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Abstract—Amongst the most transformational technologies 

nowadays, cloud computing can provide resources such as CPU, 

memory, and storage over secure internet connections. Due to its 

flexibility and resource availability with guaranteed QoS, cloud 

computing allows comprehensive business and research 

adoptions. Despite the rapid development, resource management 

remains one of the significant challenges, especially handling task 

scheduling efficiently in this environment. Task scheduling 

strategically assigns tasks to available resources so that Quality of 

Service (QoS) metrics are effectively related to response time and 

throughput. This paper proposes an Enhanced Harris Hawks 

Optimization (EHHO) algorithm for scheduling cloud tasks to 

mitigate the common limitations found in existing algorithms. 

EHHO integrates a dynamic random walk strategy, enhancing 

exploration capabilities to avoid premature convergence and 

significantly improving scalability and resource allocation 

efficiency. Simulation outcomes reveal that EHHO minimizes 

makespan by up to 75%, memory usage by up to 60%, execution 

time by up to 39%, and cost by up to 66% compared to state-of-

the-art algorithms. These benefits demonstrate that EHHO can 

optimize resource allocation while being highly scalable and 

reliable. Consistent performance over various stacks such as 

Kafka, Spark, Flink, and Storm further evidences the superiority 

of EHHO in handling complex scheduling challenges in dynamic 

cloud computing environments. 
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Harris Hawks Optimization; resource allocation; quality of service 

I. INTRODUCTION 

The Internet of Things (IoT) symbolizes change whereby 
many devices, from simple sensors and actuators to various 
everyday objects, are connected via the Internet to 
communicate and share information [1]. Objects like sensors 
and actuators form communication grids in healthcare, 
manufacturing, and smart cities. However, with the growth of 
IoT applications, volumes of generated data are huge and 
require immense processing and colossal storage. More 
importantly, real-time analytics implies vast demand [2]. Thus, 
cloud computing has become the backbone of IoT systems for 
extendable resources and rugged data management capabilities 
beyond IoT devices [3, 4]. 

Cloud computing enables customers to use the services with 
the help of the Internet on a pay-per-usage basis [5]. Cloud 
services include within their ambit a broad range of services, 
namely Software as a Service (SaaS), Platform as a Service 
(Paas), Communication as a Service (CaaS), Data storage as a 
Service (DaaS), and Infrastructure as a Service (IaaS) [6]. 
These services allow cloud providers to provide utility-based 
resources whose usage supports diversified needs for IoT. 

The physical servers and switches in the backbone layer of 
cloud computing are operated and scaled by the cloud service 
provider effectively as per user requirements [7]. It efficiently 
allocates hardware resources at a blistering pace. In terms of 
software, the supervisor runs these hardware resources, a 
hypervisor, middleware, etc. [8]. The operating system 
implements hardware functionalities and develops user and 
application communication [9]. It allows the hypervisor to 
create Virtual Machines (VMs) on cloud servers with specified 
hardware configurations and software stacks [10]. This, in turn, 
enables a further increase in service availability because 
virtualization facilitates easy service migration even during 
hardware failures. It is also accompanied by a tremendous rise 
in hardware utilization compared to the non-virtualized 
environment [11]. Recent advancements in reinforcement 
learning applications, particularly in mobile robotics, have 
showcased its ability to enhance decision-making and resource 
management in dynamic environments. Similarly, 
reinforcement learning's adaptive capabilities, as demonstrated 
in SLAM tasks, highlight its potential for optimizing 
virtualization and scalability in cloud computing infrastructures 
[12]. 

The middleware arranges the running and interaction of 
tasks on cloud servers transparently. The three fundamental 
types of software infrastructure are PaaS, SaaS, and IaaS [13]. 
IaaS allows users to create multiple VMs on servers as needed, 
enhancing computational resource utilization. SaaS permits 
users to store and access unlimited amounts of data in a minute 
on remotely located servers. PaaS provides secure, reliable 
communication services and an application development 
platform accessible via APIs. Lastly, the application tier 
enables the user to use applications stored in the cloud through 
the Internet, allowing quick and easy access without installation 
or updates locally. 

Effective task scheduling is vital for managing resource 
allocation, execution time, and QoS in cloud-supported IoT 
environments. Scheduling can be classified into two types: 
static and dynamic approaches. In static scheduling, tasks are 
assigned to available machines based on a predefined strategy, 
whereas in dynamic scheduling, instantaneous conditions are 
considered to adjust resource allocations. Real-time scheduling 
techniques ensure priority tasks with tight timing constraints. 

Task scheduling in cloud computing is complex and an NP-
hard problem, directly influencing the system performance 
regarding resource utilization, response time, and energy 
consumption. In this regard, we propose an Enhanced Harris 
Hawks Optimization (EHHO) algorithm to optimize task 
scheduling problems in cloud environments. EHHO features a 
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novel dynamic random walk to reinforce exploration and avoid 
premature convergence issues, enhancing scalability, resource 
allocation, and energy management. 

By integrating these enhancements, EHHO provides a high-
performance solution for complex scheduling requirements in 
cloud-supported IoT systems, contributing to more efficient, 
reliable, and cost-effective service delivery. The following 
sections detail EHHO’s methodology, implementation, and 
performance advantages over existing algorithms, underscoring 
its potential as a leading approach to resource management in 
cloud computing. 

The remainder of this paper is arranged as follows: Section 
2 discusses related research and highlights gaps in existing 
scheduling approaches. Section 3 presents the problem 
statement and explains the challenges of cloud task scheduling. 
Section 4 presents the proposed algorithm. Section 5 
summarizes the experimental results and performance analysis. 
Section 6 discusses the practical implications and challenges. 
Finally, Section 7 concludes the paper and suggests future 
directions. 

