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Abstract—Driver drowsiness is a major contributing factor in 

road accidents, emphasizing the need for enhanced detection 

measures to improve car safety. This paper describes a multi-

modal fatigue detection system that uses data from an internal 

camera, a front camera, and vehicle factors to reliably assess 

driver alertness. The technology outperforms traditional methods 

in terms of detection accuracy by utilizing powerful machine 

learning algorithms. Simulation and real-world tests show 

considerable improvements in reliability and performance. This 

integrated strategy offers a promising alternative for reducing the 

dangers associated with driver weariness and improving overall 

traffic safety. 
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I. INTRODUCTION 

The rising number of traffic accidents due to driver 
drowsiness poses a significant threat to worldwide vehicle 
safety. Drowsiness decreases reaction times, alertness, and 
decision-making abilities, potentially leading to serious 
consequences. According to World Health Organization study, 
drowsy drivers cause up to 30% of road accidents [1]. Despite 
advances in car safety systems, detecting and reducing driver 
drowsiness remains a major concern. Existing systems 
frequently rely on a single data source, such as driver monitoring 
cameras or vehicle behaviour analysis, which may not provide a 
complete picture of the driver's state. 

This study overcomes this limitation by creating a multi-
modal sleepiness detection system that combines data from an 
interior camera, a front camera, and a variety of vehicle factors. 
The inside camera catches the driver's facial expressions and eye 
movements, which provide direct indications of weariness. The 
front camera detects the vehicle's position relative to road 
markings and other cars, providing contextual information about 
the driving environment. Furthermore, vehicle data, such as 
steering patterns, speed variations, and lane deviations, 
contribute to a thorough evaluation of driver behavior and 
potential sleepiness signs. 

By combining these disparate data streams, the proposed 
system intends to improve the accuracy and reliability of 
sleepiness detection, thus enhancing overall traffic safety. This 
paper describes how the integrated system was designed, 
implemented, and evaluated. It begins with an overview of 
sleepiness labeling and monitoring technologies, followed by 
data collection and specification in accordance with norms and 
regulations. Next, the system architecture and feature extraction 
algorithms are given. The report also explains the detection 

algorithms used to process data and generate alerts, as well as 
the system integration and real-time operation techniques. 

The system's performance is confirmed by simulation and 
real-world testing, which show considerable gains in detection 
accuracy over typical single-modality systems. The findings 
highlight the system's potential to improve automobile safety 
and enable better driving experiences. Finally, the consequences 
of these findings for vehicle safety are examined, and ideas for 
further research are suggested. 

II. INSTRUMENTATION AND DATA COLLECTION 

A. Drowsiness Labeling 

Drowsiness is classified in a variety of ways, including 
subjective and objective measures. The Karolinska Sleepiness 
Scale (KSS) is the most commonly used tool. Participants rated 
their drowsiness on a scale of 1 (very awake) to 9 (extremely 
drowsy, fighting sleep). The KSS is known for its simplicity and 
rigorous validation, making it a dependable tool in both research 
and therapeutic settings. Another popular subjective measure is 
the Stanford Sleepiness Scale (SSS), which asks people to score 
their sleepiness on a scale of 1 (feeling active and vital) to 7 (no 
longer fighting sleep, sleep onset imminent) [2]. 

Other scales are the HFC Drowsiness Scale, Epworth 
Sleepiness Scale (ESS), Johns Drowsiness Scale (JDS), 
Observer Rating of Drowsiness (ORD), and Subjective 
Drowsiness Rating (SDR). The HFC sleepiness Scale, ORD, 
and SDR use external labelling methods, in which an observer 
assesses the subject's sleepiness based on observable behaviors 
and physical indications. In contrast, the ESS is a self-
administered questionnaire that assesses an individual's 
proclivity to fall asleep in a variety of scenarios, providing a total 
score indicative of general daytime drowsiness. The JDS is 
unique in that it relies on physiological signs, such as eye 
movements, blink rate, or brain activity, to objectively quantify 
drowsiness. 

