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Abstract—Economic risk control is pivotal to the success of
engineering projects. Traditional risk assessment methods often
fall short in handling the high-dimensional, nonlinear, and
strongly correlated risk factors prevalent in modern large-scale
projects. To address these limitations, this study constructs an
engineering economic risk management platform based on the
BO-GBM model, which integrates Bayesian Optimization (BO)
with a Gradient Boosting Machine (GBM). The platform
employs a systematically constructed four-dimensional feature
system encompassing 28 indicators across project ontology,
market environment, execution process, and risk association
dimensions. A rolling time window strategy is adopted for
dynamic model training. Experimental validation on a dataset of
327 projects demonstrates the superior performance of the BO-
GBM model: for classification tasks, it achieves an AUC of 0.927
and a recall rate of 91.3%, outperforming the standard GBM by
175 percentage points in recall; for regression tasks (cost
deviation prediction), it attains an RMSE of 83,200 RMB and
reduces the MAPE to 9.7%, surpassing mainstream baseline
models. The platform's layered architecture (data, model,
service, application layers) enables efficient risk identification
and early warning: the time required for risk identification in
large projects is drastically reduced from 42.6 hours to 0.52
hours, representing an 81.9-fold efficiency gain; the average
single prediction response time is below 127 milliseconds, with a
P9S response time of 427 milliseconds under 500 concurrent
users; the early warning accuracy reaches 72.5%, with high-risk
warnings issued up to 28 days in advance for cost risks and 42
days for schedule risks.

Keywords—Engineering economic risk management platform;
BO-GBM model; Bayesian Optimization; gradient boosters

I.  INTRODUCTION

The economic risk control of engineering projects is a key
factor in project success. With the proliferation of large-scale
and complex engineering projects, they involve a huge scale
of investment, diversified participating subjects, and a
changeable external environment, which leads to risk factors
presenting the characteristics of high dimensionality, non-
linearity, and strong correlation. Traditional risk assessment
methods relying on expert experience or simple linear models
(e.g., logistic regression, linear discriminant analysis) are
difficult to effectively capture the intrinsic laws of such
complex risk relationships, and their prediction accuracy is
limited, often leading to lagging or misjudgment of risk
waming [1, 2]. Simultaneously, although deep learning
models possess strong fitting capabilities, their high
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requirements for massive labeled data and computational
resources present significant challenges for practical
application in engineering economic risk prediction, especially
where data availability can be constrained [3].

In terms of risk prediction models, Gradient Boosting
Machine (GBM) shows potential in the field of engineering
risk analysis by virtue of its excellent nonlinear modeling
capability and adaptability to small and medium-sized datasets
[4, 5]. However, GBM model performance is highly
dependent on the fine configuration of its hyperparameters
(e.g., learning rate, tree depth, subsampling ratio). Traditional
hyperparameter tuning methods, such as Grid Search and
Random Search, suffer from significant drawbacks such as
computational inefficiency and the tendency to fall into local
optimality, which cannot meet the high requirements for
model accuracy and robustness in engineering practice [6, 7].
Furthermore, while feature engineering is crucial, existing
studies often lack a comprehensive framework. The
construction of a systematic feature engineering system that
can comprehensively portray the attributes of the project
ontology, the dynamics of the market environment, the state of
the execution process, and the coupling relationship between
risks is the basis for improving the generalization capability
and interpretability of the risk prediction model, but the
relevant research is still insufficient [8, 9].

A critical analysis of existing literature reveals several
common limitations, as summarized in Table L.

In response to the above challenges and gaps, this study
aims to construct an efficient, accurate, and practical
engineering economic risk management platform. The core
innovations and contributions of this work are threefold:

Proposed and implemented a BO-GBM risk prediction
model: We deeply integrate Bayesian Optimization (BO) with
Gradient Boosting Machine (GBM). Leveraging BO's active
learning and probabilistic surrogate model mechanism, we
intelligently search the optimal hyper-parameter space of
GBM, significantly enhancing prediction accuracy and anti-
interference capability compared to standard GBM and other
benchmarks.

Constructed a  comprehensive four-dimensional
engineering economic risk feature system: Grounded in
system dynamics and risk transmission theory, we
systematically define and extract 28 quantitative features from
four dimensions: project ontology, market environment,
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execution process, and risk association. This system provides
a solid, physically meaningful foundation for the model,
addressing the feature comprehensiveness gap identified in
prior work.

Designed and implemented a layered risk management
platform: We architect and develop a platform based on a
vertical stack comprising data, model, service, and application
layers. This platform integrates the BO-GBM model engine,
real-time feature calculation services, and intelligent waming
modules to achieve closed-loop management of the entire risk
process — identification, assessment, warning, and decision
support.

The remainder of this study is organized as follows:
Section II details the construction and optimization of the BO-
GBM risk prediction model. Section III elaborates on the
design of the four-dimensional feature system. Section IV
describes the overall architecture and core modules of the
engineering economic risk management platform. Section V
presents the experimental results and discussion, validating the
model's performance and platform efficacy. Finally,
Section VI concludes the study and suggests directions for
future research.

TABLE I CRITICAL ANALYSIS OF EXISTING RESEARCH LIMITATIONS
Study Core Reported Identified Limitations
Reference Methodology Strengths / Gaps
Good ll;lmlted t
GBM for performance on yperparameter
[4, 5] R . . optimization; manual
forecasting medium-sized .
tuning often
datasets )
suboptimal
Highlights the Discusses the Lacks an efficient,
. automated
importance of drawbacks of L
(6, 7] hyperparameter Grid/Random optimization strategy
. for GBM in risk
tuning Search
contexts
Feature systems often
Emphasizes lack
Improves model .
[8, 9] feature . . comprehensiveness
. . interpretability .
engineering across project
lifecycle dimensions
Traditional L Poor'han(vil'lng of
.. Simplicity, nonlinearities and
[2,10] statistical models | . bili lex i .
(e.g, LR) mterpretability complex interactions
e in modern projects
High computational
Deep Learning High pre.dlctlve cost; requires lar'ge
3] models power with datasets; less suitable
sufficient data for typical project
data scales
II. BO-GBMRISK PREDICTION MODEL CONSTRUCTION

AND OPTIMIZATION

A. Gradient Booster Core Model Selection
The essence of engineering economic risk prediction is to

model the mapping relationships between high-dimensional,
non-linear, and strongly correlated risk features and complex
risk outcomes (e.g., probability of occurrence of a risk event,
cost deviation rate). Traditional linear models (e.g., logistic
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regression) are difficult to capture such complex relationships,
while deep learning models are demanding in terms of data
volume and computational resources [8]. Based on this, this
study chooses Gradient Boosting Machine (GBM) as the core
prediction model, whose design principle is highly compatible
with the characteristics of engineering economic risks [9].
GBM is an integrated learning algorithm that achieves the
strong leaming objective by iteratively constructing weak
learners (usually decision trees) and combining their
predictions. The core mechanism is as follows:

Residual leaming: In each iteration, the new model fits the
residuals (in the negative gradient direction) between the
current integrated model prediction results and the true labels,
instead of learning the original labels directly.

