
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

923 | P a g e

www.ijacsa.thesai.org

Enhanced Task Scheduling Algorithm Using Harris

Hawks Optimization Algorithm for Cloud Computing

Fang WANG

Computer School, Hubei University of Education, Wuhan 430205, China

Abstract—Amongst the most transformational technologies

nowadays, cloud computing can provide resources such as CPU,

memory, and storage over secure internet connections. Due to its

flexibility and resource availability with guaranteed QoS, cloud

computing allows comprehensive business and research

adoptions. Despite the rapid development, resource management

remains one of the significant challenges, especially handling task

scheduling efficiently in this environment. Task scheduling

strategically assigns tasks to available resources so that Quality of

Service (QoS) metrics are effectively related to response time and

throughput. This paper proposes an Enhanced Harris Hawks

Optimization (EHHO) algorithm for scheduling cloud tasks to

mitigate the common limitations found in existing algorithms.

EHHO integrates a dynamic random walk strategy, enhancing

exploration capabilities to avoid premature convergence and

significantly improving scalability and resource allocation

efficiency. Simulation outcomes reveal that EHHO minimizes

makespan by up to 75%, memory usage by up to 60%, execution

time by up to 39%, and cost by up to 66% compared to state-of-

the-art algorithms. These benefits demonstrate that EHHO can

optimize resource allocation while being highly scalable and

reliable. Consistent performance over various stacks such as

Kafka, Spark, Flink, and Storm further evidences the superiority

of EHHO in handling complex scheduling challenges in dynamic

cloud computing environments.

Keywords—Cloud computing; optimization; task scheduling;

Harris Hawks Optimization; resource allocation; quality of service

I. INTRODUCTION

The Internet of Things (IoT) symbolizes change whereby
many devices, from simple sensors and actuators to various
everyday objects, are connected via the Internet to
communicate and share information [1]. Objects like sensors
and actuators form communication grids in healthcare,
manufacturing, and smart cities. However, with the growth of
IoT applications, volumes of generated data are huge and
require immense processing and colossal storage. More
importantly, real-time analytics implies vast demand [2]. Thus,
cloud computing has become the backbone of IoT systems for
extendable resources and rugged data management capabilities
beyond IoT devices [3, 4].

Cloud computing enables customers to use the services with
the help of the Internet on a pay-per-usage basis [5]. Cloud
services include within their ambit a broad range of services,
namely Software as a Service (SaaS), Platform as a Service
(Paas), Communication as a Service (CaaS), Data storage as a
Service (DaaS), and Infrastructure as a Service (IaaS) [6].
These services allow cloud providers to provide utility-based
resources whose usage supports diversified needs for IoT.

The physical servers and switches in the backbone layer of
cloud computing are operated and scaled by the cloud service
provider effectively as per user requirements [7]. It efficiently
allocates hardware resources at a blistering pace. In terms of
software, the supervisor runs these hardware resources, a
hypervisor, middleware, etc. [8]. The operating system
implements hardware functionalities and develops user and
application communication [9]. It allows the hypervisor to
create Virtual Machines (VMs) on cloud servers with specified
hardware configurations and software stacks [10]. This, in turn,
enables a further increase in service availability because
virtualization facilitates easy service migration even during
hardware failures. It is also accompanied by a tremendous rise
in hardware utilization compared to the non-virtualized
environment [11]. Recent advancements in reinforcement
learning applications, particularly in mobile robotics, have
showcased its ability to enhance decision-making and resource
management in dynamic environments. Similarly,
reinforcement learning's adaptive capabilities, as demonstrated
in SLAM tasks, highlight its potential for optimizing
virtualization and scalability in cloud computing infrastructures
[12].

The middleware arranges the running and interaction of
tasks on cloud servers transparently. The three fundamental
types of software infrastructure are PaaS, SaaS, and IaaS [13].
IaaS allows users to create multiple VMs on servers as needed,
enhancing computational resource utilization. SaaS permits
users to store and access unlimited amounts of data in a minute
on remotely located servers. PaaS provides secure, reliable
communication services and an application development
platform accessible via APIs. Lastly, the application tier
enables the user to use applications stored in the cloud through
the Internet, allowing quick and easy access without installation
or updates locally.

Effective task scheduling is vital for managing resource
allocation, execution time, and QoS in cloud-supported IoT
environments. Scheduling can be classified into two types:
static and dynamic approaches. In static scheduling, tasks are
assigned to available machines based on a predefined strategy,
whereas in dynamic scheduling, instantaneous conditions are
considered to adjust resource allocations. Real-time scheduling
techniques ensure priority tasks with tight timing constraints.

Task scheduling in cloud computing is complex and an NP-
hard problem, directly influencing the system performance
regarding resource utilization, response time, and energy
consumption. In this regard, we propose an Enhanced Harris
Hawks Optimization (EHHO) algorithm to optimize task
scheduling problems in cloud environments. EHHO features a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

924 | P a g e

www.ijacsa.thesai.org

novel dynamic random walk to reinforce exploration and avoid
premature convergence issues, enhancing scalability, resource
allocation, and energy management.

By integrating these enhancements, EHHO provides a high-
performance solution for complex scheduling requirements in
cloud-supported IoT systems, contributing to more efficient,
reliable, and cost-effective service delivery. The following
sections detail EHHO’s methodology, implementation, and
performance advantages over existing algorithms, underscoring
its potential as a leading approach to resource management in
cloud computing.

The remainder of this paper is arranged as follows: Section
2 discusses related research and highlights gaps in existing
scheduling approaches. Section 3 presents the problem
statement and explains the challenges of cloud task scheduling.
Section 4 presents the proposed algorithm. Section 5
summarizes the experimental results and performance analysis.
Section 6 discusses the practical implications and challenges.
Finally, Section 7 concludes the paper and suggests future
directions.

II. RELATED WORK

Shukri, et al. [14] formulated an Enhanced Multi-Verse
Optimizer (EMVO) to optimize task scheduling in cloud
computing contexts. The developed algorithm incorporates a
new mechanism to reserve the most optimal solution from each
iteration and inject it back into the population after a predefined
interval to leverage better exploration and exploitation
capabilities. The proposed approach minimizes task execution
time and considers factors like task length, cost, and power
consumption. The combination of local and global search and
the core components of MVO has caused EMVO to overcome
the weaknesses inherent in traditional task scheduling
algorithms. Comparisons with the original Particle Swarm
Optimization (PSO) and MVO have revealed the efficiency of
the proposed EMVO in decreasing the makespan while
improving resource utilization.

