
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

969 | P a g e  

www.ijacsa.thesai.org 

Enhanced Traffic Congestion Prediction Using 

Attention-Based Multi-Layer GRU Model with 

Feature Embedding 

Sreelekha M1, Dr. Midhunchakkaravarthy Janarthanan2 

Research Scholar, Faculty of Engineering, Lincoln University College, Malaysia1 

Faculty of Computer Science and Multimedia, Lincoln University College, Malaysia2 

 

 
Abstract—Intelligent Transportation Systems (ITS) are 

crucial for managing urban mobility and addressing traffic 

congestion, which poses significant challenges to modern cities. 

Traffic congestion leads to increased travel times, pollution, and 

fuel consumption, impacting both the environment and quality of 

life. Traditional traffic management solutions often fall short in 

predicting and adapting to dynamic traffic conditions. This study 

proposes an efficient deep learning (DL) model for predicting 

traffic congestion, utilizing the strengths of an attention-based 

multilayer Gated Recurrent Unit (GRU) network. The dataset 

used for this study includes 48,120 hourly vehicle counts across 

four junctions and additional weather data. Temporal and lagged 

features were engineered to capture daily and historical traffic 

trends and categorical data were considered by employing 

feature embedding. The attention-based GRU model integrates 

an attention mechanism to focus on relevant historical data, 

improving predictive performance by selectively emphasizing 

crucial time steps. This model architecture, consisting of two 

hidden layers and attention mechanisms, allows for nuanced 

traffic predictions by handling temporal dependencies and 

variations effectively. The performance was evaluated using 

various error metrics. The results demonstrate the model’s 

ability to predict traffic congestion with MSE of 0.9678, MAE of 

0.4322, R² of 0.8686, MAPE of 6% offering valuable insights for 

traffic management and urban planning. 

Keywords—Intelligent transportation system; traffic 

congestion; urban mobility; deep learning; gated recurrent unit 

I. INTRODUCTION 

Traffic congestion is a persistent and growing problem in 
urban areas globally. It leads to significant challenges that 
affect economic productivity, environmental sustainability, and 
the quality of life [1]. As cities continue to expand and 
urbanization accelerates, the demand for road space often 
surpasses the available infrastructure, resulting in slower traffic 
speeds, longer travel times, and increased vehicular queuing. 
Several factors contribute to this issue, including the rapid rise 
in vehicle ownership, insufficient public transportation 
systems, and inadequate urban planning. The surge in private 
vehicles, due to the rising incomes and population growth, 
places immense pressure on existing road networks, 
intensifying congestion, especially during peak hours. In many 
cities, the public transportation infrastructure is either lacking 
or inefficient, prompting people to rely heavily on private car. 
Additionally, poor urban planning—such as poorly designed 

road networks, insufficient parking, and a lack of infrastructure 
for pedestrians and cyclists further intensifies traffic blocks [2].  

The impacts of traffic congestion are wide-ranging and 
severe. Economically, it leads to significant costs, including 
wasted fuel, vehicle maintenance, and lost productivity as 
people spend more time in traffic. Businesses suffer due to 
delays in goods transportation and reduced employee 
efficiency [3]. Environmentally, traffic congestion contributes 
to higher emissions of greenhouse gases and pollutants, as 
vehicles emit more while idling in traffic jams than when 
traveling smoothly. This not only worsens air quality but also 
accelerates climate change. Socially, congestion reduces the 
quality of life, as long travels lead to stress, less time for 
personal activities, and overall frustration. The safety concerns 
are also notable, with increased stop-and-go traffic raising the 
likelihood of accidents and making roads more dangerous for 
both drivers and pedestrians. One of the most critical 
consequences is its impact on emergency services [4]. 
Congested roads can significantly delay ambulances, fire 
trucks, and police vehicles, potentially leading to life-
threatening situations due to increased response times. 

Addressing traffic congestion requires a multi-faceted 
approach. Enhancing public transportation is a key strategy, as 
efficient and reliable public transit systems can reduce the 
number of private vehicles on the road. Investments in bus 
transit systems, light rail networks, and better integration of 
transport modes can make public transport a more attractive 
option [5]. Additionally, traffic management schemes that use 
real-time data to enhance traffic flow, such as adaptive traffic 
signal controls, can alleviate congestion at critical points. 
Urban planning also plays a crucial role; cities need to adopt 
designs that encourage high-density, mixed-use developments 
that reduce the need for long shuttles. Promoting smart 
mobility solutions, such as ride-sharing, autonomous vehicles, 
and Mobility-as-a-Service (MaaS), can also help by optimizing 
road usage. Behavioral changes, supported by public awareness 
campaigns and incentives for carpooling or telecommuting, are 
essential in reducing the number of vehicles on the road during 
peak times [6]. In summary, while traffic congestion is a 
complex problem with significant impacts, a combination of 
improved infrastructure, smart technology, and policy 
measures can help mitigate its effects and create more 
sustainable and functional urban environments. A DL model 
for traffic congestion prediction is proposed in this study. The 
main contributions of the study are given below: 
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 To develop a DL-based traffic congestion prediction 
model. 

 To compare the effectiveness of the suggested model 
with existing models. 

 To evaluate the efficiency through various error 
metrics. 