The KSS was chosen as the major instrument for sleepiness 
labelling in this study because of its ease of use and solid 
validation record. The KSS allows participants to easily and 
reliably self-assess their state of drowsiness, giving a strong and 
trustworthy indicator to support the study's aims. 

B. Drowsiness Monitoring 

Driver sleepiness detection strategies include a wide range 
of physiological [3], behavioral [4], and vehicle-based 
approaches [5], each with differing levels of intrusion and 
accuracy. Physiological approaches such as 
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electroencephalography (EEG), electrocardiography (ECG), 
electromyography (EMG), and electrooculography (EOG) are 
highly accurate because they detect early signs of drowsiness. In 
this study, ECG data will be collected with self-reported 
participant assessments to provide precise baseline measures of 
sleepiness levels in a controlled environment. This combination 
provides an excellent paradigm for evaluating drowsiness using 
both subjective and objective inputs. 

The fundamental goal of this research is to combine 
behavioral and vehicle-based detection algorithms to increase 
overall accuracy and solve edge circumstances that may be 
difficult for a single modality. Eye movements, facial emotions, 
and head position are among the indications used in behavioral 
analysis. Although these procedures are less physically intrusive 
than physiological measures, their relationship with monitoring 
raises issues about psychological intrusiveness. Typically, 
behavioural detection uses cameras and deep learning 
algorithms to diagnose sleepiness states based on data including 
blink duration, blink frequency, percentage of eyelid closure 
(PERCLOS), yawning, and head posture. Eye movement-based 
tests are especially effective because of their high association 
with tiredness. 

Vehicle-based approaches are used in addition to 
behavioural detection to capture driving information such as 
lane position, steering wheel movements, acceleration patterns, 
and pedal usage. Steering wheel movement and lane-keeping 
performance are commonly investigated measurements, with 
conflicting results about their relative accuracy in diagnosing 
drowsiness. Vehicle-based procedures are most effective in 
locations with clear road markings and favorable weather 
conditions, but they are often less dependable than physiological 
or behavioral measures when used alone. 

The combination of behavioral and vehicle-based methods 
takes advantage of the strengths of both approaches. 
Behavioural methods provide extensive, real-time insights into 
the driver's state by continuously monitoring facial and ocular 
traits, whereas vehicle-based methods provide a practical, non-
intrusive way of evaluating driving performance. By combining 
these modalities, the proposed method improves the resilience 
and diversity of sleepiness detection while balancing accuracy, 
intrusiveness, and practicality. This hybrid technique is intended 
to provide a comprehensive solution fit for real-world 
applications, effectively tackling a wide range of scenarios and 
edge cases. 

C. Data Collection 

To improve data collecting for sleepiness detection, a 
comprehensive technique was used to gain a holistic picture of 
driver alertness. ECG was used to monitor participants' heart 

rate and heart rate variability, providing important information 
about their physiological status. Participants used the KSS to 
self-report their sleepiness levels, allowing subjective fatigue 
ratings to be correlated with physiological data. 

Front and interior cameras were carefully placed to capture 
the vehicle's position in the lane, as well as facial expressions, 
eye movements, and head posture, allowing for thorough 
behavioral analysis. Furthermore, vehicle data were tracked via 
the Controller Area Network (CAN) technology, which captured 
crucial driving metrics like steering wheel movements, lane 
deviations, and pedal usage. The obtained data is utilized to train 
the model, validate it, and calculate the system's performance. 

D. Norms and Regulations 

To maintain safety and dependability, drowsiness and 
distraction detection systems in the automotive sector must meet 
high standards. Euro NCAP (European New Car Assessment 
Program) [6] is a major regulatory body that provides rigorous 
methods for evaluating the performance of advanced driver 
assistance systems (ADAS). Euro NCAP evaluates these 
systems on their ability to detect and reduce risks associated with 
driver fatigue and distraction, which plays an important part in 
establishing vehicle safety ratings. These studies include 
extensive assessments of the system's response to real-time 
sleepiness signs, accuracy in detecting distractions, and overall 
reliability under varied driving scenarios. 