Weighted Accumulation: Accumulate the prediction
results of the new model into the integrated model with a
certain weight (learning rate ), and gradually approximate the
optimal solution of the objective function [10]. The
mathematical expression is:

E,(x)=F,_1(x)+n-h,(x) (1)

where, F,,(x) is the mth round integrated model and
h,,,(x) is the newly trained weak learner in this round.

Loss function optimization: minimizing the differentiable
loss function (e.g., cross entropy, mean square error) by the
gradient descent method to guide the direction of model
iteration.

B. Bayesian Model Optimization Algorithm

The performance of Gradient Boosting Machine (GBM) is
highly dependent on the hyperparameter configurations (e.g.,
learning rate, tree depth), and the traditional Grid Search or
Random Search requires a large amount of computational
resources and is inefficient [11]. To solve this problem, this
study adopts Bayesian Optimization (BO) as an intelligent
tuning algorithm for GBM hyperparameters, which
significantly improves the optimization efficiency by
constructing a probabilistic agent model of the objective
function and guiding the hyperparameter search with ‘active
learning’. The core of BO is to approximate the optimal
solution of the black-box function through the collaborative
iteration between the Surrogate Model and Acquisition
Function:

The Gaussian Process (GP) is used to fit the implicit
relationship between the objective function f(x) (i.e., the
model performance metric) and the hyperparameter x. The GP
provides the prediction value p(x) and the uncertainty estimate
o(x) for any parameter point x [12-13]. The GP provides the
prediction value pu(x) for any parameter point x and the
uncertainty estimate o(x).

Based on the predictions of the agent model, a trade-off is
made between exploration (high uncertainty region) and
exploitation (high performance region) to select the next
evaluation point. The Expected Improvement (EI) function is
used:

El(x) = E[max(f (x) - f(x™),0)] ()
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where, f(x*)is the current optimal observation value, and
a larger El value indicates a larger expected improvement in
evaluating the point.

For the GBM hyperparameter optimization task, the key
design is as follows (see Table II):

TABLEII GBM HYPERPARAMETER OPTIMIZATION ELEMENTS
Optimization Setting Description
elements

GBM core hyperparameters:

learning rate, range [0.01,0.3])

maximum_tree_depth, range [3, 10])

Optimization

parameters x minimum_samples_leaf, range [1, 20])

feature sample bytree,range [0.6, 1.0]) subsample bytree,
range [0.6, 1.0]) range [0.6, 1.0])

Subsampling proportion (subsample, range [0.6, 1.0])

Performance metrics computed on independent validation

Objective sets:

function f(x) Classification task: maximize AUC (or F1 value)

Regression task: minimize RMSE (or MAPE)

Range of hyper-parametervalues (see above), total number

Constraints of iterations (e.g., 100), time budget (e.g., 2 hours)

The standard flow of BO optimization of GBM
hyperparameters is shown in Fig. I with the following steps:

Initialization:
Randomly select Nj,;, points in the hyperparameter space
X.

Train the GBM model and compute the validation set
performance, f(x;) constituting the initial observation

Set:Dl:Ninit = {Xl’f(xl)}

Iterative optimization ():

Construct agent model: train Gaussian process GP based
on Dy y.

Maximize the collection function:

argr)?e%g(EI x).

solve x, =

Evaluate the objective function: train GBM with x, and
compute the validation set performance f(x.).

Update the dataset: Dy, = Dy.._q U {X,, f(x)}
Output results:

Select the optimal hyperparameter combination in the
observation set: x* = argmeag(f(x).
X

Train the final BO-GBM model using x*.

C. Construction of Engineering Economic Risk
Characteristics System

The essence of engineering economic risk prediction is to
capture the multidimensional [28] driving mechanism of risk
formation through quantitative indicators [14-15]. Based on
the system dynamics theory and risk transmission model, this
section elaborates the construction logic, mathematical
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expression and engineering basis of the feature system,
forming four-dimensional 28 core features. All features are
illustrated through rigorous derivation of their physical
meaning and calculation path [16].

Initialization

v

Randomly Sample N
Hyperparameter Combinations

Ba}/esmn Optimization Loop

Train GBM Model

.4

Calculate Validation Set
Performance

Iteration Complete?

Select Best Historical
Parameter Combination

Build Gaussian Process
Surrogate Model

A 4
L

Calculate El Acquisition
Function

Train Final BO-GBM Model

s

Select El-Maximized New
Parameter Point

Fig. 1. BO-GBM hyperparameter optimization flow chart.

1) Project ontology features
a) Scale effect characteristics: large-scale projects
follow the power law (Power Law) for risk exposure due to
exponential growth in complexity.
The quantification of the total investment I:

I= Zlk(=1ck + Ccontingency (Ccontingency = Olzck) (3)
where, C}, is the itemised cost (e.g. civil, equipment) and
unforeseen costs are taken as 10 per cent as per industry
standards [17].
Derivation of risk exposure R,:
R, =aln(l/I,) 4

The coefficient oo = 0.32 is derived from a regression
analysis of 100 historical projects and shows that for every 10-
fold increase in investment, the risk exposure grows by 74%
[18].
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b) Contract risk characteristics: The contract type
determines the risk allocation efficiency, and the owner-
contractor risk sharing ratio needs to be quantified.

The contract type coefficient CT is constructed:

1
CT = —_Z(Typesm TypeScore = {3 (5)
5

The Sigmoid function continues the discrete types and CT
= (0.5 when TypeScore = 3, in line with the principle of equal
risk sharing. Decomposition of Payment Terms Intensity PT:

PT = 0.6a, + 04max(0,8, —dg)  (6)

w
prepayme;{% weighting fines as a deterrent

where, d; is the actual delay rate, §; is the contractual
penalty rate, and the coefficient 0.6/04 is determined by the
expert questionnaire AHP analysis.

