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Abstract—Economic risk control is pivotal to the success of 

engineering projects. Traditional risk assessment methods often 

fall short in handling the high-dimensional, nonlinear, and 

strongly correlated risk factors prevalent in modern large-scale 

projects. To address these limitations, this study constructs an 

engineering economic risk management platform based on the 

BO-GBM model, which integrates Bayesian Optimization (BO) 

with a Gradient Boosting Machine (GBM). The platform 

employs a systematically constructed four-dimensional feature 

system encompassing 28 indicators across project ontology, 

market environment, execution process, and risk association 

dimensions. A rolling time window strategy is adopted for 

dynamic model training. Experimental validation on a dataset of 

327 projects demonstrates the superior performance of the BO-

GBM model: for classification tasks, it achieves an AUC of 0.927 

and a recall rate of 91.3%, outperforming the standard GBM by 

17.5 percentage points in recall; for regression tasks (cost 

deviation prediction), it attains an RMSE of 83,200 RMB and 

reduces the MAPE to 9.7%, surpassing mainstream baseline 

models. The platform's layered architecture (data, model, 

service, application layers) enables efficient risk identification 

and early warning: the time required for risk identification in 

large projects is drastically reduced from 42.6 hours to 0.52 

hours, representing an 81.9-fold efficiency gain; the average 

single prediction response time is below 127 milliseconds, with a 

P95 response time of 427 milliseconds under 500 concurrent 

users; the early warning accuracy reaches 72.5%, with high-risk 

warnings issued up to 28 days in advance for cost risks and 42 

days for schedule risks. 
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I. INTRODUCTION 

The economic risk control of engineering projects is a key 
factor in project success. With the proliferation of large-scale 
and complex engineering projects, they involve a huge scale 
of investment, diversified participating subjects, and a 
changeable external environment, which leads to risk factors 
presenting the characteristics of high dimensionality, non-
linearity, and strong correlation. Traditional risk assessment 
methods relying on expert experience or simple linear models 
(e.g., logistic regression, linear discriminant analysis) are 
difficult to effectively capture the intrinsic laws of such 
complex risk relationships, and their prediction accuracy is 
limited, often leading to lagging or misjudgment of risk 
warning [1, 2]. Simultaneously, although deep learning 
models possess strong fitting capabilities, their high 

requirements for massive labeled data and computational 
resources present significant challenges for practical 
application in engineering economic risk prediction, especially 
where data availability can be constrained [3]. 

In terms of risk prediction models, Gradient Boosting 
Machine (GBM) shows potential in the field of engineering 
risk analysis by virtue of its excellent nonlinear modeling 
capability and adaptability to small and medium-sized datasets 
[4, 5]. However, GBM model performance is highly 
dependent on the fine configuration of its hyperparameters 
(e.g., learning rate, tree depth, subsampling ratio). Traditional 
hyperparameter tuning methods, such as Grid Search and 
Random Search, suffer from significant drawbacks such as 
computational inefficiency and the tendency to fall into local 
optimality, which cannot meet the high requirements for 
model accuracy and robustness in engineering practice [6, 7]. 
Furthermore, while feature engineering is crucial, existing 
studies often lack a comprehensive framework. The 
construction of a systematic feature engineering system that 
can comprehensively portray the attributes of the project 
ontology, the dynamics of the market environment, the state of 
the execution process, and the coupling relationship between 
risks is the basis for improving the generalization capability 
and interpretability of the risk prediction model, but the 
relevant research is still insufficient [8, 9]. 

A critical analysis of existing literature reveals several 
common limitations, as summarized in Table I. 

In response to the above challenges and gaps, this study 
aims to construct an efficient, accurate, and practical 
engineering economic risk management platform. The core 
innovations and contributions of this work are threefold:  

Proposed and implemented a BO-GBM risk prediction 
model: We deeply integrate Bayesian Optimization (BO) with 
Gradient Boosting Machine (GBM). Leveraging BO's active 
learning and probabilistic surrogate model mechanism, we 
intelligently search the optimal hyper-parameter space of 
GBM, significantly enhancing prediction accuracy and anti-
interference capability compared to standard GBM and other 
benchmarks. 

Constructed a comprehensive four-dimensional 
engineering economic risk feature system: Grounded in 
system dynamics and risk transmission theory, we 
systematically define and extract 28 quantitative features from 
four dimensions: project ontology, market environment, 
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execution process, and risk association. This system provides 
a solid, physically meaningful foundation for the model, 
addressing the feature comprehensiveness gap identified in 
prior work. 

Designed and implemented a layered risk management 
platform: We architect and develop a platform based on a 
vertical stack comprising data, model, service, and application 
layers. This platform integrates the BO-GBM model engine, 
real-time feature calculation services, and intelligent warning 
modules to achieve closed-loop management of the entire risk 
process— identification, assessment, warning, and decision 

support. 

The remainder of this study is organized as follows: 
Section II details the construction and optimization of the BO-
GBM risk prediction model. Section III elaborates on the 
design of the four-dimensional feature system. Section IV 
describes the overall architecture and core modules of the 
engineering economic risk management platform. Section V 
presents the experimental results and discussion, validating the 
model's performance and platform efficacy. Finally, 
Section VI concludes the study and suggests directions for 
future research. 

TABLE I  CRITICAL ANALYSIS OF EXISTING RESEARCH LIMITATIONS 

Study 

Reference 

Core 

Methodology 

Reported 

Strengths 

Identified Limitations 

/ Gaps 

[4, 5] 
GBM for 

forecasting 

Good 

performance on 

medium-sized 

datasets 

Limited 

hyperparameter 

optimization; manual 

tuning often 

suboptimal 

[6, 7] 

Highlights the 

importance of 

hyperparameter 

tuning 

Discusses the 

drawbacks of 

Grid/Random 

Search 

Lacks an efficient, 

automated 

optimization strategy 

for GBM in risk 

contexts 

[8, 9] 

Emphasizes 

feature 

engineering 

Improves model 

interpretability 

Feature systems often 

lack 

comprehensiveness 

across project 

lifecycle dimensions 

[2, 10] 

Traditional 

statistical models 

(e.g., LR) 