Natesan and Chokkalingam [15] developed a new Mean
Grey Wolf Optimization (MGWO) algorithm to solve cloud
computing scheduling issues. The study aims to optimize
energy consumption. MGWO performance was evaluated using
the Cloudsim toolkit under baseline workload conditions. From
the simulation results, it could be revealed that MGWO
substantially outperforms competing algorithms in optimizing
these crucial performance metrics.

Mapetu, et al. [16] proposed a new binary PSO algorithm to
cope with cloud computing load and task scheduling issues. The
suggested technique embraces a formula that minimizes the
overall difference in execution time between different VMs
while keeping some optimization criteria. A dedicated particle
position updating strategy was adopted for enhanced load
balancing. The numerical evidence verifies that the algorithm
performs better than the previous meta-heuristic and heuristic
approaches for optimizing load balancing and task scheduling.

Liu [17] developed an effective task scheduling approach
using an adaptive Ant Colony Optimization (ACO) algorithm
in cloud computing contexts. Pheromone adaptation is
introduced into the procedure to accelerate convergence; thus,

prematurity can be reduced. In the cloud environment, a multi-
objective optimization function, which minimizes cost and time
for task execution, reduces load imbalance and maximizes
resource utilization, is implemented by optimized ACO. It has
been proved by comparison analysis that, compared with
traditional ACO, the proposed approach can always guarantee
better performance in solution quality, convergence speed, and
overall system efficiency, especially in handling large-scale
task scheduling challenges.

Zhou, et al. [18] presented a hybrid task scheduling method
based on an improved Genetic Algorithm (GA) combined with
a greedy algorithm. This algorithm was designed to converge
on optimal solutions in lower iteration numbers of the search
process than compared approaches. It aimed at response time,
completion time, and QoS performance metrics. Experimental
results demonstrate that hybrid GA performs much better than
existing algorithms in task-scheduling optimization than
existing algorithms.

Abualigah and Diabat [19] proposed, incorporating the
combination of Ant Lion Optimization (ALO) adapted to the
concept of Differential Evolution (DE) to address many-
objective task-scheduling issues in cloud computing settings.
Elite-based DE enhanced ALO's exploitation and exploration
capability, saving it from premature convergence. The
effectiveness of the suggested algorithm has been tested on
modeled and real-world datasets using the Cloudsim simulation
environment. Additionally, experiments proved that the hybrid
ALO method outperformed the other optimization algorithms
regarding continuous convergence rate, especially for large-
scale scheduling problems.

Panda, et al. [20] introduced a new multi-paired task
scheduling algorithm for cloud computing by utilizing the
Hungarian algorithm. With this approach, the logic efficiently
resolves unbalanced workloads based on the pairing strategy for
task scheduling. The algorithm outperformed the Hungarian
Algorithm with Converse Lease Time, the Hungarian
Algorithm with Lease Time, and First-Come-First-Served
baselines in large-scale simulations.

Tamilarasu and Singaravel [21] proposed an Improved
Coati Optimization Algorithm (ICOA) for critical challenges in
cloud computing, namely lengthy scheduling times, excessive
costs, and unbalanced VM loads. A task distribution and
scheduling scheme involving VMs, time, and cost, was
developed. A dual-objective fitness function is employed to
optimize resource utilization and makespan. In the ICOA, an
exploitation strategy has been incorporated to prevent the
solution from converging prematurely and, hence, to enhance
local search capabilities. Simulation results demonstrated the
superiority of the ICOA over conventional metaheuristic task
scheduling algorithms at improving makespan, success rate,
turnaround efficiency, and overall system availability.

Abualigah, et al. [22] offered an enhanced hybrid
optimization algorithm for cloud task scheduling, which
combines Jaya algorithm strengths with Synergical Swarm
Optimization (SSO) and a Levy flight. This new approach
efficiently balances exploration and exploitation to accelerate
and prevent premature convergence. In integrating the best of
Jaya and SSO, this algorithm uses their complementary

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

925 | P a g e

www.ijacsa.thesai.org

analytics capabilities to drive an optimal assignment of tasks
and allocate resources. The experimental investigation against
existing methodologies confirmed the algorithm's superior
scalability, convergence speed, solution quality, and
performance.

Behera and Sobhanayak [23] proposed a hybrid meta-
heuristic approach using GA and Gravitational Search
Algorithm (GSA) for multi-target optimization of task
scheduling in cloud computing. The authors addressed the NP-
hard challenge of efficiently managing an exponentially
growing search space while enhancing system performance.
The proposed approach leveraged strengths from GA and GSA
in improving the Quality of Service (QoS) measures: energy
consumption, resource utilization, and makespan. As tested
under CloudSim with standard, real-time, and artificial
workloads, it improved degree of imbalance by about 12%,
resource utilization by 9%, response time by 7%, and energy
consumption by 6%.

Khademi Dehnavi, et al. [24] proposed a hybrid GA for
efficient and dependable task scheduling across heterogeneous
cloud computing environments. The method models an NP-
hard optimization problem in scheduling to minimize costs,
time, and failures. HGA introduces two novel mutation and
crossover operators in global search. It also implements a
localized "Walking around" step to improve solutions.
Simulation runs on twelve scenarios revealed significant cost
reductions compared to state-of-the-art techniques: a 14.1%

reduction in makespan, an 18.7% monetary cost reduction, and
a 42.3% decrease in failure cost.

Gong, et al. [25] introduced the Enhanced Marine Predator
Algorithm (EMPA) for the task scheduling challenges in the
cloud computing environment. This approach incorporates the
operators of the Whale Optimization Algorithm (WOA)
operators, nonlinear inertia weight coefficients, and Golden
Sine strategies to minimize makespan while optimizing
resource utilization. Simulation runs using synthetic and GoCJ
datasets showed that EMPA outperformed GWO, SCA, PSO,
and WOA in makespan, resource utilization, and degree of
imbalance, positioning EMPA as a very effective scheduling
solution in cloud environments.