II. RELATED WORK 

Shukri, et al. [14] formulated an Enhanced Multi-Verse 
Optimizer (EMVO) to optimize task scheduling in cloud 
computing contexts. The developed algorithm incorporates a 
new mechanism to reserve the most optimal solution from each 
iteration and inject it back into the population after a predefined 
interval to leverage better exploration and exploitation 
capabilities. The proposed approach minimizes task execution 
time and considers factors like task length, cost, and power 
consumption. The combination of local and global search and 
the core components of MVO has caused EMVO to overcome 
the weaknesses inherent in traditional task scheduling 
algorithms. Comparisons with the original Particle Swarm 
Optimization (PSO) and MVO have revealed the efficiency of 
the proposed EMVO in decreasing the makespan while 
improving resource utilization. 

Natesan and Chokkalingam [15] developed a new Mean 
Grey Wolf Optimization (MGWO) algorithm to solve cloud 
computing scheduling issues. The study aims to optimize 
energy consumption. MGWO performance was evaluated using 
the Cloudsim toolkit under baseline workload conditions. From 
the simulation results, it could be revealed that MGWO 
substantially outperforms competing algorithms in optimizing 
these crucial performance metrics. 

Mapetu, et al. [16] proposed a new binary PSO algorithm to 
cope with cloud computing load and task scheduling issues. The 
suggested technique embraces a formula that minimizes the 
overall difference in execution time between different VMs 
while keeping some optimization criteria. A dedicated particle 
position updating strategy was adopted for enhanced load 
balancing. The numerical evidence verifies that the algorithm 
performs better than the previous meta-heuristic and heuristic 
approaches for optimizing load balancing and task scheduling. 

Liu [17] developed an effective task scheduling approach 
using an adaptive Ant Colony Optimization (ACO) algorithm 
in cloud computing contexts. Pheromone adaptation is 
introduced into the procedure to accelerate convergence; thus, 

prematurity can be reduced. In the cloud environment, a multi-
objective optimization function, which minimizes cost and time 
for task execution, reduces load imbalance and maximizes 
resource utilization, is implemented by optimized ACO. It has 
been proved by comparison analysis that, compared with 
traditional ACO, the proposed approach can always guarantee 
better performance in solution quality, convergence speed, and 
overall system efficiency, especially in handling large-scale 
task scheduling challenges. 

Zhou, et al. [18] presented a hybrid task scheduling method 
based on an improved Genetic Algorithm (GA) combined with 
a greedy algorithm. This algorithm was designed to converge 
on optimal solutions in lower iteration numbers of the search 
process than compared approaches. It aimed at response time, 
completion time, and QoS performance metrics. Experimental 
results demonstrate that hybrid GA performs much better than 
existing algorithms in task-scheduling optimization than 
existing algorithms. 

Abualigah and Diabat [19] proposed, incorporating the 
combination of Ant Lion Optimization (ALO) adapted to the 
concept of Differential Evolution (DE) to address many-
objective task-scheduling issues in cloud computing settings. 
Elite-based DE enhanced ALO's exploitation and exploration 
capability, saving it from premature convergence. The 
effectiveness of the suggested algorithm has been tested on 
modeled and real-world datasets using the Cloudsim simulation 
environment. Additionally, experiments proved that the hybrid 
ALO method outperformed the other optimization algorithms 
regarding continuous convergence rate, especially for large-
scale scheduling problems. 

Panda, et al. [20] introduced a new multi-paired task 
scheduling algorithm for cloud computing by utilizing the 
Hungarian algorithm. With this approach, the logic efficiently 
resolves unbalanced workloads based on the pairing strategy for 
task scheduling. The algorithm outperformed the Hungarian 
Algorithm with Converse Lease Time, the Hungarian 
Algorithm with Lease Time, and First-Come-First-Served 
baselines in large-scale simulations. 

Tamilarasu and Singaravel [21] proposed an Improved 
Coati Optimization Algorithm (ICOA) for critical challenges in 
cloud computing, namely lengthy scheduling times, excessive 
costs, and unbalanced VM loads. A task distribution and 
scheduling scheme involving VMs, time, and cost, was 
developed. A dual-objective fitness function is employed to 
optimize resource utilization and makespan. In the ICOA, an 
exploitation strategy has been incorporated to prevent the 
solution from converging prematurely and, hence, to enhance 
local search capabilities. Simulation results demonstrated the 
superiority of the ICOA over conventional metaheuristic task 
scheduling algorithms at improving makespan, success rate, 
turnaround efficiency, and overall system availability. 

Abualigah, et al. [22] offered an enhanced hybrid 
optimization algorithm for cloud task scheduling, which 
combines Jaya algorithm strengths with Synergical Swarm 
Optimization (SSO) and a Levy flight. This new approach 
efficiently balances exploration and exploitation to accelerate 
and prevent premature convergence. In integrating the best of 
Jaya and SSO, this algorithm uses their complementary 
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analytics capabilities to drive an optimal assignment of tasks 
and allocate resources. The experimental investigation against 
existing methodologies confirmed the algorithm's superior 
scalability, convergence speed, solution quality, and 
performance. 

Behera and Sobhanayak [23] proposed a hybrid meta-
heuristic approach using GA and Gravitational Search 
Algorithm (GSA) for multi-target optimization of task 
scheduling in cloud computing. The authors addressed the NP-
hard challenge of efficiently managing an exponentially 
growing search space while enhancing system performance. 
The proposed approach leveraged strengths from GA and GSA 
in improving the Quality of Service (QoS) measures: energy 
consumption, resource utilization, and makespan. As tested 
under CloudSim with standard, real-time, and artificial 
workloads, it improved degree of imbalance by about 12%, 
resource utilization by 9%, response time by 7%, and energy 
consumption by 6%. 