Simplicity, 

interpretability 

Poor handling of 

nonlinearities and 

complex interactions 

in modern projects 

[3] 
Deep Learning 

models 

High predictive 

power with 

sufficient data  

High computational 

cost; requires large 

datasets; less suitable 

for typical project 

data  scales 

II. BO-GBM RISK PREDICTION MODEL CONSTRUCTION 

AND OPTIMIZATION 

A. Gradient Booster Core Model Selection 

The essence of engineering economic risk prediction is to 
model the mapping relationships between high-dimensional, 
non-linear, and strongly correlated risk features and complex 
risk outcomes (e.g., probability of occurrence of a risk event, 
cost deviation rate). Traditional linear models (e.g., logistic 

regression) are difficult to capture such complex relationships, 
while deep learning models are demanding in terms of data 
volume and computational resources [8]. Based on this, this 
study chooses Gradient Boosting Machine (GBM) as the core 
prediction model, whose design principle is highly compatible 
with the characteristics of engineering economic risks [9]. 
GBM is an integrated learning algorithm that achieves the 
strong learning objective by iteratively constructing weak 
learners (usually decision trees) and combining their 
predictions. The core mechanism is as follows: 

Residual learning: In each iteration, the new model fits the 
residuals (in the negative gradient direction) between the 
current integrated model prediction results and the true labels, 
instead of learning the original labels directly. 

Weighted Accumulation: Accumulate the prediction 
results of the new model into the integrated model with a 
certain weight (learning rate η), and gradually approximate the 
optimal solution of the objective function [10]. The 
mathematical expression is: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜂 ⋅ ℎ𝑚(𝑥)   (1) 

where, 𝐹𝑚(𝑥)  is the mth round integrated model and 
ℎ𝑚(𝑥) is the newly trained weak learner in this round. 

Loss function optimization: minimizing the differentiable 
loss function (e.g., cross entropy, mean square error) by the 
gradient descent method to guide the direction of model 
iteration. 

B. Bayesian Model Optimization Algorithm 

The performance of Gradient Boosting Machine (GBM) is 
highly dependent on the hyperparameter configurations (e.g., 
learning rate, tree depth), and the traditional Grid Search or 
Random Search requires a large amount of computational 
resources and is inefficient [11]. To solve this problem, this 
study adopts Bayesian Optimization (BO) as an intelligent 
tuning algorithm for GBM hyperparameters, which 
significantly improves the optimization efficiency by 
constructing a probabilistic agent model of the objective 
function and guiding the hyperparameter search with ‘active 
learning’. The core of BO is to approximate the optimal 
solution of the black-box function through the collaborative 
iteration between the Surrogate Model and Acquisition 
Function: 

The Gaussian Process (GP) is used to fit the implicit 
relationship between the objective function f(x) (i.e., the 
model performance metric) and the hyperparameter x. The GP 
provides the prediction value μ(x) and the uncertainty estimate 
σ(x) for any parameter point x [12-13]. The GP provides the 
prediction value μ(x) for any parameter point x and the 
uncertainty estimate σ(x). 

Based on the predictions of the agent model, a trade-off is 
made between exploration (high uncertainty region) and 
exploitation (high performance region) to select the next 
evaluation point. The Expected Improvement (EI) function is 
used: 

EI(x) = 𝔼[max(𝑓(x) − 𝑓(x+),0)]  (2) 
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where, 𝑓(x+) is the current optimal observation value, and 
a larger EI value indicates a larger expected improvement in 
evaluating the point. 

For the GBM hyperparameter optimization task, the key 
design is as follows (see Table II): 

TABLE II GBM HYPERPARAMETER OPTIMIZATION ELEMENTS 

Optimization 

elements 
Setting Description 

Optimization 

parameters x 

GBM core hyperparameters: 

learning_rate, range [0.01, 0.3]) 

maximum_tree_depth, range [3, 10]) 

minimum_samples_leaf, range [1, 20]) 

feature_sample_bytree, range [0.6, 1.0]) subsample_bytree, 

range [0.6, 1.0]) range [0.6, 1.0]) 

Subsampling proportion (subsample, range [0.6, 1.0]) 

Objective 

function f(x) 

Performance metrics computed on independent validation 

sets: 

Classification task: maximize AUC (or F1 value) 

Regression task: minimize RMSE (or MAPE) 

Constraints 
Range of hyper-parameter values (see above), total number 

of iterations (e.g., 100), time budget (e.g., 2 hours) 

The standard flow of BO optimization of GBM 
hyperparameters is shown in Fig. 1 with the following steps: 

Initialization: 

Randomly select 𝑁init points in the hyperparameter space 
𝒳. 

Train the GBM model and compute the validation set 
performance, 𝑓(x𝑖 )  constituting the initial observation 
set:𝒟1:𝑁init

= {x𝑖, 𝑓(x𝑖 )} 

Iterative optimization (): 

Construct agent model: train Gaussian process GP based 
on 𝒟1:𝑡−1. 

Maximize the collection function: solve x𝑡 =
argmax

x∈𝒳
EI(x). 

Evaluate the objective function: train GBM with 𝐱𝒕 and 
compute the validation set performance f(xt). 

Update the dataset: 𝒟1:𝑡 = 𝒟1:𝑡−1 ∪ {x𝑡, 𝑓(x𝑡 )}. 

Output results: 

Select the optimal hyperparameter combination in the 
observation set: x∗ = argmax

x∈𝒟
𝑓(x). 

Train the final BO-GBM model using x∗. 

C. Construction of Engineering Economic Risk 

Characteristics System 

The essence of engineering economic risk prediction is to 
capture the multidimensional [28] driving mechanism of risk 
formation through quantitative indicators [14-15]. Based on 
the system dynamics theory and risk transmission model, this 
section elaborates the construction logic, mathematical 

expression and engineering basis of the feature system, 
forming four-dimensional 28 core features. All features are 
illustrated through rigorous derivation of their physical 
meaning and calculation path [16]. 

 

Fig. 1. BO-GBM hyperparameter optimization flow chart. 

1) Project ontology features 

a) Scale effect characteristics: Large-scale projects 

follow the power law (Power Law) for risk exposure due to 

exponential growth in complexity. 

The quantification of the total investment I: 

𝐼 = ∑ 𝐶𝑘
𝐾
𝑘=1 + 𝐶contingency (𝐶contingency = 0.1∑𝐶𝑘)  (3) 

where, 𝐶𝑘 is the itemised cost (e.g. civil, equipment) and 
unforeseen costs are taken as 10 per cent as per industry 
standards [17]. 