Pabitha, et al. [26] suggested a new scheduling algorithm,
the Chameleon and Remora Search Optimization Algorithm
(CRSOA), to tackle the task-scheduling issues arising in cloud
environments due to uncertain user demands. In this proposed
technique, the Chameleon Search Algorithm (CSA) is
combined with the Remora Search Optimization Algorithm
(RSOA) to deliver an efficient resource utilization approach
that takes into consideration parameters like MIPS and network
bandwidth to ensure load balancing while imposing minimal
scheduling cost and, at the same time, reduced makespan. The
experimental results show that the makespan reduction
achieved by CRSOA is 18.9%, cost reduction is 22.1%, and the
improvement in load balancing is 20.5% against baseline
metaheuristic algorithms.

TABLE I. AN OVERVIEW OF RECENT TASK SCHEDULING ALGORITHMS FOR CLOUD COMPUTING

References Algorithm Pros Cons

[14]
Enhanced multi-verse

optimizer

Efficiently reduces makespan and improves resource

utilization through enhanced exploration and

exploitation mechanisms.

Limited focus on real-time dynamic scheduling

challenges.

[15] Mean grey wolf optimization
Optimizes energy consumption and makespan

effectively under baseline workloads.

Does not account for task heterogeneity or

scalability in large datasets.

[16]
Binary particle swarm
optimization

Superior load balancing with tailored particle updating
strategies reduces execution time variance.

Lacks emphasis on cost-efficiency and energy
consumption.

[17]
Adaptive ant colony

optimization

Enhanced convergence rate and solution quality;

minimized cost, execution time, and load imbalance.

Limited applicability for large-scale dynamic task

scheduling.

[18]
Hybrid genetic algorithm with
greedy

Faster convergence with improved QoS metrics such
as response time and completion time.

Focuses primarily on search process efficiency, with
limited exploration capabilities.

[19]
Ant lion optimization with

differential evolution

Enhanced convergence rates for many-objective

problems; robust against premature convergence.

Complexity increases the computational costs for

large-scale scheduling tasks.

[20] Multi-paired task scheduling
Effectively handles unbalanced workloads; superior in

minimizing layover times.

Limited applicability to multi-objective or

heterogeneous scheduling scenarios.

[21]
Improved coati optimization

algorithm

Dual-objective optimization improves makespan and

system availability and prevents premature
convergence.

No explicit consideration of energy efficiency

metrics.

[22]
Jaya with synergistic swarm

optimization

Balances exploration and exploitation; achieves high

solution quality and convergence speed.

Performance under real-time or uncertain

environments is not evaluated.

[23]
Genetic algorithm and

gravitational search algorithm

Improves energy consumption, makespan, and

resource utilization; suitable for QoS optimization.

Focus on standard workloads with limited

scalability for heterogeneous tasks.

[24] Hybrid genetic algorithm
Cost-efficient with significant reductions in makespan,

monetary cost, and failure cost.

Limited application to real-time dynamic and

heterogeneous scheduling problems.

[25]
Enhanced marine predator
algorithm

Superior makespan reduction, resource utilization, and
imbalance handling.

Lack of scalability for highly complex or real-time
cloud scheduling tasks.

[26]
Chameleon and remora search

optimization algorithm

Effectively minimizes scheduling costs and makespan

under uncertain user demands.

High computational complexity for large-scale

environments.

[27]
Horse herd–squirrel search
algorithm

Demonstrates significant advantages in cost, energy,
and makespan reduction.

Limited evaluation under multi-cloud or distributed
cloud environments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

926 | P a g e

www.ijacsa.thesai.org

Parthasaradi, et al. [27] proposed a hybrid meta-heuristic for
cloud computing task scheduling: the Horse Herd–Squirrel
Search Algorithm (HO–SSA). This protocol combined SSA
and the Horse Herd Optimization Algorithm (HOA) to increase
cost efficiency, energy utilization, and scheduling performance.
Furthermore, the proposed HO–SSA showed significant
superiority and reduced up to 22.2% regarding tasks' cost
scheduling costs, 9.68% regarding energy consumption, and
makespan compared with SSA, HOA, and TSA.

As summarized in Table I, recent task-scheduling
algorithms excel at optimizing specific metrics such as
makespan, resource utilization, or cost. However, deficiencies
remain in addressing scalability, real-time scheduling, and
energy efficiency in heterogeneous and dynamic cloud
environments. Although algorithms like EMPA have proven
efficient in resource utilization, and huge cost reductions have
been achieved in HO-SSA, few have provided a balanced
approach to large-scale and multi-cloud comprehensive
optimization problems for energy efficiency, load balancing,

and QoS. Furthermore, most of those methods lack real-time
adaptability to uncertain user demands. Under such gaps, the
proposed algorithm operates under an integrated dynamic
exploration and exploitation strategy, aiming for optimal
resource allocation scalability while enhancing performance in
various cloud environments.

III. PROBLEM STATEMENT

Scheduling tasks in cloud computing environments is
critical for effective and efficient execution, whereby resources
are assigned according to user requests. Multiple layered
architectures have been developed in cloud computing to offer
these utility-based services. Fig. 1 depicts this kind of layered
architecture. Each layer addresses specific functionalities, from
data storage and processing to application development and
communication support, and enables IoT applications to
operate efficiently without major investments in local
infrastructure. Table II provides a list of abbreviations and
symbols used throughout the paper.

TABLE II. SYMBOLS AND DEFINITIONS

Symbol Description Symbol Description

T Cloud tasks cij Binary variable indicating task 𝑖 assigned to virtual machine 𝑗

V Cloud virtual machines xij Association between a virtual machine and a task

n Total number of tasks LB Lower bound of the solution space

m Total number of virtual machines CT Convergence time

VR Collection of virtual machine resources J Randomization factor

MIPS Millions of instructions per second capability of a CPU Xm(i) Updated position after applying random walk strategy

CUj Compute units capacity of the 𝑗𝑡ℎ virtual machine O(x) Objective function for optimization 𝑥

Li Task duration for the ith task x(t+1) Position of a hawk in the next iteration

ETij Execution time for the ith task on the jth virtual machine xrandom(t) Random position of a hawk

BTj Busy period of the jth virtual machine xrabbit(t) Position of the prey

E Rabbit's escaping energy xmean(t) Average position of the hawk population

t Current iteration number UB Upper bound of the solution space

Max_iter Maximum number of iterations c Random walk deviation control constant

Δx(t) Difference between prey and hawk positions rand Random number between 0 and 1

Fig. 1. Multi-layer design of cloud computing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

927 | P a g e

www.ijacsa.thesai.org

Fig. 2. Proposed framework for task scheduling.