The remaining portion of the paper is organized as: Section 
II provides a comprehensive literature review emphasizing the 
need for the current research. Section III details the 
methodology and the deep learning model architecture for 
effective traffic prediction. Section IV presents the results and 
discussion, highlighting the potential of the suggested model. 
Section V concludes the paper by summarizing the key 
contributions. 

II. LITERATURE REVIEW 

Li et al. [7] introduced the AST3DRNet model, which 
incorporated a 3D residual network with a self-attention 
mechanism. This approach utilized a 3D convolutional module 
and employs a spatio-temporal attention module to 
dynamically adjust the impact of these relationships. 
Experiments conducted using a real-world traffic dataset from 
Kunming demonstrated that AST3DRNet outperformed 
existing baseline methods, achieving accuracy improvements 
of 59.05%, 64.69%, and 48.22% for short-term predictions at 
5, 10, and 15 minutes, respectively. Despite its innovations, the 
model’s dependency on convolutional neural networks (CNN) 
and residual networks was a limitation. 

Tsalikidis et al. [8] evaluated various models for multi-step 
forecasting of traffic flow, particularly in areas with limited 
historical data. The methodology involved assessing a range of 
interpretable predictive algorithms, including Ensemble Tree-
Based (ETB) regressors like Light Gradient Boosting Machine 
(LGBM) and comparing them with traditional deep learning 
methods. Results indicated that ETB models generally 
outperformed DL approaches, particularly for longer 
forecasting horizons, achieving high accuracy even at extended 
prediction steps. The study demonstrated that feature selection 
and engineering, incorporating temporal and weather data, 
improved model performance. The study was limited by its 
reliance on the statistical characteristics of the specific dataset, 
which could affect the efficiency of the algorithms. High data 
volume and complexity also posed challenges, impacting 
model training and performance. 

Jiang et al. [9] introduced Congestion Prediction Mixture-
of-Experts (CP-MoE) to improve prediction accuracy for 
dynamic traffic scenarios. The methodology involved 
developing a Mixture of Adaptive Graph Learners (MAGLs) 
with a sparsely-gated mechanism and congestion-aware biases, 
complemented by two specialized experts designed to identify 
stable trends and periodic patterns. This model was rigorously 
tested on real-world datasets, demonstrating its superiority over 
existing spatio-temporal prediction methods. Notably, CP-MoE 
was successfully integrated into DiDi’s system, enhancing 
travel time estimation reliability. A key limitation identified 
was the utility of CP-MoE’s application to other aspects of 
ride-hailing services. 

Hao et al. [10] presented a fuzzy logic system based on the 
Greenshields model, designed to predict highway traffic 
congestion without requiring extensive training data. The 
methodology involved processing vehicle speed and traffic 
flow inputs using specified membership functions and applying 
fuzzy rules guided by Greenshields theory. The approach was 
validated through a comparative analysis with a polynomial 
regression model using real-world data from the Sun Yat-Sen 
Highway in Taiwan, demonstrating consistent prediction 
results. The fuzzy logic system proved effective in estimating 
congestion levels and adapting to various road conditions with 
minimal data preparation. A noted limitation was the potential 
for reduced precision in highly dynamic traffic scenarios where 
the fuzzy logic system's fixed rules not capture complex 
variations as effectively. 

Zhang et al. [11] introduced a deep marked graph process 
(DMGP) model that combined a spatiotemporal convolutional 
graph network with a traditional point process model to predict 
congestion indices and occurrence times for large signalized 
road networks. This hybrid approach utilized the simplicity of 
the point process model and the advanced capabilities of graph 
neural networks to model the evolution of traffic congestion. 
Experiments using real-world traffic data demonstrated that the 
DMGP model outperformed existing baseline methods, 
achieving superior prediction accuracy and computational 
efficiency. While the model showed promise in supporting 
advanced traffic management and traveler information systems, 
a significant limitation was its reliance on high-quality 
citywide traffic data, which had not been available for all road 
segments. 

Jasim et al. [12] analyzed the efficiency of several machine 
learning (ML) algorithms for congestion detection and 
prediction within Vehicular Ad hoc Networks (VANETs). The 
study focused on Support Vector Machines (SVM), Ensemble 
Learning classifiers, K-Nearest Neighbors (KNN), and 
Decision Trees (DT). The methodology involved training these 
algorithms with historical traffic congestion data and applying 
advanced feature engineering techniques. The study found that 
SVM, along with KNN and Ensemble Learning classifiers, 
achieved high classification accuracies. The study was limited 
by the dependence on precise feature selection and model 
optimization techniques, which required careful tuning. 

Arabiat et al. [13] addressed the challenge of predicting 
traffic congestion using data mining and ML techniques. The 
study compared the performance of two open-source software 
tools, WEKA and Orange, in predicting traffic congestion in 
Amman, Jordan. Various classifiers, including SVM, KNN, 
Logistic Regression (LR), and Random Forest (RF), were 
tested using data from the Greater Amman Municipality for the 
year 2018. Results revealed that Orange excelled with high 
prediction accuracy. The study highlighted the superior 
performance of Orange over WEKA, particularly in handling 
different classifiers. A notable limitation was the reliance on 
specific data mining tools, which are not generalize across all 
types of traffic data or scenarios, potentially affecting the 
applicability of the findings. 

