust-based

clustering

Incorporates

honeybee

reproductive
behavior; tackles

trust issues

Underperforms in
computational

time for large-

scale problems

[25]

Combining
Aquila optimizer

and particle

swarm
optimization

Hybrid approach;

adaptive

transition strategy

A complex

implementation
may be resource-

intensive

[26]

Ant colony

optimization with
multi-pheromone

mechanism and

GA-inspired
mutation

Addresses ACO's

local optima

issue; balanced
exploration and

exploitation

Potential risk of

premature

convergence
without proper

parameter tuning

Sefati and Halunga [22] used the Artificial Bee Colony and
Genetic Algorithm (ABCGA) to generate optimal service
compositions. This approach utilizes a two-stage optimization
process. During the initial phase, a Genetic Algorithm (GA)
determines potential services that satisfy particular fitness

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

915 | P a g e

www.ijacsa.thesai.org

requirements. Once the fitness function evaluation produces
encouraging outcomes, these potential services are introduced
to the Artificial Bee Colony (ABC) algorithm during the second
step. The ABC algorithm enhances the service selection process
by determining the service most closely matches individual user
requirements. The effectiveness of the suggested ABCGA
approach was assessed through experimentation utilizing the
CloudSim simulator.

To tackle the task of enhancing service composition for
multiple Quality of Service (QoS) metrics in cloud
environments, Wang [23] introduced a new approach that
utilizes the Capuchin Search Algorithm (CapSA). This
algorithm mimics capuchin monkey social foraging patterns
and exhibits its efficacy in addressing global and local
optimization challenges. CapSA is chosen due to its inherent
simplicity, reduced processing complexity, and well-rounded
approach to exploration and exploitation. By conceptualizing
service composition as an optimization problem, the proposed
methodology seeks to reduce energy consumption and costs.
According to empirical evaluations, the CapSA-based strategy
substantially outperforms existing methods for achieving faster
convergence and producing superior service compositions.

Zanbouri and Jafari Navimipour [24] investigated how
Honeybee Mating Optimization (HMO) can address service
composition in cloud computing environments. They focus on
the connections between worker bees and the queen bee when
choosing a new queen, utilizing knowledge from honeybee
reproductive behavior. The optimization algorithm
incorporates these biological inspirations to enhance the QoS.
In addition, a trust-based clustering technique is used to tackle
trust-related concerns specifically. The simulation results
obtained from a C# implementation indicate that the suggested
method outperforms existing algorithms, including GA,
Particle Swarm Optimization (PSO), and the discrete best-
guided ABC algorithm, for small-scale service composition
problems. The enhancement results from the clustering method
diminish the scope of the search and thus enhance the speed of
response while also allowing for the choice of more dependable
services. However, extensive simulations demonstrate that the
computational time performance of the suggested method
underperforms the average results of earlier studies.

Liu [25] developed a novel hybrid optimization technique
known as the Integrated Aquila Optimizer (IAO), combining
the functions of the PSO algorithm and Aquila Optimizer (AO).
Hybridization addresses the inherent limitations of individual
algorithms, such as their vulnerability to getting stuck in local
optima and their limited ability to generate diverse solutions.
The proposed IAO algorithm includes an innovative transition
strategy for these difficulties. This method allows the AO and
PSO algorithms to adjust their search operators flexibly. By
employing this method, possible solutions are consistently
improved. Utilizing both the AO and PSO algorithms can be a
strategic move when each method reaches a standstill or when
the range of possibilities decreases. This adaptive behavior
improves the effectiveness and efficiency of the IAO approach.
The proposed solution was thoroughly evaluated by testing in
the CloudSim simulation environment. The numerical data
indicate that the IAO technique successfully enhances

dependability, availability, and cost optimization within cloud
computing.

Bei, et al. [26] discussed the composition of services in
multiple cloud scenarios. They proposed an Ant Colony
Optimization (ACO) algorithm to optimize QoS parameters,
incorporating a multi-pheromone mechanism. This technique
seeks to surpass conventional ACO constraints, which may
become trapped in local optima. They incorporated a mutation
operation influenced by the GA to improve the algorithm's
exploration ability and avoid premature convergence. This
hybridization approach promotes a more equitable and effective
process of exploring and exploiting, resulting in the discovery
of service compositions with superior QoS metrics, such as
decreased latency and enhanced response times. Proposed
method

A. Problem Definition and System Architecture

Cloud computing has made significant advancements in the
past decade. Global infrastructure and market expansion have
given rise to several cloud computing forms, including central
and edge clouds. Central clouds are frequently utilized for
extensive data analysis and deep learning training because of
their robust processing and storage capacities. On the other
hand, edge clouds are essential for collecting data, controlling
processes in real-time, perceiving information intelligently, and
making quick decisions at the outermost part of the network.