Derivation of risk exposure 𝑅𝑒: 

𝑅𝑒 = 𝛼ln(𝐼/𝐼0)   (4) 

The coefficient α = 0.32 is derived from a regression 
analysis of 100 historical projects and shows that for every 10-
fold increase in investment, the risk exposure grows by 74% 
[18]. 
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b) Contract risk characteristics: The contract type 
determines the risk allocation efficiency, and the owner-

contractor risk sharing ratio needs to be quantified. 

The contract type coefficient CT is constructed: 

𝐶𝑇 =
1

1+𝑒−2(TypeScore−3)  TypeScore = {
1
3
5

 (5) 

The Sigmoid function continues the discrete types and CT 
= 0.5 when TypeScore = 3, in line with the principle of equal 
risk sharing. Decomposition of Payment Terms Intensity PT: 

𝑃𝑇 = 0.6𝛼𝑝
⏟

𝑝𝑟𝑒𝑝𝑎𝑦𝑚𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔

+ 0.4max(0, 𝛽𝑑 − 𝑑𝑑)
⏟

𝑓𝑖𝑛𝑒𝑠 𝑎𝑠 𝑎 𝑑𝑒𝑡𝑒𝑟𝑟𝑒𝑛𝑡

   (6) 

where, 𝑑𝑑  is the actual delay rate, 𝛽𝑑  is the contractual 
penalty rate, and the coefficient 0.6/0.4 is determined by the 
expert questionnaire AHP analysis. 

c) Organizational capability characteristics 

Hierarchical model of contractor credit score CR: 

𝐶𝑅 = 0.35𝑆qual + 0.30𝑆hist + 0.25𝑆fin + 0.10𝑆tech

𝑆hist =
1

𝑁
∑ 𝑒−𝜆𝑡𝑖𝑁

𝑖=1 ⋅ 𝕀(𝑜𝑛 𝑡𝑖𝑚𝑒𝑖)
     (7) 

The weights are determined by the Delphi method, and the 
historical score 𝑆hist introduces time decay (λ = 0.1/month) to 
emphasise recent performance [19]. 

2) Market environment characteristics 

a) Price volatility characteristics: Econometric 

estimation of building materials price volatility 𝜎𝑀: 

{
𝑟𝑡 = ln(𝑃𝑡/𝑃𝑡−1)

𝜎𝑡
2 = 0.05 + 0.15𝑟𝑡−1

2 + 0.80𝜎𝑡−1
2 (GARCH(1,1))

   

(8) 

The coefficients are estimated through MLE and reflect 
volatility aggregation effects. 

The labor cost index LCI is calculated cumulatively: 

𝐿𝐶𝐼𝑡 = 𝐿𝐶𝐼𝑡−1 × (1 + 𝑔𝑡), 𝑔𝑡 =
𝑊𝑡−𝑊𝑡−1

𝑊𝑡−1
+ 𝛿policy    (9) 

𝛿policyFor policy adjustment factors 

b) Financial risk characteristics: Capital Asset Pricing 

Model with Interest Rate Sensitivity 𝛽𝑟: 

𝛽𝑟 =
Cov(𝑟𝑝,𝑟𝑚)

Var(𝑟𝑚)
=

∑(𝑟𝑝,𝑡−𝑟‾𝑝)(𝑟𝑚,𝑡−𝑟‾𝑚)

∑(𝑟𝑚,𝑡−𝑟‾𝑚)
2   (10) 

where, 𝑟𝑝 is the project IRR, 𝑟𝑚 is the market interest rate 

and the calculation window is taken as 36 months. 

Discounted cash flow model for exchange rate risk 
exposure 𝐹𝑋exp: 

𝐹𝑋exp = ∑
NetCFFC,𝑡

(1+𝑟𝑓 )
𝑡𝑡 × 𝜎FX  (11) 

𝜎FX  is the exchange rate volatility, reflecting the time risk 
of net foreign currency cash flows. 

3) Implementation process characteristics 

a) Cost deviation characteristics: Earned Value 

Management Criteria for Cost Performance Index CPI: 

𝐶𝑃𝐼 =
𝐸𝑉

𝐴𝐶
=

∑(𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑×𝑏𝑢𝑑𝑔𝑒𝑡 𝑢𝑛𝑖𝑡 𝑝𝑟𝑖𝑐𝑒)

∑𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑠𝑡
      (12) 

Level 1 warning triggered when CPI < 0.9 (industry 
experience threshold). 

Cost deviation rate Sensitivity enhancement design for 
CDR: 

𝐶𝐷𝑅 = sign(𝐴𝐶 − 𝐸𝑉) × √|
𝐴𝐶−𝐸𝑉

𝐸𝑉
|   (13) 

The square root transformation amplifies the overrun 
signal (e.g., 20% overrun translates to CDR = -0.447) [20]. 

b) Schedule risk characterization: Network planning 

algorithm for critical path float time 𝐹𝑇𝐶𝑃: 

𝐹𝑇𝑖 = 𝐿𝑆𝑖 − 𝐸𝑆𝑖 ,  𝐹𝑇𝐶𝑃 = min
𝑖∈𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ

𝐹𝑇𝑖  (14) 

Schedule risk criticality is determined when 𝐹𝑇𝐶𝑃< 7 days 
(PERT analysis validation). 

Information theoretic definition of schedule deviation 
entropy 𝑆dev: 

𝑆dev = − ∑ 𝑝𝑘
𝐾
𝑘=1 ln𝑝𝑘, 𝑝𝑘 =

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑘𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑑𝑒𝑙𝑎𝑦𝑒𝑑

∑𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦
 

(15) 

Entropy values >1.5 indicate risk diversification, and <0.5 
indicate critical path concentration of risk 

4) Risk association characteristics 

a) Historical risk transmission: Risk incidence 

Bayesian update of HR: 

𝐻𝑅(𝑛) =
𝛼+∑𝕀risk

𝛼+𝛽+𝑛
,  𝛼 = 2, 𝛽 = 2  (16) 

Update the a posterior probability with an initial value 
𝐻𝑅(0)=0.5 for each new item. 

b) Multi-risk coupling: Cost-schedule coupling index 

Vector pinch model for CSI: 

𝐶𝑆𝐼 = cos𝜃 =
𝛥C⋅𝛥S

∥𝛥C∥∥𝛥S∥
,  𝛥C = [𝛥𝐶1, . . . , 𝛥𝐶𝑇]  (17) 

θ < 30∘ indicates strong coupling (e.g., cost overruns 
accompanied by schedule delays). 

