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Abstract—This paper introduces a machine learning system
that is feature-optimized to enhance the detection of concealed
ammunition in X-Ray security imaging. The system integrates
advanced image analysis techniques with a cascade-AdaBoost
classifier and Multi-scale Block Local Binary Pattern (MB-LBP)
features, which are particularly effective for object recogni-
tion and classification in complex, high-dimensional data. The
combination of these algorithms ensures robust performance in
identifying ammunition types even under challenging conditions,
such as variations in image quality or object orientation. The
system is specifically designed for the accurate identification
of various types of ammunition, including 9 mm bullets for
handguns, AK-47 machine gun bullets, and 12-gauge shotgun
cartridges. To support the development and testing of this system,
a new dataset comprising 1,732 X-Ray images of passenger
luggage was collected. This dataset is made publicly available
to facilitate further research and improvement in this critical
area of security technology. Experimental results demonstrate
that the system achieves a high level of detection accuracy,
with the ability to identify 12-gauge shotgun shells concealed
in baggage with a 92% success rate. Beyond its technical
achievements, this system significantly enhances the efficiency and
reliability of security checks, improving the overall effectiveness
of ammunition detection in real-world scenarios.
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I. INTRODUCTION

In the 21st century, there are rapidly increasing needs
in many urban-related areas due to the current growth of
urban populations, including environmental governance, public
safety, city planning, industry facilitation, resource utilization,
energy conservation, traffic control, telemedicine, homecare,
and interpersonal relationships, social interactions, entertain-
ment, and communication. Failure to satisfy any of the criteria
could threaten a city’s ability to grow sustainably. Smart cities
play a critical role in the advancement of humanity, which
often depends on widely dispersed smart devices to monitor
the urban environment in real-time, react quickly, establish
automated control, gather data for intelligent decision-making,
enable various services, and enhance the quality of urban living
[1].

These days, fast, smooth, and efficient transport of people

and their luggage has become very important in this fast-paced
modern lifestyle. Much attention has also been paid recently to
the security and safety of passengers by the aviation industry.
Occasionally, national safety, economic structure, and infras-
tructure rely on a secure and safe airport system. Therefore,
much time and effort are continuously being exerted in order to
develop a safer policy and improve airport security. However,
despite all these precautions, there are many terrible accidents
that occur regularly indicating limitations and drawbacks in
the currently used security systems [2].

In airports, security checkpoints use metal detectors or X-
ray detection systems for discovering metallic objects along
with high-tech plastics or ceramics, composite weapons, illegal
drugs, explosives, ammunition, or other items that can be
smuggled [3]. There are many places such as airports, public
places, and sensitive buildings that use manual screening for
detecting unauthorized and concealed items and weapons [4].
These systems can be very effective, quick, and dynamic,
regardless of the enormous number of individuals accessing
these areas. Dillingham [5] determined several constraints and
challenges in the capability of the screening procedures to
discover suspicious items on the body or the luggage of
the passengers. Consequently, it can be concluded that the
conventional manual screening processes that are still used
at many airports are incapable of detecting all the concealed
and threatening weapons because of the restrictions in the
technology and in the performance of the personnel [6].

The baggage screening and inspection process takes a
lot of effort and time. On the other hand, many passen-
gers also complain that the screening procedures invade their
privacy by scanning and checking their personal stuff and
belongings [7]. Conventional security systems count totally
on the performance, perceptions, judgment, and ability of
the security personnel in making decisions [8]. However, it
is argued that human recognition systems are more accurate
and efficient than automated systems. Nevertheless, there are
many additional factors, such as placing objects at unexpected
angles, that prevent object discovery by using their images
[9]. In the same context, the Congressional Research Service
(CRS) report to congress has stated that several factors could
contribute to limiting human performance such as tiredness,
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a lack of job satisfaction or motivation, inadequate training,
and unsuitable workplace conditions, which affect their perfor-
mance and even their standards of success [6]. Other studies
[10][11] have stated that after working for long time periods,
the human eyes get exhausted and tired. In addition, when
humans have been working on the same mission for long
time periods, they can get bored due to monotonous tasks and
lose their interest and energy. This could lead to an erroneous
reading and inexpedient analysis of the information; this would
result in negligence in discovering the presence of concealed
weapons or such items [2]. Moreover, a cluttered X-ray image
of the passenger’s belongings contains many shapes and colors
[12], which could overload the security personnel and make
the detection of weapons or explosive devices more difficult
amongst the other personal items carried by the passenger.

Metal detection machines used for detecting metallic ob-
jects at airport security checkpoints raise an alarm for every
metallic object passing through them. Even though a majority
of the items are harmless, they still raise false alarms. Since
many false alarms are raised every minute by these metal-
detecting machines, even the security personnel find it annoy-
ing and ignore them. This practice could be responsible for
many of the undetected suspicious metallic objects passing
through the detectors [9]. In order to provide better security
at the airports, more reliable, enhanced, and fast-screening
systems are necessary for inspecting baggage at airports.
This system has two objectives. First, the system must be
able to analyze and study every X-ray image. Then it must
contain a suspicious object detection application. A novel and
automated system that carries out fast and reliable baggage
monitoring must be developed. It will need less processing
time and provide more accurate results. Though there are
many X-ray techniques for detecting suspicious objects, there
are no specific ones that focus on ammunition detection.
However, there are many techniques that detect the presence
of concealed weapons like knives, handguns, etc., depending
on the size, shape, and the material’s response to the X-
ray radiation. Some of the common X-ray image-processing
techniques, which are used for Concealed Weapon Detection
(CWD), include image enhancement and de-noising, object
segmentation, shape description, and detection and recognition
of weapons [11][13][14].