In contrast to centralized cloud infrastructures, edge
computing provides users access to robust computational
resources while mitigating the delay challenges inherent in
remote data center interactions. This dramatically minimizes
the data transmitted on the leading network and guarantees
quick response times for upcoming services requiring minimal
delays. As a result, the widespread use of these services in edge
clouds is anticipated to grow prevalent.

This paper explores the architecture of cloud-edge devices,
where service elements are mainly placed on a centralized
cloud. Docker and other containerization technologies facilitate
seamless and efficient migration to the cloud when consumers
need a particular service component. This methodology enables
the combination of services and the virtualization of resources
(such as storage and computation) to meet users' requirements,
as shown in Fig. 1. Docker containers are gaining popularity in
cloud computing, as evidenced by their use in constructing
genuine cloud environments for research purposes. Cloud
services are highly advantageous in a dynamic cloud
environment due to their effectiveness and ease.

The current service landscape is experiencing a significant
change towards autonomous and loosely connected service
designs, commonly called microservice architectures. Although
service components can be spread out throughout different edge
clouds, there is still a need to investigate and understand the
current approaches for combining services in multiple-cloud
setups. On the other hand, a multiple-cloud setup enables
consumers to select from a range of services that perform better
than single CSPs with limited computing capacity. In addition,
multiple-cloud deployments provide built-in redundancy,
which helps prevent equipment failures and improve the
system's overall stability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

916 | P a g e

www.ijacsa.thesai.org

Fig. 1. Architecture of cloud-edge-devices integration.

This paper introduces a multi-cloud service composition
architecture, depicted in Fig. 1, comprising M consumers, N
edge clouds, and a central cloud. The central cloud is a
repository for comprehensive service-related information and
hosts a global network controller. Service components are
distributed across an edge cloud infrastructure. User service
requests are initially directed to the nearest edge cloud for
preliminary processing. Each edge cloud maintains a local
database containing information about neighboring edge clouds
and available service components.

Table II is a crucial system component, providing essential
network topology information. The index ni varies from 0 to N-
1, where N is the total number of edge clouds in the network.
This ensures that all possible connections between edge clouds
are considered. pathi represents the optimal route linking the
current edge cloud and another edge cloud in terms of the
fewest hops. This information is crucial for routing data
efficiently. hopi quantifies the number of network hops between
the current edge cloud and any other edge cloud within the
network. A lower hop count generally indicates a more efficient
communication path.

TABLE II. NETWORK TOPOLOGY INFORMATION FOR EDGE CLOUDS

Edge cloud count Path Hop

n1 path1 hop1

n2 path2 hop2

… … …

ni pathi hop3

Table III serves as a critical repository for service
component metadata within the edge cloud environment.
Service element names identify the service items available in
the edge cloud and its neighbors. QoS attributes provide
essential performance metrics for each service element, such as
delay and reliability. The QoS attribute for the jth parameter of

the ith service element is represented as ηij. This standardized
notation facilitates data manipulation and analysis.

TABLE III. SERVICE ELEMENT DATABASE

Service element Edge cloud count QoS

element1 n1 η1

element2 n2 η2

… … …

elementi ni η3

Upon receipt of a service request, the proximate edge cloud
initiates communication with a central controller to procure
optimal computational resources, storage capacity, and network
bandwidth. The service composition process proceeds in situ if
the local edge cloud possesses sufficient residual capacity to
fulfill the service's maximal requirements. Conversely, if
resource constraints are encountered, the edge cloud embarks
on a search for an adjacent edge cloud with minimal network
hops. This iterative exploration continues until an edge cloud
with ample resources to accommodate the service composition
is identified.

Eq. (1) quantifies the resource demands (Rl) of service l. The
set L encapsulates the services scheduled for orchestration on
edge cloud i, while Ci represents the aggregate resource
capacity of edge cloud i. These parameters constitute critical
determinants in edge cloud service provisioning.