Market-Contract Sensitivity Stress test model for MCS: 

𝑀𝐶𝑆 = max
𝜎𝑀 ∈[0.1,0.3]

(
∂ℛ

∂𝜎𝑀
|𝐶𝑇 )  (18) 

Calculate the partial derivatives of risk with respect to 
contract type under extreme scenarios of price volatility. 

5) Feature engineering methods 

a) EM algorithm for missing value interpolation 

Step 1: 

𝑄(𝜃|𝜃(𝑡)) = 𝔼𝑍|Xobs,𝜃(𝑡) [ln𝑃(Xobs ,𝑍|𝜃)] (19) 
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Step 2: 

𝜃(𝑡+1) = argmax
𝜃

𝑄(𝜃|𝜃(𝑡))   (20) 

b) Interaction feature construction 

Explicit Interaction: 

𝜙interact = 𝜎𝑀 × (1 − 𝐶𝑇) × log𝐼   (21) 

Capture the extreme risk of ‘cost plus fee contracts for 
large projects in highly volatile markets’. 

6) Feature validation: The contribution of feature j to the 

prediction of f(x): 

𝜙𝑗 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹\{𝑗} (𝑓𝑆∪{𝑗}(x) − 𝑓𝑆(x))  (22) 

The computational time consuming grows exponentially 
with the number of features, using the TreeSHAP 
approximation (𝒪(𝑇𝐿𝐷2)), where T is the number of trees, L 
is the number of leaf nodes, and D is the depth. 

D. Model Training and Validation 

The training of the BO-GBM model is an iterative learning 
process that incorporates Bayesian optimization and gradient 
boosting machine, and its mathematical nature can be 

formulated as the following two-layer optimization problem 
[21]: 

𝑂𝑢𝑡𝑒𝑟 𝑙𝑎𝑦𝑒𝑟 (ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐 𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛): x∗ = argmax
x∈𝒳

𝒥(x)

𝐼𝑛𝑛𝑒𝑟 𝑙𝑎𝑦𝑒𝑟 (𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔): 𝒥(x) = 𝔼(Xval ,yval)
[ℒ(ℳx

(Xval
), yval

)]
 

where, x = (𝜂, 𝑑max,𝑛leaf, … ) is the hyperparameter vector 
and ℒ is the objective function (e.g., negative RMSE). 

1) Dynamic construction of training data: In order to 

adapt to the temporal characteristics of engineering economic 

data, a rolling time window strategy is used [22]: 

{
𝒟train

(𝑡)
= {(x𝑖, 𝑦𝑖)|𝑇𝑖 ∈ [𝑡 − 𝜏, 𝑡]}

𝒟val
(𝑡)

= {(x𝑖, 𝑦𝑖)|𝑇𝑖 ∈ (𝑡, 𝑡 + 𝛥𝑡]}
 (23) 

τ = 24 months: training window length 

Δt = 3 months: validation window step length  

Timestamp 𝑇𝑖 is the project start time 

2) BO-GBM Co-training algorithm: The essence of BO-

GBM co-training is a two-layer optimization process with a 

mathematical framework consisting of Bayesian optimization 

(outer layer) and gradient boosting machine training (inner 

layer) to form an iterative closed-loop system (see Fig. 2): 

 

Fig. 2. Parallel training architecture. 

a) Bayesian optimization layer: Let the hyperparameter 

space 𝒳 ⊂ ℝ𝑑 and the objective function 𝒥(x)  be the 
performance of GBM on the validation set (e.g., AUC) [23]. 
Bayesian optimization models the objective function through a 

Gaussian process: 

𝒥(x) ∼ 𝒢𝒫(𝜇(x), 𝑘(x, x′))  (24) 

where, the kernel function uses Matérn 5/2: 

𝑘(x, x′) = 𝜎𝑓
2 (1 + √5𝑟 +

5

3
𝑟2)exp(−√5𝑟),  𝑟 =

√∑
(𝑥𝑖−𝑥𝑖

′)
2

ℓ𝑖
2

𝑑
𝑖=1     (25) 

Expectation Improvement (EI) acquisition function to 
guide parameter search: 

EI(x) = 𝔼[max(𝒥(x) − 𝒥+ ,0)] = (𝜇(x) − 𝒥+ − 𝜉)𝛷(𝑍) +

𝜎(x)𝜙(𝑍)𝑍 =
𝜇(x)−𝒥+−𝜉

𝜎(x)
,  𝜉 = 0.01    (26) 

𝒥+ is the current optimal observation and 𝛷, 𝜙  is the 
standard normal distribution function. 

b) Gradient booster Training layer: Given the 
hyperparameters x = (𝜂, 𝑑max, 𝜆, … ), the GBM minimizes the 

loss in an additive model: 

𝐹∗ = argmin
𝐹

∑ ℒ𝑛
𝑖=1 (𝑦𝑖, 𝐹(x𝑖)) + 𝛺(𝐹) (27) 

where, the regular term 𝛺(𝐹) = 𝛾𝑇 +
1

2
𝜆 ∥ w ∥2, T is the 

number of leaf nodes of the tree. 

The mth iteration: 

computes the pseudo-residuals: 

𝑟𝑖
(𝑚)

= −
∂ℒ(𝑦𝑖,𝐹(x𝑖))

∂𝐹(x𝑖)
|
𝐹=𝐹𝑚−1

  (28) 

The fitted decision tree ℎ𝑚 is minimized: 

∑ [𝑟𝑖
(𝑚)

− ℎ𝑚(x𝑖)]
2

𝑛
𝑖=1 + 𝛾𝑇𝑚 +

1

2
𝜆 ∑ 𝑤𝑗

2𝑇𝑚
𝑗=1   (29) 

Update the model: 

𝐹𝑚(x) = 𝐹𝑚−1(x) + 𝜈 ⋅ ℎ𝑚(x),  𝜈 = 𝜂 ⋅ exp (−𝛽
𝑚

𝑀
)  (30) 

β is the decay coefficient and M is the total number of 
trees. 
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3) Synergistic iterative mechanism: BO-GBM synergistic 

training constitutes the dynamical system: 

{
x(𝑘+1) = ℬ(x(𝑘)|{𝒥(x(𝑖))}𝑖=1

𝑘 )

𝒥(x(𝑘)) = 𝒯GBM(𝒟train, 𝒟val,x
(𝑘))  

  (31) 

where, ℬ is the Bayesian optimization operator and 𝒯GBM 
is the GBM training evaluation operator [24]. 