Furthermore, the European Union's General Safety 
Regulation 2 (GSR2) mandates all new vehicles to have driver 
monitoring devices that can identify both tiredness and 
distraction [7]. GSR2 requires that these systems meet high 
precision, reliability, and user data protection standards in order 
to improve road safety. 

We created software and system requirements in accordance 
with the automobile safety standard ISO 26262 [8] and the 
applicable regulation. Furthermore, we measured performance 
and validated it in accordance with the defined requirements and 
applicable norms. 

III. OPERATIONAL DECISION MODEL 

A. System Architecture 

The suggested multi-modal sleepiness detection system is 
intended to use the strengths of several data sources to deliver a 
complete assessment of driver weariness. The system 
architecture is separated into four major components: data 
collecting, processing, analysis, and alarm production. Each 
component is critical to guaranteeing the accuracy and reliability 
of the sleepiness detection procedure. Fig. 1 depicts the major 
components of our multi-model driver drowsiness detection 
system (DDAS): 
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Fig. 1. Multi-modal driver drowsiness detection system framework.

The data acquisition device uses three basic sources: an 
internal camera, a front camera, and vehicle parameters. The 
interior camera is set up to capture the driver's facial expressions 
and eye movements. The front camera, positioned behind the 
rearview mirror and facing the road, captures real-time imagery 
of the road ahead. Vehicle parameters are obtained from the 
CAN network. 

Data processing entails extracting and identifying unique 
properties from each data source. The internal camera identifies 
face landmarks such as eyes, mouth, and head orientation. These 
traits are identified and tracked using methods such as facial 
recognition and feature point detection. The front camera 
identifies lane markers and the vehicle's relative distance to the 
lane, while line detection algorithms track lane deviations and 
headway distance. Meanwhile, the vehicle parameters 
subsystem gathers information on steering wheel movements, 
speed variations, brake pedal pressure, and acceleration patterns. 

The data analysis unit examines the retrieved features to 
determine the driver's state. Blink frequency, duration of eye 
closure (PERCLOS), and yawning frequency are all examples 
of fatigue indicators in interior camera footage. High blink rates 
and prolonged eye closures are clear signs of tiredness. The data 

from the forward-facing camera is utilized to calculate lane 
deviation frequency, time-to-lane crossing, and headway. 
Frequent lane drifting, crossing lines, without indicating and 
maintaining a low headway distance can all indicate a lack of 
attention. Vehicle parameters are examined to identify slalom 
motions, speed abnormalities, and erratic braking. Sudden 
steering wheel movements, irregular speeds, and abrupt brakes 
all indicate driver weariness or inattention. To process these 
features and identify drowsiness-related patterns, an advanced 
machine learning technique called support vector machine 
(SVM) is used. These models are trained using annotated 
datasets to distinguish between normal driving behavior and 
indicators of weariness. 

When drowsiness is identified, the system issues relevant 
alerts to the driver. These alerts include both voice notifications 
and visual cautions on the dashboard. These warnings are 
intended to catch the driver's attention and encourage them to 
take a rest. 

B. Features Extraction and Decision Making 

1) Lane detection and deviation: The front camera 

identifies lane deviations, indicating irregular driving behavior. 
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The video stream is preprocessed to determine the road's region 

of interest (ROI), then edge detection is performed using the 

Canny edge detector: 

G (x , y) = (√(𝐺𝑥
2 + 𝐺𝑦

2) 

where, G (x, y) is the gradient magnitude at pixel (x, y), and 
G𝑥 , G𝑦are horizontal and vertical gradients, respectively. The 

identified edges are converted into line segments using the 
Hough Transform: 

ρ = x cos θ + y sin θ 

where (x, y) are edge points in the image, ρ is the 
perpendicular distance from the origin to the line, and θ is the 
line's angle. 

