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Abstract—Cloud computing service composition integrates 

services, distributed and diverse by nature, into an integrated 

entity that can meet a user's requirement with better effectiveness. 

However, some obstacles regarding high latency and suboptimal 

Quality of Service (QoS) still exist in a dynamic multi-cloud 

environment. This study addresses the limitations of traditional 

optimization algorithms in service composition, specifically the 

premature convergence and lack of population diversity in the 

Moth-Flame Optimization (MFO) algorithm. We propose the 

modified MFO algorithm with a new mechanism called Stagnation 

Finding and Replacement (SFR) to enhance the diversity of the 

population. It finds the static solutions based on a distance metric 

from globally optimal representative solutions and replaces them. 

MFO-SFR drastically improved all QoS metrics, such as response 

time, delay, and service stability. Empirical evaluations prove that 

MFO-SFR outperforms the baseline methods of multi-cloud 

service composition. It provides a computationally efficient and 

adaptive solution to cloud service composition problems, ensuring 

better resource utilization and higher user satisfaction in dynamic 

multi-cloud environments. 
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I. INTRODUCTION 

Due to the growing demand for high-performance 
computing resources, the computing infrastructure has been 
transformed over the last several years [1]. Several new 
computational environments, ranging from cluster to grid and 
cloud computing models, have been created due to 
technological innovation [2]. As an architectural model, cloud 
computing provides users with shared computing capabilities 
available on-demand, with minimal Cloud Service Provider 
(CSP) interaction [3]. The main goal of this infrastructure is to 
consolidate geographically distributed resources to achieve 
greater efficiency, reliability, and performance [4]. Cloud 
computing facilitates the sharing of services and offers a 
diverse range of services that can be accessed from any location 
worldwide [5]. 

Cloud deployment models can generally be classified into 
four categories: public, private, hybrid, and community [6]. In 
public cloud deployments, multiple organizations subscribe to 
and utilize the exact cloud resources through a shared 
infrastructure model [7]. This method encourages cost-
effectiveness as businesses only bear expenses for their 
particular resource usage. Private cloud deployments offer 
dedicated infrastructure environments for a single organization 
[8]. This model emphasizes heightened security and control as 

it houses sensitive applications and data within the company's 
private cloud environment. 

Hybrid cloud setups incorporate aspects of both public and 
private cloud designs. Companies can benefit from this method 
by having the flexibility to strategically place data and 
applications according to their sensitivity and processing needs 
[9]. Sensitive data that requires high security can be stored in 
the private cloud, while the public cloud can be utilized for cost-
efficient and scalable computing operations. Community cloud 
deployments aim at a particular community of users with 
common interests or objectives [10]. These designs offer a 
shared infrastructure setting for numerous organizations in the 
community and may encourage cooperation and efficient use of 
resources. 

Cloud computing services are broken down into three major 
classes: Infrastructure as a Service (IaaS), Platform as a Service 
(PaaS), and Software as a Service (SaaS) [11]. PaaS offers 
businesses and developers a robust platform for deploying and 
hosting software [12]. IaaS allows companies to monitor and 
control their network, storage, and servers using cloud 
computing [13]. SaaS involves the provision of software or 
applications as a service. External providers manage these 
programs [14]. Users can run applications and software through 
their web browsers without installing them on their devices. 

As the said cloud service model evolves and expands 
worldwide, it can improve how services are delivered and 
controlled, allowing the CSP to respond to the different needs 
of the Cloud Service User (CSU). Service Level Agreements 
(SLAs) are essential in this situation as they define the desired 
level of service quality between the CSP and CSU. An SLA is 
a legally enforceable contract or formally negotiated agreement 
establishing the understanding and objectives between the CSP 
and the CSU. The document describes the specific terms and 
circumstances that govern the provision of services by the CSP. 

Cloud computing relies on ensuring accessibility and 
efficient allocation of all necessary services [15]. There are two 
main challenges to overcome: first, it is difficult to anticipate 
the full range of potential service demands, particularly for 
software services. To solve this problem, complex services 
must be broken down into more straightforward, discrete, and 
essential components offered by different providers. Second, 
selecting the best combination of individual services from 
multiple providers with varying QoS attributes is an NP-hard 
optimization problem. Both challenges can be addressed 
through service composition. To guarantee user satisfaction, 
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this approach includes service selection from a diverse pool, 
adherence to composition constraints, identification of crucial 
QoS indicators, and accommodating the dynamism of services 
and network conditions. 

The dynamic nature of cloud computing environments 
necessitates effective service composition strategies [16]. 
While heuristics, metaheuristics, and machine learning 
algorithms have been employed to address this challenge, each 
presents distinct advantages and limitations [17]. Heuristic 
approaches, often limited to single-objective optimization, may 
struggle with multi-objective problems [18]. Machine learning 
techniques, such as Deep Q Network (DQN), ADEC, and 
DQTS, have shown promise in solving multi-objective service 
composition problems [19]. However, their reliance on 
extensive training data can be prohibitive, particularly in 
complex scenarios. Metaheuristic algorithms, including 
evolutionary and swarm-based methods, offer a versatile and 
scalable approach to multi-objective optimization [20]. 