The sequence {𝒥(x(𝑘))}  converges with probability 1 

when the hyperparameter space 𝒳 is tight and the objective 
function 𝒥Lipschitz is continuous: 

lim
𝑘→∞

ℙ(𝒥(x(𝑘)) − 𝒥∗ < 𝜖) = 1, ∀𝜖 > 0  (32) 

4) Computational acceleration strategy 

a) Agent model warm-up: Pre-training the auxiliary 

Gaussian process using historical project data𝒢𝒫0： 

𝜇0(x) = 𝔼𝒟hist
[𝒥(x)], 𝑘0(x, x′) = Cov𝒟hist

(𝒥(x),𝒥(x′)) 

(33) 

The initial objective function is estimated as: 

𝒥 (1)(x) ∼ 𝒢𝒫(𝜇0(x),𝜌𝑘0(x, x′) + 𝑘(x, x′)), 𝜌 = 0.3(34) 

b) Gradient-sensitive sampling: Introducing gradient 

information in EI optimization: 

xnext = argmax[EI(x) + 𝜆 ∥ ∇x𝜇(x) ∥2]  (35) 

𝜆  Balancing exploration and exploitation to accelerate 
local convergence [25]. 

c) Partial evaluation mechanisms: When 𝜎(x) > 𝜎thres, 

sub-sampled data are used for evaluation: 

𝒥̃(x) = 𝒥(x; 𝒟sub), |𝒟sub| = min(500,
𝑛

𝜎(x)/𝜎max
)  (36) 

III. ENGINEERING ECONOMIC RISK MANAGEMENT 

PLATFORM ARCHITECTURE DESIGN 

A. Overall Platform Architecture Design 

The engineering economic risk management platform 
adopts vertical layered architecture, with clear functions and 
interfaces of each layer to ensure high availability and 
scalability of the system (see Fig. 3). 

 

Fig. 3. Platform architecture diagram. 

The whole system architecture consists of four distinct 
layers. The data layer is the foundation and contains both 
static and dynamic data sources. Storage includes a project 
database (storing core project data such as contracts, 
schedules, and costs), a market database (integrating time-
series data such as building material prices, exchange rates, 
and interest rates), and a risk knowledge base (accumulating 
historical risk cases and response scenarios). Real-time data 
processing is handled by a Kafka streaming engine that feeds 

into the business system data and processes it at a rate of over 
10,000 data points per minute. The model layer builds on this 
data foundation and contains the core machine learning 
components. The BO-GBM training engine automatically 
optimizes model parameters. The feature engineering service 
computes 28 real-time risk features. Finally, the Online 
Prediction Service deploys optimized risk prediction models 
to ensure that single prediction latency is kept below 300 
milliseconds, and the models are updated through daily 
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automated training. The service layer exposes the system's 
forecasting capabilities through a set of core services. The 
Risk Prediction API uses gRPC to calculate project risk 
probabilities in real time. The real-time alert service uses 
WebSockets to trigger multi-level alerts. The report generation 
service creates risk assessment reports automatically via a 
REST API. To ensure resilience, the service implements 
automatic meltdown and switches to a backup service when 
the error rate exceeds 5%. Load balancing supports more than 
500 concurrent requests. Finally, the application layer 
provides the user interface and access control. The web 
console provides real-time risk heat maps, risk factor analysis 
tools, and alert threshold configuration options. Mobile 
terminals provide instant risk alerts, project status queries, and 
access to emergency response channels. RBAC (role-based 
access control) is implemented for rights management, and 
two-factor authentication is used to enhance security. 

B. Core Functional Module Design 

The engineering economic risk management platform 
contains five core functional modules, which together achieve 
the closed-loop management of the whole process of risk 
prediction, assessment, early warning, and decision-making 
support. The design of each module follows the principle of 
‘high cohesion and low coupling’, and works together through 
standardized API interfaces. 

1) Data integration and management module: The 

platform is positioned as a data hub, providing unified access 

and governance for various heterogeneous data sources. Key 

design elements include: Multi-source data access: This covers 

a wide range of systems, including obtaining progress and cost 

data from project management systems (e.g. Primavera P6) via 

ODBC, synchronizing payment and settlement information 

from financial systems [27] (e.g. SAP) via RFC protocols, 

retrieving building material prices and exchange rate indices 

on a regular basis from market databases (e.g. Wind) via APIs, 

and collecting data on the operation of field equipment using 

IoT sensors. IoT sensors to collect data on the operation of 

equipment in the field. A key component is the intelligent data 

pipeline, which contains cleansing rules (e.g., missing value 

filling and outlier correction using the ±3σ principle) and 

transformation logic that automatically generates 28-

dimensional feature vectors based on the feature system 

described earlier. The storage strategy is tiered for optimal 

performance and cost-effectiveness: hot data is cached in 

Redis (with response times of less than 50 milliseconds), 

warm data is stored in ClickHouse columnar format, and cold 

data is archived in HDFS. Finally, comprehensive metadata 

management provides data lineage tracking, recording field-

level source and transformation history, and quality 

monitoring dashboards that display data completeness and 

timeliness metrics in real time (see Fig. 4). 

2) BO-GBM model management module: Functional 

positioning is the core of model full life cycle management. 

The key design includes: training workflow: multiple 

triggering mechanisms are available, including timed 

triggering (2:00 am every day), data drift warning triggering 

(when the KL dispersion of the feature distribution is > 0.1), 

and manual triggering. Spark ML is used for parallel 

processing of 100 GB data for distributed training. Each 

model version has version metadata, including snapshots of 

the training data, hyperparameters, and evaluation metrics. 

Grey scale releases validate the performance of new model 

versions by introducing 10% traffic. Additionally, the 

Parameter Configuration Centre provides a BO optimization 

space that allows for visual adjustment of hyperparameter 

ranges and supports manual intervention of feature weights to 

adjust feature importance assignments (see Fig. 5). 