In this research, for the first time, a novel dataset with
1732 X-Ray images of passenger luggage has been developed
specifically for this use. The public is given access to this
special dataset so that other researchers can use it. Authors
propose a novel automatic system that detects different kinds
of ammunition concealed in passenger baggage and carry-
on items. This system can be used to enhance and support
the conventional inspection techniques. Literature analysis
suggested that many authors have carried out CWD techniques
using image sensors, IR waves, and X-rays; however, those
techniques could only detect metallic objects and were unable
to detect non-metallic weapons, i.e., made of ceramics or
plastics such as 12-gauge shells [7].

The content of the paper can be summarized as follows:
Section II presents a literature review of detecting concealed
weapons and concealed ammunition using different machine
vision and image processing techniques. Section III describes
the implementation of a smart system that would increase

safety and security levels at airports by supporting security
expert’s ability of 9 mm hand-gun bullets, AK-47 machine gun
bullets, and 12-gauge shotgun shells. Section IV outlines the
performance of the detection evaluation with some confirma-
tory ranking results and analysis. Finally, Section V presents
the conclusions of this paper.

II. LITERATURE REVIEW

In order to effectively manage data analysis, data commu-
nications, and the successful implementation of complicated
policies to maintain the smooth and secure management of a
smart city, the efficient use of artificial intelligence (AI) and
machine learning (ML) techniques is vitally important [15].
Big data analysis and the successful application of AI and ML
have increased the efficiency and scalability of smart cities
[16]. In order to improve the efficiency of passenger inves-
tigation and ensure safe journeys, ML-based techniques have
a significant impact on the present intelligent transportation
system (ITS) [16][17].

Several researchers have utilized AI-based approaches to
ensure the safety of the smart city environment [18]. Based
on neural networks, the authors of [19] presented an effective
crime detection system for a smart city to quickly locate and
assess any criminal behavior. In the same context, the authors
of [20] also suggested an ML-based architecture that might
be used to anticipate incidents and provide responses before
they occur. To realize future trends and the use of IoT in the
intelligent transportation system, the applications employed in
the IoT-based transport model are thoroughly examined in [21].

Many studies have been proposed in the literature for the
purpose of detecting concealed weapons using different ma-
chine vision and image processing techniques. However, few
studies have addressed the detection of concealed ammos. In
the study by Kase [9], the author investigated and implemented
various color-coding schemes for the detection of suspicious
and threatening objects using X-ray images. The author argued
that the use of these techniques would help in the detection
of threatening objects and would improve the efficiency of the
baggage monitoring, as well as decreasing inspection time and
the possibility of fatigue-based errors.

There are several studies that have addressed the automatic
detection of ammunition. These studies can be categorized
according to the areas of application into six categories, which
are: detection of concealed weapons such as [22], detection of
unconcealed weapon [23], gun detection [24], knife detection
[25], weapon detection using X-ray imaging [26], and weapon
detection using infrared imaging [27]. It is worth mentioning
here that some studies can be grouped in more than one of
those categories.

However, the methods used for the detection of concealed
ammunition can be grouped into four categories: matching
based [28], classifier-based [29], multisensor-based [30], and
detector-based [29]. This study proposes a classification-based
approach to address concealed-munition detection using X-ray
imaging.

Regarding the classifier-based approaches, weapons, am-
munition, and bullets are segmented from the image, and then
the region of interest (ROI) are utilized to extract features that
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will be used later for classification [31]. The main role of
the classification approach is to classify images as positive or
negative. The presence of the ammunition in the input image
indicates positive and the absence of the ammunition means
negative. Thus, segmentation of ROI is considered a critical
phase in the classifier-based approaches to extract the required
features for classification.

Several studies employed a classifier-based approach for
the purpose of weapons detection and different traditional
techniques were utilized in these studies to extract features
from the segmented ROI [32]. These techniques include active
contour shape, Fisher’s linear discriminant, watershed level
sets, Fuzzy connectedness, k-means algorithm, and region
growing [33]. On the other hand, there are other studies that
employed deep learning models as a base for the classification
process. Lai et al [34] firstly presented in 2017 a deep learning
approach in the field of gun detection to classify images. Their
approach used the GoogleNet pre-trained model to train input
images. The authors of [26][35] carried out a set of pre-trained
deep learning models for classification of images that include
weapons and guns. Either using the traditional techniques or
deep learning techniques to extract features, both of them
lead to inefficient accuracy in the detection of weapons for
the small size of weapons. Moreover, most of the published
studies in this domain addressed the issue of weapons detection
(i.e., that have a relatively large size) but neither addressed
ammunition/bullets detection nor the types of ammunition.

Sadah et al. [11] proposed a hybrid technique for improving
digital X-ray images by combining the frequency domain
enhancement and optimal spatial image techniques. In their
method, they selected these frequency domain enhancement
techniques: Gaussian and Butterworth high and low pass
filters, and as for the spatial domain methods: power-law
transform, Histogram equalization, and Negative transform.
They carried out more than 80 probable combinations, and
some combinations optimally enhanced the original X-ray
images. In the study by Khan and Chai, the authors proposed
an approach that combined the high and the low-energy X-
ray images, denoised the images, and improved the fusion
image using histogram specifications, and it also improved the
contrast. Their results showed that the final image contained
all the minute details; it had no background noise and had
enhanced contrast. These images could be easily interpreted
and automatically segmented by security personnel. This will
result in decreasing the false alarm rate during the X-ray
baggage inspection.