∑ 𝑅𝑙 ≤ 𝐶𝑖 , 𝑖 ∈ 𝑁
𝑙∈𝐿

 (1)

Containerization virtualization has played a significant role
in microservice adoption. Cloud computing can utilize
containerization to flexibly install, migrate, or scale virtual
machines under changing service demands. Containerization
benefits conventional virtual machines by using the host's
operating system kernel. This strategy minimizes the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

917 | P a g e

www.ijacsa.thesai.org

administrative burden of delivering resources as needed and
promotes optimal resource utilization. Containerized
microservices typically involve the simultaneous creation of
lightweight components within containers, which are then
provisioned and scaled based on their requirements.

Expanding on these ideas, this method enables the quick and
flexible deployment of service components by utilizing
containerization technologies such as Docker in a multiple-
cloud setting. This allows for deploying all necessary service
components for composition onto respective edge clouds. A
notification mechanism is built to guarantee real-time accuracy
of records held in edge clouds and service components.
Whenever one edge cloud stops serving customers or undergoes
modifications to its deployed service components, it sends these
updates to all connected edge clouds. Utilizing this broadcast
technique allows for the timely updating of databases on other
edge clouds, ensuring data consistency throughout the system.

B. QoS model

Services typically comprise k distinct groups, each
containing abstract service component definitions with specific
order requirements. Users seek a combination of services that
fulfill user-specified requirements and QoS constraints to
complete their desired operations during service composition.

The service composition process is divided into K steps
according to the user's requirements. Every individual step, Si,
is linked to a particular service set. The algorithm chooses
service components from each set Si to fulfill the user's
operation. The selection procedure yields numerous possible
routes from the initial service component set (S1) to the final set
(Sk). The ideal combination of services is attained by
determining the pathway that produces the most advantageous
service combination.

When choosing a service, both the functional and non-
functional aspects are considered. Functional attributes pertain
to the explicit purpose and content offered by a service, whereas
non-functional attributes encompass the overall quality of the
service, as evaluated using QoS measurements.

Services are evaluated on the essential aspects of QoS, as
described by internationally recognized standards
organizations. QoS, as specified by these standards, includes
non-functional features such as throughput, availability,
response time, and dependability.

Ensuring high-quality service while combining multiple
services is essential for distinguishing between the various
components of the service. This optimization method assesses
the QoS attributes of the constructed service. QoS parameters
can be divided into two main categories: dynamic attributes,
which include response speed, dependability, and availability,
and fixed attributes, which include security, accuracy, and
robustness.

This study focuses on throughput, reliability, delay, and
response time. Throughput indicates the maximum rate at
which data can be processed or transmitted successfully.
Availability refers to the likelihood that service components are
operational and ready for use in a particular environment. Delay

refers to the time it takes for data packets to travel between a
server hosting a service component and a client.

Response time represents the time the service provider takes
to respond to a user's service request. Table IV presents QoS
attribute formulas for composed services. Calculations rely on
j (number of service components chosen from service set i) and
k (total number of service sets).

TABLE IV. QOS ATTRIBUTE FORMULAS FOR COMPOSED SERVICES

QoS parameters Expression

Delay ∑ 𝐿(𝜂𝑖𝑗)
𝑘

𝑖=1

Throughput ∑ 𝐿(𝜂𝑖𝑗)
𝑘

𝑖=1

Availability ∑ 𝐴(𝜂𝑖𝑗)
𝑘

𝑖=1

Response time ∑ 𝑅(𝜂𝑖𝑗)
𝑘

𝑖=1

It is crucial to optimize various QoS parameters during
service composition. However, it is equally essential to
guarantee service stability and other relevant metrics. This
study introduces a novel concept of QoS parameter stability,
defined by the absolute value of each parameter across service
elements. Eq. (2) represents the stability calculation for QoS
parameter j within the service.

𝑆𝑡𝑎𝑗 = ∑ ‖𝜂(𝑖+1)(𝑗+1) − 𝜂𝑖𝑗‖
𝑘−1

𝑖=1
 (2)

Services with minimal cumulative absolute differences
between their QoS parameters (QoSi) are considered more
stable. This approach mitigates significant fluctuations in QoS.
Additionally, to prevent data size variations across service sets
from skewing the final results, this paper incorporates a data
normalization step for the QoS information associated with the
service components. Following normalization, higher
parameter values correspond to superior performance.
Consequently, all subsequent references to QoS metrics
(response time, availability, throughput, and delay) within this
work will pertain to their normalized values.

This paper proposes a methodology that considers all four
QoS criteria to determine the most effective technique for
composing consumer services. This technique guarantees the
optimization of these crucial parameters. The following section
will explore an improved service composition technique based
on the modified MFO algorithm. This approach has been
specifically developed to boost the optimization of QoS.