 

Fig. 4. Intelligent data pipeline flowchart. 

 

Fig. 5. Version control system. 
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IV. PLATFORM CORE CHARACTERISTICS ANALYSIS AND 

VERIFICATION 

A. Validation of the BO-GBM Model's Prediction 

Performance Characteristics 

This experiment verifies the performance advantages of 
the BO-GBM model in engineering economic risk prediction 
tasks through rigorous comparison tests. The experimental 
design focuses on three core questions: 

Does BO-GBM significantly outperform mainstream 
baseline models? 

How effective is Bayesian optimization in improving 
model robustness? 

How much does the feature engineering system contribute 
to the prediction accuracy? 

1) Experimental design: The dataset is derived from the 

data of 327 projects of a large engineering group between 

2018 and 2023. The dataset is divided into a training set and a 

test set, where the training set contains 256 projects from 

2018-2022 and the test set contains 71 projects from 2023. 

Each project is represented by 28 features, and the labels are 

dichotomized to indicate whether a significant economic risk 

has occurred (see Table III). 

Evaluation metrics include AUC, F1-score, and recall for 
classification tasks and RMSE and MAPE for regression tasks 
(cost bias prediction). 

2) Performance comparison metrics: This experiment 

evaluated the classification performance of the five models on 

71 independent test items (risk occurrence prediction). All 

models use the same training set (256 items) and feature set 

(28 dimensions), and the evaluation metrics include AUC 

(area under the curve), F1-score (the reconciled average of 

precision and recall), and recall (the proportion of actual risks 

correctly identified). The test set consists of 18 high-risk 

projects (where a significant economic risk actually occurs) 

and 53 low-risk projects completed in 2023 (see Fig. 6). 

The BO-GBM model achieves an excellent performance of 
0.927 on the AUC metric, which is significantly higher than 
the standard GBM (0.865) and Random Forest (0.832). In 
terms of F1-score, BO-GBM leads the other models with 
0.892, which is 7.3% higher than the standard GBM (0.831). 
The recall metric shows that BO-GBM identifies 91.3% of 
actual risky items, 17.5 percentage points higher than logistic 
regression (73.8%). These data demonstrate that Bayesian 
optimization significantly improves the discriminative power 
of the GBM model, especially in the identification of high-risk 
items. 

TABLE III COMPARATIVE MODELS 

Model type Parameter Settings 
Implementation 

library 

BO-GBM  
Tree Depth = 6, Learning Rate = 0.1 

(BO Optimization)  
LightGBM 

Standard GBM  Tree Depth = 6, Learning Rate = 0.1  Scikit-learn 

Random Forest 

(RF)  
No. of Trees = 200, Depth = 10  Scikit-learn 

SVM  Kernel Function = RBF, C = 1.0  Scikit-learn 

Logistic 

Regression (LR) 
Regularization Strength = 1.0 Scikit-learn 

 

 

Fig. 6. Comparison of classification model performance. 

This experiment evaluated the accuracy of each model in a 
cost deviation prediction task (regression problem). RMSE 
(Root Mean Square Error, in millions of dollars) and MAPE 
(Mean Absolute Percentage Error) were used as assessment 

metrics. The test set contained actual cost deviation data for 
71 projects, with deviations ranging from -35% (savings) to 
+82% (overruns), and an average absolute deviation of 
$287,000 (see Fig. 7). 
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Fig. 7. Comparison of cost bias prediction errors. 

The RMSE of BO-GBM is $83,200, which is 34.8% lower 
than the standard GBM ($127,600) and 60.5% lower than the 
worst performing logistic regression ($210,700). On the 
MAPE metric, BO-GBM's prediction error was only 9.7%, 
breaking the 10% engineering management accuracy threshold 
for the first time. Notably, when the cost deviation exceeds 
30%, the prediction error of BO-GBM (MAPE = 11.2%) is 
still significantly lower than that of other models (17.8% for 
standard GBM), indicating that it still maintains high accuracy 
under extreme risk scenarios. 

3) Result analysis: To verify the model's ability to resist 

interference, Gaussian noise (mean 0, standard deviation from 

0% to 20%) was added to the test set of features. The 

experiment was repeated 50 times at each noise level, and the 

change in the mean AUC value was recorded. The range of 

noise addition covers all 28 features to simulate the data 

acquisition errors in real applications (see Fig. 8). 

 

Fig. 8. Model robustness under feature perturbation. 

When the feature noise reaches 20%, the AUC of BO-
GBM decreases from 0.927 to 0.876 (a decrease of 5.5%), 
while the standard GBM decreases from 0.865 to 0.752 (a 
decrease of 13.1%). At a 10% noise level, the AUC of BO-
GBM stays above 0.907, which is significantly higher than 
that of the standard GBM at 0.811. Random Forest performs 
close to BO-GBM (0.816 vs. 0.919) at low noise (5%), but the 
AUC decreases to 0.731 at high noise (20%), widening the 
gap to 14.5 percentage points. This indicates that BO 
optimization effectively improves the model noise immunity 
through hyperparameter tuning. 

The contribution of each feature to the prediction of the 
BO-GBM model was quantified using the SHAP value 

method. The absolute mean of SHAP based on all samples in 
the test set was calculated, and the five features with the 
highest contribution were selected. The SHAP value indicates 
the average magnitude of the effect of feature changes on the 
model output (risk probability). 

The Cost Performance Index (CPI) tops the list with a 
contribution of 0.218, proving that cost control failure is the 
strongest risk signal. Building material volatility (0.195) and 
contract type (0.172) rank second and third, and the sum of 
their contributions (0.367) exceeds the CPI, reflecting the key 
role of external markets and contract design. Progress 
deviation (0.141) and cash flow gap (0.103) constitute the 
second tier of risk factors. The total contribution of TOP5 
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features reaches 0.829, covering the three core dimensions of 
engineering economic risk: cost control, external environment 
and project execution (see Fig. 9). 

B. Platform Functional Characteristics and Efficiency 

Verification 

1) Risk identification efficiency: Fifty projects 

implemented by a large infrastructure company in 2023 are 

selected for risk assessment using both traditional manual 

assessment and automated identification by the platform. 