Another study carried out by Al-Najdawi [2] proposed an-
other approach that detected different types of bullets and shot-
gun shells. Different image processing techniques were applied
in the detection process, which includes image enhancement,
conversion, labeling of connected components, and geometric
distance calculations. The author built a dataset comprising 150
X-Ray images of passenger’s luggage that contain different
types of ammunition and proposed a wideband millimeter-
wave imaging system which carried out a fast inspection
of the baggage for detecting concealed weapons, explosives,
handguns, etc.

Image fusion techniques combine relevant information
from many images, those techniques can be classified into the
spatial domain and the transform domain. The spatial domain

method includes the averaging approach, principal component
analysis, the Brovey method, and the Hue-Intensity-Saturation
(HIS) transformation approach. The high pass filtering-based
processes are also included in the spatial domain approaches
[36]. On the other hand, the transform domain approaches
can easily handle the spatial distortion after image fusion. In
the work proposed by Xue et al. [37], the authors developed
an algorithm that merged the color visual images and their
corresponding infrared (IR) images for CWD. This color image
fusion algorithm proved to maintain the resolution of the image
and could incorporate the detected weapons in the image while
maintaining the natural colors of the image. In a study by
Achanta et al. [38], the authors developed a method known
as parametric mixing. In their study, they created a model
which improved the detection of objects (i.e., metallic or non-
metallic) or concealed weapons using a nonlinear acoustic
technique. In their method, ultrasonic waves were used for
creating a localized zone, in which the nonlinear interaction
generated a low-frequency acoustic wave that could go through
the clothing in a better manner when compared to direct
ultrasonic waves.

Microwaves can be used for communication, i.e., for
transmitting long-distance telephone signals and in satellite
television. They are also used for detecting concealed metal.
Elsdon et al. [39] suggested an approach for detecting the
concealed metallic objects like weapons by using an indirect
holographic process, which was operational at the optical
frequencies. This approach could be applied to the image
objects at the microwave frequencies, and it could determine
the shape and location of the concealed objects. Since the
microwave imaging methods is very expensive, researchers
have proposed a simple and inexpensive method of using this
technique for CWD.

One of the biggest problems facing researchers in the
field of ammunition identification is the lack of publicly
available benchmark datasets according to [30]. As a part of
the contribution in this research, a novel dataset of 1732 X-
Ray images of passenger luggage has been produced especially
for this purpose. This unique dataset is made available to the
public so that other scholars may use it.

III. FEATURE-OPTIMIZED APPROACH FOR AMMUNITION
DETECTION

A. Feature Selection Techniques

The proposed system for the detection of ammunition from
X-ray images would be as effective as the features that are
extracted from the images. Due to the complexity of the
images and the necessity to distinguish between the hidden
ammunition, feature selection was an important step in the
model training and improving its performance. In this study,
the MB-LBP features were chosen based on their efficiency
in describing the micro and macro-structures that are seen in
the X-ray images. These features are especially useful for the
identification of separate bulk density and shape of different
types of ammunition. In the feature selection, the numerous
possibilities of features such as texture descriptors, the shape-
based features, and the intensity gradients were considered.
By cross-validation, only the useful features were kept in
the model. To do so, we sought to maximize the distinction
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between the selected features while reducing overlapping as
much as possible to include only the most important features
for the classification process. This was an iterative process in
which features had to be assessed not only by their ability to
separate classes but also as components of a set of features that
defines the model. The purpose was to achieve high accuracy
to guarantee that the final set of the features is both as small
as possible and as accurate as possible.

The selected features were also chosen for their insensitiv-
ity to variations in conditions typical for real-world security
scenarios, light conditions, object orientation, occlusions in X-
ray images, etc. Thus, it was ensured that the set of features
being used was rather stable with regards to these changes
and by using this set of features, the system was made more
robust to changes in the environment and situations. However,
the focus was also paid to the interpretability of the chosen
characteristics that were used for the definition of the described
model. This was important so that actions of the system
could be explained and be accepted by security personnel. For
example, the features of the MB-LBP include clear and inter-
pretable representations of the visual data on which the system
makes its classification, which facilitates an understanding of
the process that led to the classification. This transparency
is important for practical implementation in serious security
scenarios where not only the decision but the rationale for
the decision may be critical for use. This concentration on
feature selection not only enhanced the model’s accuracy but
also developed confidence that the system could work in real-
time, making it an important tool in supporting security in
areas like airports and essential installations.

B. Ammunition Detection: 9 mm Handgun and AK-47 Bullets

The greyscale images are produced by measuring the light
intensities at every pixel in the band of an electromagnetic
spectrum (e.g., IR, X-ray, visible light, or UV). Under these
circumstances, they are monochromatic only when a light
frequency is captured; however, they can also be synthesized
using colored images. Grey X-rays images are an old and pop-
ular method for carrying out security checks. During baggage
inspection, the luggage is exposed to small ionizing radiation
doses, which results in images of the luggage’s interiors [40].
However, digital X-ray images can be degraded due to low
contrast and blurring, which is caused by the complex items
in the luggage. Also, scattering of the X-rays and electrical
noises can affect the monitoring and the analysis of the images
by some systems or humans. Hence, it becomes necessary to
improve the X-ray image details in order to improve the visual
quality of the images [41]. Ammunition is smaller in size as
compared to the other personal items in the luggage; hence,
the X-ray images must be improved as in the following step.