Lane position deviations are measured as the Standard 
Deviation of Lane Position (SDLP): 

SDLP = √(
1

𝑛
∑ (ρ𝑖 −  ρ̅)2𝑛

𝑖=1  

where ρ𝑖 is the lateral position of the vehicle at time i, and 
ρ̅ is the average lane position across the observation window [9]. 

2) PERCLOS (Percentage of Eye Closure): PERCLOS 

quantifies the proportion of time that the eyes are closed during 

an observation session: 

PERCLOS= 
𝑁𝑐𝑙𝑜𝑠𝑒𝑑

𝑁𝑡𝑜𝑡𝑎𝑙
 

Where: 

The term 𝑁𝑐𝑙𝑜𝑠𝑒𝑑  = Number refers to the number of frames 
with an Eye Aspect Ratio (EAR) below the threshold, which 
indicates closed eyes. 

𝑁𝑡𝑜𝑡𝑎𝑙  is the total number of frames captured during the 
observation time. 

The Eye Aspect Ratio (EAR) for each frame is determined 
as: 

EAR = 
𝑑𝑖𝑠𝑡(𝑝2,𝑝6)+𝑑𝑖𝑠𝑡(𝑝3,𝑝5)

2.𝑑𝑖𝑠𝑡(𝑝1,𝑝4)
 

Where: 

𝑝1, 𝑝2,…, 𝑝6  = Coordinates for eye landmarks [10]. 

3) Blink rate: Blink rate is the number of blinks per minute, 

calculated as: 

Blink Rate = 
𝑁𝑏𝑙𝑖𝑛𝑘𝑠

T
 × 60 

Where: 

𝑁𝑏𝑙𝑖𝑛𝑘𝑠 = Number of detected blinks during the observation 
period. 

T = Duration of the observation period in seconds [11]. 

4) Yawning frequency: Yawning frequency refers to the 

number of yawns each minute: 

Yawning Frequency = 
𝑁𝑦𝑎𝑤𝑛𝑠

T
 × 60 

Where: 

𝑁𝑦𝑎𝑤𝑛𝑠  is the number of yawns identified throughout the 

observation time. 

T represents the duration of the observation period in 
seconds. [12] 

5) Head tilt: Head tilt angle (θ) is measured by 
measuring the vertical and horizontal distances between 
specified facial landmarks: 

θ = arctan (
𝑑𝑖𝑠𝑡(𝑝nose,𝑝chin)

𝑑𝑖𝑠𝑡(𝑝eye_corner_left,𝑝eye_corner_right)
) 

Where: 

𝑝nose = Landmark for the tip of nose. 

𝑝chin= Chin landmark. 

𝑝eye_corner_left  and 𝑝eye_corner_right = Landmarks for the 

outer corners of the left and right eyes [13]. 

6) Slalom: To identify slaloming using steering wheel 

angle (α(t)), examine the rate of change (α˙(t)= 
𝑑𝛼

𝑑𝑡
) for sudden 

adjustments. Calculate the frequency of oscillations (𝑓𝑠𝑡𝑒𝑒𝑟 ) 

using the Fourier Transform of α(t). 

we calculate the amplitude of oscillations ( 𝐴𝑠𝑡𝑒𝑒𝑟 = 
1

T

𝑑α

dt
∫ |α(t)|

𝑡0+𝑇

𝑡0
𝑑𝑡) to reflect the magnitude of steering changes. 

A composite Slaloming Index (SI) comprises the following 
metrics: 

SI = 𝑤1. 𝑓𝑠𝑡𝑒𝑒𝑟  + 𝑤1. 𝐴𝑠𝑡𝑒𝑒𝑟  

High SI values indicate slaloming without using the blinker, 
indicating erratic steering that could be attributed to fatigue [14]. 