This paper proposes a novel service composition method for 
cloud computing environments enhancing the Moth-Flame 
Optimization (MFO) algorithm. By integrating a Stagnation 
Finding and Replacing (SFR) mechanism, the MFO algorithm 
addresses the common challenge of stagnation during 
optimization processes. This innovative approach dynamically 
detects and replaces stagnant solutions, effectively rejuvenating 
the search process and preventing the algorithm from 
converging prematurely on suboptimal solutions. Briefly, this 
research contributes to the following areas. 

 We propose a novel service composition strategy 
designed explicitly for multiple-cloud environments. 
This strategy capitalizes on the distributed 
characteristics of service elements across multiple 
clouds to improve service quality. 

 We introduce the MFO-SFR algorithm, a significant 
advancement over the traditional MFO algorithm. The 
MFO-SFR algorithm demonstrates demonstrably 
improved performance and diversification capabilities. 

 A key innovation of our approach is the SFR strategy. 
This strategy dynamically detects and replaces stagnant 
solutions within the optimization process, leading to an 
overall improvement in performance. 

 We incorporate an archive mechanism to enhance 
solution diversity further and ensure a more 
comprehensive search space exploration. This 
mechanism integrates both representative and globally 
optimal solutions encountered during the search 
process. 

The rest of the paper is organized as follows. Section II 
presents related work on service composition and optimization 
techniques, identifying the gaps the current study intends to fill. 
Section III includes the simulation setup, results, and analysis 
to illustrate the efficiency of the proposed approach for 
improving key QoS metrics. Lastly, Section IV concludes the 
study with an overview of key results and contributions and 
suggests possible directions for further investigation. 

II. RELATED WORK 

Cloud computing environments demand real-time 
execution for quality-of-service conscious service composition. 
This entails maintaining coordination between achieving the 
best service configurations and ensuring efficient execution 
times for service composition. Prior research thoroughly 
examined combinatorial optimization methods to identify 
optimal service compositions within a specified time constraint. 
Nevertheless, the continuous expansion of cloud services 
results in a proportional increase in the problem's search space 
size. Consequently, these conventional methods are less 
effective at efficiently combining services within acceptable 
time limits. 

As outlined in Table I, Karimi, et al. [21] suggested utilizing 
a genetic algorithm-based method to attain global optimization 
while complying with SLAs. Their methodology involves using 
service clustering to decrease the complexity of the search 
space and using association rule mining to improve service 
composition efficiency based on historical service consumption 
data. Experimental evaluations show that the proposed strategy 
is more efficient than comparable efforts. 

TABLE I. OPTIMIZATION TECHNIQUES FOR SERVICE COMPOSITION IN 

CLOUD COMPUTING ENVIRONMENTS 

Reference Methodology Key features Limitations 

[21] 

Genetic 

algorithm with 
service clustering 

and association 

rule mining 

Decreases 
complexity of 

search space; 

improves 
efficiency with 

historical data 

Potential 

scalability issues 

with growing 
service datasets 

[22] 

The hybrid of the 

artificial bee 
colony and 

genetic algorithm 

Two-stage 

optimization: GA 
for fitness, ABC 

for selection 

High 

computational 

complexity 

[23] 
Capuchin search 
algorithm 

Inspired by 
capuchin 

monkeys' social 

foraging 
behavior, 

focusing on both 

global and local 
optimization 

It may require 

fine-tuning for 
different cloud 

environments 

[24] 

Honeybee mating 
optimization with 

trust-based 

clustering 

Incorporates 

honeybee 

reproductive 
behavior; tackles 

trust issues 

Underperforms in 
computational 

time for large-

scale problems 

[25] 

Combining 
Aquila optimizer 

and particle 

swarm 
optimization 

Hybrid approach; 

adaptive 

transition strategy 

A complex 

implementation 
may be resource-

intensive 

[26] 

Ant colony 

optimization with 
multi-pheromone 

mechanism and 

GA-inspired 
mutation 

Addresses ACO's 

local optima 

issue; balanced 
exploration and 

exploitation 

Potential risk of 

premature 

convergence 
without proper 

parameter tuning 

Sefati and Halunga [22] used the Artificial Bee Colony and 
Genetic Algorithm (ABCGA) to generate optimal service 
compositions. This approach utilizes a two-stage optimization 
process. During the initial phase, a Genetic Algorithm (GA) 
determines potential services that satisfy particular fitness 
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requirements. Once the fitness function evaluation produces 
encouraging outcomes, these potential services are introduced 
to the Artificial Bee Colony (ABC) algorithm during the second 
step. The ABC algorithm enhances the service selection process 
by determining the service most closely matches individual user 
requirements. The effectiveness of the suggested ABCGA 
approach was assessed through experimentation utilizing the 
CloudSim simulator. 