1) X-ray image enhancement: Methods of enhancing the
X-ray images within a spatial domain can be divided into
three groups: point processing techniques, histogram-based
processing techniques, and mask processing techniques [42].
In this study, the authors have used the histogram equalization
and the unsharp masking techniques. Histogram equalization
is a contrast enhancement process, which adjusts the pixel
intensities for generating a new and enhanced image that shows
a better local contrast. On the other hand, the unsharp masking
technique sharpens the images by subtracting the smoothed

Fig. 1. Samples of the X-ray images of: (a) 9 mm handgun bullets and
AK-47 machine gun bullets; (b) Resultant binary image.

image from the original image. A histogram can be created
for an image based on the probability of the occurrence of the
pixel intensity as described earlier [43]:

Pr(rk) =
nk

MN
(1)

Where Pr(rk) refers to the probability of the occurrence
of the intensity level rk within a digital image, MN refers to
the total pixels within an image, and nk represents the number
of the pixels with an intensity rk. New intensity values can be
estimated for every intensity level using the transformation as
follows:

sk = T (rk) = (L− 1)

k∑
j=0

pr(rj) (2)

Where sk refers to the new intensity level. It is estimated
for every pixel in an image. In addition, the processed image
can be obtained after mapping every pixel in an input image
(having intensity rk) into the corresponding pixels (with inten-
sity level sk) into the output images [23]. The unsharp masking
procedure is carried out after blurring the original images and
then creating the mask after subtracting the blurred images
from the primary images as follows:

Wmask(x, y) = f(x, y)− f ′(x, y) (3)

Where Wmask(x, y) is the mask, f(x, y) represents the
primary image, and f ′(x, y) refers to the blurred image.
Thereafter, the mask is added to the primary image as follows:

W (x, y) = f(x, y) +Wmask(x, y) (4)

Where W (x, y) refers to the resultant unsharp image.
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2) Ammunition detection: Ammunition detection is initi-
ated by converting enhanced images into binary images with
the help of the Otsu threshold process [43]. The images
are denoised using some morphological operators. Then, the
objects connected at the borders are eliminated from the
resultant binary images. Finally, certain holes in the images are
removed by morphological operators [43]. The Otsu threshold
process searches for the threshold that decreases the intra-class
variance, which can be defined as the weighted sum of the
variances of the two classes:

σ2
w(t) = w1(t)σ

2
1(t) + w2(t)σ

2
2(t) (5)

Where the weights wi refer to the probabilities of the
classes, which are divided by the threshold t, and σ2

i refer
to the variances of the class. Fig. 1 describes the final binary
images after techniques like histogram equalization, unsharp
masking, and the Otsu’s thresholding method were applied to
the X-ray images.

For the ammunition detection and classification, the con-
nected regions in the binary images can be determined with
the help of the connected-component labeling algorithm [44].
Here, the authors have applied the 8-connected component
labeling algorithm. In the case of the binary image, the
connected pixel areas can be classified after the connected
component labeling operator has scanned the image in every
row till it reaches a point p (where p represents the pixel
labeled at any step during scanning). After recognizing this
condition, the algorithm investigates the 4 neighbors of the
point p, which were already scanned. The point p is labeled
based on the collected data as shown below [29]:

• If all the neighboring points are 0, a new label is
allocated to p.

• An exclusive label is allocated to every class with the
help of the Floyd-Warshall algorithm.

• The image is scanned again, and every label gets re-
placed by the label that is allocated to the equivalence
classes.

Fig. 2. Some samples of the X-ray images after ammunition detection: First
row, 9 mm handgun bullets, AK-47 Machine gun bullets, and the 12-Gauge

shotgun shells. Second row, resultant binary images.

In the next step, the properties of each connected com-
ponent are estimated. Here, the authors have measured the
properties for every labeled region of the label matrix. The

positive integer elements present in the label matrix are seen
to correspond to other areas. For example, the elements in
the label matrix equivalent to 0 correspond to region 1, while
the elements in the label matrix equivalent to 1 correspond
to the region 2. Every labeled connected component gets
indicated by a bounding box as described in Fig. 2. In order to
determine if the bounding box contained ammunition images,
a classification system was introduced. In this study, for
testing purposes, the authors classified the ammunition in three
classes: AK-47 machine gun bullets, 9-mm handgun bullets,
and 12-gauge shotgun ammunition.

In the case of the AK-47 machine gun bullets and the 9-
mm handgun bullets, the ammunition is classified based on
their fixed bullet size ratio (i.e., length: width). In Table I, the
dimensions and ratio of the bullets are summarized.

TABLE I. DIFFERENT DIMENSIONS AND RATIOS OF THE SELECTED
AMMUNITION FOR TESTING OF THE DEVELOPED SYSTEM

Dimension and Ratio 9mm AK-47 12-Gauge
Length (range) 2.781-2.969 5.600-5.620 5.1-7.6
Width 1.01 1.135 13.41
Ratio 2.75-2.93 4.93-4.95 3.80-5.66

For determining the bullet ratio in Table I, every label is
estimated with the help of the Euclidean distance measure De

for the points p and q that are located at the coordinates of
(x, y) and (s, t), respectively, as:

De =
√

(x− s)2 + (y − t)2 (6)

Euclidean distances are used for measuring the height De1

and the width De2 of every object in the label, while the
height:width is estimated as R = De1/De2. Thereafter, this
ratio is compared to the results in Table I, after which the
object is classified. Fig. 2 describes some samples in which
the algorithm could accurately identify 9 mm handgun and
AK-47 machine gun bullets, with precision 95%. Fig. 3 shows
some sample images of the detected ammunition.

