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Abstract—In the task of text-to-image generation, common 

issues such as missing objects in the generated images often arise 

due to the model's insufficient learning of multi-object category 

information and the lack of consistency between the text prompts 

and the generated image contents. To address these challenges, 

this paper proposes a novel text-to-image generation approach 

based on object enhancement and attention maps. First, a new 

object enhancement strategy is introduced to improve the model’s 

capacity to capture object-level features. The core idea is to 

generate difficult samples by processing the object mask maps of 

tokens, followed by dynamic weighting of the attention map using 

latent image embeddings. Second, to enhance the consistency 

between the text prompts and the generated image contents, we 

enforce similarity constraints between the cross-attention maps 

and the attention-weighted mask feature maps, penalizing 

inconsistencies through a loss function. Experimental results 

demonstrate that the Stable Diffusion v1.4 model, optimized using 

the proposed method, achieves significant improvements on the 

COCO instance dataset and the ADE20K instance dataset. 

Specifically, the MG metrics are improved by an average of 

12.36% and 6.55%, respectively, compared to state-of-the-art 

models. Furthermore, the FID metrics show a 0.84% improvement 

over the state-of-the-art model on the COCO instance validation 

set. 
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I. INTRODUCTION 

The rapid advancement of artificial intelligence has 
propelled text-to-image generation into the forefront of research 
at the intersection of computer vision and natural language 
processing. This emerging field aims to automatically generate 
visual content that aligns with natural language descriptions. 
Beyond its theoretical significance, this technology holds vast 
potential for application in diverse areas, including virtual 
reality, game design, artistic creation, and human-computer 
interaction. However, a major challenge persists: efficiently 
translating textual semantics into high-quality images while 
ensuring a high degree of consistency between the generated 
images and their corresponding textual descriptions. 

Recent advances in deep learning have opened new avenues 
for text-to-image generation tasks. Generative Adversarial 
Networks (GANs) [1], as an early foundational technology, 
enabled the initial mapping from text to image via adversarial 
training between generators and discriminators. However, the 
quality and semantic alignment of the generated images still 
require significant improvement. The subsequent development 
of autoregressive and diffusion models has invigorated the field. 
Autoregressive models generate high-quality, semantically 

consistent images through pixel-by-pixel synthesis but suffer 
from slow training and inference speeds. In contrast, diffusion 
models generate images through a process of iterative denoising, 
yielding not only high-quality images but also enhanced 
diversity, positioning them as the prevailing approach in 
contemporary research. 

The objective of diffusion models can be summarized as 
reversing the gradual degradation process of data, which 
consists of a forward process that follows a Markov chain and a 
reverse diffusion process. In the forward process, noise is 
gradually added to the original data, causing it to degrade into 
nearly isotropic Gaussian noise, thereby corrupting the original 
data. In contrast, the reverse diffusion process utilizes a neural 
network to learn how to recover the original data from Gaussian 
noise. It is important to note that the input and output dimensions 
of the reverse diffusion process must remain consistent. 

Although recent text-to-image diffusion models 
[2][3][4][5][6][7][8][9] have achieved notable progress in 
generating images with increasing levels of quality, resolution, 
realism, and diversity, a significant challenge remains in 
maintaining consistency between text prompts and the content 
of the generated images. 

Several studies have addressed the challenge of generating 
images containing multiple objects. In 2022, Robin Rombach et 
al. [10] introduced Stable Diffusion, a high-resolution image 
synthesis method based on Latent Diffusion Models (LDMs), 
designed to overcome the computational inefficiencies of 
traditional diffusion models in high-resolution image 
generation. The model achieves diverse high-resolution image 
generation by integrating components such as variational 
autoencoders (VAE), conditional text encoders, and U-Net. In 
the same year, Liu et al. [11] proposed Composable Diffusion, a 
method leveraging multiple diffusion models to generate 
complex scenes by separately generating different objects, each 
handled by a specialized model. That same year, Liew et al. [12] 
introduced MagicMix, a technique that uses pre-trained, text-
conditioned diffusion models to blend two distinct semantic 
concepts into a single image. The process begins by generating 
a rough semantic layout, followed by content matching the text 
description, and concludes by merging the semantic information 
of the two objects. In 2023, Chefer et al. [13] developed Attend-
and-Excite, a method aimed at enhancing the semantic fidelity 
of text-to-image diffusion models. By optimizing the cross-
attention mechanism, this approach ensures that the generated 
images better reflect the input text prompts. Directed Diffusion 
[14], also in 2023, introduced a novel approach to controlling 
the positioning of multiple elements in the image by 
manipulating attention maps at the word and word-position 
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levels, improving the model’s focus on the relevant areas of the 
image. In the same year, Zirui Wang et al. [15] presented 
TokenCompose, a method that incorporates token-level 
supervision to improve performance in multi-object 
composition tasks and enhances the photorealism of generated 
images. More recently, in 2024, Tobias Lingenberg et al. [16] 
proposed DIAGen, an image enhancement method for few-shot 
learning scenarios. By combining generative models with text 
prompts, the method effectively increases the diversity of 
generated images. 