The quality of the service will be directly affected by the
following scheduling algorithm, affecting parameters such as
execution time and operational costs. The existing frameworks
comprise a cloud broker and Resource Information Servers
(RIS) to ensure optimum scheduling and provide runtime
information about resource availability and VM capabilities.
While the above systems consolidate data from physical and
virtualized infrastructures, significant research gaps exist in
scheduling. A schematic of this framework is provided in
Fig. 2.

Most traditional approaches fail to balance exploration and
exploitation and thus lead to premature convergence or
suboptimal resource allocation in a dynamic, real-time
environment. In addition, most methodologies cannot adapt to
heterogeneous workloads or consider uncertain factors such as
fluctuating resource demand and VM performance. Other
multi-objective optimizations, like minimal makespan, energy
consumption, cost, and maximal resource utilization, have also
been inadequately performed by most current strategies.

These gaps highlight the need for advanced algorithms
capable of dynamic decision-making, enhanced exploration of
solution spaces, and robust handling of diverse workloads. The
EHHO algorithm addresses these challenges by integrating
dynamic random walk strategies and stochastic adjustments to
produce superior task scheduling performance, ensuring
scalability and efficiency in complex cloud environments.

Cloud data centers feature an extensive range of actual
machines containing functional VMs. The VMs function as the
underlying infrastructure for the execution of user tasks. Tasks
assigned to a particular VM are based on the task's
requirements. Two alternative concepts of scheduling are
common inside the cloud environment. The initial step involves
identifying and allocating servers specifically intended for
supporting VMs. The specific scheduling variant significantly
enhances data center productivity, reduces power usage, and
optimizes resource utilization. The impact of such a
phenomenon is notably significant on cloud service vendors'
operational activities.

On the other hand, the second classification of scheduling is
concerned with assigning VMs for task execution. It is common

practice to divide large tasks into separate components and
assign each one to a separate VM for execution under the
virtualization setup. In the present scenario, the choice of VMs
is contingent upon users' particular service requirements and
the current condition of VMs. The implications of this specific
scheduling method substantially affect the duration of job
completion and the financial expenditure related to task
execution. The scheduling paradigm exhibits a notable
resonance among users, particularly concerning service quality
and budgetary factors.

The responsibility for coordinating user tasks onto VMs
based on user requirements and QoS factors usually falls on the
data center broker and the cloud information service in a cloud
computing environment. They are crucial in ensuring that user
tasks are allocated to suitable VMs that meet the desired
performance, resource availability, and other criteria. This
coordination helps optimize resource utilization and deliver
efficient cloud services. Users prefer minimizing costs
associated with service expenses, whereas cloud providers
strive to reduce energy consumption while maintaining optimal
server performance and capacity utilization. These issues arise
from the direct impact of these elements on the time of task
performance.

As the duration of a task lengthens, there is a corresponding
rise in cost expenditures and energy use. Therefore, the primary
focus of this scholarly inquiry is the reduction of makespan. As
has been previously analyzed, the complex issue of task
scheduling is classified as one of the NP-hard issues. Despite
the notable effectiveness of evolutionary algorithms in
addressing NP-hard problems, their convergence rate tends to
be prolonged due to the exhaustive examination of all probable,
plausible solutions. As a result, the prompt achievement of
convergence is regarded as a subordinate goal in this research.
Given the presence of m VMs and n tasks within the
environment, a set of tasks (T) and VMs (V) can be expressed
by Eq. (1) and (2).

𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛} (1)

𝑉 = {𝑣1, 𝑣2, 𝑣, … , 𝑣𝑚} (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

928 | P a g e

www.ijacsa.thesai.org

The assignment of these tasks to VMs produces a significant
number of potential patterns, which can be expressed as nm
possible scenarios. Suppose VR represents a collection of VM
resources, indicated as VR = (vr1, vr2, vr3, ..., vrk). These
features include the central processing unit's (CPU) capability
to execute Millions of Instructions Per Second (MIPS), the
availability of bandwidth, the capacity of Random Access
Memory (RAM), and the capacity of storage. The task
completion duration depends on the specific allocation of
resources to the selected VMs. Cloud service providers utilize
specific measurements known as Compute Units (CUs) to
measure the capacity of VMs. For example, a solitary Amazon
CU possesses processing capabilities that align with a
frequency range of up to 1.2 GHz, similar to an Xeon and
Opteron processor. The calculation of the duration of task
execution and the projected operational expenditure for the
workflow depends on CUs. Therefore, the execution time for
the tth task is given in the form of Eq. (3).

𝐸𝑇𝑖𝑗 =
𝐿𝑖

𝐶𝑈𝑗
 (3)

Where 𝑖 and 𝑗 represent indices within integer numbers sets
ranging from 1 to 𝑛 and 1 to 𝑚, respectively. Here, 𝐶𝑈𝑗
corresponds to the computational unit associated with the 𝑗th
VM, whereas 𝐿𝑖 signifies the execution time of the 𝑖th task. The
active time of a VM is defined as the interval during which tasks
are being processed on the VM. Specifically, the phase of
intense utilization throughout the active time of the 𝑗th VM is
represented by Eq. (4).

𝐵𝑇𝑗 = ∑ 𝐸𝑇𝑖𝑗 × 𝑐𝑖𝑗
𝑛
𝑖=1 (4)

𝑐𝑖𝑗 is limited to binary values, 0 or 1, 𝑥𝑖𝑗 represents the
relationship between tasks and VMs, where 1 implies that task
𝑡𝑖 is allocated to the 𝑗th VM. Since VMs operate concurrently,
the workflow's overall duration, or makespan, is calculated by
the most prolonged time any single VM remains occupied. The
makespan can be expressed using Eq. (5).