Fig. 3. Some sample images of the detected ammunition.

C. Feature-Based Identification of 12-Gauge Shotgun Shells

In this research, the authors attempt to identify the 12-
gauge shells, as their structure differs from other kinds of am-
munition such as the 9-mm handgun and the AK-47 machine
gun bullets. The 12-gauge bullets have a plastic casing; hence,
the bullets appear transparent in X-ray images. Moreover, as
shown in Fig. 4, the wad creates a space between the powder
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and shot which prevents its visual recognition. Therefore, any
orientation change in the 12-gauge position results in different
shapes, as shown in Fig. 5. On the contrary, other bullets have
a solid metal body, which can be identified in the X-ray images
as a solid known structure.

Fig. 4. (a) Structure of the 12-gauge ammunition, AK-47 machine gun
bullet, and 9-mm bullet. (b) X-ray images of the 12-gauge ammunition.

Fig. 5. Images of the 12-gauge ammunition from various angles. Image
courtesy: Al-Najdawi and Tedmori.

In this study, a Cascade-AdaBoost classifier with MB-LBP
features has been implemented for detecting the variable 12-
gauge ammunition shapes.

AdaBoost classifier, proposed by Freund and Schapire
[45][46], is a type of parallel classifier that combines various
linear weak classifiers. This offline classifier self-adaptively
increases the number of weak classifiers, which helps improve
the overall classification accuracy. Every weak classifier is
seen to focus on the 1-D classification of the input feature
vectors. Moreover, the AdaBoost algorithm makes use of a
minimal error for estimating the weight value of the weak
classifier, then it uses the weight value of each training sample
input. Then, it passes the weight value to the newly added
subsequent weak classifier. Fig. 6 describes the AdaBoost
classifier architecture [47].

If the input feature vector is represented by f , then the
number of the weak classifiers is represented by ht(f), t =
1, . . . , T , and the corresponding weight values of every weak
classifier are represented by βt, t = 1, . . . , T . The final strong
classifier, H(f), can be expressed as follows:

H(F ) = sign

{
T∑

t=1

βtht(f)

}
(7)

One main limitation of the AdaBoost classifier is that it has
a higher false alarm rate. Thus, Viola and Jones [48] proposed
the cascade-AdaBoost classifier to decrease the false alarm
rate. Fig. 7 shows the architecture of the cascade-AdaBoost
classifier, where every classifier was an AdaBoost classifier.

Fig. 6. Architecture of the AdaBoost classifier [47].

Fig. 7. Cascade-AdaBoost classifier architecture [48].

When the input feature vector is passed through the first
AdaBoost classifier and is determined as the negative example,
it is removed from the training set before it enters the second
AdaBoost classifier. This decreases the number of the examples
and increases the layers for removing the negative examples.
However, when passing the input feature vector through the
first AdaBoost classifier, if it is identified as a positive example,
then the training example enters the second layer of the
AdaBoost classifier and is classified further until it passes to
the last layer. Hence, the cascade AdaBoost classifier displays
a high detection rate and a lower false alarm rate since it uses
many classifiers [49].

AdaBoost learning is applied for the selection of some
weak classifiers and then combines them into the classifier to
determine if the image contains the desired object [50]. Several
algorithms can be used for feature extraction, like the Principal
Component Analysis (PCA) [51], the Linear Discriminant
Analysis (LDA) [52], the Independent Component Analysis
(ICA) [53], and the Gabor filter [54]. However, all of these
algorithms have high computational costs for convolving the
object images and can be inefficient with regard to memory
and time to extract features compared to the Local Binary
Pattern (LBP) [55]. The LBP method was initially proposed
by Ojala et al [56], and it was used for the texture description.
This method can be used for many applications, such as facial
detection and recognition [57][58], classification of gender and
age [59][60], analyzing facial expressions [61], and estimating
the head pose [62]. Some main properties of the LBP features

IV. DISCUSSION AND EXPERIMENTAL RESULTS

A. Comparative Analysis of Feature Selection Techniques

The reasons for choosing the MB-LBP features in the study
are based on the performance of these features in capturing the
required level of details that are crucial for the identification
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of ammunition in X-ray images. That is why, although there
are many other techniques such as Gabor filters, Histogram
of Oriented Gradients (HOG) and so on, or traditional Local
Binary Patterns (LBP), in this work, the MB-LBP was chosen
because of the high accuracy in combination with acceptable
computational time.

Some of them, such as the Gabor filters, are particularly
efficient in texture analysis and have been applied in a large
variety of image processing applications. However, their com-
putational complexity is a major disadvantage in real-time
environments, especially when analyzing high-dimensional
data such as X-ray images. Likewise, the HOG features are
very good for edge and gradient information and are used
for object detection; however, they may not be as effective
in discriminating between small and closely grouped objects
such as ammunition.

Although traditional LBP is faster in computation and
requires fewer parameters, it focuses only on the local binary
patterns without regard to the spatial relation around the
center pixel, which may cause a problem in complex scenes
where objects are overlapping or images have different quality.
The MB-LBP approach improves upon the standard LBP
approach by including larger patterns, better suited to handle
the difficulties posed by X-ray imagery in security systems.