Chahal et al. [14] tackled the challenge of traffic flow 
prediction using a hybrid model that combines Seasonal Auto-
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Regressive Integrated Moving Average (SARIMA) with 
Bidirectional Long Short-Term Memory (Bi-LSTM) and Back 
Propagation Neural Network (BPNN). This approach aimed to 
address both linear and non-linear components of traffic data 
from the CityPulse EU FP7 project. The hybrid model 
demonstrated superior performance with the lowest MAE of 
0.499 compared to single SARIMA, LSTM, and other models. 
The study was limited by the feature set considered, as the 
model did not account for external factors like weather or peak 
hours, which could affect traffic predictions. 

Jin et al. [15] introduced a spatio-temporal graph neural 
point process (STGNPP) framework specifically designed to 
predict traffic congestion events that occur sporadically over 
time. The model incorporated a spatio-temporal graph learning 
component to efficiently capture long-term dependencies from 
historical traffic data and road network information. This 
information is then processed through a continuous GRU to 
model congestion evolution patterns, with a periodic gated 
mechanism enhancing the intensity function to account for 
periodic variations. Extensive experiments conducted on two 
large-scale real-world datasets demonstrated that STGNPP 
significantly outperformed existing methods in predicting both 
the timing and duration of congestion events. However, the 
model’s reliance on historical data may limit its adaptability to 
sudden or unprecedented traffic disruptions. 

Pan et al. [16] presented Ising-Traffc, a dual-model 
framework that employs the Ising model to address traffic 
management. Unlike conventional approaches that struggle 
with balancing algorithmic complexity and computational 
efficiency, Ising-Traffc combines two distinct Ising models: 
Predict-Ising and Reconstruct-Ising. Reconstruct-Ising utilized 
advanced Ising machines to handle traffic uncertainties with 
reduced latency and lower energy consumption, while Predict-
Ising uses conventional processors to project future traffic 
congestion, requiring only 1.8% of the computational resources 
compared to existing methods. The proposed framework 
demonstrated an average speed up of 98× and a 5% accuracy 
improvement over conventional solutions when evaluated on 
real-world traffic datasets. A notable limitation of this 
approach was the dependency on specific hardware for 
Reconstruct-Ising, which affect its scalability and adaptability 
across different computational platforms. 

Zhang et al. [17] explored urban traffic condition prediction 
and congestion control by integrating improved particle swarm 
optimization (IPSO) with radial basis function (RBF) networks 
and a fusion model of LSTM networks and SVM. The 

proposed feature fusion model demonstrated superior 
performance in predicting traffic states, validated by 
experiments using regional traffic data from Shenyang Station, 
with the model achieving the lowest RMSE compared to other 
algorithms. For congestion control, a traffic allocation-based 
method was developed and tested using VISSIM simulation, 
showing effective congestion management. The primary 
limitation of the study was the reliance on simulation models to 
fully capture the complexities of real-world traffic dynamics 
and thus limit the applicability of the proposed methods in 
varied urban settings. 

Wang et al. [18] addressed urban traffic congestion by 
developing a prediction model called Spatio-Temporal 
Transformer (STTF), which utilizes DL techniques. Traditional 
models struggled with the growing complexity of urban traffic 
networks, prompting the introduction of STTF. This model 
integrated traffic speed data, road network structure, and 
spatio-temporal correlations to enhance prediction accuracy. 
The STTF employed an information embedding module to 
convert both spatial and temporal data into feature vectors, 
which were then processed through spatial and temporal 
attention modules. The model was tested on real-world 
datasets, demonstrating substantial improvements in prediction 
accuracy compared to existing methods. Despite its 
advancements, the STTF model's main limitation was its 
dependence on comprehensive feature engineering and 
attention mechanisms, which increase computational 
complexity and impact its efficiency in real-time applications. 
Table I provides the summary of the existing traffic congestion 
prediction models. 

While existing models, such as traditional spatio-temporal 
graph-based methods and hybrid approaches, have made 
significant strides, they often struggle with real-time efficiency 
and adaptability to rapidly changing traffic conditions. 
Additionally, existing approaches frequently lack the capability 
to adaptively weigh the importance of different time steps or 
traffic features, leading to suboptimal predictions. A critical 
gap in current traffic congestion prediction methods lies in the 
need for more advanced deep learning models that can 
seamlessly integrate and process complex spatio-temporal 
dependencies and dynamic factors. Deep learning models offer 
promising avenues for capturing intricate patterns in traffic 
data and improving prediction accuracy. Addressing these gaps 
requires the development of deep learning frameworks that can 
balance high accuracy with operational efficiency, effectively 
handling large-scale, dynamic data while being robust to 
varying traffic conditions and external influencing factors. 
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TABLE I. SUMMARY OF EXISTING TRAFFIC CONGESTION PREDICTION MODELS 

Ref. No. 
Works Carried Out in the Reference 

Papers 
Advantages Disadvantages 

[7] 

AST3DRNet model with a 3D 

residual network and spatio-

temporal attention module for traffic 
prediction. 

Achieved accuracy improvements of 59.05%, 
64.69%, and 48.22% for 5, 10, and 15-minute 

predictions. 

Dependency on CNNs and residual networks limits 

the scalability and adaptability of the model. 

[8] 

Ensemble Tree-Based (ETB) 

regressors (e.g., LGBM) compared 
with traditional DL methods for 

multi-step forecasting. 