𝑀 = max⁡(𝐵𝑇𝑗) (5)

Evolutionary algorithms aim to find the optimal solution by
systematically navigating the problem domain. The time
needed for the algorithm to converge depends on the solution
space properties and the number of iterations executed. As the
solution space expands, the convergence time increases. This
relationship between convergence time and the solution space
size can be expressed mathematically by Eq. (6).

𝐶𝑇 ∝ (𝑙𝑥, 𝑘) (6)

𝐶𝑇 refers to the convergence time, k denotes the number of
iterations necessary to identify an optimal solution, and 𝑙𝑥
represents the length of the optimal solution 𝑥,. The objective
function 𝑂, used to determine the solution 𝑥, can be formulated
based on Eq. (3) and (4) in form of Eq. (7).

𝑂(𝑥) = min(𝑀) ,min⁡(𝐶𝑇) (7)

IV. PROPOSED METHOD

Harris Hawk cooperative hunting and tracking procedures
inspire the HHO algorithm. These birds employ strategic tactics
of surprise jumps and seven killings to capture their prey. In

cooperative attacks, some hawks coordinate in pursuit of a
rabbit that has exposed itself after revealing its whereabouts for
pursuit and quick capture. With hunting, however, there would
be successive quick dives next to the prey, based on how it
would react and the chance of its fleeing. Harris's hawks have
various hunting techniques under their wings, each for different
circumstances and different maneuvers of prey to evade them.
If the top hawk in a hunting activity fails to track the rabbits,
then another member of the team should replace that hawk and
foil possible escape. It is here that the rabbit, once the hunt
starts, cannot regain its defense mechanism, and the team's
combined effort prevents it from escaping. The most
experienced hawk makes the final catch of exhausted prey to
share among the team members.

Fig. 3. HHO steps.

Fig. 3 visually represents the different phases of the HHO
algorithm and reflects hawk predatory behavior: locating,
circling, and ultimately capturing prey. HHO's mathematical
formulation is structured accordingly, including the
exploration, transition, and exploitation phases. Within this
conceptual framework, each Harris's hawk symbolizes a
possible solution to a particular problem, while the target prey
symbolizes the ideal solution to be identified. Falcons use two
exploration strategies to find prey. In the first strategy, hawks
choose locations according to other hawks' positions and prey
locations. In the second tactic, hawks sit randomly on tall trees.
Eq. (8) mathematically models these two exploration methods
with equal probability and uses random numbers to simulate
their occurrence.

𝑥(𝑡 + 1) =

{

𝑥𝑟𝑎𝑛𝑑𝑜𝑚(𝑡) − 𝑟1|𝑥𝑟𝑎𝑛𝑑𝑜𝑚(𝑡) − 2𝑟2𝑥|⁡⁡⁡⁡⁡⁡⁡𝑞 ≥ 0.5⁡

𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥𝑚𝑒𝑎𝑛(𝑡) −

𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵))⁡⁡⁡𝑞 < 0.5

 (8)

Eq. (9) calculates the average position of the hawk
population. The algorithm dynamically transitions between
exploration and exploitation phases based on a metric termed
'rabbit energy,' defined by Eq. (10). When the rabbit's escaping
energy |𝐸| exceeds 1, the hawks engage in a more extensive
exploration of the search space; otherwise, the algorithm

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

929 | P a g e

www.ijacsa.thesai.org

transitions to the exploitation phase. Eq. (11) to (14) establish
whether the hawks execute a soft siege or a hard siege,
depending on the rabbit's energy level and its likelihood of
escape. In a soft siege, the hawks simulate the rabbit's
successful escape by performing repetitive diving maneuvers.
Conversely, a hard siege employs a distinct computational
strategy to model the scenario.

𝑥𝑚𝑒𝑎𝑛(𝑡) =
1

𝑁
∑ 𝑥𝑖(𝑡)
𝑁
𝑖=1 (9)

𝐸 = 2𝐸0 (1 −
𝑡

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
) (10)

𝑥(𝑡 + 1) = ∆𝑥(𝑡) − 𝐸|𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡) (11)

∆𝑥(𝑡) = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡) (12)

𝐽 = 2(1 − 𝑟𝑎𝑛𝑑𝑜𝑚) (13)

𝑥(𝑡 + 1) = 𝑥(𝑡) − 𝐸|∆𝑥(𝑡)| (14)

Eq. (15) to (18) regulate the rapid dives employed during
the soft siege, employing Lévy movements to simulate the
prey's evasive behavior. Eq. (15) and (16) mathematically
model the hawks' actions during the diving phase.
Subsequently, Eq. (17) and (18) define the characteristics of the

final rapid dives performed during the soft siege and the
associated factors, k and z, utilized throughout the hard siege
phase.

𝑘 = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡)| (15)

𝑧 = 𝑘 + 𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑐𝑡𝑜𝑟. 𝐿(𝑑𝑖𝑚) (16)

𝑥(𝑡 + 1) = {
𝑘⁡⁡⁡𝑖𝑓⁡⁡⁡⁡𝑓(𝑘) < 𝑓(𝑥(𝑡))

𝑧⁡⁡⁡𝑖𝑓⁡⁡⁡𝑓(𝑧) < 𝑓(𝑥(𝑡))
 (17)

𝑘 = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥𝑚𝑒𝑎𝑛(𝑡)| (18)

The HHO algorithm incorporates four pursuit strategies
during the exploitation phase to enhance exploration
capabilities. While heightened exploration is beneficial in
identifying diverse solution spaces, it can inadvertently
precipitate premature convergence and local optima. To
counteract this, standard stochastic strategies such as Gaussian
random walk, Brownian motion, and Levy flight are often
integrated into optimization algorithms. These strategies
introduce controlled stochasticity, allowing the algorithm to
balance exploitation with exploration. By generating random
deviations, these methods keep the algorithm from becoming
stuck in suboptimal solutions and boost its overall performance.

Fig. 4. Pseudocode of the proposed algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

930 | P a g e

www.ijacsa.thesai.org

The paper proposes a dynamic random walk strategy to
enhance the HHO algorithm. The pseudocode of the proposed
algorithm is depicted in Fig. 4. The magnitude of the random
walk deviation decreases over time. This ensures a balance
between exploration (larger deviations in early iterations) and
exploitation (smaller deviations in later iterations). The random
walk is activated only when the fitness value of a hawk remains
unchanged compared to the previous iteration. This indicates
potential stagnation in the search process. The deviation is
calculated using a time-dependent formula involving a random
number and the present iteration relative to the maximum
number of iterations. The proposed random walk strategy can
be mathematically expressed using Eq. (19).