¢) Organizational capability characteristics
Hierarchical model of contractor credit score CR:

CR = 0.35Sgy1 + 0.30Syi5¢ + 0.255g, + 0.10S,ecn

Shist = % N e i T(on time;)
The weights are determined by the Delphi method, and the
historical score Sy;; introduces time decay (A = 0.1/month) to

emphasise recent performance [19].

2) Market environment characteristics
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3) Implementation process characteristics
a) Cost deviation characteristics: FEamed Value
Management Criteria for Cost Performance Index CPI:
CPI = EV _ Y (Completedxbudget unit price)
AC Yactual cost

(12)

Level 1 waming triggered when CPI < 0.9 (industry
experience threshold).

Cost deviation rate Sensitivity enhancement design for
CDR:

(13)

CDR = sign(AC — EV) x |AC‘EV|

EV

The square root transformation amplifies the overrun
signal (e.g., 20% overrun translates to CDR = -0.447) [20].

b) Schedule risk characterization: Network planning

algorithm for critical path float time FTp:
FT,=LS;,—ES;, FTg, = min _ FT; (14)

i€critical path
Schedule risk criticality is determined when FT.p< 7 days
(PERT analysis validation).
Information theoretic definition of schedule deviation
entropy Sqev:
functiongNumber of days delayed
Ytotal delay
(15)

Entropy values >1.5 indicate risk diversification, and <0.5

Sdev = _leg=1pk lnpk' Pr =

. a). Price .vo‘lazility .chara.cteristics..' . Econometric indicate critical path concentration of risk

estimation of building materials price volatility g,,:
isk association characteristics
Tt =In(P,/P,_; ) Risk h . .
O'tz — 0.05_'_0'151}2_1 +0-800't2—1 (GARCH(1,1)) a) Historical risk  transmission: Risk incidence
(8) Bayesian update of HR:
() — @+2lrisk - _
The coefficients are estimated through MLE and reflect HR aipin’ & 2p=2 (16)

volatility aggregation effects.

The labor cost index LCl is calculated cumulatively:

+ Spolicy (9)

t=Wi-1

LCI,=LCl,_; x(1+g,), g:=
8policyfor policy adjustment factors

b) Financial risk characteristics: Capital Asset Pricing
Model with Interest Rate Sensitivity S,

B = Cov(rprm) _
r Var(ry,)

2 (=) (rmye=Tm) 10
2(rm, t_Fm)2 ( )
where, 1, is the project IRR, 7, is the market interest rate
and the calculatlon window is taken as 36 months.

Discounted cash flow model for exchange rate risk
exposure FXq,p:

NetCF
exp Zt Fcttx OFx (11)
1415

opx 18 the exchange rate Volatllity, reflecting the time risk
of net foreign currency cash flows.

g)date the a posterior probability with an initial value
HR©W=0.5 for each new item.

b) Multi-risk coupling: Cost-schedule coupling index
Vector pinch model for CSI:

AC-AS
CSI = cosf = ,
laciasi

AC = [AC,,..., ACy] (17

0 < 300 indicates strong coupling (e.g., cost overruns
accompanied by schedule delays).

Market-Contract Sensitivity Stress test model for MCS:

0R
Mces = aMg[loi(o 3] (aaM|CT) (18)

Calculate the partial derivatives of risk with respect to
contract type under extreme scenarios of price volatility.

5) Feature engineering methods
a) EM algorithm for missing value interpolation
Step 1:

Q(6169) = Eyy . g [INP(Xgps,Z10)]  (19)
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Step 2:
e+ = argmeaxQ(Ble(t)) (20)

b) Interaction feature construction
Explicit Interaction:

¢interact =0y X (1 - CT) X logl (21)

Capture the extreme risk of ‘cost plus fee contracts for
large projects in highly volatile markets’.

6) Feature validation: The contribution of feature j to the
prediction of f(x):
ISIt(IFI=1sI-1)!

IF! (Fun®-£x) @2

The computational time consuming grows exponentially
with the number of features, using the TreeSHAP
approximation (O(TLD?)), where T is the number of trees, L
is the number of leaf nodes, and D is the depth.

D. Model Training and Validation

The training of the BO-GBM model is an iterative learning
process that incorporates Bayesian optimization and gradient
boosting machine, and its mathematical nature can be

o] ji= ZSQF\{]‘}

Assign Hyperparam

Main Nede  —Assign Hyperparam

Assign Hyperparams
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formulated as the following two-layer optimization problem
[21]:
Outer layer (hyperparametric optimisation): x" = argmg{xa(x)
XE,

Inner layer (simulation training): J() = By, LMK ), Yya)]

where, X = (1, dyyasoMeap - ) 1 the hyperparameter vector
and L is the objective function (e.g., negative RMSE).

1) Dynamic construction of training data: In order to
adapt to the temporal characteristics of engineering economic
data, a rolling time window strategy is used [22]:

Dt(rt?ain ={(x, YIIT; € [t —1,t]}
DY) = {(x, ¥DIT; € (t,t + At]}

val —

(23)

T =24 months: training window length
At = 3 months: validation window step length
Timestamp T; is the project start time

2) BO-GBM Co-training algorithm: The essence of BO-
GBM co-training is a two-layer optimization process with a
mathematical framework consisting of Bayesian optimization
(outer layer) and gradient boosting machine training (inner
layer) to form an iterative closed-loop system (see Fig. 2):

Fig.2. Parallel training architecture.

a) Bayesian optimization layer: Let the hyperparameter
space X € R? and the objective function J(x) be the
performance of GBM on the validation set (e.g., AUC) [23].
Bayesian optimization models the objective function through a
Gaussian process:

I ~ GP(u(), k(x,x")) (24)

where, the kernel function uses Matérn 5/2:

k(x,x') = of (1 +/5r + grz)exp(—\/gr), r=

(25)

Expectation Improvement (EI) acquisition function to
guide parameter search:

EI(x) = E[max(J(x) — <7+,02] = (ux) —Jg*-Oe(2) +
c(R)p(2)Z =HT X £ _ 001 (26)

o(x) ’
Jtis the current optimal observation and @, ¢ is the
standard normal distribution function.

b) Gradient booster Training layer: Given the
hyperparameters x = (1], d yaxo 4, -- )» the GBM minimizes the
loss in an additive model:

F* =argmin YL, L (v F)) +2(F)  (27)

where, the regular term 2(F) = yT +%/1 Il wll?, T is the
number of leaf nodes of the tree.
The mth iteration:

computes the pseudo-residuals:

rm — _ OL(yiF(xp)

i 6F(XL') (28)

F=Fm-1

The fitted decision tree h,, is minimized:

2 1
[ = RG]+ VT + 528 WE (29)

Update the model:
E,(x)=Fp,_;X)+v-h,(x), v=n-exp (—B%) (30)

B is the decay coefficient and M is the total number of
trees.
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3) Synergistic iterative mechanism: BO-GBM synergistic
training constitutes the dynamical system:
{x("“) =B(x® g (x?)1,)

J(X(k)) = %BM (Dtrainl Dval'X(k))

where, B is the Bayesian optimization operator and Jggyp
is the GBM training evaluation operator [24].