Khademi Dehnavi, et al. [24] proposed a hybrid GA for 
efficient and dependable task scheduling across heterogeneous 
cloud computing environments. The method models an NP-
hard optimization problem in scheduling to minimize costs, 
time, and failures. HGA introduces two novel mutation and 
crossover operators in global search. It also implements a 
localized "Walking around" step to improve solutions. 
Simulation runs on twelve scenarios revealed significant cost 
reductions compared to state-of-the-art techniques: a 14.1% 

reduction in makespan, an 18.7% monetary cost reduction, and 
a 42.3% decrease in failure cost. 

Gong, et al. [25] introduced the Enhanced Marine Predator 
Algorithm (EMPA) for the task scheduling challenges in the 
cloud computing environment. This approach incorporates the 
operators of the Whale Optimization Algorithm (WOA) 
operators, nonlinear inertia weight coefficients, and Golden 
Sine strategies to minimize makespan while optimizing 
resource utilization. Simulation runs using synthetic and GoCJ 
datasets showed that EMPA outperformed GWO, SCA, PSO, 
and WOA in makespan, resource utilization, and degree of 
imbalance, positioning EMPA as a very effective scheduling 
solution in cloud environments. 

Pabitha, et al. [26] suggested a new scheduling algorithm, 
the Chameleon and Remora Search Optimization Algorithm 
(CRSOA), to tackle the task-scheduling issues arising in cloud 
environments due to uncertain user demands. In this proposed 
technique, the Chameleon Search Algorithm (CSA) is 
combined with the Remora Search Optimization Algorithm 
(RSOA) to deliver an efficient resource utilization approach 
that takes into consideration parameters like MIPS and network 
bandwidth to ensure load balancing while imposing minimal 
scheduling cost and, at the same time, reduced makespan. The 
experimental results show that the makespan reduction 
achieved by CRSOA is 18.9%, cost reduction is 22.1%, and the 
improvement in load balancing is 20.5% against baseline 
metaheuristic algorithms. 

TABLE I.  AN OVERVIEW OF RECENT TASK SCHEDULING ALGORITHMS FOR CLOUD COMPUTING 

References Algorithm Pros Cons 

[14] 
Enhanced multi-verse 

optimizer 

Efficiently reduces makespan and improves resource 

utilization through enhanced exploration and 

exploitation mechanisms. 

Limited focus on real-time dynamic scheduling 

challenges. 

[15] Mean grey wolf optimization 
Optimizes energy consumption and makespan 

effectively under baseline workloads. 

Does not account for task heterogeneity or 

scalability in large datasets. 

[16] 
Binary particle swarm 
optimization 

Superior load balancing with tailored particle updating 
strategies reduces execution time variance. 

Lacks emphasis on cost-efficiency and energy 
consumption. 

[17] 
Adaptive ant colony 

optimization 

Enhanced convergence rate and solution quality; 

minimized cost, execution time, and load imbalance. 

Limited applicability for large-scale dynamic task 

scheduling. 

[18] 
Hybrid genetic algorithm with 
greedy 

Faster convergence with improved QoS metrics such 
as response time and completion time. 

Focuses primarily on search process efficiency, with 
limited exploration capabilities. 

[19] 
Ant lion optimization with 

differential evolution 

Enhanced convergence rates for many-objective 

problems; robust against premature convergence. 

Complexity increases the computational costs for 

large-scale scheduling tasks. 

[20] Multi-paired task scheduling 
Effectively handles unbalanced workloads; superior in 

minimizing layover times. 

Limited applicability to multi-objective or 

heterogeneous scheduling scenarios. 

[21] 
Improved coati optimization 

algorithm 

Dual-objective optimization improves makespan and 

system availability and prevents premature 
convergence. 

No explicit consideration of energy efficiency 

metrics. 

[22] 
Jaya with synergistic swarm 

optimization 

Balances exploration and exploitation; achieves high 

solution quality and convergence speed. 

Performance under real-time or uncertain 

environments is not evaluated. 

[23] 
Genetic algorithm and 

gravitational search algorithm 

Improves energy consumption, makespan, and 

resource utilization; suitable for QoS optimization. 

Focus on standard workloads with limited 

scalability for heterogeneous tasks. 

[24] Hybrid genetic algorithm 
Cost-efficient with significant reductions in makespan, 

monetary cost, and failure cost. 

Limited application to real-time dynamic and 

heterogeneous scheduling problems. 

[25] 
Enhanced marine predator 
algorithm 

Superior makespan reduction, resource utilization, and 
imbalance handling. 

Lack of scalability for highly complex or real-time 
cloud scheduling tasks. 

[26] 
Chameleon and remora search 

optimization algorithm 

Effectively minimizes scheduling costs and makespan 

under uncertain user demands. 

High computational complexity for large-scale 

environments. 

[27] 
Horse herd–squirrel search 
algorithm 

Demonstrates significant advantages in cost, energy, 
and makespan reduction. 

Limited evaluation under multi-cloud or distributed 
cloud environments. 
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Parthasaradi, et al. [27] proposed a hybrid meta-heuristic for 
cloud computing task scheduling: the Horse Herd–Squirrel 
Search Algorithm (HO–SSA). This protocol combined SSA 
and the Horse Herd Optimization Algorithm (HOA) to increase 
cost efficiency, energy utilization, and scheduling performance. 
Furthermore, the proposed HO–SSA showed significant 
superiority and reduced up to 22.2% regarding tasks' cost 
scheduling costs, 9.68% regarding energy consumption, and 
makespan compared with SSA, HOA, and TSA. 