However, most prior research has been limited to simple 
augmentation techniques, such as flipping, rotation, or basic 
enhancement operations on image data. These methods often fail 
to adequately capture the object features, leading to issues such 
as missing objects in the generated images. 

Moreover, while much of the previous research has focused 
on the spatial layout of the cross-attention maps between text 
prompts and generated image contents during image generation, 
it has often overlooked the importance of enhancing the 
understanding of the spatial layout of the object cross-attention 
maps during the model's training phase. 

To address the aforementioned issues, inspired by the 
literature [10] [15] , this paper proposes a novel text-to-image 
generation method based on object enhancement and attention 
maps (TI-OEAM). By constructing difficult samples, 
incorporating a dynamic residual gating mechanism, and 
applying an attention maps guidance approach, this paper 
optimizes the model and significantly enhances the consistency 
between the text prompts and the generated images, leading to a 
substantial improvement in image quality. 

The subsequent sections of this paper will provide a detailed 
exploration of this research. The TI-OEAM model section will 
describe the proposed method, focusing on the design and 
implementation of the object enhancement strategy, as well as 
how attention map optimization is employed to improve the 
consistency between text prompts and the generated image 
content. The experimental section will outline a series of 
experiments conducted to evaluate the effectiveness and 
performance of the proposed approach, including comparative 
studies with existing methods and ablation experiments. Finally, 
the conclusion section will summarize the key findings and 
contributions of this work, discuss its limitations, and propose 
directions for future research. 

II. THE PROPOSED FRAMEWORK 

A. An Overview of the Proposed Framework 

As shown in Fig. 1, in the object enhancement module, the 
similarity between the object mask map and all other object 
mask maps in the image is first evaluated through a similarity 
calculation. Object mask maps with similarity values exceeding 
a predefined threshold are then filtered out. Gaussian noise is 
then applied to these selected mask maps to introduce random 
perturbations, generating difficult samples. Subsequently, latent 
noisy image embeddings with learnable parameters are utilized 
as dynamic residual weighting terms in the denoising U-Net, 
which are integrated into the model's training process. Building 
on this, attention map optimization is performed by imposing 
similarity constraints between the cross-attention map and the 

attention-weighted masked feature map. Finally, the model is 
optimized using a loss function. 

Text prompt: a puppy and 
four people standing on a 

green bench.
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Fig. 1. TI-OEAM overall framework. 

B. Object Enhancement Strategies using Masking and 

Residuals 

To fully capture the diverse object feature information in 
images, a novel object enhancement strategy is proposed, 
consisting of two key steps. The first step involves constructing 
difficult samples, while the second step introduces a dynamic 
residual gating mechanism. 

1) Difficult sample generation: In an image, multiple 

objects often exhibit similar visual characteristics, particularly 

when they belong to the same category or share similar 

appearances. Such similarities may hinder the model's ability to 

accurately distinguish between objects, potentially resulting in 

missed or incorrect generation of specific objects during image 

generation. To address this issue, we propose calculating the 

similarity between object masks and introducing noisy 

interference to highly similar masks. This approach forces the 

model to focus more on the subtle differences between similar 

objects. The interference thus encourages the model to learn 

how to differentiate and generate diverse features of similar 

objects, ultimately enhancing its capacity to generate objects 

across multiple categories more effectively. 

Specifically, the first step involves designing an object 
enhancement module that calculates the pixel-level feature 
similarity between the object mask map in the image and all 
other object mask maps. Object mask maps with similarity 
values exceeding a predefined threshold are then filtered out. 
Subsequently, Gaussian random interference is applied to these 
mask maps to generate difficult samples. 
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The specific calculation process is as follows: 
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Where M denotes the object mask map in the image, G  
denotes the number of object mask maps the image contains,and

f
 indicates the average pixel-level feature similarity between 

the object mask map and all other object mask maps in the 
image. 