@31

The sequence {J(X(k))} converges with probability 1
when the hyperparameter space X is tight and the objective
function JLipschitz is continuous:

i Y _ g+ =
ImP(J(x®)-g*<e)=1, ve>0 (32)
4) Computational acceleration strategy

a) Agent model warm-up: Pre-training the auxiliary
Gaussian process using historical project dataG®, :

1o®) = Ep, [IM],  kolox) = Covp, (I, (1)
(33)

The initial objective function is estimated as:

Application Layer

Service Layer

Vol. 16, No. 10, 2025

IV ~ GP(1o(0,pko (x) + k(% X)), p=03(34)

b) Gradient-sensitive sampling: Introducing gradient
information in EI optimization:

Xpext = argmax[EIx) + A | V,u(x) II,]  (35)

A Balancing exploration and exploitation to accelerate
local convergence [25].

¢) Partial evaluation mechanisms: When 0(X) > Opres
sub-sampled data are used for evaluation:
J®) =% Dgup), Dyl = min(500,———

0(X)/Omax

) (36)

III. ENGINEERING ECONOMIC RISK MANAGEMENT
PLATFORM ARCHITECTURE DESIGN

A. Overall Platform Architecture Design

The engineering economic risk management platform
adopts vertical layered architecture, with clear functions and
interfaces of each layer to ensure high availability and
scalability of the system (see Fig. 3).

Model Layer

Data Layer

Fig.3. Platform architecture diagram.

The whole system architecture consists of four distinct
layers. The data layer is the foundation and contains both
static and dynamic data sources. Storage includes a project
database (storing core project data such as contracts,
schedules, and costs), a market database (integrating time-
series data such as building material prices, exchange rates,
and interest rates), and a risk knowledge base (accumulating
historical risk cases and response scenarios). Real-time data
processing is handled by a Kafka streaming engine that feeds

into the business system data and processes it at a rate of over
10,000 data points per minute. The model layer builds on this
data foundation and contains the core machine learmning
components. The BO-GBM training engine automatically
optimizes model parameters. The feature engineering service
computes 28 real-time risk features. Finally, the Online
Prediction Service deploys optimized risk prediction models
to ensure that single prediction latency is kept below 300
milliseconds, and the models are updated through daily
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automated training. The service layer exposes the system's
forecasting capabilities through a set of core services. The
Risk Prediction API uses gRPC to calculate project risk
probabilities in real time. The real-time alert service uses
WebSockets to trigger multi-level alerts. The report generation
service creates risk assessment reports automatically via a
REST APIL. To ensure resilience, the service implements
automatic meltdown and switches to a backup service when
the error rate exceeds 5%. Load balancing supports more than
500 concurrent requests. Finally, the application layer
provides the user interface and access control. The web
console provides real-time risk heat maps, risk factor analysis
tools, and alert threshold configuration options. Mobile
terminals provide instant risk alerts, project status queries, and
access to emergency response channels. RBAC (role-based
access control) is implemented for rights management, and
two-factor authentication is used to enhance security.

B. Core Functional Module Design

The engineering economic risk management platform
contains five core functional modules, which together achieve
the closed-loop management of the whole process of risk
prediction, assessment, early warning, and decision-making
support. The design of each module follows the principle of
‘high cohesion and low coupling’, and works together through
standardized APl interfaces.

1) Data integration and management module: The
platform is positioned as a data hub, providing unified access
and governance for various heterogeneous data sources. Key
design elements include: Multi-source data access: This covers
a wide range of systems, including obtaining progress and cost
data from project management systems (e.g. Primavera P6) via
ODBC, synchronizing payment and settlement information
from financial systems [27] (e.g. SAP) via RFC protocols,
retrieving building material prices and exchange rate indices

4

Check?
/ \\Bada Data Clea

Fig. 4.

V2.0 Testing

Manual Upload

0od
A
1\Start Data Ingestion Quality Feature Generation
ning
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on a regular basis from market databases (e.g. Wind) via APIs,
and collecting data on the operation of field equipment using
ToT sensors. IoT sensors to collect data on the operation of
equipment in the field. A key component is the intelligent data
pipeline, which contains cleansing rules (e.g., missing value
filling and outlier correction using the +£3o principle) and
transformation logic that automatically generates 28-
dimensional feature vectors based on the feature system
described earlier. The storage strategy is tiered for optimal
performance and cost-effectiveness: hot data is cached in
Redis (with response times of less than 50 milliseconds),
warm data is stored in ClickHouse columnar format, and cold
data is archived in HDFS. Finally, comprehensive metadata
management provides data lineage tracking, recording field-
level source and transformation history, and quality
monitoring dashboards that display data completeness and
timeliness metrics in real time (see Fig. 4).

2) BO-GBM model management module: Functional
positioning is the core of model full life cycle management.
The key design includes: training workflow: multiple
triggering mechanisms are available, including timed
triggering (2:00 am every day), data drift wamning triggering
(when the KL dispersion of the feature distribution is > 0.1),
and manual triggering. Spark ML is used for parallel
processing of 100 GB data for distributed training. Each
model version has version metadata, including snapshots of
the training data, hyperparameters, and evaluation metrics.
Grey scale releases validate the performance of new model
versions by introducing 10% traffic. Additionally, the
Parameter Configuration Centre provides a BO optimization
space that allows for visual adjustment of hyperparameter
ranges and supports manual intervention of feature weights to
adjust feature importance assignments (see Fig. 5).