As summarized in Table I, recent task-scheduling 
algorithms excel at optimizing specific metrics such as 
makespan, resource utilization, or cost. However, deficiencies 
remain in addressing scalability, real-time scheduling, and 
energy efficiency in heterogeneous and dynamic cloud 
environments. Although algorithms like EMPA have proven 
efficient in resource utilization, and huge cost reductions have 
been achieved in HO-SSA, few have provided a balanced 
approach to large-scale and multi-cloud comprehensive 
optimization problems for energy efficiency, load balancing, 

and QoS. Furthermore, most of those methods lack real-time 
adaptability to uncertain user demands. Under such gaps, the 
proposed algorithm operates under an integrated dynamic 
exploration and exploitation strategy, aiming for optimal 
resource allocation scalability while enhancing performance in 
various cloud environments. 

III. PROBLEM STATEMENT 

Scheduling tasks in cloud computing environments is 
critical for effective and efficient execution, whereby resources 
are assigned according to user requests. Multiple layered 
architectures have been developed in cloud computing to offer 
these utility-based services. Fig. 1 depicts this kind of layered 
architecture. Each layer addresses specific functionalities, from 
data storage and processing to application development and 
communication support, and enables IoT applications to 
operate efficiently without major investments in local 
infrastructure. Table II provides a list of abbreviations and 
symbols used throughout the paper. 

TABLE II.  SYMBOLS AND DEFINITIONS 

Symbol Description Symbol Description 

T Cloud tasks cij Binary variable indicating task 𝑖 assigned to virtual machine 𝑗 

V Cloud virtual machines xij Association between a virtual machine and a task 

n Total number of tasks LB Lower bound of the solution space 

m Total number of virtual machines CT Convergence time 

VR Collection of virtual machine resources J Randomization factor 

MIPS Millions of instructions per second capability of a CPU Xm(i) Updated position after applying random walk strategy 

CUj Compute units capacity of the 𝑗𝑡ℎ virtual machine O(x) Objective function for optimization 𝑥 

Li Task duration for the ith task x(t+1) Position of a hawk in the next iteration 

ETij Execution time for the ith task on the jth virtual machine xrandom(t) Random position of a hawk 

BTj Busy period of the jth virtual machine xrabbit(t) Position of the prey 

E Rabbit's escaping energy xmean(t) Average position of the hawk population 

t Current iteration number UB Upper bound of the solution space 

Max_iter Maximum number of iterations c Random walk deviation control constant 

Δx(t) Difference between prey and hawk positions rand Random number between 0 and 1 

 

Fig. 1. Multi-layer design of cloud computing. 
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Fig. 2. Proposed framework for task scheduling. 

The quality of the service will be directly affected by the 
following scheduling algorithm, affecting parameters such as 
execution time and operational costs. The existing frameworks 
comprise a cloud broker and Resource Information Servers 
(RIS) to ensure optimum scheduling and provide runtime 
information about resource availability and VM capabilities. 
While the above systems consolidate data from physical and 
virtualized infrastructures, significant research gaps exist in 
scheduling. A schematic of this framework is provided in 
Fig. 2. 

Most traditional approaches fail to balance exploration and 
exploitation and thus lead to premature convergence or 
suboptimal resource allocation in a dynamic, real-time 
environment. In addition, most methodologies cannot adapt to 
heterogeneous workloads or consider uncertain factors such as 
fluctuating resource demand and VM performance. Other 
multi-objective optimizations, like minimal makespan, energy 
consumption, cost, and maximal resource utilization, have also 
been inadequately performed by most current strategies. 

These gaps highlight the need for advanced algorithms 
capable of dynamic decision-making, enhanced exploration of 
solution spaces, and robust handling of diverse workloads. The 
EHHO algorithm addresses these challenges by integrating 
dynamic random walk strategies and stochastic adjustments to 
produce superior task scheduling performance, ensuring 
scalability and efficiency in complex cloud environments. 

Cloud data centers feature an extensive range of actual 
machines containing functional VMs. The VMs function as the 
underlying infrastructure for the execution of user tasks. Tasks 
assigned to a particular VM are based on the task's 
requirements. Two alternative concepts of scheduling are 
common inside the cloud environment. The initial step involves 
identifying and allocating servers specifically intended for 
supporting VMs. The specific scheduling variant significantly 
enhances data center productivity, reduces power usage, and 
optimizes resource utilization. The impact of such a 
phenomenon is notably significant on cloud service vendors' 
operational activities. 

On the other hand, the second classification of scheduling is 
concerned with assigning VMs for task execution. It is common 

practice to divide large tasks into separate components and 
assign each one to a separate VM for execution under the 
virtualization setup. In the present scenario, the choice of VMs 
is contingent upon users' particular service requirements and 
the current condition of VMs. The implications of this specific 
scheduling method substantially affect the duration of job 
completion and the financial expenditure related to task 
execution. The scheduling paradigm exhibits a notable 
resonance among users, particularly concerning service quality 
and budgetary factors. 

The responsibility for coordinating user tasks onto VMs 
based on user requirements and QoS factors usually falls on the 
data center broker and the cloud information service in a cloud 
computing environment. They are crucial in ensuring that user 
tasks are allocated to suitable VMs that meet the desired 
performance, resource availability, and other criteria. This 
coordination helps optimize resource utilization and deliver 
efficient cloud services. Users prefer minimizing costs 
associated with service expenses, whereas cloud providers 
strive to reduce energy consumption while maintaining optimal 
server performance and capacity utilization. These issues arise 
from the direct impact of these elements on the time of task 
performance. 