ETB models outperformed DL approaches, 

especially for long-term predictions; feature 

engineering improved performance. 

Results relied on statistical characteristics of the 
dataset; complexity in high-volume data handling. 

[9] 

CP-MoE with Mixture of Adaptive 

Graph Learners and congestion-
aware biases for dynamic traffic 

prediction. 

Outperformed baseline methods; integrated into 
DiDi's system to enhance travel time reliability. 

Limited applicability to other ride-hailing service 
aspects; utility depends on specific use cases. 

[10] 

Fuzzy logic system using 

Greenshields model for highway 

congestion prediction with minimal 
data preparation. 

Consistent results; adaptable to various road 

conditions with minimal data. 

Lower precision in dynamic scenarios with complex 

variations. 

[11] 

Deep Marked Graph Process 

(DMGP) combining spatiotemporal 
graph network and point process 

model for congestion prediction. 

Superior prediction accuracy and computational 
efficiency. 

Reliance on high-quality, citywide traffic data limits 
scalability to less monitored areas. 

[12] 

ML algorithms (SVM, KNN, 
Ensemble Learning, DT) with 

advanced feature engineering for 

VANET congestion detection. 

High classification accuracy achieved with SVM, 

KNN, and Ensemble Learning classifiers. 

Dependence on precise feature selection and careful 

optimization of models. 

[13] 

Comparison of WEKA and Orange 
tools for traffic prediction using ML 

classifiers like SVM, KNN, LR, and 

RF. 

Orange achieved superior prediction accuracy 

over WEKA. 

Limited generalizability across different traffic 

datasets and tools. 

[14] 

Hybrid SARIMA-Bi-LSTM-BPNN 

model for traffic flow prediction, 
addressing both linear and non-

linear components. 

Lowest MAE (0.499) compared to single models; 
superior performance on CityPulse EU FP7 data. 

Did not account for external factors like weather or 
peak hours affecting predictions. 

[15] 

STGNPP framework with spatio-

temporal graph learning and 

periodic gated mechanism for 

sporadic traffic event prediction. 

Outperformed existing methods in predicting 

timing and duration of congestion events. 

Limited adaptability to sudden or unprecedented 

disruptions due to reliance on historical data. 

[16] 
Ising-Traffc framework combining 
Predict-Ising and Reconstruct-Ising 

models for traffic management. 

Achieved 98× speedup and 5% accuracy 
improvement; reduced latency and energy 

consumption. 

Dependency on specific hardware for Reconstruct-

Ising limits scalability. 

[17] 

IPSO-RBF network fusion model 
with LSTM and SVM for traffic 

prediction and congestion control 

via traffic allocation. 

Superior performance in RMSE; effective 

congestion management in simulations. 

Limited real-world validation; reliance on 

simulations restricts practical applicability. 

[18] 

Spatio-Temporal Transformer 
(STTF) integrating traffic speed, 

road networks, and spatio-temporal 

correlations. 

Substantial accuracy improvements compared to 

existing methods. 

High computational complexity due to feature 

engineering and attention mechanisms. 

III. MATERIALS AND METHODS 

Traffic congestion prediction is crucial for optimizing 
traffic flow and enhancing commuter experience by enabling 
more efficient traffic management and route planning. It helps 
reduce economic losses associated with delays, fuel 
consumption, and vehicle wear, benefiting both individuals and 

businesses. Accurate predictions also contribute to minimize 
the idle time and slow-moving traffic, thereby supporting 
environmental sustainability. Additionally, it provides valuable 
data for urban planners to design better infrastructure and 
improve overall urban mobility. Thus, this study proposes an 
efficient DL technique for traffic congestion prediction. Fig. 1 
shows the detailed block diagram of the proposed traffic 
congestion prediction model. 
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Fig. 1. Block diagram of proposed traffic congestion prediction model. 

A. Dataset Description 

The study utilized traffic data from Kaggle repository [19]. 
The dataset comprises 48,120 observations of hourly vehicle 
counts across four different junctions during the periods of 
November 1, 2015, to July 1, 2017, with observations 
distributed across different months and years. The data was 
collected by sensors placed at each junction, though these 

sensors operated at different times, resulting in traffic data 
from various time periods. The extensive range of hourly 
traffic counts across multiple junctions provides a valuable 
resource for modeling and predicting traffic congestion. The 
key features in the dataset are tabulated in Table II. 

TABLE II. KEY FEATURES IN THE DATASET 

Features Description 

Date and Time The specific date and time of the observation. 

Junction The identifier for the junction where the data was collected. 

Vehicles The number of vehicles counted at the junction during the specified hour. 

ID A unique identifier for each observation. 

The study incorporated weather data [20] of same period of 
time for creating more accurate, responsive, and 
comprehensive traffic management systems. It helps in 
optimizing traffic flow, improving safety, enhancing 
emergency response, and supporting long-term infrastructure 
planning. By understanding how weather influences traffic 
patterns, cities can better prepare for and mitigate the impacts 
of both regular and extreme weather conditions on their 
transportation networks. The dataset provides the temperature 
alongside two types of radiation measurements: direct 
horizontal radiation and diffuse horizontal radiation. These 
metrics are essential for understanding the overall weather 
conditions, as direct radiation measures the sunlight that 
reaches the ground without scattering, while diffuse radiation 
accounts for sunlight scattered by the atmosphere. 