Hot ———>  Redis

o N\

F» Data Type? ——Warm—+  ClickHouse -—NCEnd “

Va

Cold——» HDFS

Intelligent data pipeline flowchart.

Fig.5. Version control system.
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IV. PLATFORM CORE CHARACTERISTICS ANALYSIS AND
VERIFICATION

A. Validation of the BO-GBM Model's Prediction
Performance Characteristics
This experiment verifies the performance advantages of
the BO-GBM model in engineering economic risk prediction
tasks through rigorous comparison tests. The experimental
design focuses on three core questions:

Does BO-GBM significantly outperform mainstream
baseline models?

How effective is Bayesian optimization in improving
model robustness?

How much does the feature engineering system contribute
to the prediction accuracy?

1) Experimental design: The dataset is derived from the
data of 327 projects of a large engineering group between
2018 and 2023. The dataset is divided into a training set and a
test set, where the training set contains 256 projects from
2018-2022 and the test set contains 71 projects from 2023.
Each project is represented by 28 features, and the labels are
dichotomized to indicate whether a significant economic risk
has occurred (see Table III).

Evaluation metrics include AUC, F1-score, and recall for
classification tasks and RMSE and MAPE for regression tasks
(cost bias prediction).

2) Performance comparison metrics: This experiment
evaluated the classification performance of the five models on

Vol. 16, No. 10, 2025

71 independent test items (risk occurrence prediction). All
models use the same training set (256 items) and feature set
(28 dimensions), and the evaluation metrics include AUC
(area under the curve), Fl-score (the reconciled average of
precision and recall), and recall (the proportion of actual risks
correctly identified). The test set consists of 18 high-risk
projects (where a significant economic risk actually occurs)
and 53 low-risk projects completed in 2023 (see Fig. 6).

The BO-GBM model achieves an excellent performance of
0.927 on the AUC metric, which is significantly higher than
the standard GBM (0.865) and Random Forest (0.832). In
terms of Fl-score, BO-GBM leads the other models with
0.892, which is 7.3% higher than the standard GBM (0.831).
The recall metric shows that BO-GBM identifies 91.3% of
actual risky items, 17.5 percentage points higher than logistic
regression (73.8%). These data demonstrate that Bayesian
optimization significantly improves the discriminative power
of the GBM model, especially in the identification of high-risk
items.

1.00

0.95 -

0.927

0.90 -

0.85 -

0.80 -

Score

0.75

0.70 A

0.65 -

GBM

RF SVM

TABLE III COMPARATIVE MODELS
. Implementation
Model type Parameter Settings library
Tree Depth =6, Learning Rate =0.1 .
BO-GBM (BO Optimization) LightGBM
Standard GBM Tree Depth =6, Learning Rate =0.1 Scikit-learmn
5{1}1?1)d0m Forest No. of Trees = 200, Depth = 10 Scikit-learn
SVM Kernel Function=RBF, C=1.0 Scikit-leamn
Logistic s _ ai
Regression (LR) Regularization Strength = 1.0 Scikit-learn
0.752
Em AUC
ESA Fl-score
EEE Recall

Fig. 6. Comparison of classification model performance.

This experiment evaluated the accuracy of each model in a
cost deviation prediction task (regression problem). RMSE
(Root Mean Square Error, in millions of dollars) and MAPE
(Mean Absolute Percentage Error) were used as assessment

metrics. The test set contained actual cost deviation data for
71 projects, with deviations ranging from -35% (savings) to
+82% (overruns), and an average absolute deviation of
$287,000 (see Fig. 7).
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The RMSE of BO-GBM is $83,200, which is 34.8% lower
than the standard GBM ($127,600) and 60.5% lower than the
worst performing logistic regression ($210,700). On the
MAPE metric, BO-GBM's prediction error was only 9.7%,
breaking the 10% engineering management accuracy threshold
for the first time. Notably, when the cost deviation exceeds
30%, the prediction error of BO-GBM (MAPE = 11.2%) is
still significantly lower than that of other models (17.8% for
standard GBM), indicating that it still maintains high accuracy

under extreme risk scenarios.
0.95

T
SVM

Comparison of cost bias prediction errors.

3) Result analysis: To verify the model's ability to resist
interference, Gaussian noise (mean 0, standard deviation from
0% to 20%) was added to the test set of features. The
experiment was repeated 50 times at each noise level, and the
change in the mean AUC value was recorded. The range of
noise addition covers all 28 features to simulate the data
acquisition errors in real applications (see Fig. 8).

0.927

0.90 1

0.85 4

AUC

0.80 1

0.75
-~ BO-GBM
GBM

—A- RF

T T
0% 5%

T
10%

T
15%

Feature Noise Level

Fig. 8.

When the feature noise reaches 20%, the AUC of BO-
GBM decreases from 0.927 to 0.876 (a decrease of 5.5%),
while the standard GBM decreases from 0.865 to 0.752 (a
decrease of 13.1%). At a 10% noise level, the AUC of BO-
GBM stays above 0.907, which is significantly higher than
that of the standard GBM at 0.811. Random Forest performs
close to BO-GBM (0.816 vs. 0.919) at low noise (5%), but the
AUC decreases to 0.731 at high noise (20%), widening the
gap to 14.5 percentage points. This indicates that BO
optimization effectively improves the model noise immunity
through hyperparameter tuning.

The contribution of each feature to the prediction of the
BO-GBM model was quantified using the SHAP value

Model robustness under feature perturbation.

method. The absolute mean of SHAP based on all samples in
the test set was calculated, and the five features with the
highest contribution were selected. The SHAP value indicates
the average magnitude of the effect of feature changes on the
model output (risk probability).

The Cost Performance Index (CPI) tops the list with a
contribution of 0.218, proving that cost control failure is the
strongest risk signal. Building material volatility (0.195) and
contract type (0.172) rank second and third, and the sum of
their contributions (0.367) exceeds the CPI, reflecting the key
role of external markets and contract design. Progress
deviation (0.141) and cash flow gap (0.103) constitute the
second tier of risk factors. The total contribution of TOPS
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features reaches 0.829, covering the three core dimensions of
engineering economic risk: cost control, external environment
and project execution (see Fig. 9).

B. Platform Functional Characteristics and Efficiency

Verification

1) Risk  identification efficiency: Fifty  projects
implemented by a large infrastructure company in 2023 are
selected for risk assessment using both traditional manual
assessment and automated identification by the platform.
Record the time consumed for the whole process from data
preparation to the output of the risk assessment report. Manual
assessment is performed by a team of three senior risk
analysts.