As the duration of a task lengthens, there is a corresponding 
rise in cost expenditures and energy use. Therefore, the primary 
focus of this scholarly inquiry is the reduction of makespan. As 
has been previously analyzed, the complex issue of task 
scheduling is classified as one of the NP-hard issues. Despite 
the notable effectiveness of evolutionary algorithms in 
addressing NP-hard problems, their convergence rate tends to 
be prolonged due to the exhaustive examination of all probable, 
plausible solutions. As a result, the prompt achievement of 
convergence is regarded as a subordinate goal in this research. 
Given the presence of m VMs and n tasks within the 
environment, a set of tasks (T) and VMs (V) can be expressed 
by Eq. (1) and (2). 

𝑇 = {𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛}                           (1) 

𝑉 = {𝑣1, 𝑣2, 𝑣, … , 𝑣𝑚}                          (2) 
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The assignment of these tasks to VMs produces a significant 
number of potential patterns, which can be expressed as nm 
possible scenarios. Suppose VR represents a collection of VM 
resources, indicated as VR = (vr1, vr2, vr3, ..., vrk). These 
features include the central processing unit's (CPU) capability 
to execute Millions of Instructions Per Second (MIPS), the 
availability of bandwidth, the capacity of Random Access 
Memory (RAM), and the capacity of storage. The task 
completion duration depends on the specific allocation of 
resources to the selected VMs. Cloud service providers utilize 
specific measurements known as Compute Units (CUs) to 
measure the capacity of VMs. For example, a solitary Amazon 
CU possesses processing capabilities that align with a 
frequency range of up to 1.2 GHz, similar to an Xeon and 
Opteron processor. The calculation of the duration of task 
execution and the projected operational expenditure for the 
workflow depends on CUs. Therefore, the execution time for 
the tth task is given in the form of Eq. (3). 

𝐸𝑇𝑖𝑗 =
𝐿𝑖

𝐶𝑈𝑗
                                       (3) 

Where 𝑖 and 𝑗 represent indices within integer numbers sets 
ranging from 1 to 𝑛 and 1 to 𝑚, respectively. Here, 𝐶𝑈𝑗  
corresponds to the computational unit associated with the 𝑗th 
VM, whereas 𝐿𝑖 signifies the execution time of the 𝑖th task. The 
active time of a VM is defined as the interval during which tasks 
are being processed on the VM. Specifically, the phase of 
intense utilization throughout the active time of the 𝑗th VM is 
represented by Eq. (4). 

𝐵𝑇𝑗 = ∑ 𝐸𝑇𝑖𝑗 × 𝑐𝑖𝑗
𝑛
𝑖=1                             (4) 

𝑐𝑖𝑗 is limited to binary values, 0 or 1, 𝑥𝑖𝑗 represents the 
relationship between tasks and VMs, where 1 implies that task 
𝑡𝑖 is allocated to the 𝑗th VM. Since VMs operate concurrently, 
the workflow's overall duration, or makespan, is calculated by 
the most prolonged time any single VM remains occupied. The 
makespan can be expressed using Eq. (5). 

𝑀 = max⁡(𝐵𝑇𝑗)                               (5) 

Evolutionary algorithms aim to find the optimal solution by 
systematically navigating the problem domain. The time 
needed for the algorithm to converge depends on the solution 
space properties and the number of iterations executed. As the 
solution space expands, the convergence time increases. This 
relationship between convergence time and the solution space 
size can be expressed mathematically by Eq. (6). 

𝐶𝑇 ∝ (𝑙𝑥, 𝑘)                               (6) 

𝐶𝑇 refers to the convergence time, k denotes the number of 
iterations necessary to identify an optimal solution, and 𝑙𝑥 
represents the length of the optimal solution 𝑥,. The objective 
function 𝑂, used to determine the solution 𝑥, can be formulated 
based on Eq. (3) and (4) in form of Eq. (7). 

𝑂(𝑥) = min(𝑀) ,min⁡(𝐶𝑇)                  (7) 

IV. PROPOSED METHOD 

Harris Hawk cooperative hunting and tracking procedures 
inspire the HHO algorithm. These birds employ strategic tactics 
of surprise jumps and seven killings to capture their prey. In 

cooperative attacks, some hawks coordinate in pursuit of a 
rabbit that has exposed itself after revealing its whereabouts for 
pursuit and quick capture. With hunting, however, there would 
be successive quick dives next to the prey, based on how it 
would react and the chance of its fleeing. Harris's hawks have 
various hunting techniques under their wings, each for different 
circumstances and different maneuvers of prey to evade them. 
If the top hawk in a hunting activity fails to track the rabbits, 
then another member of the team should replace that hawk and 
foil possible escape. It is here that the rabbit, once the hunt 
starts, cannot regain its defense mechanism, and the team's 
combined effort prevents it from escaping. The most 
experienced hawk makes the final catch of exhausted prey to 
share among the team members. 

 
Fig. 3. HHO steps. 

Fig. 3 visually represents the different phases of the HHO 
algorithm and reflects hawk predatory behavior: locating, 
circling, and ultimately capturing prey. HHO's mathematical 
formulation is structured accordingly, including the 
exploration, transition, and exploitation phases. Within this 
conceptual framework, each Harris's hawk symbolizes a 
possible solution to a particular problem, while the target prey 
symbolizes the ideal solution to be identified. Falcons use two 
exploration strategies to find prey. In the first strategy, hawks 
choose locations according to other hawks' positions and prey 
locations. In the second tactic, hawks sit randomly on tall trees. 
Eq. (8) mathematically models these two exploration methods 
with equal probability and uses random numbers to simulate 
their occurrence. 