B. Preprocessing and Exploratory Data Analysis 

Preprocessing and EDA are crucial in the data analysis 
pipeline, with preprocessing ensuring the data is suitable for 
analysis and EDA providing insights and understanding of the 
data [21]. Fig. 2 provides the statistics of the data statistics. 

The histogram in Fig. 3 provides a visual representation of 
the distribution of traffic volumes in the dataset. It displays 
how frequently different ranges of vehicle counts occur by 
dividing the data into 30 bins. Each bar in the histogram 
represents the frequency of vehicle counts falling within a 

specific range, allowing for easy identification of common 
traffic volume ranges and patterns. The plot also helps in 
detecting any skewness in the data, understanding the spread of 
traffic volumes, and spotting potential outliers. 

 

Fig. 2. Data statistics. 

The line plot shown in Fig. 4 illustrates the average traffic 
volume over time by resampling the data on a daily basis. It 
shows how the average number of vehicles varies across 
different days, providing insights into daily traffic trends and 
fluctuations. The boxplots in Fig. 5 compare traffic volumes 
across different junctions, highlighting variations in vehicle 
counts. Each boxplot visualizes the distribution of traffic 
volumes for each junction, showing median values, 
interquartile ranges, and any outliers. 
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Fig. 3. Distribution of traffic volumes. 

 

Fig. 4. Traffic volume over time. 

 

Fig. 5. Traffic volume by junction. 
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The average traffic volume for each hour and each day of 
the week is visualized in Fig. 6, revealing variations in traffic 
patterns across different days. These visualizations help in 

identifying peak traffic times and understanding daily and 
weekly traffic patterns. 

 

Fig. 6. Average traffic volume for (a) hour of the day (b) day of the week. 

The analysis involves identifying peak and off-peak hours 
for traffic management by calculating the average traffic 
volume for each hour and each day of the week, highlighting 
times of high and low traffic as in Fig. 7. 

Additionally, time series decomposition is performed to 
understand the underlying patterns in traffic volume data. By 
breaking down the data into trend, seasonal, and residual 
components, this approach reveals long-term trends, recurring 
seasonal effects, and irregular variations, providing a clear 
scenario of traffic dynamics over time as in Fig. 8. This 
comprehensive analysis supports better traffic management and 
planning by pinpointing peak traffic periods and understanding 
traffic behavior patterns. 

The traffic volume analysis reveals a clear seasonal pattern 
with fluctuations that repeat on a weekly basis, suggesting 
regular peaks and troughs corresponding to weekly traffic 

variations. The trend component shows long-term changes in 
traffic volume, indicating periods of increase or decrease, but 
without providing conclusive trends due to its variability. The 
residuals, representing the noise after accounting for trend and 
seasonality, are scattered around zero with a few outliers. 
Using a correlation matrix in Fig. 9, the correlation analysis 
examines at the associations between traffic volume and 
variables like the day of the week and hour of the day. 

The correlation matrix reveals that there is a moderate 
positive correlation between traffic volume and the hour of the 
day, indicating that traffic volume tends to increase with later 
hours. In contrast, the correlation between traffic volume and 
the day of the week is weakly negative, suggesting minimal 
variation in traffic volume across different days. The traffic 
flow variations throughout the week are illustrated in Fig. 10, 
which reflects patterns in commuter and commercial traffic. 

 

Fig. 7. Peak hour analysis. 
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Fig. 8. Time series decomposition. 

 

Fig. 9. Correlation matrix. 

 

Fig. 10. Average daily traffic rate. 
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The analysis of holiday effects on traffic volumes, shown in 
Fig. 11, aims to determine how public holidays impact traffic 
patterns compared to non-holidays. By marking specific public 
holidays and comparing the average traffic volumes on these 
days to those on regular days, the analysis identifies any 
significant differences in traffic flow. 

For long-term trend analysis, monthly traffic volumes were 
examined to assess any significant changes over an extended 
period. The monthly average traffic volume data as illustrated 
in Fig. 12, indicates a general upward trend, suggesting that 
traffic has been increasing over time. An addition of a trend 
line to the plot confirmed this long-term upward trajectory. 

This trend could reflect urban development, population growth, 
or other factors influencing traffic patterns. Such insights are 
valuable for traffic management and infrastructure planning, as 
they highlight the need for adapting strategies to handle 
increasing traffic volumes. 

The junction comparison analysis in Fig. 13 highlights 
variations in average traffic volumes across different junctions. 
By grouping the traffic data by junction and calculating the 
average number of vehicles for each, the analysis reveals that 
Junction 1 consistently experiences the highest average traffic 
volume, significantly surpassing the other junctions. 

 

Fig. 11. Holiday effect on traffic volume. 

 

Fig. 12. Monthly average traffic volume over time with a linear trend line. 

 

Fig. 13. Average traffic volume by junction. 
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The analysis of daily traffic volumes through Z-scores has 
identified specific dates with unusually high traffic levels. Z-
scores quantify how far each data point deviates from the 
average, highlighting days with significantly above-average 
traffic. These elevated traffic volumes could be attributed to 
various factors. For instance, there have been special events, 
like concerts or sports games, that led to increased traffic on 
these days. Alternatively, temporary disruptions such as road 
construction or detours have redirected traffic through these 
areas, causing a spike. Additionally, seasonal patterns or local 
events also explain the higher traffic volumes observed. 