7) SVM-Based model 

a) Feature vector: The feature vector x combines all 

necessary parameters for detecting tiredness: 

x = [PERCLOS, Blink Rate, Yawning Frequency, Head Tilt, 
Pedal Pressure, Delayed Braking, Frequent Change in Speed, 
Lane Deviation, Slalom Maneuver, 
Multiple Lane Crossings without Blinker] 

b) SVM decision function: The SVM decision function is 

defined as follows: 

f(x) = w⋅ + b 

Where: 

𝑊 = [𝑊1, 𝑊1,…, 𝑊10] Weight vector for the features. 

b: Bias word. 

f(x): A decision score that indicates the possibility of 
drowsiness. 

Classification Rule 

The categorization choice depends on the sign of f(x): 

Y = sin f(x) 

Where: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 1, 2025 

1010 | P a g e  

www.ijacsa.thesai.org 

Y = +1 indicates Non-Drowsy. 

Y = −1 indicates Drowsy. 

c) Mapping to KSS level: The decision score f(x) is 

mapped to the KSS level use the mapping function g(f(x)): 

K = g(f(x)) 

Where: 

KSS levels range from 1 (high alertness) to 9 (high 
drowsiness). 

d) KSS-based decision outcomes: The system action is 

based on the KSS level K: 

State = {
𝑁𝑜 𝐴𝑙𝑒𝑟𝑡, 𝑖𝑓 𝐾 < 7

𝐴𝑙𝑒𝑟𝑡, 𝑖𝑓 𝐾 ≥ 7
 

e) SVM training objective: The SVM is trained by 

minimizing the following objective function: 

min
𝑤,𝑏,ξ

1

2
‖𝑤‖2 + 𝐶 ∑ ξ𝑖

𝑛

𝑖=1

 

subject to: 

𝑦𝑖(w. 𝑥𝑖+b) ≥ 1- ξ𝑖,  ξ𝑖 ≥ 0 

The regularization parameter 𝐶 is used to balance the trade-
off between maximizing margin and minimizing 
misclassification errors. 

ξ𝑖: Slack variables for misclassified data points [15][16]. 

C. Operational Phases of DDAS 

1) Initialization of DDAS: The DDAS is activated under 

the following conditions: the engine is turned on, the driver is 

present with the door closed and the seatbelt buckled, and no 

malfunctions are identified in the monitored parameters. 

2) Learning phase: The DDAS learning phase occurs once 

every driving session, assuming the sleepiness function is 

engaged. This phase begins immediately upon system 

activation and lasts one minute, during which the system 

assesses the driver's sleepiness level. If a driver change is 

detected, the system resets and begins a new learning period. 

After completing the learning phase, the system moves on to 

the monitoring phase. 

3) Monitoring conditions: The learning phase is reset every 

time the vehicle is started or a driver change is detected. To 

accurately detect tiredness, the vehicle must travel at a 

minimum speed of 50 km/h. 

4) Monitoring phase: Following the learning phase, the 

DDAS enters the monitoring phase, which continues until the 

engine is turned off. During this phase, notifications are 

disabled in certain situations, such as when the vehicle's speed 

falls below 50 km/h. The technology continuously detects the 

driver's fatigue level. 

IV. VALIDATION AND PERFORMANCE ANALYSIS 

A. Simulation Based Result 

The proposed DDAS's performance was evaluated through 
a series of video simulations that analyzed video footage 
acquired during the data collecting phase to detect sleepiness 
occurrences based on predetermined thresholds and metrics. To 
evaluate the system's usefulness and accuracy, a confusion 
matrix was created, which provided a detailed breakdown of the 
system's classification. 

The video simulations included a diverse collection of 
lighting conditions, face angles, and subject sleepiness levels. 
The system's outputs were recorded and compared to the ground 
truth labels. The system's overall detection accuracy was 
assessed to be 92%, proving its capacity to discern between 
drowsy and alert states. In particular, the system properly 
identified alert states (True Negatives) in 94% of cases while 
accurately detecting drowsiness (True Positives) in 86%. 
However, it misidentified alert states as drowsy (False Positives) 
in 8% of cases and failed to detect drowsiness (False Negatives) 
in 6%. Fig. 2 displays the confusion matrix based on a huge 
dataset injected: 

 
Fig. 1. DDAM confusion matrix. 