To tackle the task of enhancing service composition for 
multiple Quality of Service (QoS) metrics in cloud 
environments, Wang [23] introduced a new approach that 
utilizes the Capuchin Search Algorithm (CapSA). This 
algorithm mimics capuchin monkey social foraging patterns 
and exhibits its efficacy in addressing global and local 
optimization challenges. CapSA is chosen due to its inherent 
simplicity, reduced processing complexity, and well-rounded 
approach to exploration and exploitation. By conceptualizing 
service composition as an optimization problem, the proposed 
methodology seeks to reduce energy consumption and costs. 
According to empirical evaluations, the CapSA-based strategy 
substantially outperforms existing methods for achieving faster 
convergence and producing superior service compositions. 

Zanbouri and Jafari Navimipour [24] investigated how 
Honeybee Mating Optimization (HMO) can address service 
composition in cloud computing environments. They focus on 
the connections between worker bees and the queen bee when 
choosing a new queen, utilizing knowledge from honeybee 
reproductive behavior. The optimization algorithm 
incorporates these biological inspirations to enhance the QoS. 
In addition, a trust-based clustering technique is used to tackle 
trust-related concerns specifically. The simulation results 
obtained from a C# implementation indicate that the suggested 
method outperforms existing algorithms, including GA, 
Particle Swarm Optimization (PSO), and the discrete best-
guided ABC algorithm, for small-scale service composition 
problems. The enhancement results from the clustering method 
diminish the scope of the search and thus enhance the speed of 
response while also allowing for the choice of more dependable 
services. However, extensive simulations demonstrate that the 
computational time performance of the suggested method 
underperforms the average results of earlier studies. 

Liu [25] developed a novel hybrid optimization technique 
known as the Integrated Aquila Optimizer (IAO), combining 
the functions of the PSO algorithm and Aquila Optimizer (AO). 
Hybridization addresses the inherent limitations of individual 
algorithms, such as their vulnerability to getting stuck in local 
optima and their limited ability to generate diverse solutions. 
The proposed IAO algorithm includes an innovative transition 
strategy for these difficulties. This method allows the AO and 
PSO algorithms to adjust their search operators flexibly. By 
employing this method, possible solutions are consistently 
improved. Utilizing both the AO and PSO algorithms can be a 
strategic move when each method reaches a standstill or when 
the range of possibilities decreases. This adaptive behavior 
improves the effectiveness and efficiency of the IAO approach. 
The proposed solution was thoroughly evaluated by testing in 
the CloudSim simulation environment. The numerical data 
indicate that the IAO technique successfully enhances 

dependability, availability, and cost optimization within cloud 
computing. 

Bei, et al. [26] discussed the composition of services in 
multiple cloud scenarios. They proposed an Ant Colony 
Optimization (ACO) algorithm to optimize QoS parameters, 
incorporating a multi-pheromone mechanism. This technique 
seeks to surpass conventional ACO constraints, which may 
become trapped in local optima. They incorporated a mutation 
operation influenced by the GA to improve the algorithm's 
exploration ability and avoid premature convergence. This 
hybridization approach promotes a more equitable and effective 
process of exploring and exploiting, resulting in the discovery 
of service compositions with superior QoS metrics, such as 
decreased latency and enhanced response times. Proposed 
method  

A. Problem Definition and System Architecture 

Cloud computing has made significant advancements in the 
past decade. Global infrastructure and market expansion have 
given rise to several cloud computing forms, including central 
and edge clouds. Central clouds are frequently utilized for 
extensive data analysis and deep learning training because of 
their robust processing and storage capacities. On the other 
hand, edge clouds are essential for collecting data, controlling 
processes in real-time, perceiving information intelligently, and 
making quick decisions at the outermost part of the network. 

In contrast to centralized cloud infrastructures, edge 
computing provides users access to robust computational 
resources while mitigating the delay challenges inherent in 
remote data center interactions. This dramatically minimizes 
the data transmitted on the leading network and guarantees 
quick response times for upcoming services requiring minimal 
delays. As a result, the widespread use of these services in edge 
clouds is anticipated to grow prevalent. 

This paper explores the architecture of cloud-edge devices, 
where service elements are mainly placed on a centralized 
cloud. Docker and other containerization technologies facilitate 
seamless and efficient migration to the cloud when consumers 
need a particular service component. This methodology enables 
the combination of services and the virtualization of resources 
(such as storage and computation) to meet users' requirements, 
as shown in Fig. 1. Docker containers are gaining popularity in 
cloud computing, as evidenced by their use in constructing 
genuine cloud environments for research purposes. Cloud 
services are highly advantageous in a dynamic cloud 
environment due to their effectiveness and ease. 