C. Enhanced MFO algorithm

The MFO algorithm mimics the behavior of moths in
nature. The unique navigational strategies of moths have
generated considerable interest among researchers studying
metaheuristics. Moths are nocturnal creatures that rely on lunar
illumination for navigation Shehab, et al. [27]. Moth flight
patterns can be mathematically modeled using the transverse
orientation mechanism (Fig. 2). This strategy approximates a
straight-line trajectory by maintaining a constant angular
relationship with the moon. When faced with artificial light
sources, moths divert from this path. When the moth is close to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

918 | P a g e

www.ijacsa.thesai.org

the light source, it initiates a helical flight pattern that guides it
towards the flame. Each moth symbolizes a potential solution,
and every position is represented as a matrix of decision
variables, as shown below.

𝑋 = [

𝑋1

𝑋2

⋮
𝑋𝑁

] =

[

[

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑛−1 𝑥1,𝑛

𝑥2,1 ⋱ ⋯ ⋯ 𝑥2,𝑛

⋮ ⋯ ⋱ ⋯ ⋮
𝑥𝑁−1,1 ⋯ ⋯ ⋱ 𝑥𝑁−1,𝑛

𝑥𝑁,1 𝑥𝑁,2 ⋯ 𝑥𝑁,𝑛−1 𝑥𝑁,𝑛]

]

 (3)

Fig. 2. Moth flight patterns model using transverse orientation mechanism.

In Eq. (3), N stands for the population size, equal to the total
number of moths in the swarm. Also, n indicates the problem
dimension, which measures how many variables are involved
in the optimization process. The fitness of a particular moth is
determined as follows.

𝐹𝑖𝑡[𝑋] = [

𝐹𝑖𝑡[𝑋1]

𝐹𝑖𝑡[𝑋2]
⋮

𝐹𝑖𝑡[𝑋𝑛]

] (4)

Eq. (5) shows the flame matrix. Since all moths fly around
a flame, the size must match the moth matrix previously
defined.

𝐹𝑀 = [

𝐹𝑀1

𝐹𝑀2

⋮
𝐹𝑀𝑁

]

=

[

[

𝐹𝑚1,1 𝐹𝑚1,2 ⋯ 𝐹𝑚1,𝑛−1 𝐹𝑚1,𝑛

𝐹𝑚2,1 ⋱ ⋯ ⋯ 𝐹𝑚2,𝑛

⋮ ⋯ ⋱ ⋯ ⋮
𝐹𝑚𝑁−1,1 ⋯ ⋯ ⋱ 𝐹𝑚𝑁−1,𝑛

𝐹𝑚𝑁,1 𝐹𝑚𝑁,2 ⋯ 𝐹𝑚𝑁,𝑛−1 𝐹𝑚𝑁,𝑛]

]

(5)

Eq. (6) determines the corresponding fitness of the flame
matrix.

𝐹𝑖𝑡[𝐹𝑀] = [

𝐹𝑖𝑡[𝐹𝑀1]

𝐹𝑖𝑡[𝐹𝑀2]
⋮

𝐹𝑖𝑡[𝐹𝑀𝑛]

] (6)

The MFO algorithm relies heavily on two primary
components: flames and moths. Moths fly through flames to
achieve desired results. As shown in the equation below, the
logarithmic spiral function is used to model the spiral
movement of the moth.

𝑋𝑖
𝐾+1

= {
𝛿𝑖 . 𝑒

𝑏𝑡 . cos(2𝜋𝑡) + 𝐹𝑚𝑖(𝑘) 𝑖 ≤ 𝑁. 𝐹𝑀

𝛿𝑖. 𝑒
𝑏𝑡 . cos(2𝜋𝑡) + 𝐹𝑚𝑁.𝐹𝑀(𝑘) 𝑖 ≥ 𝑁. 𝐹𝑀

(7)

δ𝑖 represents the Euclidean distance between a moth's

current position (𝑋𝑖
𝐾) and its corresponding flame (𝐹𝑚𝑖). This

value indicates the moth's proximity to a possible optimal
solution. Spiral flight patterns of moths are determined by b and
t, a uniformly distributed random number between -1 and 1.
Moths and flames are attracted to each other based on these
parameters, as shown in Fig. 3. The moth's trajectory towards
the flame is depicted in Fig. 4. Throughout the optimization
process, t gradually decreases toward a balance between
exploitation (focusing on promising areas) and exploration
(searching the entire search area). The mathematical
representation of t is presented below, and Fig. 5 depicts the
moth's next position.