Then Gaussian random interference is applied to the object 
mask maps above the set threshold in the following process: 
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Where the threshold


 is set to 0.8, the added noise vector

  obeys 2|| ||  ò
,andò is a small constant. M is called the 

difficult sample, where  process is as follows: 

, (0,1 3)dR U e    
                          (3) 

The incorporation of difficult samples encourages the model 
to focus on object mask maps that exhibit high similarity and are 
challenging to distinguish from other objects in the image. This 
strategy enables the model to more effectively learn the 
distinctive features of each object. 

Dynamic Residual Gating: In this study, the definition 
proposed by Zirui Wang et al. [15] is adopted. For a given image

3H Wx R    in RGB space，it is first processed by the encoder 

part of the VAE to obtain its latent image embedding

0 0z ( )x . Subsequently, based on this potential image 

embedding, Gaussian random noise is injected with time t  to 

obtain the potential noisy image embedding z t  containing the 

noise. Additionally, a conditional text encoder is employed to 

convert the text prompts y  into an embedding (y) with the 

neural network parameter  .Let 
( )y kH L d

R 
 

K represent 

the embedding of the text prompts corresponding to the token，

where ( )yL


denotes the length of the text prompts embedding

(y) .Let 
z kt

H L d
R

 
Q represent the latent noisy image 

embedding, with 
tzL  indicating the length of the latent noisy 

image embedding. kd denotes the dimension of K .The cross-

attention map of text prompts and images is computed as 
follows: 
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Where
{1,..., }h H

 denotes each head in the multi-head 

cross-attention.

( )h

QW
，

( )h

KW
 and  

( )h

VW
 are the learnable 

projection matrices in the cross-attention layer in each head.

(z )t
 denotes the function that flattens the 2D latent image 

embedding to 1D. 

This study identifies a limitation in most current approaches, 
which directly use the output of the pre-trained U-Net model as 
the input for the VAE-generated images. This practice often 
results in insufficient learning of multi-category object 
information. To address this, the second step involves designing 
a dynamic residual gating mechanism. 

In this paper, learnable parameters are employed to adjust 
the weights of the residual connections, thereby allowing the 
model to flexibly control the flow of information based on 
varying contextual conditions. This dynamic adjustment 
mechanism enhances the model's nonlinear learning capability, 
enabling more accurate representation of image features. By 
adopting this approach, the model can optimize the learning 
process during image generation in accordance with the specific 
characteristics of the image, thus mitigating the issue of 
insufficient feature capture that may arise when the weights of 
residual connections are fixed. 

Specifically, the latent image embedding is used to preserve 
image features, thereby allowing the model to concentrate more 
effectively on these features. The residual cross-attention 
computation process is as follows: 

*zt ＝A A
                                 (8) 

Where   is the learnable parameter. The dynamic residual 
gating mechanism enhances and refines the cross-attention maps 
by dynamically adjusting the weights of the residual 
connections. This mechanism improves the model's ability to 
capture features, enabling it to more accurately learn the features 
of the data. 

C. Optimization of Attention Map 

Robin Rombach et al. [10] and Zirui Wang et al. [15] learned 

noisy features by using a denoising function, DML
, which takes 

into account the lack of direct optimization correlation between 
tokens and image contents. To compensate for this deficiency, 

they introduced a token-level attention loss, tL
, which monitors 

the activation region of cross-attention. In addition, to prevent 
attention from being overly focused on certain sub-regions of 
the target region, they also propose a pixel-level attention loss  

pL
. 

Inspired by the work of Robin Rombach, Zirui Wang, and 
others, we aim to better manage the spatial arrangement and 
interactions of multiple objects during the image generation 
process, ensuring that the generated image accurately includes 
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all specified categories and objects. In this paper, we propose a 
novel attention optimization method that constrains the 
similarity between the cross-attention map and the attention-
weighted masked feature map. The objective is to improve the 
model's sensitivity to information within specific attention 
regions, without compromising its ability to capture global 

context. Let  i  denote the noun toekn of a text prompt. Let i
A
 

represent the cross-attention map between the latent noisy image 
embeddings and the embedding of a token. 

First, the attention-weighted mask feature map is computed 
as follows: 

( , ) ( , ) ( , )i u i u M i u  A M A
                      (9) 

Where  denotes the pixel multiplication . u  is the spatial 

location of the cross-attention map. ( , )i u
M

denotes the object 

mask map of text token i  at spatial position u . Let ( , )i u
A

denote 
the cross-attention map formed by the latent noisy image 

embedding of the i -th token at the spatial location u  of

zt
L

i R A
. 