𝑥(𝑡 + 1) =

{

𝑥𝑟𝑎𝑛𝑑𝑜𝑚(𝑡) − 𝑟1|𝑥𝑟𝑎𝑛𝑑𝑜𝑚(𝑡) − 2𝑟2𝑥|⁡⁡⁡⁡⁡⁡⁡𝑞 ≥ 0.5⁡

𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥𝑚𝑒𝑎𝑛(𝑡) −

𝑟3(𝐿𝐵 + 𝑟4(𝑈𝐵 − 𝐿𝐵))⁡⁡⁡𝑞 < 0.5

 (8) 

Eq. (9) calculates the average position of the hawk 
population. The algorithm dynamically transitions between 
exploration and exploitation phases based on a metric termed 
'rabbit energy,' defined by Eq. (10). When the rabbit's escaping 
energy |𝐸| exceeds 1, the hawks engage in a more extensive 
exploration of the search space; otherwise, the algorithm 
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transitions to the exploitation phase. Eq. (11) to (14) establish 
whether the hawks execute a soft siege or a hard siege, 
depending on the rabbit's energy level and its likelihood of 
escape. In a soft siege, the hawks simulate the rabbit's 
successful escape by performing repetitive diving maneuvers. 
Conversely, a hard siege employs a distinct computational 
strategy to model the scenario. 

𝑥𝑚𝑒𝑎𝑛(𝑡) =
1

𝑁
∑ 𝑥𝑖(𝑡)
𝑁
𝑖=1                         (9) 

𝐸 = 2𝐸0 (1 −
𝑡

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
)                      (10) 

𝑥(𝑡 + 1) = ∆𝑥(𝑡) − 𝐸|𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡)          (11) 

∆𝑥(𝑡) = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡)                    (12) 

𝐽 = 2(1 − 𝑟𝑎𝑛𝑑𝑜𝑚)                      (13) 

𝑥(𝑡 + 1) = 𝑥(𝑡) − 𝐸|∆𝑥(𝑡)|                 (14) 

Eq. (15) to (18) regulate the rapid dives employed during 
the soft siege, employing Lévy movements to simulate the 
prey's evasive behavior. Eq. (15) and (16) mathematically 
model the hawks' actions during the diving phase. 
Subsequently, Eq. (17) and (18) define the characteristics of the 

final rapid dives performed during the soft siege and the 
associated factors, k and z, utilized throughout the hard siege 
phase. 

𝑘 = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡)|             (15) 

𝑧 = 𝑘 + 𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑐𝑡𝑜𝑟. 𝐿(𝑑𝑖𝑚)                  (16) 

𝑥(𝑡 + 1) = {
𝑘⁡⁡⁡𝑖𝑓⁡⁡⁡⁡𝑓(𝑘) < 𝑓(𝑥(𝑡))

𝑧⁡⁡⁡𝑖𝑓⁡⁡⁡𝑓(𝑧) < 𝑓(𝑥(𝑡))
               (17) 

𝑘 = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝐸|𝐽. 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥𝑚𝑒𝑎𝑛(𝑡)|         (18) 

The HHO algorithm incorporates four pursuit strategies 
during the exploitation phase to enhance exploration 
capabilities. While heightened exploration is beneficial in 
identifying diverse solution spaces, it can inadvertently 
precipitate premature convergence and local optima. To 
counteract this, standard stochastic strategies such as Gaussian 
random walk, Brownian motion, and Levy flight are often 
integrated into optimization algorithms. These strategies 
introduce controlled stochasticity, allowing the algorithm to 
balance exploitation with exploration. By generating random 
deviations, these methods keep the algorithm from becoming 
stuck in suboptimal solutions and boost its overall performance. 

 
Fig. 4. Pseudocode of the proposed algorithm. 
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The paper proposes a dynamic random walk strategy to 
enhance the HHO algorithm. The pseudocode of the proposed 
algorithm is depicted in Fig. 4. The magnitude of the random 
walk deviation decreases over time. This ensures a balance 
between exploration (larger deviations in early iterations) and 
exploitation (smaller deviations in later iterations). The random 
walk is activated only when the fitness value of a hawk remains 
unchanged compared to the previous iteration. This indicates 
potential stagnation in the search process. The deviation is 
calculated using a time-dependent formula involving a random 
number and the present iteration relative to the maximum 
number of iterations. The proposed random walk strategy can 
be mathematically expressed using Eq. (19). 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (𝑐 × 𝑟𝑎𝑛𝑑 − 𝑐
2⁄ ) × cos⁡(𝜋 2⁄ × (𝑡 𝑇⁄ ) (19) 

Where Deviation is the value added to the hawk's position, 
c is a constant controlling the maximum deviation, rand is a 
random number between 0 and 1, t is the ongoing iteration, and 
T is the total number of iterations. Eq. (20) is used to model the 
process. 

𝑥𝑚(𝑖) = 𝑋(𝑖) + (𝑐 × 𝑟𝑎𝑛𝑑 −
𝑐

2
) × 𝑐𝑜𝑠 (

𝜋

2
× (

𝑡

𝑇
)2) ×

(𝑋(𝑖) − 𝑋𝑟𝑎𝑏𝑏𝑖𝑡) (20) 

Experimental results indicate that a value of c equal to six 
yielded optimal performance. Applying the random walk 
strategy produces a novel position, denoted as Xm(i). A 
subsequent greedy selection process, as formalized in Eq. (21), 
determines the most suitable position for the ensuing iteration. 