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (𝑐 × 𝑟𝑎𝑛𝑑 − 𝑐
2⁄) × cos⁡(𝜋 2⁄ × (𝑡 𝑇⁄) (19)

Where Deviation is the value added to the hawk's position,
c is a constant controlling the maximum deviation, rand is a
random number between 0 and 1, t is the ongoing iteration, and
T is the total number of iterations. Eq. (20) is used to model the
process.

𝑥𝑚(𝑖) = 𝑋(𝑖) + (𝑐 × 𝑟𝑎𝑛𝑑 −
𝑐

2
) × 𝑐𝑜𝑠 (

𝜋

2
× (

𝑡

𝑇
)2) ×

(𝑋(𝑖) − 𝑋𝑟𝑎𝑏𝑏𝑖𝑡) (20)

Experimental results indicate that a value of c equal to six
yielded optimal performance. Applying the random walk
strategy produces a novel position, denoted as Xm(i). A
subsequent greedy selection process, as formalized in Eq. (21),
determines the most suitable position for the ensuing iteration.

𝑋(𝑡 + 1) = {
𝑋𝑚(𝑡 + 1),⁡⁡⁡⁡𝑓(𝑋𝑚(𝑡 + 1)) < 𝑓(𝑋(𝑡 + 1))

𝑋(𝑡 + 1),⁡⁡⁡⁡⁡⁡⁡𝑓(𝑋𝑚(𝑡 + 1)) ≥ 𝑓(𝑋(𝑡 + 1))
 (21)

V. RESULTS

The proposed algorithm (EHHO) algorithm was simulated
using the CloudSim toolkit, which offers robust support for on-
demand resource provisioning and versatile features, including
multi-objective optimization, dynamic resource scaling,
application modeling, and cloud deployment simulation.
Kafka's built-in load-balancing mechanism was employed. To
evaluate EHHO's performance, it was compared against ALO,
GA, ACO, PSO, MGWO, and EMVO algorithms using metrics
such as execution time, cost, memory storage, and makespan.
Experimental parameters are detailed in Table III.

The platform selection for evaluating the EHHO algorithm,
including Kafka, Spark, Flink, and Storm, was driven by their
unique characteristics that align with the requirements of task
scheduling in cloud environments. Kafka was chosen for its
real-time reporting capabilities, enterprise-level security, and
efficient cloud monitoring, making it ideal for scenarios
requiring immediate feedback and load balancing. Spark's in-
memory computation and scalability enable high-speed
processing for large datasets, while Flink's event-driven
architecture supports dynamic and continuous task scheduling.
Storm, known for its low-latency processing, is particularly
suitable for time-critical scheduling tasks. These platforms
were selected to demonstrate EHHO's adaptability and
performance across workloads, real-time requirements, and

resource management conditions, ensuring comprehensive
evaluation in diverse cloud scenarios.

Tables IV and V show the execution time and cost results
for different algorithms and platforms. EHHO consistently
demonstrated superior performance, achieving the lowest
execution time (610 ms) and cost (60) on the Kafka platform.
Tables VI and VII summarize memory storage and makespan
results, with EHHO again exhibiting optimal performance,
recording minimum makespan values and memory
consumption across all platforms. To ensure a fair comparison,
all algorithms employed a maximum iteration of 100 and a
population size of 100. Specific parameter settings for each
algorithm are detailed below:

 EHO: alpha = 0.5, beta = 1, upper bound = 0.9, number
of clans = 10, set elitism = 2, lower bound = 0.3.

 MGWO and EMVO: number of appliances = 12,
coefficient vector = 1, TDR = 1, WEP = 0.2.

 PSO: maximum initial velocity = 15, minimum initial
velocity = 5, alpha = 0.8, beta = 0.8.

 ACO: time factor = 2, saving matrix factor = 2, visibility
coefficient = 3, pheromone concentration coefficient =
1.

 GA: mutation probability = 0.02, crossover probability
= 0.60, number of demes = 6.

 ALO: number of dimensions = 5, lower bound = 0.1,
upper bound = 0.8.

Kafka consistently outperforms other platforms regarding
cost, execution time, makespan, and memory storage for all
algorithms. Its real-time reporting capabilities, enterprise-level
security, efficient cloud monitoring, and superior processing
speed contributed to these results. Fig. 5 to 8 provide visual
representations of the comparative performance of the
algorithms as measured by cost, execution time, memory
storage, and makespan, respectively. The simulations validate
the superiority of the EHHO algorithm in optimizing resource
allocation and performance across various metrics and
platforms. Its ability to effectively balance workload and
esource utilization resulted in significant improvements
compared to traditional optimization algorithms.

TABLE III. SIMULATION PARAMETERS

Element Parameter Value

Task Task length 1000

 Task count 1000

VM Service provider count 5

 VM count 1000

 MIPS 500

 Bandwidth 500

 Processing element count 2

Datacenter Datacenter count 10

 Host count 2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

931 | P a g e

www.ijacsa.thesai.org

TABLE IV. SIMULATION RESULTS FOR COST

Platform EMVO MGWO PSO ACO GA ALO EHHO

Kafka 151 150 123 178 174 155 60

Spark 175 165 139 189 178 170 79

Flink 186 174 145 202 184 192 85

Storm 191 187 153 190 191 204 101

TABLE V. SIMULATION RESULTS FOR EXECUTION TIME

Platform EMVO MGWO PSO ACO GA ALO EHHO

Kafka 835 893 792 785 911 774 610

Spark 897 946 862 888 1080 803 649

Flink 906 956 874 901 1123 875 716

Storm 964 979 889 909 1201 895 727

TABLE VI. SIMULATION RESULTS FOR MEMORY USAGE

Platform EMVO MGWO PSO ACO GA ALO EHHO

Kafka 502 421 530 443 398 382 305

Spark 531 488 631 555 479 457 317

Flink 690 548 659 630 525 536 332

Storm 696 571 722 730 840 514 336

TABLE VII. SIMULATION RESULTS FOR MAKESPAN

Platform EMVO MGWO PSO ACO GA ALO EHHO

Kafka 109 120 140 124 210 240 52

Spark 121 146 164 142 231 243 55

Flink 140 156 175 185 275 275 82

Storm 143 187 184 191 281 286 94

Fig. 5. Cost comparison.