Platform’s risk identification efficiency is significantly
better than manual methods. For large-sized projects, the
identification time is reduced from 42.6 hours to 0.52 hours,

Vol. 16, No. 10, 2025

an 81.9-fold increase in efficiency. For medium-sized projects,
the identification time is reduced from 25.7 hours to 0.38
hours, an increase in efficiency of 67.6 times. Small projects
are processed through the platform in 0.25 hours, 49.2 times
faster than manual processing (12.3 hours). The logarithmic
coordinates show that the platform processing time is basically
not affected by the project scale, which verifies the elasticity
and scalability of the architecture (see Fig. 10).

2) Predicting response time: The experimental design
includes simulating different concurrency scenarios in the load
test environment: single project prediction (1000 consecutive
requests),  multi-project  batch  prediction  (10-100
projects/batch), and high concurrency scenarios (50-500
concurrent users). The platform's response time (P95) and
resource consumption (CPU/memory) were recorded. The test
environment is an 8-core 16GB cloud server [26].

Cash Flow Gap

0.103

schedule Deviation

0.141

Contract Type +

0.172

Material Volatility 4

0.195

Cost Performance Index

0.218

T
0.00 0.05

T T
0.15 0.20 0.25

SHAP Value Contribution

Fig. 9. TOPS risk characteristics contribution.

B Manual Assessment
A Platform Identification

10! A

Time (hours)

107

Small (<50M)

Medium (50M-200M)

42.60

Large (>200M)

Fig. 10. Comparison of risk identification time for projects of different sizes.
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The average response time for a single project prediction is
127 ms, which meets the real-time decision-making
requirements. Batch prediction of 100 projects takes 256 ms,
with a processing speed of 390 projects per second. In the 500
concurrent users scenario, the P95 response time was 427
milliseconds, still below the engineering threshold of 500
milliseconds. Response times for all test scenarios were below
the industry best practice standard of 300 milliseconds.
Resource monitoring shows that with 500 concurrent users,
CPU utilization is 78% and memory usage is 68%, indicating
that the system still has room for further expansion (see
Fig. 11).

3) Early warning accuracy verification: The platform was
used to backtest the data of 120 projects that had been
completed in the past. The specific steps are: input feature data
according to the actual project progress nodes, record the

500

Vol. 16, No. 10, 2025

waming signals issued by the platform and the time, and
compare the warning signals with the time and type of actual
risk occurrence. Evaluation indicators include: waming
accuracy rate, false alarm rate, and missed alarm rate.

The platform's early waming accuracy rate is 72.5%
(87/120), of which 92.3% for high-risk projects (L4-L5). False
alarm rate is 7.5% (9/120), which mainly occurs in scenarios
of sudden policy changes, such as new environmental
regulations. False alarms were 5.0% (6/120), mainly in
extreme cases where the schedule was compressed by more
than 30%. Overall, the platform made a correct judgment
(accurate wamning + correct no warning) in 87.5% of cases.
The average lead time for high-risk warnings was 28 days for
cost risks and 42 days for schedule risks, which meets the
emergency response time requirements (see Fig. 12).

400 4

300

189 ms

Response Time (ms)

127 ms

100 +

427 ms

351 ms

feptable Threshold (300ms)

T f T T T T
Single Project 10-Project Batch 50-Project Batch 100 Concurrent 300 Concurrent 500 Concurrent

Fig. 11. Risk prediction response time in different scenarios.

Accurate Warning

Correct No Warning

Missed Warning

False Alarm

Fig. 12. Analysis of the accuracy of the platform's early waming.
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V. RESULTS AND DISCUSSION

This section presents a comprehensive evaluation of the
proposed BO-GBM model's predictive performance and an
analysis of the platform's functional characteristics and
efficiency, followed by a discussion of the implications of
these findings.

A. Validation of BO-GBM Model's Prediction Performance
The experiment verifies the performance advantages of the
BO-GBM model through rigorous comparison tests on a
dataset comprising 327 projects from a large engineering
group (2018 to 2023), split into training (2018 to 2022, 256
projects) and test (2023, 71 projects) sets. Each project is
represented by the 28 features described previously.

1) Experimental setup and baselines: The BO-GBM
model was compared against several mainstream baseline
models, as detailed in Table I'V.

TABLE IV COMPARATIVE MODELS AND PARAMETER SETTINGS
Model Type Parameter Settings Implementation Library
g Tree Depth=6, Learning .
BO-GBM Rate=0.1 (BO Optimized) | WENGBM
Tree Depth=6, Leaming .
Standard GBM Rate=0 1 Scikit-learn
ﬁ{a;)dom Forest No. of Trees=200, Depth=10 | Scikit-learn
SVM Kernel Function=RBF, Scikiteam
C=1.0
Logistic s _ Qi
Regression (LR) Regularization Strength=1.0 | Scikit-learn
2) Performance comparison
a) Classification performance: Fig. 6 shows the

performance on the risk occurrence prediction task (18 high-
risk, 53 low-tisk projects). The BO-GBM model achieved an
AUC 0f 0.927, significantly outperforming the standard GBM
(0.865) and Random Forest (0.832). Its F1-score of 0.892 was
7.3% higher than the standard GBM. Crucially, the recall rate
of BO-GBM reached 91.3%, meaning it identified over 91%
of actual high-risk projects, which is 17.5 percentage points
higher than Logistic Regression (73.8%). This demonstrates
that Bayesian optimization significantly enhances the model's
ability to discriminate, particularly in identifying critical risks.

b) Regression performance (cost deviation): Fig. 7
compares the models on predicting cost deviation. The BO-
GBM model achieved an RMSE of 83,200 RMB, which is

34.8% lower than the standard GBM (127,600 RMB) and 60.5%

lower than Logistic Regression (210,700 RMB). Its MAPE
was only 9.7%, breaking the 10% accuracy threshold often
sought in engineering management. Notably, even for extreme
cost overruns (>30%), BO-GBM maintained a lower error
(MAPE=11.2%) compared to other models (e.g., 17.8% for
standard GBM).