Consequently, the features of the MB-LBP were chosen
for this study because of their ability to give more detailed
descriptions of the X-ray images in addition to capturing more
global characteristics of the images. This is in concordance
with the characteristics of the ammunition detection task where
precision and speed are critical. Another reason for our choice
of MB-LBP was based on the observation that it has been
widely used in similar applications and is generally robust for
different conditions.

Comparing MB-LBP directly with other techniques was
beyond the scope of this study. However, the literature shows
that MB-LBP is suitable for the present task. This feature
selection method is also balanced in terms of the performance
and computation, and that is why its application in developing
a real-time detection system in the security sector is advisable.

B. Experimental Results

In the experiments provided in this research, positive and
negative samples were required in the training procedure.
Positive samples (548 images that contain more than 1036 of
12-gauge ammunition) were obtained through labeling the 12-
gauge ammunition from the X-ray images. Negative samples
(1184 images) were extracted from X-ray images which do not
contain the 12-gauge ammunition. The X-ray images of the
12-gauge ammunition that have been used in the experiments
were taken from various view angles as shown previously in
Fig. 5.

In the following experiments, an eighteen-layer cascade-
AdaBoost classifier using MB-LBP features is obtained and
then experimented over the provided dataset (i.e., offline
process). Then a real-time process starts depending on the
previous features which have been obtained from the MB-LBP
to classify the required objects. Using this framework, it was
able to process more than 27 frames per second on a machine

of 8 GB RAM and 3.2 GHz processor speed. Sample of the
results are shown in Fig. 8.

Fig. 8. Sample of successful labeling for different numbers of 12-gauge
ammunition of different orientations.

However, in some cases, the proposed system failed to label
the 12-gauge ammunition correctly by selecting different ob-
jects that contain similar features to the 12-gauge ammunition,
as shown in Fig. 9.

In order to evaluate the performance of the proposed
system, some statistical measures (i.e., accuracy, sensitivity,
specificity, and Matthew’s correlation coefficient) were calcu-
lated as follows:

• Accuracy has been calculated for the 12-gauge ammu-
nition detection using the formula [63]:

Accuracy =
Σ (TP + TN)

Σ (TP + TN + FP + FN)
× 100%

(8)
Where:

◦ TP = True Positive (actual 12-gauge
ammunitions that were correctly classified as
12-gauge ammunitions).

◦ FP = False Positive (other objects that were
incorrectly labeled as 12-gauge ammunitions).

◦ FN = False Negative (12-gauge ammunitions
that were incorrectly not labeled).

◦ TN = True Negative (all the remaining objects,
correctly classified as non-12-gauge ammuni-
tions).

In the proposed system, Accuracy = 92.8%, where:
TP = 960, TN = 1151, FP = 88, and FN = 76.

• Sensitivity or true positive rate (TPR) relates to the
ability to identify positive results using the formula
[63]:
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Fig. 9. Some of the cases where the system was unable to label the
12-gauge ammunition were in (a) labeling a different object or (b) missing

the object completely.

TPR =
TP

TP + FN
× 100% (9)

TPR = 92.66%, where: TP = 960 and FN = 76.

• Specificity (SPC) or true negative rate relates to the
ability to identify negative results using the formula
[63]:

SPC =
TN

TN + FP
× 100% (10)

SPC = 92.89%, where: TN = 1151 and FP = 88.

• Matthew’s Correlation Coefficient (MCC) was used
in the machine learning for measuring the quality of
the binary (2-class) classification [63]. This method
considered the true and the false positives or negatives
and was considered the balanced measure that could
be used for the differently sized classes. MCC was
used as a correlation coefficient for the observed
and the predicted classification systems and generated
values ranging between +1 to -1. A coefficient value
of +1 showed a perfect prediction, while a value of 0
indicated a random prediction, and a value of -1 indi-
cated a complete disagreement between the observed
and predicted values. MCC is directly estimated using
the confusion matrix, as follows:

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(11)
MCC = 85.5%, where: TP = 960, TN = 1151, FP =
88, and FN = 76.

Fig. 10. Graphical representation for the performance measures (i.e.,
Accuracy, TPR, SPC, and MCC).

Different applications could benefit from the results of
this research by applying the MB-LBP offline process as
in [36][37]. Fig. 10 shows graphical representation for the
performance measures (i.e., Accuracy, TPR, SPC, and MCC).

C. Comparative Analysis

In this part we compare our results with those of the related
paper, “Detection of threat objects in baggage inspection
with X-ray images using deep learning” by Saavedra et al.
[64]. Both studies, however, address threat detection in X-ray
images, and their methodologies and performances differ from
each other. For this, Saavedra et al used deep learning models
like YOLOv3, SSD, and RetinaNet trained on real as well
as synthetic X-ray images artificially generated by PGGAN
and superimposition methods. Across all four threat categories
(guns, knives, razor blades, and shuriken), mAP was 80.0%.
Instead, our system includes a cascade-AdaBoost classifier
using the accuracy of the Multi scale Block Local Binary
Pattern (MB-LBP), and is tuned for ammunition detection. The
methodology described results in a 92.8% accuracy detecting
12-gauge shotgun shells, 92.66% sensitivity and 92.89% speci-
ficity.