Subsequently, the cosine similarity function is calculated in 
accordance with the following procedure: 
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Where 
S( , )M 

 A A
 denotes the similarity between the 

cross-attention map and the attention-weighted mask feature 
map. 

The two are then brought into closer alignment in the pixel 
domain using a loss function, which is calculated as follows: 

1 S( , )s M   L A A
                            (11) 

Cosine similarity function 
S( , )M 

 A A
 measures how close 

the cross attention map is to the attention-weighted masked 

feature map in feature space. The loss function sL
 effectively 

balances the learning of both local and global information, 
overcoming the limitations of traditional methods that tend to 
over-focus on the target region or neglect other areas of the 
image. This balance improves the alignment between text 
prompts and generated image content, thereby enhancing both 
image consistency and overall quality. 

D. Loss Function 

Finally, sL
 and

,DM tL L
and pL

 jointly trained and 
computed as follows: 

 
D

s t p

d

DML L L L L     
 (12) 

Where
，

 and 


 are the scaling factors. In this paper, 

we set 


as 1e-3, 


as 1e-3, 


as 5e-5。The value of D  

represents the number of training layers. 

III. EXPERIMENT 

A. Datasets 

In order to evaluate the effectiveness of the proposed model 
in the text-to-image generation task, this paper utilizes the 
COCO dataset [15] for training experiments. This dataset 
consists of 4,526 image-caption pairs and their corresponding 
binary mask maps. The choice of COCO is motivated by the 
relatively low ambiguity in its visual language and the rich 
diversity of object categories represented in each image, which 
effectively supports the task of learning and generating multi-
category objects. To further assess the model's performance in 
multi-category instance combination, we conduct experiments 
on the COCO instance dataset [17], which includes 80 
categories, and the ADE20K instance dataset [18][19], which 
includes 100 categories. Additionally, to evaluate the 
distributional differences between the images generated by the 
model and real images, we randomly sampled 10,000 image-
caption pairs from the COCO instance validation set (C) and 
1,000 image-caption pairs from the Flickr30K instance 
validation set (F) [20] for comparative analysis. 

B. Evaluation Metrics 

In this paper, we use the MULTIGEN [15] metric and the 
FID [21] metric to assess the ability of the model in combining 
instances of multiple categories and to analyse the distributional 
differences between the images generated by the model and the 
real images. 

MULTIGEN is a challenging metric used to evaluate multi-
category instance combinations. Specifically, given a set of N 
distinct instance categories, five categories (e.g., A, B, C, D, and 
E) are randomly selected and formatted into a sentence (e.g., "A 
photo of A, B, C, D, and E"). This sentence serves as the 
conditional input for the text-to-image diffusion model to 
generate the corresponding image. Subsequently, a robust open-
vocabulary detector [15] is employed to assess whether the 
specified categories are accurately represented in the generated 
image. 

Specifically, for each dataset, 1,000 text prompts were 
generated by randomly sampling 1,000 instances from each of 
the 80 COCO categories and 100 ADE20K categories, which 
were then used as inputs for the multi-category instance 
combinations. For each text prompt, 10 rounds of image 
generation were performed, resulting in a total of 10 × 1000 
images for each dataset's category combination. Each generated 
image was subsequently analyzed using a detector to count the 
number of category instances present. Based on these detection 
results, the MG2 to MG5 metrics were computed for each round. 

The mean and standard deviation (denoted in parentheses) of 
the MG2-5 success rates across the 10 rounds are presented in 
Table I. 
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TABLE I. COMPARISON OF EXPERIMENTAL RESULT OF VARIOUS MODELS 

Method 

Multi-category Instance Composition↑ Photorealism↓ 

COCO INSTANCES ADE20K INSTANCES FID 

（C） 

FID 

（F） MG2 MG3 MG4 MG5 MG2 MG3 MG4 MG5 

SD 90.721.33 50.740.89 11.680.45 0.880.21 89.810.40 53.961.14 16.521.13 1.890.34 20.88 71.46 

Composable 63.330.59 21.871.01 3.250.45 0.230.18 69.610.99 29.960.84 6.890.38 0.730.22 - 75.57 

Layout 93.220.69 60.151.58 19.490.88 2.270.44 96.050.34 67.830.90 21.931.34 2.350.41 - 74.00 