3) Robustness analysis: To test the model's resistance to
data noise, Gaussian noise (mean 0, standard deviation from
0% to 20%) was added to the test features. As shown in Fig. 8,
when feature noise reached 20%, the AUC of BO-GBM
decreased by only 5.5% (from 0.927 to 0.876), whereas the

Vol. 16, No. 10, 2025

standard GBM decreased by 13.1% (0.865 to 0.752). This
indicates that the hyperparameters found by BO contribute to
a more robust model that is less sensitive to data perturbations,
a critical property for real-world applications where data
quality can vary.

4) Feature importance analysis: Using SHAP values, we
quantified the contribution of each feature. Fig. 9 reveals that
the Cost Performance Index (CPI) was the most influential
feature (contribution 0.218), confirming failed cost control as
the primary risk signal. Building material volatility (0.195)
and contract type (0.172) were the next most important,
highlighting the significant role of external markets and
contractual design. Schedule deviation (0.141) and cash flow
gap (0.103) formed a secondary tier. The combined
contribution of the top five features was 0.829, effectively
capturing the core dimensions of engineering economic risk.

B. Platform Functional Characteristics and Efficiency
Verification

1) Risk identification efficiency: We compared the
platform's automated risk identification against traditional
manual assessment by a team of three senior analysts across
50 projects of different sizes in 2023. The results, depicted in
Fig. 10, show a dramatic efficiency improvement. For large
projects, identification time was reduced from 42.6 hours to
0.52 hours—an 81.9-fold increase. The platform's processing
time remained relatively constant regardless of project scale,
demonstrating its scalability and architectural elasticity.

2) Prediction response time: Load testing under various
scenarios (Fig. 11) confirmed the platform's real-time
capability. The average response time for a single prediction
was 127 ms. Batch prediction of 100 projects took 256 ms (=~
390 projects/second). Under a high load of 500 concurrent
users, the P95 response time was 427 ms, remaining below the
500 ms engineering threshold. Resource utilization (CPU
78%, Memory 68%) under this load indicated potential for
further scaling.

3) Early warning accuracy: A backtest was conducted on
120 completed projects. The platform achieved an overall
warning accuracy of 72.5% (87/120), with accuracy for high-
risk projects (L4-L5) exceeding 92.3%. The false alarm rate
was 7.5%, primarily triggered by unforeseen policy changes,
and the missed alarm rate was 5.0%, mainly occurring in cases
of extreme schedule compression (>30%). Overall, the
platform made correct judgments (accurate warning + correct
non-warning) in 87.5% of cases. The average lead time for
high-risk warnings was 28 days for cost risks and 42 days for
schedule risks, providing sufficient time for proactive
mitigation.

C. Discussion

The results strongly support the effectiveness of the
proposed BO-GBM model and the associated platform. The
significant performance gains over baseline models,
particularly in recall and robustness, underscore the value of
using Bayesian Optimization for hyperparameter tuning in this
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domain. The high contribution of the engineered features
validates the comprehensiveness of the four-dimensional
feature system. The platform's operational metrics confirm its
practical utility, offering order-of-magnitude efficiency gains
in risk identification and reliable, real-time predictions
suitable for large-scale, concurrent use.

The primary limitation observed was related to waming
errors. False alarms were often linked to "black swan" events
like sudden policy shifts, which are not captured by historical
feature data. Missed alarms occurred under extreme project
conditions, suggesting potential model performance
boundaries or the need for even more specialized features for
such edge cases. These points inform valuable directions for
future work.

VI. CONCLUSION

In this study, a platform for engineering economic risk
management based on the BO-GBM model is successfully
constructed, which significantly improves the prediction
accuracy and control efficiency of engineering economic risks
by integrating Bayesian optimization and gradient boosting
machine techniques. The core achievements can be
summarized in the following three aspects:

1) Excellent performance of BO-GBM model: By adopting
Bayesian optimization to adaptively adjust the GBM
hyperparameters, the model breaks through the efficiency
bottleneck of traditional tuning methods and significantly
enhances the model’s robustness. Experimental results show
that in the risk prediction task, the model AUC reaches 0.927,
with a recall rate of 91.3%, which is 17.5 percentage points
higher than that of the standard GBM; in cost deviation
prediction, the RMSE is reduced to 83.2 thousand yuan, and
the MAPE is only 9.7%, which is more than 30% lower than
the mainstream model even in the extreme overrun scenarios;
in the face of the featured noise interference of 20%, the
model performance degradation is less than 20%. Even under
extreme overspending scenarios, the error is still lower than
mainstream models by more than 30%; in the face of 20% of
characteristic noise interference, the model's performance
degradation is less than 6%, which verifies its strong anti-
interference ability.

2) Breakthrough in vrisk characteristics system and
platform effectiveness: The four-dimensional 28-feature
system (project ontology, market environment, execution
process, and risk correlation) constructed systematically
quantifies the risk-driving mechanism, with the contribution of
key features exceeding 82%. Among them, cost performance
index, building material volatility, and contract type constitute
the core risk signals. The platform adopts a layered
architecture (data layer, model layer, service layer, application
layer), supporting millisecond response with single prediction
latency of less than 127 milliseconds, and P95 response time
of 427 milliseconds with 500 concurrent users. In addition, the
efficiency of risk identification has been improved by an order
of magnitude, and the evaluation time of large projects has
been compressed from 42.6 hours to 0.52 hours, which is 81.9

Vol. 16, No. 10, 2025

times more efficient.

3) Precise and reliable early warning mechanism: The
platform realizes closed-loop risk management for the whole
process. The accuracy rate of early warning reaches 72.5%,
and the accuracy rate of high-risk early waming exceeds 92%.
The advance warning period for cost risk and schedule risk
reaches 28 days and 42 days, respectively, which meets the
demand for emergency response. The false alarm rate and
omission rate are controlled at 7.5% and 5.0% respectively,
which are significantly better than the manual assessment
mode.

Building upon current research findings and limitations,
future studies will focus on advancing three key areas of
exploration. Regarding model optimization, hybrid time-series
models incorporating LSTM or Transformer architectures will
be developed to more accurately capture the dynamic
evolution of project risks. Concurrently, the BO-GBM
framework will be expanded to enable multi-task collaborative
prediction of cost, schedule, and safety risks. Regarding data
dimensions, plans include introducing natural language
processing techniques to extract latent risk signals from
unstructured data such as textual reports, alongside
constructing adaptive feature selection mechanisms to
accommodate requirements across different project phases. At
the platform functionality level, efforts will strengthen
visualization capabilities to intuitively display model decision-
making logic, while integrating reinforcement leaming
technologies to enable dynamic, intelligent recommendations
for risk mitigation strategies.