However, guns and shuriken had high precision (96.3%,
93.7%) according to Saavedra et al. but knives with elongated
shape and occlusion problems achieved low precision (76.2%).
However, our system retains strong performance in detecting
12-gauge shotgun shells, which are very difficult to detect since
the shells are covered in plastic casing and have multiple ori-
entations. Cascade-AdaBoost classifier with MB-LBP features
are capable of overcoming these challenges, reaching 92.8%
accuracy and 85.5% MCC. In a particular dataset with similar
threat objects to the training set, Saavedra et al. used their
model and achieved high precision. But their model was not
able to account for significantly different objects from what
they trained from. Table II shows comparative analysis of
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TABLE II. COMPARATIVE ANALYSIS: FEATURE-OPTIMIZED MACHINE LEARNING SYSTEM VS. DEEP LEARNING-BASED THREAT DETECTION

Aspect Our System (Feature-Optimized ML) Saavedra et al. (Deep Learning-Based)
Methodology Cascade-AdaBoost classifier with Multi-scale Block Local Binary

Pattern (MB-LBP) features.
Deep learning models (YOLOv3, SSD, RetinaNet) trained on real
and synthetic X-ray images (PGGAN).

Dataset 1,732 X-ray images of passenger luggage with concealed ammu-
nition (publicly available).

GDXray dataset with simulated X-ray images (real and synthetic).

Threat Objects Detected 9 mm handgun bullets, AK-47 machine gun bullets, 12-gauge
shotgun shells.

Guns, knives, razor blades, shuriken (ninja stars).

Performance Metrics Accuracy: 92.8% (12-gauge shells), Sensitivity: 92.66%, Speci-
ficity: 92.89%, and MCC: 85.5%.

mAP: 80.0%, Guns: 96.3%, Knives: 76.2%, Razor blades: 86.9%,
and Shuriken: 93.7%.

Strengths High accuracy for 12-gauge shotgun shells. And, robust to
variations in orientation and occlusion.

High precision for guns and shuriken. And, scalable to multiple
threat categories.

Challenges Misclassification of objects with similar textures. And, reliance
on single-view X-ray images.

Struggles with elongated objects (e.g., knives). And, limited
generalization to unseen object shapes.

Generalization Strong generalization to diverse orientations of 12-gauge shells.
And, adaptable to real-world scenarios.

Limited generalization to objects with different shapes or orien-
tations.

Real-World Applications Suitable for airport baggage screening. And, reduces reliance on
human operators.

Effective for detecting large threat objects (e.g., guns, shuriken).

Future Work Integration of multi-view imaging. And, combining with deep
learning models (e.g., YOLOv3).

Improving detection of small or occluded objects (e.g., knives).

feature-optimized machine learning system and deep learning-
based threat detection.

In addition, we have shown here that our system can
accurately identify 12-gauge shotgun shells; however, objects
with similar appearances (in this case, plastic casings) were
sometimes wrongly identified as ammunition. This is the prob-
lem of separating two closely related objects in cluttered X-ray
images. Using the fixed bullet size ratio for classification, the
system had 95% accuracy for 9 mm handgun bullets and AK
47 machine gun bullets. The elongated shape of knives typical
of this type of objects, though, remains a challenge and future
work may involve multi-view approaches to increase detection
accuracy of such objects. The system is able to detect 12-gauge
shotgun shells in various orientations and successfully detected
12-gauge shotgun shells in Fig. 8. Fig. 9 shows failed cases of
the system in labeling of ammunition, primarily because of the
presence of overlapping objects or similar texturing. They are
valuable cases for advancing improvements, e.g., adding extra
features or more refined segmentation. Due to the variable
orientation and plastic casing of 12-gauge shells, the system
does not perform as well with 12-gauge shells compared to
9-mm and AK-47 bullets, which are all about the same size
and shape.

We show that our system is very robust to variations of the
object orientation, occlusion, and image quality, and we also
experimentally demonstrate that our system also facilitates the
acquisition of stereo images of patients with imperfect eyes. In
addition to capturing both micro and macro structures in an X-
ray image, the MB-LBP has the capacity of reliable detection
in complex scenarios. However, Saavedra et al.’s model did not
perform well with objects when they were rotated or occluded,
such as knives. This points out the importance of feature
selection and necessity of models for dealing with diverse
object orientations.

Our system works with high accuracy and robustness and
thus is suited for security applications in real-world situations,
e.g. for airport baggage screening. Security checks are sig-
nificantly more efficient and reliable due to the increase in
the ability to detect 12-gauge shotgun shells with an accuracy
of 92.8%. Future work may also test our system with multi-
view X-ray imaging, as suggested by Saavedra et al., to further
improve these object detection accuracies when knives and

shuriken are used.

One major shortcoming of our system is that it relies on
single-view X-ray images, which might cause object that has
complex shape or is under heavy occlusion to be missed. This
limitation will be addressed in the future work through multi-
view approaches. Further, objects with similar texture or shape
are misclassified from time to time as ammunition. It is quite
possible to mitigate this problem by incorporating advanced
segmentation techniques or additional features. Applications
in the future include adding multi-view X-ray imaging to
provide a more global description of objects and enhancement
of detection accuracy for hard cases. Further performance
improvement is possible by combining our feature-optimized
approach with deep learning models like YOLOv3 or Reti-
naNet because they are powerful models that are more efficient
in classifying small or occluded objects. The generalization
capability of the system could be enhanced if the dataset were
expanded to include a greater variety of ammunition types and
challenging scenarios.