Structured 90.401.06 48.641.32 10.710.92 0.680.25 89.250.72 53.051.20 15.760.86 1.740.49 21.13 71.68 

Attn-Exct 93.640.76 65.101.24 28.010.90 6.010.61 91.740.49 62.510.94 26.120.78 5.890.40 - 71.68 

TokenCompose 98.080.40 76.161.04 28.810.95 3.280.48 97.750.34 76.931.09 33.921.47 6.210.62 20.19 71.13 

TI-OEAM 98.540.19 79.430.91 32.550.96 4.320.36 97.910.18 79.390.85 37.132.39 7.040.51 20.02 71.94 

The FID metric is used to assess the distributional disparity 
between two datasets: 10,000 image-caption pairs from the 
COCO instance validation set (C) and 1,000 image-caption pairs 
from the Flickr30K instance validation set (F), in comparison 
with the model-generated images. 

C. Experimental Settings 

The experimental setup is as follows: The operating system 
is Ubuntu 18.04.5 LTS; the hardware configuration includes an 
NVIDIA 3090 GPU; the deep learning framework used is 
PyTorch; and the programming language is Python. 

The primary experiments in this paper are conducted using 
the Stable Diffusion v1.4 [22] model and the TokenCompose 
model. Stable Diffusion is a widely used text-to-image diffusion 
model for high-quality generation. AdamW is employed as the 
optimizer [23], with a global learning rate of 5e-6 and a total of 
2400 steps. The image resolution is set to 512. Training was 
performed on a single GPU using a single batch and four 
gradient accumulation steps across the entire U-Net. 

D. Experimental Results and Analysis 

To validate the effectiveness of the TI-OEAM model, this 
study compares its performance with several representative text-
to-image generation methods. These include Stable Diffusion 
(SD) [22], which addresses the high computational cost of 
traditional diffusion models in high-resolution image 
generation; Composable Diffusion [11], which generates 
complex scenes by combining multiple diffusion models; 
Layout [24], which manipulates the cross-attention layer in 
diffusion models to achieve precise spatial layout control; 
Structured [25], which enhances composability and attribute 
binding in text-to-image tasks by integrating linguistic structures 
with cross-attention layers; Attend-and-Excite [13], which 
improves semantic fidelity in text-to-image generation; and 
TokenCompose [15], which enhances text-to-image models 
through token-level supervision. The experimental results are 
presented in Table I, where MG, C, and F represent the 
MULTIGEN metrics, the COCO instance validation set, and the 
Flickr30k instance validation set, respectively. 

The experimental results show that the baseline method, 
TokenCompose, achieves an average improvement of 12.8% 
over the Attend-and-Excite model across all the improved MG 
metrics. Since the FID metrics are reliable only when comparing 
10,000 images, a comparison of the FID metrics on a dataset of 

10,000 image-caption pairs sampled from the COCO validation 
set (C) shows a 3.3% reduction in the metrics of TokenCompose 
compared to the Attend-and-Excite model. The illustrative 
analysis results from the TokenCompose model further 
highlight the 12.8% improvement in MG metrics and the 3.3% 
reduction in FID metrics, representing substantial advancements 
in performance. 

As shown in Table I, the proposed TI-OEAM model 
significantly outperforms all baseline methods across most 
evaluation metrics for these datasets. Compared to the state-of-
the-art performance of current mainstream model, 
TokenCompose, on the COCO instance dataset, TI-OEAM 
achieves an average improvement of 12.36% on the MG2, MG3, 
MG4, and MG5 metrics. On the ADE20K instance dataset, TI-
OEAM improves by an average of 6.55% on the same metrics. 
Additionally, TI-OEAM demonstrates a 0.84% reduction in the 
FID score compared to the 10,000 image-caption pairs in the 
COCO instance validation set. This performance enhancement 
is attributed to the model’s efficacy, particularly its ability to 
learn information across multiple object categories through 
difficult sample construction and dynamic residual gating 
methods. Furthermore, TI-OEAM incorporates similarity 
constraints between the cross-attention map and the attention-
weighted mask feature map, further improving the consistency 
between text prompts and the content of the generated images, 
resulting in significant gains across all performance metrics. 

In comparison to the 1,000 image-caption pairs from the 
Flickr30K instance validation set, the FID metric for the images 
generated by the TI-OEAM model, as shown in Table I, is 71.94. 
The discrepancy in these experimental results can be attributed 
to the model's failure to pass the safety-checker detection during 
image generation based on the 1,000 captions. This issue led to 
the generation of a black image, which significantly affected the 
experimental outcomes. 