Incorporating the weather data, the scatter plot in Fig. 14 
shows that there is no evident correlation between temperature 
and the number of vehicles, suggesting that temperature has no 
significant impact on traffic volume. 

The analysis of daily traffic volumes included the 
application of the Augmented Dickey–Fuller (ADF) test to 
assess the stationarity of the time series data. Stationarity is a 
critical property for time series analysis, as non-stationary data 
can lead to misleading results in forecasting models. The ADF 
test was employed to test the null hypothesis that the traffic 

volume time series contains a unit root, which would indicate 
non-stationarity. The results of the ADF test revealed a 
significantly negative ADF statistic and a p-value much 
smaller than conventional significance levels. These findings 
strongly reject the null hypothesis, indicating that the traffic 
data is stationary. The Auto-Correlation Function (ACF) plot 
displays the correlation between the data and its lagged values 
over time, while the Partial Auto-Correlation Function (PACF) 
plot shows the direct correlation at specific lags, controlling for 
the effects of intermediate lags as in Fig. 15. 

To complement this stationarity check, a Z-score analysis 
was performed to identify anomalies in daily traffic volumes. 
By calculating Z-scores, which indicate how many standard 
deviations a data point is from the mean, the analysis was able 
to identify days with significantly higher or lower traffic 
volumes compared to the average. These anomalies were then 
visualized on a line graph as in Fig. 16, with red dots marking 
the days where traffic volumes deviated notably from the 
norm. This visual representation provided insights into trends, 
potential seasonality, and outlier events that could be linked to 
external factors such as road closures, construction projects, or 
special events. 

 

Fig. 14. Scatter plot of temperature vs. number of vehicles. 

 

Fig. 15. ACF and PACF plot. 
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Fig. 16. Traffic volume over time with anomalies. 

Additionally, the analysis involved checking for missing 
data, consistency of data reporting, and potential outliers. 
Missing timestamps were identified and accounted for, 
ensuring that the data was complete and accurately represented. 
The consistency of data reporting was verified by examining 
the number of records per junction and analyzing the time 

intervals between records. This step ensured that data 
collection was uniform across different junctions and time 
periods. Outlier detection further refined the analysis by 
identifying traffic volumes that were unusually high or low as 
depicted in Fig. 17, which could distort the overall findings if 
not properly addressed. 

 

Fig. 17. Box plot of vehicle count. 

C. Feature Engineering and Embedding 

Feature engineering is a crucial step in improving model 
performance by creating and transforming features to capture 
the underlying patterns in traffic congestion data [22]. One of 
the primary types of features engineered for this purpose is 
temporal features. These include the hour of the day (extracted 
from the timestamp) to capture daily traffic variations, the day 
of the week to distinguish between weekday and weekend 
traffic patterns, and the month to account for seasonal trends. 
Additionally, a holiday indicator is used as a binary feature to 
differentiate between holidays and regular days, which often 

exhibit different traffic behaviors. In addition to temporal 
features, lagged features are introduced, such as the previous 
hour traffic volume, which helps in incorporating short-term 
historical trends into the model as represented by Eq. (1). 

𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑣𝑜𝑙𝑢𝑚𝑒_𝑙𝑎𝑔_𝑘 = 𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑣𝑜𝑙𝑢𝑚𝑒(𝑡−𝑘)        (1) 

where, k denotes the lags in hours, 𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑣𝑜𝑙𝑢𝑚𝑒(𝑡−𝑘) 

denotes the traffic volume at time 𝑡 − 𝑘, indicating the value of 
the traffic volume variable 𝑘 periods before the current time 𝑡. 
This is particularly useful for predicting current traffic 
conditions based on recent patterns. Aggregated features like 
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the daily average traffic volume are also created by averaging 
traffic data over a day, which helps smooth out short-term 
fluctuations and captures overall daily trends as illustrated by 
Eq. (2). 

𝑑𝑎𝑖𝑙𝑦_𝑎𝑣𝑔_𝑡𝑟𝑎𝑓𝑓𝑖𝑐 =  
1

𝑁
∑ 𝑡𝑟𝑎𝑓𝑓𝑖𝑐_𝑣𝑜𝑙𝑢𝑚𝑒𝑖

𝑁
𝑖=1              (2) 

where N is the total number of observations. Furthermore, 
interaction features are engineered by combining different 
factors, such as the interaction between the hour of the day and 
weather conditions, to capture the combined effect on traffic 
patterns. Normalization standardizes the features by subtracting 
the mean and dividing by the standard deviation. 

𝑠𝑐𝑎𝑙𝑒𝑑_𝑓𝑒𝑎𝑡𝑢𝑟𝑒 =
𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑚𝑒𝑎𝑛

𝑠𝑡𝑑_𝑑𝑒𝑣
      (3) 

Feature embedding is particularly useful when dealing with 
categorical features that have a large number of unique values, 
such as Junction IDs in traffic data. By converting these 
categorical variables into dense vectors, feature embedding 
allows the model to learn complex relationships within the 
data. Junction IDs are categorical variables representing 
different traffic junctions. Temporal features are represented by 
time-based encodings. Using an embedding layer, each unique 
Junction ID is mapped to a continuous vector in a high-
dimensional space as Eq. (4). This allows the model to capture 
similarities between different junctions. 