𝑟 = −1 + 𝐶𝑢𝑟𝑟𝑟𝑒𝑛𝑡𝑖𝑡𝑒𝑟(
−1

𝑀𝑎𝑥𝑖𝑡𝑒𝑟

) (8)

𝑡 = (𝑟 − 1) × 𝑘 + 1 (9)

The optimization process depends on three variables:
Maxiter, k, and r. Maxiter specifies the maximum number of
iterations, k indicates a uniformly distributed random number
between 0 and 1, and r singularity ensures convergence. The
value of r is linearly reduced throughout the optimization to
balance exploration (searching the entire search space) and
exploitation (focusing on promising regions).

Fig. 3. Attraction mechanism between moths and flames.

Fig. 4. Moth's spiral trajectory toward the flame.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

919 | P a g e

www.ijacsa.thesai.org

Fig. 5. Decreasing parameter t for balancing exploration and exploitation in

optimization.

During the optimization process, the moths with the highest
fitness values continually move towards the most promising
solutions, indicated by the flames. This phenomenon can be
explained by the mechanism in which the number of flames
(represented as N.FM in Equation 10) gradually reduces with
each cycle. This decrease in the number of flames efficiently
focuses the search effort on the most favorable areas of the
search space.

𝑁. 𝐹𝑀 =

𝑟𝑜𝑢𝑛𝑑 (𝑁. 𝐹𝑀𝐿𝑎𝑠𝑡 𝑖𝑡𝑒𝑟 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑡𝑒𝑟
(𝑁.𝐹𝑀𝐿𝑎𝑠𝑡 𝑖𝑡𝑒𝑟−1)

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
) (10)

A population of moths is represented by the matrix 𝑋(𝑡) =
{𝑋1𝐷(𝑡), … , 𝑋𝑖𝐷(𝑡), … , 𝑋𝑁𝐷(𝑡)} in a D-dimensional search
space at iteration t. Each element 𝑋𝑖𝐷(𝑡) represents the position
of the ith moth within the problem space. The initial positions
of all moths are generated randomly using a uniform
distribution during the first iteration (t = 1). In subsequent
iterations (t ≥ 2), the SFR mechanism is used to update moth
positions based on Eq. (11).

𝑋𝑖(𝑡 + 1)

= {
𝐷𝑖

𝛼(𝑡) × 𝑒𝑏𝜏 × cos(2𝜋𝑡) + 𝐹𝑗(𝑡) 𝑖𝑓 𝑖 ≤ 𝑅(𝑡)

𝐷𝑖
𝛽(𝑡) × 𝑒𝑏𝜏 × cos(2𝜋𝑡) + 𝐹𝑅(𝑡) 𝑒𝑙𝑠𝑒

(11)

SFR is characterized by its core components, represented by
Eq. (12) and Eq. (13). The constant b determines the shape of

the logarithmic spiral employed by the moth, and τ indicates a
random number uniformly distributed between -1 and 1. Fj(t)
and FR(t) represent the positions of the jth and the Rth flame,
respectively. The parameter r is calculated using Eq. (8).

𝐷𝑖
𝛼(𝑡) = |𝐹𝑗)(𝑡) − 𝑀𝑖(𝑡)| (12)

𝐷𝑖
𝛽(𝑡) = {

|𝐹𝑗(𝑡) − 𝑋𝑖(𝑡)| 𝜑𝑖 > 0

𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑚 𝐴𝑟𝑐 𝜑𝑖 = 0
 (13)

Eq. (14) calculates the mean distance, denoted by φi, for
each moth. This distance is computed based on the individual
dimensions (Xiq) of the ith moth and the corresponding
dimensions (Fjq) of its associated flame (j). The index j for each
moth is determined using Eq. (15). This equation involves
sorting the results obtained from Eq. (14) in descending order
to identify the most "distant" moths and subsequently utilizing
these indices as flame indexes within Eq. (13).

{𝜑1, … , 𝜑𝑖 , … , 𝜑𝑁} ← 𝜑𝑖 =
1

𝐷
× ∑ |𝐹𝑗𝑞(𝑡) − 𝑋𝑖𝑞(𝑡)|

𝐷
𝑞=1 (14)

{𝜑1, … , 𝜑𝑗 , … , 𝜑𝑁} ← 𝑆𝑜𝑟𝑡(𝜑1, … , 𝜑𝑖 , … , 𝜑𝑁) (15)

The archive construction process serves a dual purpose:
enhancing population diversity and accelerating convergence
towards promising regions within the search space. This is
achieved by storing representative flames and the best solutions
encountered during optimization. The archive, denoted by Arc,
is represented by the matrix 𝑀 = {𝑀1, … ,𝑀𝑖 , … ,𝑀𝐾}, where K
signifies the predefined archive size. Each element 𝑀𝑖 =
[𝑚𝑖1, 𝑚𝑖2, … ,𝑚𝑖𝐷] represents a vector position within the
archive memory.