The current service landscape is experiencing a significant 
change towards autonomous and loosely connected service 
designs, commonly called microservice architectures. Although 
service components can be spread out throughout different edge 
clouds, there is still a need to investigate and understand the 
current approaches for combining services in multiple-cloud 
setups. On the other hand, a multiple-cloud setup enables 
consumers to select from a range of services that perform better 
than single CSPs with limited computing capacity. In addition, 
multiple-cloud deployments provide built-in redundancy, 
which helps prevent equipment failures and improve the 
system's overall stability. 
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Fig. 1. Architecture of cloud-edge-devices integration. 

This paper introduces a multi-cloud service composition 
architecture, depicted in Fig. 1, comprising M consumers, N 
edge clouds, and a central cloud. The central cloud is a 
repository for comprehensive service-related information and 
hosts a global network controller. Service components are 
distributed across an edge cloud infrastructure. User service 
requests are initially directed to the nearest edge cloud for 
preliminary processing. Each edge cloud maintains a local 
database containing information about neighboring edge clouds 
and available service components. 

Table II is a crucial system component, providing essential 
network topology information. The index ni varies from 0 to N-
1, where N is the total number of edge clouds in the network. 
This ensures that all possible connections between edge clouds 
are considered. pathi represents the optimal route linking the 
current edge cloud and another edge cloud in terms of the 
fewest hops. This information is crucial for routing data 
efficiently. hopi quantifies the number of network hops between 
the current edge cloud and any other edge cloud within the 
network. A lower hop count generally indicates a more efficient 
communication path. 

TABLE II. NETWORK TOPOLOGY INFORMATION FOR EDGE CLOUDS 

Edge cloud count Path Hop 

n1 path1 hop1 

n2 path2 hop2 

… … … 

ni pathi hop3 

Table III serves as a critical repository for service 
component metadata within the edge cloud environment. 
Service element names identify the service items available in 
the edge cloud and its neighbors. QoS attributes provide 
essential performance metrics for each service element, such as 
delay and reliability. The QoS attribute for the jth parameter of 

the ith service element is represented as ηij. This standardized 
notation facilitates data manipulation and analysis. 

TABLE III. SERVICE ELEMENT DATABASE 

Service element Edge cloud count QoS 

element1 n1 η1 

element2 n2 η2 

… … … 

elementi ni η3 

Upon receipt of a service request, the proximate edge cloud 
initiates communication with a central controller to procure 
optimal computational resources, storage capacity, and network 
bandwidth. The service composition process proceeds in situ if 
the local edge cloud possesses sufficient residual capacity to 
fulfill the service's maximal requirements. Conversely, if 
resource constraints are encountered, the edge cloud embarks 
on a search for an adjacent edge cloud with minimal network 
hops. This iterative exploration continues until an edge cloud 
with ample resources to accommodate the service composition 
is identified. 

Eq. (1) quantifies the resource demands (Rl) of service l. The 
set L encapsulates the services scheduled for orchestration on 
edge cloud i, while Ci represents the aggregate resource 
capacity of edge cloud i. These parameters constitute critical 
determinants in edge cloud service provisioning. 

∑ 𝑅𝑙 ≤ 𝐶𝑖 , 𝑖 ∈ 𝑁
𝑙∈𝐿

 (1) 

Containerization virtualization has played a significant role 
in microservice adoption. Cloud computing can utilize 
containerization to flexibly install, migrate, or scale virtual 
machines under changing service demands. Containerization 
benefits conventional virtual machines by using the host's 
operating system kernel. This strategy minimizes the 
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administrative burden of delivering resources as needed and 
promotes optimal resource utilization. Containerized 
microservices typically involve the simultaneous creation of 
lightweight components within containers, which are then 
provisioned and scaled based on their requirements. 

Expanding on these ideas, this method enables the quick and 
flexible deployment of service components by utilizing 
containerization technologies such as Docker in a multiple-
cloud setting. This allows for deploying all necessary service 
components for composition onto respective edge clouds. A 
notification mechanism is built to guarantee real-time accuracy 
of records held in edge clouds and service components. 
Whenever one edge cloud stops serving customers or undergoes 
modifications to its deployed service components, it sends these 
updates to all connected edge clouds. Utilizing this broadcast 
technique allows for the timely updating of databases on other 
edge clouds, ensuring data consistency throughout the system. 

B. QoS model 

Services typically comprise k distinct groups, each 
containing abstract service component definitions with specific 
order requirements. Users seek a combination of services that 
fulfill user-specified requirements and QoS constraints to 
complete their desired operations during service composition. 