FUNDING

Chongqing Municipal Education Commission Science and
Technology Research Project: Key Technologies for
Structural Health Monitoring Data Reconstruction Based on
Deep Models (KIQN202301803).

REFERENCES

[1] Landry M, Erlinger T P, Patschke D, et al. Probabilistic gradient
boosting machines for GEFCom2014 wind forecasting. International
Journal of Forecasting, 2016, 32(3): 1061-1066.

[2] Yoon J. Forecasting of real GDP growth using machine learning models:
Gradient boosting and random forest approach. Computational
Economics, 2021, 57(1): 247-265.

[3] Singh U, Rizwan M, Alaraj M, et al. A machine learning-based gradient
boosting regression approach for wind power production forecasting: A
step towards smart grid environments. Energies, 2021, 14(16): 5196.

[4] Lloyd J R. GEFCom2012 hierarchical load forecasting: Gradient
boosting machines and Gaussian processes. International Journal of
Forecasting, 2014, 30(2): 369-374.

[5] Taieb S B, Hyndman R J. A gradient boosting approach to the Kaggle
load forecasting competition. International journal of forecasting, 2014,
30(2): 382-394.

[6] Xenochristou M, Hutton C, Hofman J, et al. Water demand forecasting
accuracy and influencing factors at different spatial scales using a
gradient boosting machine. Water Resources Research, 2020, 56(8):
€2019WR026304.

[7] Noorunnahar M, Chowdhury A H, Mila F A. A tree based eXtreme
Gradient Boosting (XGBoost) machine learning model to forecast the
annual rice production in Bangladesh. PloS one, 2023, 18(3): €¢0283452.

[8] Callens A, Morichon D, Abadie S, et al. Using Random forest and
Gradient boosting trees to improve wave forecast at a specific location.

102 |Page

www.ijacsa.thesai.org



]

[10

[11

[12

[13

[14

[15

[16

17

[18

[}

]

—

]

]

[}

]

]

[}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Applied Ocean Research, 2020, 104: 102339.

Park S, Jung S, Lee J, et al. A short-term forecasting of wind power
outputs based on gradient boosting regression tree algorithms. Energies,
2023,16(3): 1132.

Panarese A, Settanni G, Vitti V, et al. Develo** and preliminary testing
of a machine learning-based platform for sales forecasting using a
gradient boosting approach. Applied Sciences, 2022, 12(21): 11054.

Du L, Gao R, Suganthan P N, et al. Bayesian optimization based
dynamic ensemble for time series forecasting. Information Sciences,
2022,591: 155-175.

Sultana N, Hossain S M Z, Almuhaini S H, et al. Bayesian optimization
algorithm-based statistical and machine learning approaches for
forecasting short-term electricity demand. Energies, 2022, 15(9): 3425.

Cheng H, Ding X, Zhou W, et al. A hybrid electricity price forecasting
model with Bayesian optimization for German energy exchange.
International Journal of Electrical Power & Energy Systems, 2019, 110:
653-666.

Liwei T, Li F, Yu S, et al. Forecast of LSTM -XGBoost in Stock Price
Based on Bayesian Optimization. Intelligent Automation & Soft
Computing, 2021, 29(3).

Zulfigar M, Gamage K A A, Kamran M, et al. Hyperparameter
optimization of bayesian neural network using bayesian optimization
and intelligent feature engineering for load forecasting. Sensors, 2022,
22(12): 4446.

He F, Zhou J, Feng Z, et al. A hybrid short-term load forecasting model
based on variational mode decomposition and long short-term memory
networks considering relevant factors with Bayesian optimization
algorithm. Applied energy, 2019,237: 103-116.

Habtemariam E T, Kekeba K, Martinez-Ballesteros M, et al. A Bayesian
optimization-based LSTM model for wind power forecasting in the
Adama district, Ethiopia. Energies, 2023, 16(5): 2317.

Abbasimehr H, Paki R. Prediction of COVID-19 confirmed cases

combining deep learning methods and Bayesian optimization. Chaos,
Solitons & Fractals, 2021, 142: 110511.

[19]

[20]

[23]

[24]

[25]

[26]

[27]

(28]

Vol. 16, No. 10, 2025

Aslam M, Lee S J, Khang S H, et al. Two-stage attention over LSTM
with Bayesian optimization for day-ahead solar power forecasting. IEEE
Access, 2021,9: 107387-107398.

X B, Zheng W Z, Kong J L, et al. Deep-learning forecasting method for
electric power load via attention-based encoder-decoder with bayesian
optimization. Energies, 2021, 14(6): 1596.

Nair S K, Botros D, Chakravarti S, et al. Predictors of surgical site
infection in glioblastoma patients undergoing craniotomy for tumor
resection. Journal of neurosurgery, 2022, 138(5): 1227-1234.

Bidyuk P, Prosyankina-Zharova T, Terentiev O, et al. Adaptive
modelling for forecasting economic and financial risks under uncertainty
conditions in terms of the economic crisis and social threats.
TeXHOJIOTHYECKUiT ayauT M pe3epBbl Mpou3BoiacTBa, 2018, 4(2(42)): 4-
10.

Gorokhovatskyi V, Sergienko O, Sosnov I, et al. Risk assessment of
innovative projects: Development of forecasting models. CEUR
Workshop Proc. 2021,2927(2020): 18-37.

Danilov V'Y, Gozhyj O P, Kalinina I O, et al. Adaptive forecasting and
financial risk estimation. System research and information technologies,
2020 (1): 34-53.

Zhao Y, Liu X, Zhao Y. Forecast for construction engineering risk based

on fuzzy sets and systems theory. Systems Engineering Procedia, 2011,
1:156-161.

Bhardwaj A, Sharma A, Raj D, et al. Dynamic and Scalable Privacy-
Preserving Group Data Sharing in Secure Cloud Computing. Advanced
Cyber Security Techniques for Data, Blockchain, IoT, and Network
Protection. IGI Global Scientific Publishing, 2025: 89-122.

Oko-Odion C, Angela O. Risk management frameworks for financial
institutions in a rapidly changing economic landscape. International
Journal of Science Research Archive, 2025, 14(1): 1182-1204.

Wuni I Y. Develo, A multidimensional risk assessment model for
sustainable construction projects. Engineering, Construction and
Architectural Management, 2025, 32(6): 4155-4173.

103 |Page

www.ijacsa.thesai.org