Record the time consumed for the whole process from data 

preparation to the output of the risk assessment report. Manual 

assessment is performed by a team of three senior risk 

analysts. 

Platform’s risk identification efficiency is significantly 
better than manual methods. For large-sized projects, the 
identification time is reduced from 42.6 hours to 0.52 hours, 

an 81.9-fold increase in efficiency. For medium-sized projects, 
the identification time is reduced from 25.7 hours to 0.38 
hours, an increase in efficiency of 67.6 times. Small projects 
are processed through the platform in 0.25 hours, 49.2 times 
faster than manual processing (12.3 hours). The logarithmic 
coordinates show that the platform processing time is basically 
not affected by the project scale, which verifies the elasticity 
and scalability of the architecture (see Fig. 10). 

2) Predicting response time: The experimental design 

includes simulating different concurrency scenarios in the load 

test environment: single project prediction (1000 consecutive 

requests), multi-project batch prediction (10-100 

projects/batch), and high concurrency scenarios (50-500 

concurrent users). The platform's response time (P95) and 

resource consumption (CPU/memory) were recorded. The test 

environment is an 8-core 16GB cloud server [26]. 

 

Fig. 9. TOP5 risk characteristics contribution. 

 

Fig. 10. Comparison of risk identification time for projects of different sizes. 
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The average response time for a single project prediction is 
127 ms, which meets the real-time decision-making 
requirements. Batch prediction of 100 projects takes 256 ms, 
with a processing speed of 390 projects per second. In the 500 
concurrent users scenario, the P95 response time was 427 
milliseconds, still below the engineering threshold of 500 
milliseconds. Response times for all test scenarios were below 
the industry best practice standard of 300 milliseconds. 
Resource monitoring shows that with 500 concurrent users, 
CPU utilization is 78% and memory usage is 68%, indicating 
that the system still has room for further expansion (see 
Fig. 11). 

3) Early warning accuracy verification: The platform was 

used to backtest the data of 120 projects that had been 

completed in the past. The specific steps are: input feature data 

according to the actual project progress nodes, record the 

warning signals issued by the platform and the time, and 

compare the warning signals with the time and type of actual 

risk occurrence. Evaluation indicators include: warning 

accuracy rate, false alarm rate, and missed alarm rate. 

The platform's early warning accuracy rate is 72.5% 
(87/120), of which 92.3% for high-risk projects (L4-L5). False 
alarm rate is 7.5% (9/120), which mainly occurs in scenarios 
of sudden policy changes, such as new environmental 
regulations. False alarms were 5.0% (6/120), mainly in 
extreme cases where the schedule was compressed by more 
than 30%. Overall, the platform made a correct judgment 
(accurate warning + correct no warning) in 87.5% of cases. 
The average lead time for high-risk warnings was 28 days for 
cost risks and 42 days for schedule risks, which meets the 
emergency response time requirements (see Fig. 12). 

 

Fig. 11. Risk prediction response time in different scenarios. 

 

Fig. 12. Analysis of the accuracy of the platform's early warning. 
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V. RESULTS AND DISCUSSION 

This section presents a comprehensive evaluation of the 
proposed BO-GBM model's predictive performance and an 
analysis of the platform's functional characteristics and 
efficiency, followed by a discussion of the implications of 
these findings. 

A. Validation of BO-GBM Model's Prediction Performance 

The experiment verifies the performance advantages of the 
BO-GBM model through rigorous comparison tests on a 
dataset comprising 327 projects from a large engineering 
group (2018 to 2023), split into training (2018 to 2022, 256 
projects) and test (2023, 71 projects) sets. Each project is 
represented by the 28 features described previously. 

1) Experimental setup and baselines: The BO-GBM 

model was compared against several mainstream baseline 

models, as detailed in Table IV. 

TABLE IV COMPARATIVE MODELS AND PARAMETER SETTINGS 

Model Type Parameter Settings Implementation Library 

BO-GBM 
Tree Depth=6, Learning 

Rate=0.1 (BO Optimized) 
LightGBM 

Standard GBM 
Tree Depth=6, Learning 

Rate=0.1 
Scikit-learn 

Random Forest 

(RF) 
No. of Trees=200, Depth=10 Scikit-learn 

SVM 
Kernel Function=RBF, 

C=1.0 
Scikit-learn 

Logistic 

Regression (LR) 
Regularization Strength=1.0 Scikit-learn 

2) Performance comparison 

a) Classification performance: Fig. 6 shows the 

performance on the risk occurrence prediction task (18 high-
risk, 53 low-risk projects). The BO-GBM model achieved an 
AUC of 0.927, significantly outperforming the standard GBM 
(0.865) and Random Forest (0.832). Its F1-score of 0.892 was 
7.3% higher than the standard GBM. Crucially, the recall rate 

of BO-GBM reached 91.3%, meaning it identified over 91% 
of actual high-risk projects, which is 17.5 percentage points 
higher than Logistic Regression (73.8%). This demonstrates 
that Bayesian optimization significantly enhances the model's 

ability to discriminate, particularly in identifying critical risks. 

b) Regression performance (cost deviation): Fig. 7 
compares the models on predicting cost deviation. The BO-
GBM model achieved an RMSE of 83,200 RMB, which is 
34.8% lower than the standard GBM (127,600 RMB) and 60.5% 
lower than Logistic Regression (210,700 RMB). Its MAPE 

was only 9.7%, breaking the 10% accuracy threshold often 
sought in engineering management. Notably, even for extreme 
cost overruns (>30%), BO-GBM maintained a lower error 
(MAPE=11.2%) compared to other models (e.g., 17.8% for 

standard GBM). 

3) Robustness analysis: To test the model's resistance to 

data noise, Gaussian noise (mean 0, standard deviation from 

0% to 20%) was added to the test features. As shown in Fig. 8, 

when feature noise reached 20%, the AUC of BO-GBM 

decreased by only 5.5% (from 0.927 to 0.876), whereas the 

standard GBM decreased by 13.1% (0.865 to 0.752). This 

indicates that the hyperparameters found by BO contribute to 

a more robust model that is less sensitive to data perturbations, 

a critical property for real-world applications where data 

quality can vary. 