The service composition process is divided into K steps 
according to the user's requirements. Every individual step, Si, 
is linked to a particular service set. The algorithm chooses 
service components from each set Si to fulfill the user's 
operation. The selection procedure yields numerous possible 
routes from the initial service component set (S1) to the final set 
(Sk). The ideal combination of services is attained by 
determining the pathway that produces the most advantageous 
service combination. 

When choosing a service, both the functional and non-
functional aspects are considered. Functional attributes pertain 
to the explicit purpose and content offered by a service, whereas 
non-functional attributes encompass the overall quality of the 
service, as evaluated using QoS measurements. 

Services are evaluated on the essential aspects of QoS, as 
described by internationally recognized standards 
organizations. QoS, as specified by these standards, includes 
non-functional features such as throughput, availability, 
response time, and dependability. 

Ensuring high-quality service while combining multiple 
services is essential for distinguishing between the various 
components of the service. This optimization method assesses 
the QoS attributes of the constructed service. QoS parameters 
can be divided into two main categories: dynamic attributes, 
which include response speed, dependability, and availability, 
and fixed attributes, which include security, accuracy, and 
robustness. 

This study focuses on throughput, reliability, delay, and 
response time. Throughput indicates the maximum rate at 
which data can be processed or transmitted successfully. 
Availability refers to the likelihood that service components are 
operational and ready for use in a particular environment. Delay 

refers to the time it takes for data packets to travel between a 
server hosting a service component and a client. 

Response time represents the time the service provider takes 
to respond to a user's service request. Table IV presents QoS 
attribute formulas for composed services. Calculations rely on 
j (number of service components chosen from service set i) and 
k (total number of service sets). 

TABLE IV. QOS ATTRIBUTE FORMULAS FOR COMPOSED SERVICES 

QoS parameters Expression 

Delay ∑ 𝐿(𝜂𝑖𝑗)
𝑘

𝑖=1
 

Throughput ∑ 𝐿(𝜂𝑖𝑗)
𝑘

𝑖=1
 

Availability ∑ 𝐴(𝜂𝑖𝑗)
𝑘

𝑖=1
 

Response time ∑ 𝑅(𝜂𝑖𝑗)
𝑘

𝑖=1
 

It is crucial to optimize various QoS parameters during 
service composition. However, it is equally essential to 
guarantee service stability and other relevant metrics. This 
study introduces a novel concept of QoS parameter stability, 
defined by the absolute value of each parameter across service 
elements. Eq. (2) represents the stability calculation for QoS 
parameter j within the service.  

𝑆𝑡𝑎𝑗 = ∑ ‖𝜂(𝑖+1)(𝑗+1) − 𝜂𝑖𝑗‖
𝑘−1

𝑖=1
 (2) 

Services with minimal cumulative absolute differences 
between their QoS parameters (QoSi) are considered more 
stable. This approach mitigates significant fluctuations in QoS. 
Additionally, to prevent data size variations across service sets 
from skewing the final results, this paper incorporates a data 
normalization step for the QoS information associated with the 
service components. Following normalization, higher 
parameter values correspond to superior performance. 
Consequently, all subsequent references to QoS metrics 
(response time, availability, throughput, and delay) within this 
work will pertain to their normalized values. 

This paper proposes a methodology that considers all four 
QoS criteria to determine the most effective technique for 
composing consumer services. This technique guarantees the 
optimization of these crucial parameters. The following section 
will explore an improved service composition technique based 
on the modified MFO algorithm. This approach has been 
specifically developed to boost the optimization of QoS. 

C. Enhanced MFO algorithm 

The MFO algorithm mimics the behavior of moths in 
nature. The unique navigational strategies of moths have 
generated considerable interest among researchers studying 
metaheuristics. Moths are nocturnal creatures that rely on lunar 
illumination for navigation Shehab, et al. [27]. Moth flight 
patterns can be mathematically modeled using the transverse 
orientation mechanism (Fig. 2). This strategy approximates a 
straight-line trajectory by maintaining a constant angular 
relationship with the moon. When faced with artificial light 
sources, moths divert from this path. When the moth is close to 
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the light source, it initiates a helical flight pattern that guides it 
towards the flame. Each moth symbolizes a potential solution, 
and every position is represented as a matrix of decision 
variables, as shown below. 

𝑋 = [

𝑋1

𝑋2

⋮
𝑋𝑁

] =

[
 
 
 
 
 

[
 
 
 
 

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑛−1 𝑥1,𝑛

𝑥2,1 ⋱ ⋯ ⋯ 𝑥2,𝑛

⋮ ⋯ ⋱ ⋯ ⋮
𝑥𝑁−1,1 ⋯ ⋯ ⋱ 𝑥𝑁−1,𝑛

𝑥𝑁,1 𝑥𝑁,2 ⋯ 𝑥𝑁,𝑛−1 𝑥𝑁,𝑛 ]
 
 
 
 

]
 
 
 
 
 

 (3) 

 
Fig. 2. Moth flight patterns model using transverse orientation mechanism. 