The construction of the archive involves two key steps:
generating Representative Flame (RF) and archiving entries.
The first step leverages the dual population (dualPop) and dual
fitness values (dualFit) created based on the flame construction
process outlined in Fig. 6. Eq. (16) calculates the RF position,
representing the average of all flame positions. Here, C denotes
the total number of moths considered, and Fid represents the dth
dimension of the ith flame. Two new entries are added to the
archive memory M: the global best flame position and the
calculated RF position. If the archive reaches its total capacity
(K), a random replacement strategy is implemented, replacing
two existing entries with new entries.

𝑅𝐹𝑑(𝑡) =
1

𝐶
∑ 𝐹𝑖𝑑(𝑡)𝐶

𝑖=1 (16)

Fig. 6. Construction of representative flame and archiving entries.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

920 | P a g e

www.ijacsa.thesai.org

III. SIMULATION AND RESULTS

A series of tests were performed on a Windows 8.1
computer powered by an Intel Core i5-460M processor at 2.53
GHz and 16 GB of RAM. This study employed a system model
comprising 32 edge clouds and a primary cloud, as illustrated
in Fig. 1. The Quality of Service for Web Services (QWS)
dataset contained 2507 services, each characterized by nine
QoS features: description, delay, best practices, consistency,
reliability, throughput, availability, and response time. For this
research, delay, throughput, availability, and response time
were the primary QoS parameters, with their respective ranges
and units detailed in Table V. A comparative evaluation was
conducted to measure the proposed algorithm against
traditional MFO, PSO, and WOA algorithms, evaluating
fitness, stability, delay, and response time.

TABLE V. QOS PARAMETERS AND RANGES

Parameters Dimensions Unit

Delay 0.1-4500 ms

Throughput 0.1-50 Mbps

Availability 5-100 %

Response time 30-5000 ms

Fig. 7 and Fig. 8 compare the proposed algorithm and its
counterparts regarding fitness and stability, respectively. To
conduct this analysis, 100 to 1000 service instances were
chosen at random extracted from the QWS dataset, with
inclusion criteria limited to services comprising at least five
components. Fig. 7 demonstrates the better fitness performance
of the developed algorithm compared to its competitors. While
fitness is a crucial metric, the ultimate objective is to maximize
service QoS and maintain stability.

Fig. 9 and Fig. 10 illustrate the comparative performance of
the algorithms in terms of delay and response time. All QoS
parameters were normalized to mitigate the influence of
varying parameter scales. Consequently, higher values indicate
improved optimization outcomes. The results in Fig. 9 clearly
reveal the superiority of the proposed algorithm in minimizing
delay. Similarly, Fig. 10 reveals a significant advantage of the
proposed algorithm in reducing response time compared to
other methods.

Fig. 7. Fitness comparison.

Fig. 8. Stability comparison.

Fig. 9. Delay comparison.

Fig. 10. Response time comparison.

The experimental results distinctly demonstrate the
superiority of the proposed algorithm over traditional
optimization methods. From the fitness performance, it is
obvious that the proposed algorithm constantly finds higher-
quality solutions. This is mainly because the SFR mechanism
can dynamically detect and replace the stagnant solution,
making the search process more diverse and effective.
Enhanced fitness will naturally provide better QoS outcomes,

Number of services

200 400 600 800 1000

F
it

n
es

s
o
f

th
e

so
lu

ti
o
n

30

40

50

60

70

80

90

100

PSO
WOA
MFO
MFO-SFR

Number of services

200 400 600 800 1000

S
ta

b
il

it
y
 o

f
th

e
so

lu
ti

o
n

10

15

20

25

30

35

40

PSO
WOA
MFO
MFO-SFR

Number of services

200 400 600 800 1000

D
el

ay

20

30

40

50

60

70

80

PSO
WOA
MFO
MFO-SFR

Number of services

200 400 600 800 1000

R
es

p
o
n

se
 t

im
e

20

30

40

50

60

70

80

PSO
WOA
MFO
MFO-SFR

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

921 | P a g e

www.ijacsa.thesai.org

crucial for service composition in multi-cloud environments.
Moreover, the proposed algorithm outperforms others in
service stability, which shows its robustness and adaptability to
dynamic cloud scenarios.