4) Feature importance analysis: Using SHAP values, we 

quantified the contribution of each feature. Fig. 9 reveals that 

the Cost Performance Index (CPI) was the most influential 

feature (contribution 0.218), confirming failed cost control as 

the primary risk signal. Building material volatility (0.195) 

and contract type (0.172) were the next most important, 

highlighting the significant role of external markets and 

contractual design. Schedule deviation (0.141) and cash flow 

gap (0.103) formed a secondary tier. The combined 

contribution of the top five features was 0.829, effectively 

capturing the core dimensions of engineering economic risk. 

B. Platform Functional Characteristics and Efficiency 

Verification 

1) Risk identification efficiency: We compared the 

platform's automated risk identification against traditional 

manual assessment by a team of three senior analysts across 

50 projects of different sizes in 2023. The results, depicted in 

Fig. 10, show a dramatic efficiency improvement. For large 

projects, identification time was reduced from 42.6 hours to 

0.52 hours—an 81.9-fold increase. The platform's processing 

time remained relatively constant regardless of project scale, 

demonstrating its scalability and architectural elasticity. 

2) Prediction response time: Load testing under various 

scenarios (Fig. 11) confirmed the platform's real-time 

capability. The average response time for a single prediction 

was 127 ms. Batch prediction of 100 projects took 256 ms (≈
390 projects/second). Under a high load of 500 concurrent 

users, the P95 response time was 427 ms, remaining below the 

500 ms engineering threshold. Resource utilization (CPU 

78%, Memory 68%) under this load indicated potential for 

further scaling. 

3) Early warning accuracy: A backtest was conducted on 

120 completed projects. The platform achieved an overall 

warning accuracy of 72.5% (87/120), with accuracy for high-

risk projects (L4-L5) exceeding 92.3%. The false alarm rate 

was 7.5%, primarily triggered by unforeseen policy changes, 

and the missed alarm rate was 5.0%, mainly occurring in cases 

of extreme schedule compression (>30%). Overall, the 

platform made correct judgments (accurate warning + correct 

non-warning) in 87.5% of cases. The average lead time for 

high-risk warnings was 28 days for cost risks and 42 days for 

schedule risks, providing sufficient time for proactive 

mitigation. 

C. Discussion 

The results strongly support the effectiveness of the 
proposed BO-GBM model and the associated platform. The 
significant performance gains over baseline models, 
particularly in recall and robustness, underscore the value of 
using Bayesian Optimization for hyperparameter tuning in this 
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domain. The high contribution of the engineered features 
validates the comprehensiveness of the four-dimensional 
feature system. The platform's operational metrics confirm its 
practical utility, offering order-of-magnitude efficiency gains 
in risk identification and reliable, real-time predictions 
suitable for large-scale, concurrent use. 

The primary limitation observed was related to warning 
errors. False alarms were often linked to "black swan" events 
like sudden policy shifts, which are not captured by historical 
feature data. Missed alarms occurred under extreme project 
conditions, suggesting potential model performance 
boundaries or the need for even more specialized features for 
such edge cases. These points inform valuable directions for 
future work. 

VI. CONCLUSION 

In this study, a platform for engineering economic risk 
management based on the BO-GBM model is successfully 
constructed, which significantly improves the prediction 
accuracy and control efficiency of engineering economic risks 
by integrating Bayesian optimization and gradient boosting 
machine techniques. The core achievements can be 
summarized in the following three aspects: 

1) Excellent performance of BO-GBM model: By adopting 

Bayesian optimization to adaptively adjust the GBM 

hyperparameters, the model breaks through the efficiency 

bottleneck of traditional tuning methods and significantly 

enhances the model’s robustness. Experimental results show 

that in the risk prediction task, the model AUC reaches 0.927, 

with a recall rate of 91.3%, which is 17.5 percentage points 

higher than that of the standard GBM; in cost deviation 

prediction, the RMSE is reduced to 83.2 thousand yuan, and 

the MAPE is only 9.7%, which is more than 30% lower than 

the mainstream model even in the extreme overrun scenarios; 

in the face of the featured noise interference of 20%, the 

model performance degradation is less than 20%. Even under 

extreme overspending scenarios, the error is still lower than 

mainstream models by more than 30%; in the face of 20% of 

characteristic noise interference, the model's performance 

degradation is less than 6%, which verifies its strong anti-

interference ability. 

2) Breakthrough in risk characteristics system and 

platform effectiveness: The four-dimensional 28-feature 

system (project ontology, market environment, execution 

process, and risk correlation) constructed systematically 

quantifies the risk-driving mechanism, with the contribution of 

key features exceeding 82%. Among them, cost performance 

index, building material volatility, and contract type constitute 

the core risk signals. The platform adopts a layered 

architecture (data layer, model layer, service layer, application 

layer), supporting millisecond response with single prediction 

latency of less than 127 milliseconds, and P95 response time 

of 427 milliseconds with 500 concurrent users. In addition, the 

efficiency of risk identification has been improved by an order 

of magnitude, and the evaluation time of large projects has 

been compressed from 42.6 hours to 0.52 hours, which is 81.9 

times more efficient. 

3) Precise and reliable early warning mechanism: The 

platform realizes closed-loop risk management for the whole 

process. The accuracy rate of early warning reaches 72.5%, 

and the accuracy rate of high-risk early warning exceeds 92%. 

The advance warning period for cost risk and schedule risk 

reaches 28 days and 42 days, respectively, which meets the 

demand for emergency response. The false alarm rate and 

omission rate are controlled at 7.5% and 5.0% respectively, 

which are significantly better than the manual assessment 

mode. 

Building upon current research findings and limitations, 
future studies will focus on advancing three key areas of 
exploration. Regarding model optimization, hybrid time-series 
models incorporating LSTM or Transformer architectures will 
be developed to more accurately capture the dynamic 
evolution of project risks. Concurrently, the BO-GBM 
framework will be expanded to enable multi-task collaborative 
prediction of cost, schedule, and safety risks. Regarding data 
dimensions, plans include introducing natural language 
processing techniques to extract latent risk signals from 
unstructured data such as textual reports, alongside 
constructing adaptive feature selection mechanisms to 
accommodate requirements across different project phases. At 
the platform functionality level, efforts will strengthen 
visualization capabilities to intuitively display model decision-
making logic, while integrating reinforcement learning 
technologies to enable dynamic, intelligent recommendations 
for risk mitigation strategies. 
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