𝑋(𝑡 + 1) = {
𝑋𝑚(𝑡 + 1),⁡⁡⁡⁡𝑓(𝑋𝑚(𝑡 + 1)) < 𝑓(𝑋(𝑡 + 1))

𝑋(𝑡 + 1),⁡⁡⁡⁡⁡⁡⁡𝑓(𝑋𝑚(𝑡 + 1)) ≥ 𝑓(𝑋(𝑡 + 1))
 (21) 

V. RESULTS 

The proposed algorithm (EHHO) algorithm was simulated 
using the CloudSim toolkit, which offers robust support for on-
demand resource provisioning and versatile features, including 
multi-objective optimization, dynamic resource scaling, 
application modeling, and cloud deployment simulation. 
Kafka's built-in load-balancing mechanism was employed. To 
evaluate EHHO's performance, it was compared against ALO, 
GA, ACO, PSO, MGWO, and EMVO algorithms using metrics 
such as execution time, cost, memory storage, and makespan. 
Experimental parameters are detailed in Table III. 

The platform selection for evaluating the EHHO algorithm, 
including Kafka, Spark, Flink, and Storm, was driven by their 
unique characteristics that align with the requirements of task 
scheduling in cloud environments. Kafka was chosen for its 
real-time reporting capabilities, enterprise-level security, and 
efficient cloud monitoring, making it ideal for scenarios 
requiring immediate feedback and load balancing. Spark's in-
memory computation and scalability enable high-speed 
processing for large datasets, while Flink's event-driven 
architecture supports dynamic and continuous task scheduling. 
Storm, known for its low-latency processing, is particularly 
suitable for time-critical scheduling tasks. These platforms 
were selected to demonstrate EHHO's adaptability and 
performance across workloads, real-time requirements, and 

resource management conditions, ensuring comprehensive 
evaluation in diverse cloud scenarios. 

Tables IV and V show the execution time and cost results 
for different algorithms and platforms. EHHO consistently 
demonstrated superior performance, achieving the lowest 
execution time (610 ms) and cost (60) on the Kafka platform. 
Tables VI and VII summarize memory storage and makespan 
results, with EHHO again exhibiting optimal performance, 
recording minimum makespan values and memory 
consumption across all platforms. To ensure a fair comparison, 
all algorithms employed a maximum iteration of 100 and a 
population size of 100. Specific parameter settings for each 
algorithm are detailed below: 

 EHO: alpha = 0.5, beta = 1, upper bound = 0.9, number 
of clans = 10, set elitism = 2, lower bound = 0.3. 

 MGWO and EMVO: number of appliances = 12, 
coefficient vector = 1, TDR = 1, WEP = 0.2. 

 PSO: maximum initial velocity = 15, minimum initial 
velocity = 5, alpha = 0.8, beta = 0.8. 

 ACO: time factor = 2, saving matrix factor = 2, visibility 
coefficient = 3, pheromone concentration coefficient = 
1. 

 GA: mutation probability = 0.02, crossover probability 
= 0.60, number of demes = 6. 

 ALO: number of dimensions = 5, lower bound = 0.1, 
upper bound = 0.8. 

Kafka consistently outperforms other platforms regarding 
cost, execution time, makespan, and memory storage for all 
algorithms. Its real-time reporting capabilities, enterprise-level 
security, efficient cloud monitoring, and superior processing 
speed contributed to these results. Fig. 5 to 8 provide visual 
representations of the comparative performance of the 
algorithms as measured by cost, execution time, memory 
storage, and makespan, respectively. The simulations validate 
the superiority of the EHHO algorithm in optimizing resource 
allocation and performance across various metrics and 
platforms. Its ability to effectively balance workload and 
esource utilization resulted in significant improvements 
compared to traditional optimization algorithms. 

TABLE III.  SIMULATION PARAMETERS 

Element Parameter Value 

Task Task length 1000 

 Task count 1000 

VM Service provider count 5 

 VM count 1000 

 MIPS 500 

 Bandwidth 500 

 Processing element count 2 

Datacenter Datacenter count 10 

 Host count 2 
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TABLE IV.  SIMULATION RESULTS FOR COST 

Platform EMVO MGWO PSO ACO GA ALO EHHO 

Kafka 151 150 123 178 174 155 60 

Spark 175 165 139 189 178 170 79 

Flink 186 174 145 202 184 192 85 

Storm 191 187 153 190 191 204 101 

TABLE V.  SIMULATION RESULTS FOR EXECUTION TIME 

Platform EMVO MGWO PSO ACO GA ALO EHHO 

Kafka 835 893 792 785 911 774 610 

Spark 897 946 862 888 1080 803 649 

Flink 906 956 874 901 1123 875 716 

Storm 964 979 889 909 1201 895 727 

TABLE VI.  SIMULATION RESULTS FOR MEMORY USAGE 

Platform EMVO MGWO PSO ACO GA ALO EHHO 

Kafka 502 421 530 443 398 382 305 

Spark 531 488 631 555 479 457 317 

Flink 690 548 659 630 525 536 332 

Storm 696 571 722 730 840 514 336 

TABLE VII.  SIMULATION RESULTS FOR MAKESPAN 

Platform EMVO MGWO PSO ACO GA ALO EHHO 

Kafka 109 120 140 124 210 240 52 

Spark 121 146 164 142 231 243 55 

Flink 140 156 175 185 275 275 82 

Storm 143 187 184 191 281 286 94 
 

 

Fig. 5. Cost comparison. 

 

Fig. 6. Execution time comparison. 

 

Fig. 7. Memory usage comparison. 