The proposed MFO-SFR algorithm guarantees great
efficacy when the delay and response time parameters are
analyzed. A minimum delay shows how it may optimize the
critical time-sensitive aspect of cloud service delivery,
guaranteeing users' satisfaction with the service. On the other
hand, the response times that could be retrieved by using this
algorithm also promise to ensure that it may further enhance
efficiency in the performance of any service. Therefore, the
findings support the stated objectives of the study on QoS
parameters in cloud environments and further indicate the
practical relevance of the algorithm. Compared to traditional
approaches, the proposed method yields better results in
scalability and efficiency in solving complex service
composition challenges in multi-cloud ecosystems.

IV. CONCLUSION

The swift advancement of cloud computing has led to the
widespread growth of a wide range of cloud-based services.
However, guaranteeing awareness of QoS during the
construction of services is a substantial difficulty in cloud
systems. Many individual services cannot handle complex
requests and different needs that arise in real-world situations.
Often, a solitary service may not be enough to fulfill the
particular needs of consumers, therefore requiring the
amalgamation of many services to attain the needed
functionality. Due to its intrinsic NP-hard difficulty, service
composition has been widely studied using various
metaheuristic algorithms. This paper proposed an improved
MFO algorithm with the SFR mechanism for the optimization
of service composition in multi-cloud computing environments.
Our approach overcomes the deficiency of early convergence
in the traditional MFO by maintaining the diversity in the
population with the aid of the SFR mechanism. It ensures that
static solutions are identified and replaced with promising ones,
which enhances the whole optimization process. The empirical
results showed that our approach enhances significantly the
QoS metrics such as stability of service, response time, and
delay. We evaluated an algorithm using a realistic system
model and the QWS dataset, considering the main QoS
parameters. The comparative analysis confirmed the superior
fitness and stability of our algorithm.

While the results are encouraging, many directions are open
to future research: First, the proposed algorithm can be
extended by allowing multi-objective optimization scenarios in
which many QoS attributes can be optimized simultaneously.
Second, exploring the integration of machine learning
techniques and metaheuristics may lead to advanced
adaptability and efficiency in service composition strategies.
Third, using the MFO-SFR algorithm in other domains, like
IoT-enabled edge computing, hybrid cloud environments, or
real-time service orchestration, is a promising avenue for
further exploration. Finally, real-world cloud deployments of
the proposed approach can shed light on many practical
feasibility and scalability issues.

ACKNOWLEDGMENT

This work was supported by project of Chongqing Natural
Science Foundation (No. CSTB2022NSCQ-MSX1298) and
project of Research on Science and Technology of Chongqing
Municipal Education Commission (No. KJZD-K202101901).

REFERENCES

[1] S. S. Gill et al., "Modern computing: Vision and challenges," Telematics
and Informatics Reports, p. 100116, 2024.

[2] V. Hayyolalam, B. Pourghebleh, A. A. P. Kazem, and A. Ghaffari,
"Exploring the state-of-the-art service composition approaches in cloud
manufacturing systems to enhance upcoming techniques," The
International Journal of Advanced Manufacturing Technology, vol. 105,
no. 1-4, pp. 471-498, 2019.

[3] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐ objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022.

[4] J. Zou, K. Wang, K. Zhang, and M. Kassim, "Perspective of virtual
machine consolidation in cloud computing: a systematic survey,"
Telecommunication Systems, pp. 1-29, 2024.

[5] H. Wu, "Black widow optimization algorithm for efficient task
assignment in cloud computing," Journal of Engineering and Applied
Science, vol. 71, no. 1, p. 139, 2024.

[6] J. Alonso et al., "Understanding the challenges and novel architectural
models of multi-cloud native applications–a systematic literature review,"
Journal of Cloud Computing, vol. 12, no. 1, p. 6, 2023.

[7] D. Tohanean and S.-G. Toma, "The Impact of Cloud Systems on
Enhancing Organizational Performance through Innovative Business
Models in the Digitalization Era," in Proceedings of the International
Conference on Business Excellence, 2024, vol. 18, no. 1: Sciendo, pp.
3568-3577.

[8] J. DesLauriers, J. Kovacs, T. Kiss, A. Stork, S. P. Serna, and A. Ullah,
"Automated generation of deployment descriptors for managing
microservices-based applications in the cloud to edge continuum," Future
Generation Computer Systems, vol. 166, p. 107628, 2025.