E. Ablation Study 

To validate the impact of the proposed OE and AN 
components on model performance, this paper conducts MG 
metrics ablation experiments on the COCO instance dataset and 
the ADE20K instance dataset, as well as FID metrics ablation 
experiments on 10,000 image-caption pairs sampled from the 
COCO instance validation set. Table II presents the 
experimental results, while Fig. 2 provides effectiveness 
analysis. 
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TABLE II. COMPARISON OF ABLATION EXPERIMENTAL RESULTS 

Component 
COCO INSTANCES  ADE20K INSTANCES  

MG3 MG4 MG5  MG3 MG4 MG5 FID（C） 

TI-OEAM 79.430.91 32.550.96 4.320.36   79.390.85 37.132.39 7.040.51 20.02 

OE 77.621.08 31.621.26 3.930.46   77.540.77 35.821.30 6.440.63 19.90 

AM 78.480.96 31.441.62 3.910.80   79.180.79 37.800.77 7.620.84 20.25 

 

Fig. 2. Effectiveness analysis OE and AM. 

Firstly, the OE module was independently validated, and the 
experimental results are presented in the "OE" section of Table 
II. Compared to the TokenCompose model, OE achieved 
improvements of 6.93% in the MG3, MG4, and MG5 metrics, 
respectively. This enhancement demonstrates that the OE 
module has made significant progress in extracting object 
features, thereby further enhancing the model's ability to learn 
object characteristics within the image. 

Secondly, the AM method is validated in isolation, with the 
results presented in the "AM" section of Table II. Compared to 
the TokenCompose model, the AM method yields 
improvements of 11.41% in the MG3, MG4, and MG5 metrics. 
The AM method demonstrates significant improvements across 
all metrics, indicating that it enhances the model’s 
understanding of the distribution of objects in images in 
alignment with text prompts. Furthermore, this method 

improves the consistency between text and image content, 
resulting in images with greater object accuracy. 

In conclusion, the OE and AM modules demonstrate 
significant improvements in the metrics associated with the text-
to-image generation task. 

F. Visual Presentation Analysis 

To facilitate a comprehensive visual comparison between 
the proposed TI-OEAM model and the benchmark 
TokenCompose model, a set of six images was generated using 
identical text prompts by both models. The generated images are 
presented in Fig. 3 on the following page for direct comparison. 
In order to ensure the fairness and consistency of the 
comparison, the initial latent space values, which serve as the 
starting point for both models, were held constant across all 
experiments. This approach minimizes potential bias arising 
from variations in latent representations, thereby allowing for an 
objective assessment of the models' performance.
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TI-OEAM
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Fig. 3. Qualitative comparison between TI-OEAM and baseline. 

To rigorously evaluate the quality and alignment of the 
generated images with the text prompts, this study involved a 
manual assessment conducted by 11 researchers from diverse 
fields, including natural language processing, big data, and 
computer science. The researchers were tasked with evaluating 
the consistency between the provided text prompts and the 
corresponding generated images, using a well-defined criterion 
to ensure objectivity. The results of the evaluation revealed that, 
out of the total 66 votes cast, 26 votes were in favor of the images 
generated by the TokenCompose model, while 40 votes were in 
favor of those generated by the TI-OEAM model. This indicates 
that the images produced by the TI-OEAM model demonstrated 
a significantly higher degree of consistency with the text 
prompts compared to those generated by TokenCompose, 
highlighting the effectiveness of the proposed model in 
faithfully translating textual descriptions into visual 
representations. 

IV. CONCLUSION AND FUTURE WORK 

This paper proposes a text-to-image generation method 
based on object enhancement and attention maps. The 
generation of high-quality images is achieved through the 
construction of challenging samples, the implementation of a 
dynamic residual gating mechanism, and the optimization of the 
model via an attention map guidance approach. These strategies 
work together to enhance the consistency between text prompts 
and generated images. Experimental results demonstrate that the 

proposed method, which integrates difficult sample design, 
dynamic residual gating, and attention map optimization, yields 
more significant improvements than state-of-the-art models in 
both MG metrics and the consistency of text-image information 
for text-image generation tasks. Future work will continue to 
address the consistency issue between text prompts and image 
contents, with a particular focus on more complex text prompts. 
The aim is to provide practical solutions for this challenge in the 
field. 
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