The system demonstrated great sensitivity in identifying 
drowsiness, which is crucial for timely intervention and accident 
avoidance. The relatively low False Negative rate demonstrates 
its effectiveness in reducing unnoticed drowsiness. However, 
the False Positive rate, while acceptable, implies that further 
refinement in feature extraction and threshold tweaking could 
help eliminate unwanted warnings, hence improving user 
experience. 

The system's performance was further tested under difficult 
conditions. Due to limited visibility of facial landmarks in low-
light conditions, accuracy dropped somewhat to 88%. Under 
severe angles, accuracy remained stable at 90%, thanks to 
improved preprocessing and feature normalization. During rapid 
head movements, there was a modest decrease in True Positive 
detection, indicating an area for improvement in motion 
compensation. 

B. Real-Condition Testing 

Real-world testing in operating settings was carried out to 
validate the suggested sleepiness detection system. The 
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technology was placed in a vehicle and tested with drivers doing 
typical driving tasks. The scenarios included changing lighting 
(daylight, dusk, and night), different road surroundings (urban 
and highway), and dynamic driver behaviors. During these 
experiments, the system tracked and evaluated the driver's facial 
expressions, blinking patterns, and head movements to detect 
drowsiness in real time. The real condition testing findings are 
reported in the confusion Table I below: 

TABLE I. REAL TIME DRIVING RESULTS 

Predicted \ Actual Drowsy Alert 

Drowsy TP: 82% FP: 12% 

Alert FN: 10% TN: 88% 

The system had an overall detection accuracy of 85%. It 
recognized drowsiness (True Positives) in 82% of cases and 
accurately identified alert states (True Negatives) in 88% of 
cases. However, it misclassified alert states as drowsy (false 
positives) in 12% of cases and failed to detect tiredness (false 
negatives) in 10% of cases. 

C. Results, Discussion and Future Work 

The testing findings show that the suggested DDAS works 
reliably under both simulation and real-world settings. The 
system's exceptional sensitivity in detecting drowsiness 
provides quick intervention, which is crucial for avoiding 
accidents. Furthermore, the comparatively low False Negative 
rate demonstrates its usefulness in reducing undetected 
drowsiness, an important feature of driver safety systems. The 
system's overall accuracy, especially in difficult settings like low 
light and severe facial angles, demonstrates its durability and 
adaptability to real-world applications. 

These favorable results suggest that the system meets the 
safety and performance requirements stipulated in the GSR2 
regulatory frameworks and Euro NCAP standards. Compliance 
with these standards demonstrates the system's ability to greatly 
improve driver safety and reduce traffic deaths. Its capacity to 
identify tiredness with high reliability is consistent with the 
growing emphasis on integrating advanced driver monitoring 
systems into vehicle safety regulations. 

While the system worked effectively, there is still room for 
improvement. Future work should focus on lowering the False 
Positive rate in order to improve the user experience and reduce 
unwanted notifications. Advanced techniques, such as deep 
learning-based facial analysis, multi-modal data integration, and 
feature extraction method improvement, may improve system 
performance. Furthermore, further field testing with a more 
diversified driver population would help generalize the system's 
usefulness across different demographics and driving 
circumstances. 

The positive results demonstrate the system's suitability for 
real-world deployment, assuring compliance with international 

safety standards while providing a dependable solution for 
improving driver safety and contributing to the growth of 
intelligent vehicle technology. 

V. CONCLUSION 

This study introduces a multi-modal detection system that 
combines interior and front cameras with vehicle parameters to 
improve drowsiness detection accuracy. Using powerful 
machine learning, the system achieves 92% accuracy in 
simulations and 85% in real-world tests, consistently diagnosing 
fatigue under varied settings. 
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