 

Fig. 8. Makespan comparison. 
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VI. DISCUSSION 

The EHHO algorithm demonstrates significant 
advancements in task scheduling within cloud computing 
environments. Integrating a dynamic random walk strategy has 
notably improved the algorithm's exploration and exploitation 
power, leading to superior performance in various metrics 
compared to other optimization algorithms. The experimental 
findings reveal that EHHO consistently achieves lower 
execution times, costs, memory usage, and makespan across 
multiple platforms, including Kafka, Spark, Flink, and Storm. 
These findings underscore the robustness and efficiency of 
EHHO in optimizing resource allocation and handling complex 
scheduling problems in cloud computing. 

A key factor contributing to EHHO's success is its ability to 
avoid premature convergence, a common issue in traditional 
meta-heuristic algorithms. By incorporating stochastic 
strategies such as Gaussian random walk, Brownian motion, 
and Levy flight, EHHO maintains equilibrium between global 
exploration and local exploitation. This balance ensures that the 
algorithm can explore diverse solution spaces without falling 
into a local optimum, thereby enhancing solution quality. The 
dynamic adjustment of the random walk deviation over time 
further refines this balance, enabling EHHO to effectively adapt 
to different stages of the optimization process. 

Moreover, the simulation results highlight the exceptional 
functionality of the Kafka platform concerning makespan, 
execution time, cost, and memory usage. Kafka's real-time 
reporting capabilities, enterprise-level security, efficient cloud 
monitoring, and superior processing speed contribute to these 
outcomes. These characteristics make Kafka a suitable 
environment for deploying EHHO, allowing it to fully leverage 
its optimization potential. The comparative analysis with other 
platforms reinforces the importance of selecting an appropriate 
infrastructure to maximize the benefits of advanced 
optimization algorithms like EHHO in cloud computing. 

In summary, the EHHO algorithm effectively responds to 
the complex task scheduling challenges in cloud computing. Its 
enhanced exploration and exploitation mechanisms, coupled 
with the optimal performance on platforms like Kafka, position 
EHHO as a leading approach for efficient resource 
management. Researchers could explore ways to improve the 
EHHO algorithm, such as integrating additional stochastic 
strategies or refining the random walk parameters, to achieve 
even greater performance improvements. Additionally, 
investigating the algorithm's scalability and applicability to 
other optimization problems could expand its utility in broader 
contexts. 

The EHHO algorithm can seamlessly integrate with popular 
cloud services such as AWS, Azure, and Google Cloud to 
optimize task scheduling and resource management. By 
leveraging these platforms' capabilities, EHHO can enhance the 
efficiency of IaaS by dynamically allocating VMs and 
managing compute resources. In PaaS, EHHO can streamline 
application deployments by optimizing workload distribution 
across scalable infrastructure. For SaaS, the algorithm ensures 
reduced latency and cost-effective resource utilization, 
improving overall service delivery. The ability of EHHO to 

adapt to real-time cloud environments and balance workloads 
makes it a crucial component for maximizing the performance 
and scalability of cloud-based services, further solidifying its 
relevance in modern cloud computing ecosystems. 

Despite its promising performance in task scheduling, the 
EHHO algorithm has certain constraints. Its reliance on 
predefined parameters, such as random walk deviation and 
iteration limits, may limit adaptability across varying real-time 
scenarios and dynamic workloads. Additionally, while EHHO 
demonstrates superior results on metrics like makespan, cost, 
and memory usage, its scalability to handle significantly larger 
task datasets or highly heterogeneous environments remains 
untested. The simulations, primarily conducted using the Kafka 
platform, suggest a dependency on specific infrastructure 
capabilities such as real-time reporting and efficient 
monitoring, raising concerns about performance consistency on 
less advanced platforms. Furthermore, while the dynamic 
random walk strategy improves exploration and exploitation, 
fine-tuning these adjustments for broader applications remains 
challenging. Addressing these constraints, particularly 
scalability and infrastructure independence, will be critical for 
maximizing EHHO's potential in diverse cloud environments. 

VII. CONCLUSION 

Effective task scheduling is paramount to the optimal 
performance of cloud computing systems. Unlike traditional 
computing environments, cloud-based task scheduling 
necessitates considering diverse parameters, including 
computational costs, processing capabilities, and task duration. 
In this research, we introduced the EHHO algorithm to tackle 
the complex challenge of task scheduling in cloud computing 
environments. Leveraging the CloudSim toolkit for 
simulations, EHHO demonstrated superior performance over 
traditional algorithms like PSO, ACO, GA, ALO, MGWO, and 
EMVO across critical metrics, including cost, execution time, 
makespan, and memory storage. Integrating a random walk 
approach significantly improved the algorithm's exploration 
capabilities, effectively preventing premature convergence to 
local optima and ensuring more efficient resource allocation. 
With its robust load balancing, high security, real-time analysis, 
and scalability, Kafka's platform further highlighted the 
algorithm's efficiency. Our findings underscore EHHO's 
potential for optimizing the operational efficiency of cloud 
computing systems, making it a viable solution for better task 
scheduling and resource management in diverse and dynamic 
cloud environments. 

Future research on the EHHO could include focusing on its 
scalability and adaptability given real-time scheduling 
scenarios in highly dynamic cloud environments. By 
integrating adaptive random walk strategies, deviation 
parameters can dynamically change depending on task 
complexity and resource availability in real-time. The 
following extension of EHHO for multi-cloud or hybrid cloud 
infrastructures with cross-platform scheduling and resource 
allocation would increase its applicability. Testing its 
performance with more diverse and larger datasets and 
optimization of computational efficiency for real-world 
runtime applications may position EHHO as a more robust and 
versatile solution to complex challenges in cloud computing. 
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