In Eq. (3), N stands for the population size, equal to the total 
number of moths in the swarm. Also, n indicates the problem 
dimension, which measures how many variables are involved 
in the optimization process. The fitness of a particular moth is 
determined as follows. 

𝐹𝑖𝑡[𝑋] = [

𝐹𝑖𝑡[𝑋1]

𝐹𝑖𝑡[𝑋2]
⋮

𝐹𝑖𝑡[𝑋𝑛]

] (4) 

Eq. (5) shows the flame matrix. Since all moths fly around 
a flame, the size must match the moth matrix previously 
defined. 

𝐹𝑀 = [

𝐹𝑀1

𝐹𝑀2

⋮
𝐹𝑀𝑁

]

=

[
 
 
 
 
 

[
 
 
 
 

𝐹𝑚1,1 𝐹𝑚1,2 ⋯ 𝐹𝑚1,𝑛−1 𝐹𝑚1,𝑛

𝐹𝑚2,1 ⋱ ⋯ ⋯ 𝐹𝑚2,𝑛

⋮ ⋯ ⋱ ⋯ ⋮
𝐹𝑚𝑁−1,1 ⋯ ⋯ ⋱ 𝐹𝑚𝑁−1,𝑛

𝐹𝑚𝑁,1 𝐹𝑚𝑁,2 ⋯ 𝐹𝑚𝑁,𝑛−1 𝐹𝑚𝑁,𝑛 ]
 
 
 
 

]
 
 
 
 
 

 

(5) 

Eq. (6) determines the corresponding fitness of the flame 
matrix. 

𝐹𝑖𝑡[𝐹𝑀] = [

𝐹𝑖𝑡[𝐹𝑀1]

𝐹𝑖𝑡[𝐹𝑀2]
⋮

𝐹𝑖𝑡[𝐹𝑀𝑛]

] (6) 

The MFO algorithm relies heavily on two primary 
components: flames and moths. Moths fly through flames to 
achieve desired results. As shown in the equation below, the 
logarithmic spiral function is used to model the spiral 
movement of the moth. 

𝑋𝑖
𝐾+1

= {
𝛿𝑖 . 𝑒

𝑏𝑡 . cos(2𝜋𝑡) + 𝐹𝑚𝑖(𝑘)              𝑖 ≤ 𝑁. 𝐹𝑀 

𝛿𝑖. 𝑒
𝑏𝑡 . cos(2𝜋𝑡) + 𝐹𝑚𝑁.𝐹𝑀(𝑘)       𝑖 ≥ 𝑁. 𝐹𝑀

 
(7) 

δ𝑖 represents the Euclidean distance between a moth's 

current position (𝑋𝑖
𝐾) and its corresponding flame (𝐹𝑚𝑖). This 

value indicates the moth's proximity to a possible optimal 
solution. Spiral flight patterns of moths are determined by b and 
t, a uniformly distributed random number between -1 and 1. 
Moths and flames are attracted to each other based on these 
parameters, as shown in Fig. 3. The moth's trajectory towards 
the flame is depicted in Fig. 4. Throughout the optimization 
process, t gradually decreases toward a balance between 
exploitation (focusing on promising areas) and exploration 
(searching the entire search area). The mathematical 
representation of t is presented below, and Fig. 5 depicts the 
moth's next position. 

𝑟 = −1 + 𝐶𝑢𝑟𝑟𝑟𝑒𝑛𝑡𝑖𝑡𝑒𝑟(
−1

𝑀𝑎𝑥𝑖𝑡𝑒𝑟

) (8) 

𝑡 = (𝑟 − 1) × 𝑘 + 1 (9) 

The optimization process depends on three variables: 
Maxiter, k, and r. Maxiter specifies the maximum number of 
iterations, k indicates a uniformly distributed random number 
between 0 and 1, and r singularity ensures convergence. The 
value of r is linearly reduced throughout the optimization to 
balance exploration (searching the entire search space) and 
exploitation (focusing on promising regions). 

 

Fig. 3. Attraction mechanism between moths and flames. 

 

Fig. 4. Moth's spiral trajectory toward the flame. 
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Fig. 5. Decreasing parameter t for balancing exploration and exploitation in 

optimization. 

During the optimization process, the moths with the highest 
fitness values continually move towards the most promising 
solutions, indicated by the flames. This phenomenon can be 
explained by the mechanism in which the number of flames 
(represented as N.FM in Equation 10) gradually reduces with 
each cycle. This decrease in the number of flames efficiently 
focuses the search effort on the most favorable areas of the 
search space. 