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑚𝑎𝑡𝑟𝑖𝑥, 𝐸 ∈ ℝ𝑉×𝑑     (4) 

where, V is the number of unique junctions and d is the 
dimensionality of the embedding vector. Each junction i is 
represented by Eq. 5. 

𝐸𝑖 ∈ ℝ𝑑          (5) 

The embedding matrix E is initialized randomly and is 
learned during the training process. The embeddings are 
updated to minimize the loss function, allowing the model to 
capture relevant patterns in the data as Eq. (6). 

𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑_𝑣𝑒𝑐𝑡𝑜𝑟 = 𝐸𝑖   (6) 

D. Proposed Traffic Congestion Prediction Model 

The attention-based multilayer GRU model is designed to 
handle sequential data, such as traffic flow over time, by 
utilizing both the GRU for capturing temporal dependencies 
and an attention mechanism to focus on the most relevant time 
steps. This approach helps in improving the model's predictive 
performance by selectively concentrating on important 
historical data. 

1) Attention based multi- layer gated recurrent unit: The 

GRU is a variant of Recurrent Neural Networks (RNNs) 

designed to handle sequential data effectively [23]. It employs 

update gates and reset gates to manage the flow of information 

through the network. Fig. 18 illustrates the GRU cell 

architecture. 

 

Fig. 18. Cell structure of GRU. 

In a GRU cell, a gate controller, represented by z, oversees 
the operation of both the input and forget gates. When z equals 
1, the forget gate is turned off, enabling the input gate to 
function. On the other hand, when z equals 0, the forget gate is 
activated and the input gate is turned off. At every time step, 
the GRU cell maintains the memory from the previous time 
step (t - 1) while resetting the input for the current step. The 
operation of the GRU cell is governed by the following 
equations: Eq. (7) through Eq. (9). 

Reset Gate (𝑟𝑡𝑖), 

𝑟𝑡𝑖 = 𝜎(𝑊𝑟 . [ℎ𝑡𝑖−1,𝑥𝑡𝑖] + 𝑏𝑟)  (7) 

Update Gate (𝑧𝑡𝑖), 

𝑧𝑡𝑖 = 𝜎(𝑊𝑧 . [ℎ𝑡𝑖−1,𝑥𝑡𝑖] + 𝑏𝑧) (8) 

Candidate Activation (ℎ𝑡𝑖), 

ℎ𝑡𝑖 = (1 − 𝑧𝑡𝑖) ∗ ℎ𝑡𝑖−1 + 𝑧𝑡𝑖 ∗ ℎ𝑡𝑖
̅̅̅̅             (9) 
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The GRU network is employed to forecast traffic 
congestion levels at 24 distinct time intervals, spanning from 
one hour to one day ahead, for model optimization. This GRU 
model features two hidden layers, with the input layer having 
18 nodes and each hidden layer containing 13 nodes, as 
determined by the two-thirds rule applied to the input layer size 
and the inclusion of the output layer size. When predicting 
traffic congestion, extending the input sequence in a GRU 
network can reduce prediction accuracy because the model 
tends to equally weight all input variables despite their varying 
relevance to the forecasted outcomes. To mitigate this issue, an 
attention mechanism is incorporated, enabling the model to 
prioritize the most pertinent input variables. 

The attention mechanism comprises an encoder that creates 
an attention vector from the input data and a decoder that 
generates a hidden state based on the encoder's output [24]. 
The encoder produces hidden states ℎ𝑡  for each time step t. 
These hidden states are segmented, and the encoder calculates 

an attention score 𝑒𝑡′
𝑡  for each segment's hidden state using the 

hidden state from the preceding decoder segment. The attention 
score is calculated as specified in Eq. (10). 

                                  𝑒𝑡′
𝑡 = 𝑠𝑐𝑜𝑟𝑒(ℎ𝑡′, ℎ𝑡)  (10) 

This process creates an attention vector through a Softmax 
operation on the attention scores as given by Eq. (11). 

𝛼𝑡′
𝑡 =

exp (𝑒
𝑡′
𝑡 )

∑ exp (𝑒
𝑡′
𝑡 )𝑘

    (11) 

The context vector 𝑐𝑡′ is then computed as a weighted sum 
of the encoder hidden states as in Eq. (12), where the weights 
are the attention weights. 

𝑐𝑡′ = ∑ 𝛼𝑡′
𝑡

𝑡 ℎ𝑡    (12) 

This method ensures that the encoder concentrates on input 
variables that are closely related to the predicted value 
whenever the decoder generates an output. The decoder uses 
the context vector 𝑐𝑡′  along with its previous hidden state to 
generate the next hidden state and output as in Eq. (13). 

ℎ𝑡′ = tanh (𝑊ℎ[𝑐𝑡′, ℎ𝑡′−1] + 𝑏ℎ (13) 

To enhance the accuracy of traffic congestion predictions, 
the attention mechanism is designed to focus on highly 
correlated input variables. The size of the attention window is 
set to 96 for this specific model configuration. The attention 
based GRU model architecture is illustrated by Fig. 19. 

 

Fig. 19. Attention-based GRU model architecture. 

Thus, the attention-based multi-layer GRU captures and 
processes the temporal dependencies in traffic data, the dense 
layer integrates and refines these features, and the output layer 
generates the final traffic prediction based on the transformed 
data. 