Fig. 6. Execution time comparison.

Fig. 7. Memory usage comparison.

Fig. 8. Makespan comparison.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

932 | P a g e

www.ijacsa.thesai.org

VI. DISCUSSION

The EHHO algorithm demonstrates significant
advancements in task scheduling within cloud computing
environments. Integrating a dynamic random walk strategy has
notably improved the algorithm's exploration and exploitation
power, leading to superior performance in various metrics
compared to other optimization algorithms. The experimental
findings reveal that EHHO consistently achieves lower
execution times, costs, memory usage, and makespan across
multiple platforms, including Kafka, Spark, Flink, and Storm.
These findings underscore the robustness and efficiency of
EHHO in optimizing resource allocation and handling complex
scheduling problems in cloud computing.

A key factor contributing to EHHO's success is its ability to
avoid premature convergence, a common issue in traditional
meta-heuristic algorithms. By incorporating stochastic
strategies such as Gaussian random walk, Brownian motion,
and Levy flight, EHHO maintains equilibrium between global
exploration and local exploitation. This balance ensures that the
algorithm can explore diverse solution spaces without falling
into a local optimum, thereby enhancing solution quality. The
dynamic adjustment of the random walk deviation over time
further refines this balance, enabling EHHO to effectively adapt
to different stages of the optimization process.

Moreover, the simulation results highlight the exceptional
functionality of the Kafka platform concerning makespan,
execution time, cost, and memory usage. Kafka's real-time
reporting capabilities, enterprise-level security, efficient cloud
monitoring, and superior processing speed contribute to these
outcomes. These characteristics make Kafka a suitable
environment for deploying EHHO, allowing it to fully leverage
its optimization potential. The comparative analysis with other
platforms reinforces the importance of selecting an appropriate
infrastructure to maximize the benefits of advanced
optimization algorithms like EHHO in cloud computing.

In summary, the EHHO algorithm effectively responds to
the complex task scheduling challenges in cloud computing. Its
enhanced exploration and exploitation mechanisms, coupled
with the optimal performance on platforms like Kafka, position
EHHO as a leading approach for efficient resource
management. Researchers could explore ways to improve the
EHHO algorithm, such as integrating additional stochastic
strategies or refining the random walk parameters, to achieve
even greater performance improvements. Additionally,
investigating the algorithm's scalability and applicability to
other optimization problems could expand its utility in broader
contexts.

The EHHO algorithm can seamlessly integrate with popular
cloud services such as AWS, Azure, and Google Cloud to
optimize task scheduling and resource management. By
leveraging these platforms' capabilities, EHHO can enhance the
efficiency of IaaS by dynamically allocating VMs and
managing compute resources. In PaaS, EHHO can streamline
application deployments by optimizing workload distribution
across scalable infrastructure. For SaaS, the algorithm ensures
reduced latency and cost-effective resource utilization,
improving overall service delivery. The ability of EHHO to

adapt to real-time cloud environments and balance workloads
makes it a crucial component for maximizing the performance
and scalability of cloud-based services, further solidifying its
relevance in modern cloud computing ecosystems.

Despite its promising performance in task scheduling, the
EHHO algorithm has certain constraints. Its reliance on
predefined parameters, such as random walk deviation and
iteration limits, may limit adaptability across varying real-time
scenarios and dynamic workloads. Additionally, while EHHO
demonstrates superior results on metrics like makespan, cost,
and memory usage, its scalability to handle significantly larger
task datasets or highly heterogeneous environments remains
untested. The simulations, primarily conducted using the Kafka
platform, suggest a dependency on specific infrastructure
capabilities such as real-time reporting and efficient
monitoring, raising concerns about performance consistency on
less advanced platforms. Furthermore, while the dynamic
random walk strategy improves exploration and exploitation,
fine-tuning these adjustments for broader applications remains
challenging. Addressing these constraints, particularly
scalability and infrastructure independence, will be critical for
maximizing EHHO's potential in diverse cloud environments.

VII. CONCLUSION

Effective task scheduling is paramount to the optimal
performance of cloud computing systems. Unlike traditional
computing environments, cloud-based task scheduling
necessitates considering diverse parameters, including
computational costs, processing capabilities, and task duration.
In this research, we introduced the EHHO algorithm to tackle
the complex challenge of task scheduling in cloud computing
environments. Leveraging the CloudSim toolkit for
simulations, EHHO demonstrated superior performance over
traditional algorithms like PSO, ACO, GA, ALO, MGWO, and
EMVO across critical metrics, including cost, execution time,
makespan, and memory storage. Integrating a random walk
approach significantly improved the algorithm's exploration
capabilities, effectively preventing premature convergence to
local optima and ensuring more efficient resource allocation.
With its robust load balancing, high security, real-time analysis,
and scalability, Kafka's platform further highlighted the
algorithm's efficiency. Our findings underscore EHHO's
potential for optimizing the operational efficiency of cloud
computing systems, making it a viable solution for better task
scheduling and resource management in diverse and dynamic
cloud environments.

Future research on the EHHO could include focusing on its
scalability and adaptability given real-time scheduling
scenarios in highly dynamic cloud environments. By
integrating adaptive random walk strategies, deviation
parameters can dynamically change depending on task
complexity and resource availability in real-time. The
following extension of EHHO for multi-cloud or hybrid cloud
infrastructures with cross-platform scheduling and resource
allocation would increase its applicability. Testing its
performance with more diverse and larger datasets and
optimization of computational efficiency for real-world
runtime applications may position EHHO as a more robust and
versatile solution to complex challenges in cloud computing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 1, 2025

933 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] B. Pourghebleh and N. J. Navimipour, "Data aggregation mechanisms in
the Internet of things: A systematic review of the literature and
recommendations for future research," Journal of Network and Computer
Applications, vol. 97, pp. 23-34, 2017, doi:
https://doi.org/10.1016/j.jnca.2017.08.006.