𝑁. 𝐹𝑀 = 

𝑟𝑜𝑢𝑛𝑑 (𝑁. 𝐹𝑀𝐿𝑎𝑠𝑡 𝑖𝑡𝑒𝑟 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑡𝑒𝑟
(𝑁.𝐹𝑀𝐿𝑎𝑠𝑡 𝑖𝑡𝑒𝑟−1)

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
) (10) 

A population of moths is represented by the matrix 𝑋(𝑡) =
{𝑋1𝐷(𝑡), … , 𝑋𝑖𝐷(𝑡), … , 𝑋𝑁𝐷(𝑡)} in a D-dimensional search 
space at iteration t. Each element 𝑋𝑖𝐷(𝑡) represents the position 
of the ith moth within the problem space. The initial positions 
of all moths are generated randomly using a uniform 
distribution during the first iteration (t = 1). In subsequent 
iterations (t ≥ 2), the SFR mechanism is used to update moth 
positions based on Eq. (11). 

𝑋𝑖(𝑡 + 1)

= {
𝐷𝑖

𝛼(𝑡) × 𝑒𝑏𝜏 × cos(2𝜋𝑡) + 𝐹𝑗(𝑡)     𝑖𝑓 𝑖 ≤ 𝑅(𝑡)

𝐷𝑖
𝛽(𝑡) × 𝑒𝑏𝜏 × cos(2𝜋𝑡) + 𝐹𝑅(𝑡)    𝑒𝑙𝑠𝑒             

 
(11) 

SFR is characterized by its core components, represented by 
Eq. (12) and Eq. (13). The constant b determines the shape of 

the logarithmic spiral employed by the moth, and τ indicates a 
random number uniformly distributed between -1 and 1. Fj(t) 
and FR(t) represent the positions of the jth and the Rth flame, 
respectively. The parameter r is calculated using Eq. (8). 

𝐷𝑖
𝛼(𝑡) = |𝐹𝑗)(𝑡) − 𝑀𝑖(𝑡)|                 (12) 

𝐷𝑖
𝛽(𝑡) = {

|𝐹𝑗(𝑡) − 𝑋𝑖(𝑡)|                                               𝜑𝑖 > 0  

𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑚 𝐴𝑟𝑐   𝜑𝑖 = 0 
 (13) 

Eq. (14) calculates the mean distance, denoted by φi, for 
each moth. This distance is computed based on the individual 
dimensions (Xiq) of the ith moth and the corresponding 
dimensions (Fjq) of its associated flame (j). The index j for each 
moth is determined using Eq. (15). This equation involves 
sorting the results obtained from Eq. (14) in descending order 
to identify the most "distant" moths and subsequently utilizing 
these indices as flame indexes within Eq. (13). 

{𝜑1, … , 𝜑𝑖 , … , 𝜑𝑁} ← 𝜑𝑖 =
1

𝐷
× ∑ |𝐹𝑗𝑞(𝑡) − 𝑋𝑖𝑞(𝑡)|

𝐷
𝑞=1  (14) 

{𝜑1, … , 𝜑𝑗 , … , 𝜑𝑁} ← 𝑆𝑜𝑟𝑡(𝜑1, … , 𝜑𝑖 , … , 𝜑𝑁)      (15) 

The archive construction process serves a dual purpose: 
enhancing population diversity and accelerating convergence 
towards promising regions within the search space. This is 
achieved by storing representative flames and the best solutions 
encountered during optimization. The archive, denoted by Arc, 
is represented by the matrix 𝑀 = {𝑀1, … ,𝑀𝑖 , … ,𝑀𝐾}, where K 
signifies the predefined archive size. Each element 𝑀𝑖 =
[𝑚𝑖1, 𝑚𝑖2, … ,𝑚𝑖𝐷]  represents a vector position within the 
archive memory. 

The construction of the archive involves two key steps: 
generating Representative Flame (RF) and archiving entries. 
The first step leverages the dual population (dualPop) and dual 
fitness values (dualFit) created based on the flame construction 
process outlined in Fig. 6. Eq. (16) calculates the RF position, 
representing the average of all flame positions. Here, C denotes 
the total number of moths considered, and Fid represents the dth 
dimension of the ith flame. Two new entries are added to the 
archive memory M: the global best flame position and the 
calculated RF position. If the archive reaches its total capacity 
(K), a random replacement strategy is implemented, replacing 
two existing entries with new entries. 

𝑅𝐹𝑑(𝑡) =
1

𝐶
∑ 𝐹𝑖𝑑(𝑡)𝐶

𝑖=1                       (16) 

 
Fig. 6. Construction of representative flame and archiving entries. 
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III. SIMULATION AND RESULTS 

A series of tests were performed on a Windows 8.1 
computer powered by an Intel Core i5-460M processor at 2.53 
GHz and 16 GB of RAM. This study employed a system model 
comprising 32 edge clouds and a primary cloud, as illustrated 
in Fig. 1. The Quality of Service for Web Services (QWS) 
dataset contained 2507 services, each characterized by nine 
QoS features: description, delay, best practices, consistency, 
reliability, throughput, availability, and response time. For this 
research, delay, throughput, availability, and response time 
were the primary QoS parameters, with their respective ranges 
and units detailed in Table V. A comparative evaluation was 
conducted to measure the proposed algorithm against 
traditional MFO, PSO, and WOA algorithms, evaluating 
fitness, stability, delay, and response time. 