E. Hardware and Software Setup 

The experimental setup included an NVIDIA GeForce 
GTX 1080Ti GPU, an Intel Core i7 processor, 32GB of RAM, 

and utilized python and the Keras library with TensorFlow as 
the backend. Keras' intuitive interface, combined with the 
computational power of Google Colab, enabled efficient model 
training with GPU support. The dataset was split for training 
and testing to ensure robust evaluation. Table III outlines the 
hyperparameters chosen for the training phase, which played a 
critical role in fine-tuning the model's performance on the 
traffic prediction dataset, ensuring both accuracy and rapid 
convergence. 

TABLE III. HYPERPARAMETER SPECIFICATION 

Hyperparameters Values 

Loss function Mean squared error 

Activation function  Sigmoid 

Batch size  32 

Epochs  150 

Optimizer  Adam  

Learning rate  0.001 
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IV. RESULTS AND DISCUSSION 

The model's performance was assessed by means of various 
metrics, as detailed in Table IV. Table V shows the model 

performance assessment using evaluation metrics for traffic 
congestion prediction. 

TABLE IV. EVALUATION METRICS 

Metric Equation 

Mean Squared Error (MSE) 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

Mean Absolute Error (MAE) 𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 

Coefficient of Determination (R²) 𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

Mean Absolute Percentage Error (MAPE) 𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖

| × 100

𝑛

𝑖=1

 

n is the number of observations, 𝑦𝑖 is the actual value, 𝑦�̂� is the predicted value  
 

TABLE V. PERFORMANCE ASSESSMENT USING EVALUATION METRICS 

Evaluation metrics Values 

MSE 0.9678 

MAE 0.4322 

R² 0.8686 

MAPE 6% 

The evaluation metrics demonstrate that the model excels 
in predicting traffic congestion with impressive performance. 
The MSE of 0.9678 indicates that the model generates 
predictions with minimal squared errors, reflecting a high 
degree of accuracy in capturing the nuances of traffic patterns. 
The MAE of 0.4322 underscores the model's strong predictive 
capability, with average deviations being relatively low and 
manageable. The R² of 0.8686 reveals that the model accounts 
for approximately 87% of the variability in traffic congestion, 

showcasing its effectiveness in explaining the observed data. 
Additionally, the MAPE of 6% demonstrates that the model's 
predictions are, on average, within 6% of the actual values, 
highlighting its robustness and reliability. Overall, these results 
confirm that the model delivers highly accurate and reliable 
predictions for traffic congestion, marking it as an exceptional 
tool for traffic forecasting. Fig. 20 illustrates the predicted and 
actual values of the suggested attention based multilayer GRU 
model for traffic congestion prediction. 

 

Fig. 20. Predicted vs. actual values of proposed model. 

The attention-based multilayer GRU model showed 
considerable efficiency in predicting traffic congestion. The 
model demonstrated robust prediction accuracy and reliability, 
evidenced by an MSE of 0.9678, an MAE of 0.4322, and an R² 
value of 0.8686. A MAPE of 6% further demonstrates the 
model's resilience while processing real traffic data. The 

integration of the attention mechanism within the multilayer 
GRU architecture enables the model to concentrate on the most 
pertinent temporal patterns and features in traffic data, 
enhancing prediction accuracy and ensuring effective capture 
of both short-term fluctuations and long-term dependencies in 
congestion patterns. The attention-based multilayer GRU 
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model is an exceptionally excellent method for predicting 
traffic congestion. An attention mechanism in a multilayer 
GRU aids in the prediction of traffic congestion by allowing 
the model to concentrate on the most important features and 
pertinent temporal patterns in the data. The attention 
mechanism, in contrast to conventional GRU models, gives 
significant time steps, ensuring that significant congestion-
related occurrences or patterns are given priority during 
prediction. This enhances the model's ability to capture long-
term dependencies while reducing the influence of irrelevant or 
noisy inputs. The multilayer GRU utilizes the attention 
mechanism to enhance prediction accuracy and interpretability, 
making it especially suitable for the intricate and variable 
nature of traffic congestion prediction. 

V. CONCLUSION 

The proposed attention-based multilayer GRU model offers 
a substantial improvement over traditional traffic management 
methods by addressing the dynamic and complex nature of 
traffic congestion. The model's ability to capture temporal 
dependencies and intricate traffic patterns through attention 
mechanisms enables more accurate predictions of traffic 
conditions and congestion levels. The model achieved a 
notable improvement in accuracy, with MAE and MSE values 
of 0.4322 and 0.9678, respectively. This enhanced predictive 
capability facilitates timely and efficient traffic management 
interventions, reducing travel times, minimizing fuel 
consumption, and lowering emissions. The effectiveness of the 
model in various urban scenarios demonstrates its potential to 
significantly improve overall traffic flow and urban mobility. 
Future research could explore integrating real-time data 
sources and extending the model's application to different 
traffic management systems to further enhance its 
effectiveness. Future studies should investigate transfer 
learning to adapt models for areas with scarce historical data 
and reduce dependence on computational resources. More 
thorough and useful solutions for traffic management systems 
will be ensured by integrating external factors like weather, 
road construction, and special events, as well as by creating 
reliable models for unexpected disruptions. 
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