[2] M. Elrifaee, T. Zayed, E. Ali, and A. H. Ali, "IoT contributions to the
safety of construction sites: a comprehensive review of recent advances,
limitations, and suggestions for future directions," Internet of Things, p.
101387, 2024.

[3] V. Hayyolalam, B. Pourghebleh, A. A. P. Kazem, and A. Ghaffari,
"Exploring the state-of-the-art service composition approaches in cloud
manufacturing systems to enhance upcoming techniques," The
International Journal of Advanced Manufacturing Technology, vol. 105,
no. 1-4, pp. 471-498, 2019.

[4] Q. Li, J. Huang, S. Li, and C. Huang, "A Sustainable Data Encryption
Storage and Processing Framework via Edge Computing-Driven IoT,"
Engineering Letters, vol. 32, no. 7, 2024.

[5] V. Hayyolalam, B. Pourghebleh, M. R. Chehrehzad, and A. A. Pourhaji
Kazem, "Single‐ objective service composition methods in cloud
manufacturing systems: Recent techniques, classification, and future
trends," Concurrency and Computation: Practice and Experience, vol. 34,
no. 5, p. e6698, 2022.

[6] V. Hayyolalam, B. Pourghebleh, and A. A. Pourhaji Kazem, "Trust
management of services (TMoS): investigating the current mechanisms,"
Transactions on Emerging Telecommunications Technologies, vol. 31,
no. 10, p. e4063, 2020.

[7] A. Mohamed et al., "Software-defined networks for resource allocation in
cloud computing: A survey," Computer Networks, vol. 195, p. 108151,
2021.

[8] L. Rosa, L. Foschini, and A. Corradi, "Empowering Cloud Computing
With Network Acceleration: A Survey," IEEE Communications Surveys
& Tutorials, 2024.

[9] C. Wang and D. Wang, "Managing the integration of teaching resources
for college physical education using intelligent edge-cloud computing,"
Journal of Cloud Computing, vol. 12, no. 1, p. 82, 2023.

[10] R. Zolfaghari, A. Sahafi, A. M. Rahmani, and R. Rezaei, "Application of
virtual machine consolidation in cloud computing systems," Sustainable
Computing: Informatics and Systems, vol. 30, p. 100524, 2021.

[11] T. Sun, C. Ma, Z. Li, and K. Yang, "Cloud Computing-based Parallel
Deep Reinforcement Learning Energy Management Strategy for
Connected PHEVs," Engineering Letters, vol. 32, no. 6, 2024.

[12] M. D. Tezerjani, M. Khoshnazar, M. Tangestanizadeh, and Q. Yang, "A
Survey on Reinforcement Learning Applications in SLAM," arXiv
preprint arXiv:2408.14518, 2024, doi:
https://doi.org/10.48550/arXiv.2408.14518.

[13] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, "The
importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, pp. 1-24, 2021.

[14] S. E. Shukri, R. Al-Sayyed, A. Hudaib, and S. Mirjalili, "Enhanced multi-
verse optimizer for task scheduling in cloud computing environments,"
Expert Systems with Applications, vol. 168, p. 114230, 2021.

[15] G. Natesan and A. Chokkalingam, "Task scheduling in heterogeneous
cloud environment using mean grey wolf optimization algorithm," ICT
Express, vol. 5, no. 2, pp. 110-114, 2019.

[16] J. P. B. Mapetu, Z. Chen, and L. Kong, "Low-time complexity and low-
cost binary particle swarm optimization algorithm for task scheduling and
load balancing in cloud computing," Applied Intelligence, vol. 49, pp.
3308-3330, 2019.

[17] H. Liu, "Research on cloud computing adaptive task scheduling based on
ant colony algorithm," Optik, vol. 258, p. 168677, 2022.

[18] Z. Zhou, F. Li, H. Zhu, H. Xie, J. H. Abawajy, and M. U. Chowdhury,
"An improved genetic algorithm using greedy strategy toward task
scheduling optimization in cloud environments," Neural Computing and
Applications, vol. 32, pp. 1531-1541, 2020.

[19] L. Abualigah and A. Diabat, "A novel hybrid antlion optimization
algorithm for multi-objective task scheduling problems in cloud
computing environments," Cluster Computing, vol. 24, no. 1, pp. 205-
223, 2021.

[20] S. K. Panda, S. S. Nanda, and S. K. Bhoi, "A pair-based task scheduling
algorithm for cloud computing environment," Journal of King Saud
University-Computer and Information Sciences, vol. 34, no. 1, pp. 1434-
1445, 2022.

[21] P. Tamilarasu and G. Singaravel, "Quality of service aware improved
coati optimization algorithm for efficient task scheduling in cloud
computing environment," Journal of Engineering Research, 2023.

[22] L. Abualigah et al., "Improved Jaya Synergistic Swarm Optimization
Algorithm to Optimize Task Scheduling Problems in Cloud Computing,"
Sustainable Computing: Informatics and Systems, p. 101012, 2024.

[23] I. Behera and S. Sobhanayak, "HTSA: A novel hybrid task scheduling
algorithm for heterogeneous cloud computing environment," Simulation
Modelling Practice and Theory, vol. 137, p. 103014, 2024.

[24] M. Khademi Dehnavi, A. Broumandnia, M. Hosseini Shirvani, and I.
Ahanian, "A hybrid genetic-based task scheduling algorithm for cost-
efficient workflow execution in heterogeneous cloud computing
environment," Cluster Computing, pp. 1-26, 2024.

[25] R. Gong, D. Li, L. Hong, and N. Xie, "Task scheduling in cloud
computing environment based on enhanced marine predator algorithm,"
Cluster Computing, vol. 27, no. 1, pp. 1109-1123, 2024.

[26] P. Pabitha, K. Nivitha, C. Gunavathi, and B. Panjavarnam, "A chameleon
and remora search optimization algorithm for handling task scheduling
uncertainty problem in cloud computing," Sustainable Computing:
Informatics and Systems, vol. 41, p. 100944, 2024.

[27] V. Parthasaradi, A. Karunamurthy, C. Hussaian Basha, and S.
Senthilkumar, "Efficient Task Scheduling in Cloud Computing: A
Multiobjective Strategy Using Horse Herd–Squirrel Search Algorithm,"
International Transactions on Electrical Energy Systems, vol. 2024, no. 1,
p. 1444493, 2024.