TABLE V. QOS PARAMETERS AND RANGES 

Parameters Dimensions Unit 

Delay 0.1-4500 ms 

Throughput 0.1-50 Mbps 

Availability 5-100 % 

Response time 30-5000 ms 

Fig. 7 and Fig. 8 compare the proposed algorithm and its 
counterparts regarding fitness and stability, respectively. To 
conduct this analysis, 100 to 1000 service instances were 
chosen at random extracted from the QWS dataset, with 
inclusion criteria limited to services comprising at least five 
components. Fig. 7 demonstrates the better fitness performance 
of the developed algorithm compared to its competitors. While 
fitness is a crucial metric, the ultimate objective is to maximize 
service QoS and maintain stability. 

Fig. 9 and Fig. 10 illustrate the comparative performance of 
the algorithms in terms of delay and response time. All QoS 
parameters were normalized to mitigate the influence of 
varying parameter scales. Consequently, higher values indicate 
improved optimization outcomes. The results in Fig. 9 clearly 
reveal the superiority of the proposed algorithm in minimizing 
delay. Similarly, Fig. 10 reveals a significant advantage of the 
proposed algorithm in reducing response time compared to 
other methods. 

 

Fig. 7. Fitness comparison. 

 

Fig. 8. Stability comparison. 

 

Fig. 9. Delay comparison. 

 

Fig. 10. Response time comparison. 

The experimental results distinctly demonstrate the 
superiority of the proposed algorithm over traditional 
optimization methods. From the fitness performance, it is 
obvious that the proposed algorithm constantly finds higher-
quality solutions. This is mainly because the SFR mechanism 
can dynamically detect and replace the stagnant solution, 
making the search process more diverse and effective. 
Enhanced fitness will naturally provide better QoS outcomes, 
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crucial for service composition in multi-cloud environments. 
Moreover, the proposed algorithm outperforms others in 
service stability, which shows its robustness and adaptability to 
dynamic cloud scenarios. 

The proposed MFO-SFR algorithm guarantees great 
efficacy when the delay and response time parameters are 
analyzed. A minimum delay shows how it may optimize the 
critical time-sensitive aspect of cloud service delivery, 
guaranteeing users' satisfaction with the service. On the other 
hand, the response times that could be retrieved by using this 
algorithm also promise to ensure that it may further enhance 
efficiency in the performance of any service. Therefore, the 
findings support the stated objectives of the study on QoS 
parameters in cloud environments and further indicate the 
practical relevance of the algorithm. Compared to traditional 
approaches, the proposed method yields better results in 
scalability and efficiency in solving complex service 
composition challenges in multi-cloud ecosystems. 

IV. CONCLUSION 

The swift advancement of cloud computing has led to the 
widespread growth of a wide range of cloud-based services. 
However, guaranteeing awareness of QoS during the 
construction of services is a substantial difficulty in cloud 
systems. Many individual services cannot handle complex 
requests and different needs that arise in real-world situations. 
Often, a solitary service may not be enough to fulfill the 
particular needs of consumers, therefore requiring the 
amalgamation of many services to attain the needed 
functionality. Due to its intrinsic NP-hard difficulty, service 
composition has been widely studied using various 
metaheuristic algorithms. This paper proposed an improved 
MFO algorithm with the SFR mechanism for the optimization 
of service composition in multi-cloud computing environments. 
Our approach overcomes the deficiency of early convergence 
in the traditional MFO by maintaining the diversity in the 
population with the aid of the SFR mechanism. It ensures that 
static solutions are identified and replaced with promising ones, 
which enhances the whole optimization process. The empirical 
results showed that our approach enhances significantly the 
QoS metrics such as stability of service, response time, and 
delay. We evaluated an algorithm using a realistic system 
model and the QWS dataset, considering the main QoS 
parameters. The comparative analysis confirmed the superior 
fitness and stability of our algorithm. 

While the results are encouraging, many directions are open 
to future research: First, the proposed algorithm can be 
extended by allowing multi-objective optimization scenarios in 
which many QoS attributes can be optimized simultaneously. 
Second, exploring the integration of machine learning 
techniques and metaheuristics may lead to advanced 
adaptability and efficiency in service composition strategies. 
Third, using the MFO-SFR algorithm in other domains, like 
IoT-enabled edge computing, hybrid cloud environments, or 
real-time service orchestration, is a promising avenue for 
further exploration. Finally, real-world cloud deployments of 
the proposed approach can shed light on many practical 
feasibility and scalability issues. 
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