[9] J. Lei, Q. Wu, and J. Xu, "Privacy and security-aware workflow
scheduling in a hybrid cloud," Future Generation Computer Systems, vol.
131, pp. 269-278, 2022.

[10] J. L. Schaefer et al., "A framework for diagnosis and management of
development and implementation of cloud-based energy communities-
Energy cloud communities," Energy, vol. 276, p. 127420, 2023.

[11] F. K. Parast, C. Sindhav, S. Nikam, H. I. Yekta, K. B. Kent, and S. Hakak,
"Cloud computing security: A survey of service-based models,"
Computers & Security, vol. 114, p. 102580, 2022.

[12] M. Barakat, R. A. Saeed, and S. Edam, "A Comparative Study on Cloud
and Edgeb Computing: A Survey on Current Research Activities and
Applications," in 2023 IEEE 3rd International Maghreb Meeting of the
Conference on Sciences and Techniques of Automatic Control and
Computer Engineering (MI-STA), 2023: IEEE, pp. 679-684.

[13] A. K. Samha, "Strategies for efficient resource management in federated
cloud environments supporting Infrastructure as a Service (IaaS)," Journal
of Engineering Research, vol. 12, no. 2, pp. 101-114, 2024.

[14] S. Aleem, R. Batool, S. Alkobaisi, F. Ahmed, and A. Khattak, "SaaS
Application Maturity Assessment Model," IEEE Access, 2024.

[15] H. U. Khan, F. Ali, and S. Nazir, "Systematic analysis of software
development in cloud computing perceptions," Journal of Software:
Evolution and Process, vol. 36, no. 2, p. e2485, 2024.

[16] C. Li, M. Song, M. Zhang, and Y. Luo, "Effective replica management
for improving reliability and availability in edge-cloud computing
environment," Journal of Parallel and Distributed Computing, vol. 143,
pp. 107-128, 2020.

[17] A. Azadi and M. Momayez, "Review on Constitutive Model for
Simulation of Weak Rock Mass," Geotechnics, vol. 4, no. 3, pp. 872-892,
2024, doi: https://doi.org/10.3390/geotechnics4030045.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

922 | P a g e

www.ijacsa.thesai.org

[18] M. A. Nezafat Tabalvandani, M. Hosseini Shirvani, and H. Motameni,
"Reliability-aware web service composition with cost minimization
perspective: a multi-objective particle swarm optimization model in
multi-cloud scenarios," Soft Computing, vol. 28, no. 6, pp. 5173-5196,
2024.

[19] W. Ma and H. Xu, "Skyline-enhanced deep reinforcement learning
approach for energy-efficient and QoS-guaranteed multi-cloud service
composition," Applied Sciences, vol. 13, no. 11, p. 6826, 2023.

[20] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, "The
importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, pp. 1-24, 2021.

[21] M. B. Karimi, A. Isazadeh, and A. M. Rahmani, "QoS-aware service
composition in cloud computing using data mining techniques and genetic
algorithm," The Journal of Supercomputing, vol. 73, pp. 1387-1415,
2017.

[22] S. S. Sefati and S. Halunga, "A hybrid service selection and composition
for cloud computing using the adaptive penalty function in genetic and
artificial bee colony algorithm," Sensors, vol. 22, no. 13, p. 4873, 2022.

[23] M. Wang, "A new QoS-aware service composition technique in cloud
computing using capuchin search algorithm," Journal of Intelligent &
Fuzzy Systems, no. Preprint, pp. 1-12, 2023.

[24] K. Zanbouri and N. Jafari Navimipour, "A cloud service composition
method using a trust‐based clustering algorithm and honeybee mating
optimization algorithm," International Journal of Communication
Systems, vol. 33, no. 5, p. e4259, 2020.

[25] X. Liu, "Hybrid Integrated Aquila Optimizer for Efficient Service
Composition with Quality of Service Guarantees in Cloud Computing,"
International Journal of Advanced Computer Science and Applications,
vol. 14, no. 10, 2023.

[26] L. Bei, L. Wenlin, S. Xin, and X. Xibin, "An improved ACO based service
composition algorithm in multi-cloud networks," Journal of Cloud
Computing, vol. 13, no. 1, p. 17, 2024.

[27] M. Shehab, L. Abualigah, H. Al Hamad, H. Alabool, M. Alshinwan, and
A. M. Khasawneh, "Moth–flame optimization algorithm: variants and
applications," Neural Computing and Applications, vol. 32, no. 14, pp.
9859-9884, 2020.