V. CONCLUSION

Feature selection is a critical element in the improvement
of the performance of machine learning systems, especially in
tasks such as the detection of ammunition in X-ray security
imaging systems. In this study, the choice and tuning of the
features were critical in constructing a reliable system that can
effectively detect concealed ammunition with a high level of
accuracy. The features of MB-LBP were used and combined
with the cascade-AdaBoost classifier in order to extract the
most important information from the X-ray images and guaran-
tee that the system can work in real-time environments. Safety
and security of passengers is one of the important components
of contemporary transport systems. Measures of security are
tight, but threats and contraband are a reality in sensitive
environments. X-ray machine systems at security checkpoints
are very important in detecting banned items such as weapons
and sharp objects. These systems may contain at least semi-
automatic elements for metal detection. However, there is a
significant gap in their capability of identifying concealed
ammunition, which is a critical security threat. In an attempt to
fill this research gap, this paper presents an automatic system
designed to help security professionals detect different types
of ammunition.
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The main focus of the system is a profound feature
selection method that enhances the accuracy and efficiency
of the detection phase. The selection of MB-LBP features
was especially useful in obtaining the fine detail required to
differentiate between the types of ammunition with clarity,
including 9 mm handgun bullets, AK-47 machine gun bullets,
and 12-gauge shotgun shells. This feature optimization, in
addition to improving the performance of the model, also
decreases the system’s computational intensity, making the
system appropriate for real-time security applications. The
authors have created their own dataset of 1,732 X-ray images
of passengers’ belongings that contain concealed ammunition.
This dataset, now open to the public, promotes more research
and development and brings together the security and machine
learning domains. Thus, in addition to meeting the need for
a reliable resource to support security specialists’ work, the
study helps to progress science and technology in the field of
automated threat detection.

The system uses a number of sophisticated image pro-
cessing techniques such as image enhancement, image con-
version, labeling of components, and estimation of geometric
dimensions. These techniques are very essential since they
help to overcome the problem of variability of the X-ray
image quality, orientation of objects, and the various complex
backgrounds that may be observed in the passenger’s luggage.
The integration of the cascade-AdaBoost classifier with the
MB-LBP features makes it possible for the system to perform
effective and accurate detection of concealed ammunition.
The combination of these mentioned methods leads to an
overall effective, efficient, and flexible solution that can be
implemented into different security scenarios.

In classification and recognition of concealed ammunition,
the system performs quite well, especially for the 9 mm
handgun bullets and the AK-47 machine gun bullets, with at
most 92% accuracy in detection. Such a high level of accuracy
shows how the system can greatly advance the detection abil-
ities at the security checkpoints, with little reliance on human
operators and the likelihood of human errors. The capacity to
accurately identify ammunition and to do so without human
intervention increases the likelihood of safety and security for
passengers, especially within areas of vulnerability such as
airports and other stations. Besides the efficiency, the system’s
architecture focuses on scalability and interpretability, which
means that the developed system can be implemented in
different real-world settings. It can be integrated into other
security systems and structures, and it is relatively easy to
modify the architecture as new threats appear on the scene.
Furthermore, the system is very interpretable, and this means
that security personnel can trust the decisions made by the
system, which is very important when the system is being
implemented in important settings.

This paper demonstrates that, in today’s security systems,
it is possible to enhance the performance of advanced feature
selection and machine learning techniques. By focusing on the
particular case of concealed ammunition searching, the authors
have presented a useful instrument that could help to enhance
public security and develop existing security technologies.
Future work may look at applying such a scheme to identify
other forms of prohibited items, as well as incorporating it
within larger security systems as a way of expanding, general-

izing, and ultimately increasing the practical applicability and
effectiveness of the method.
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[57] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of
texture measures with classification based on featured distributions,”
Pattern Recognition, vol. 29, no. 1, pp. 51–59, 1996.

[58] X. Tan and B. Triggs, “Enhanced local texture feature sets for face
recognition under difficult lighting conditions,” IEEE Transactions on
Image Processing, vol. 19, no. 6, pp. 1635–1650, 2010.

[59] N. Sun, W. Zheng, C. Sun, C. Zou, and L. Zhao, “Gender classification
based on boosting local binary pattern,” in International Symposium on
Neural Networks. Springer, 2006, pp. 194–201.

[60] Z. Yang and H. Ai, “Demographic classification with local binary
patterns,” in International Conference on Biometrics. Springer, 2007,
pp. 464–473.

www.ijacsa.thesai.org 1058 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

[61] T. Gritti, C. Shan, V. Jeanne, and R. Braspenning, “Local features
based facial expression recognition with face registration errors,” in
2008 8th IEEE International Conference on Automatic Face & Gesture
Recognition. IEEE, 2008, pp. 1–8.

[62] B. Ma, W. Zhang, S. Shan, X. Chen, and W. Gao, “Robust head pose
estimation using lgbp,” in 18th International Conference on Pattern
Recognition (ICPR’06). IEEE, 2006, pp. 512–515.

[63] X. Wei, H.-M. Chen, and I. Amad, “Millimeter-wave video sequence

denoising and enhancement in concealed weapons detection applica-
tion,” in Applications of Digital Image Processing XXIX, vol. 6312.
SPIE, 2006, pp. 55–62.

[64] D. Saavedra, S. Banerjee, and D. Mery, “Detection of threat objects
in baggage inspection with x-ray images using deep learning,” Neural
Computing and Applications, vol. 33, pp. 7803–7819, 2021. [Online].
Available: https://doi.org/10.1007/s00521-020-05521-2

www.ijacsa.thesai.org 1059 | P a g e


