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Abstract—As the scale of cloud data centers continues to 

expand, energy consumption has become a critical issue. Virtual 

machine (VM) consolidation is a key technology for improving 

resource utilization and reducing energy consumption, yet it 

remains challenging to effectively balance energy efficiency with 

service level agreement violations (SLAV) in dynamic cloud 

environments. This paper proposes an adaptive VM 

consolidation strategy based on Autoformer and an enhanced 

dual Q-Network, referred to as AEDQN-VMC. The approach 

consists of three integrated components: 1) Autoformer-based 

load detection, which leverages an autocorrelation mechanism to 

decompose time-series data into multi-scale trend and periodic 

components; 2) a VM selection method that integrates the 

Pearson correlation coefficient and migration time to optimize 

the selection of VMs for migration; and 3) an enhanced dual Q-

Network for VM placement, incorporating the upper confidence 

bound (UCB) and adaptive learning rate (ALR) to improve the 

exploration-exploitation trade-off. Extensive experiments on real-

world cloud workload traces (PlanetLab, Google Cluster, and 

Alibaba datasets) demonstrate that the proposed method 

significantly outperforms state-of-the-art benchmarks such as 

PABFD, AD-VMC, and AMO-VMC. Specifically, it achieves 

maximum reductions of 46.5% in energy consumption and 

74.2% in SLAV rate. Ablation studies further validate the 

contribution of each component and confirm the synergistic 

effect of the overall architecture. The results highlight the 

potential of AEDQN-VMC as an efficient and reliable solution 

for sustainable cloud data center operations. 
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I. INTRODUCTION 

With the rapid development of cloud computing, data 
centers have become the core infrastructure supporting various 
online services, including big data analysis, artificial 
intelligence, and Internet of Things (IoT) applications. The 
exponential growth of user demands has driven a significant 
expansion in the scale of data centers, which typically consist 
of thousands of physical servers. However, this expansion 
gives rise to a critical issue: excessive energy consumption, 
with a considerable portion of energy wasted due to low 
resource utilization efficiency [1]. High energy consumption 
not only increases the operational costs for data center 
operators but also exacerbates carbon emissions, conflicting 
with global sustainable development and carbon neutrality 
goals. Therefore, it has become an urgent challenge to reduce 

energy consumption while ensuring quality of service (QoS) in 
the field of data center management. 

Virtual Machine (VM) consolidation is a core strategy to 
address the energy consumption issue of data centers. By 
dynamically migrating VMs between physical machines (PMs), 
VM consolidation optimizes resource allocation. Through 
consolidating VMs onto a smaller number of active PMs, idle 
or underloaded PMs can be shut down or switched to low-
power modes, thereby reducing overall energy consumption 
and improving resource utilization [2, 3]. However, VM 
consolidation is a complex decision-making process that 
requires balancing multiple objectives, such as minimizing 
energy consumption, reducing Service Level Agreement 
Violation (SLAV), and lowering migration overhead. 

The VM consolidation process is divided into three phases: 
PM state detection, VM selection, and VM placement. 
Therefore, accurate PM state detection, reasonable VM 
selection, and optimized VM placement are the three major 
challenges that must be addressed to solve the VM 
consolidation problem. To tackle these challenges, Goyal et al. 
[4] proposed an adaptive multi-objective VM consolidation 
strategy (AMO-VMC), which aims to optimize resource 
management in energy-efficient cloud data centers. This 
strategy fuses the future resource utilization and the historical 
utilization for identifying overutilized PMs and selecting VMs 
to be migrated, and a multi-objective heuristic-based adaptive 
VM placement algorithm is adopted to select the optimal target 
host. Zeng et al. [5] proposed an adaptive Deep Reinforcement 
Learning(DRL)-based VM consolidation framework (AD-
VMC), whose core components are an influence 
coefficient(IC)-based VM Selection algorithm (ICVMS) and a 
prediction aware DRL-based VM placement method(PADRL). 
By calculating the similarity between VMs and PMs, VMs that 
have the greatest impact on PM overload are migrated first to 
quickly relieve load pressure. Additionally, Long Short-Term 
Memory (LSTM) Neural Network is used to predict future 
system states to accelerate the convergence of the DRL model, 
thereby achieving energy-efficient VM placement. 

However, existing researches still have significant 
limitations and struggle to simultaneously meet the 
requirements of energy efficiency optimization and QoS 
assurance in dynamic cloud environments. In the PM state 
detection phase, although workload prediction-based PM state 
detection methods are widely adopted, and deep learning-based 
prediction models can capture the temporal dependencies of 
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workloads [6, 7], their ability to model the complex multi-scale 
periodicity (e.g., intra-day and intra-week fluctuations) in cloud 
workloads remains limited. This may lead to misjudgment of 
overloaded/underloaded hosts. In the VM selection phase, 
although some studies consider both resource correlation and 
migration cost [4, 8], they fail to effectively model the non-
linear relationship between correlation and cost. In the VM 
placement phase, researchers have proposed several VM 
placement schemes based on DRL [9, 10]. However, these 
schemes adopt fixed exploration probabilities and learning 
rates, making it difficult to balance exploring new actions and 
exploiting known optimal actions, thus resulting in the problem 
of exploration-exploitation imbalance. 

To address the aforementioned limitations, an adaptive VM 
consolidation scheme based on Autoformer and enhanced 
double Q-Network (AEDQN-VMC) is proposed, which 
achieves efficient resource management in dynamic 
environments through synergistic optimization across three 
phases: 

• Autoformer-based PM state detection: Autoformer is 
employed for workload prediction, which decomposes 
workload time series into trend and periodic 
components via an auto-correlation mechanism. 

• VM selection based on Pearson correlation coefficient 
and migration Time: A VM migration impact factor is 
constructed by fusing the Pearson correlation 
coefficient and migration time to balance the effect of 
load reduction and migration cost. 

• VM placement based on enhanced double Q-Network: 
The upper confidence bound (UCB) and adaptive 
learning rate (ALR) are introduced into the double Q-
Network to optimize the exploration-exploitation 
balance. 

The remainder of this paper is organized as follows. 
Section II presents a classified review of related research on 
VM consolidation. Section III describes the system model and 
overall framework. Section IV details the Autoformer-based 
PM state detection method. Section V proposes the VM 
selection strategy based on Pearson correlation coefficient and 
migration time. Section VI introduces the VM placement 
algorithm based on the enhanced double Q-Network. 
Section VII evaluates the effectiveness of the proposed strategy 
through experiments. Section VIII concludes the paper and 
outlines future research directions. 

II. RELATED WORKS 

As a core strategy for resource management in energy-
efficient cloud data centers, VM consolidation aims to 
significantly reduce system energy consumption by centrally 
deploying VMs on a minimized cluster of PMs, thereby 
maximizing physical resource utilization and minimizing the 
number of active servers. This strategy runs through the entire 
lifecycle management of VMs. In the initial VM creation phase, 
VM consolidation manifests as placement decisions based on 
PM state detection. During the dynamic migration process in 
the operation phase, VM consolidation involves a three-stage 
optimization of PM state detection, VM selection, and VM 

placement. To systematically analyze the inherent logic of the 
consolidation mechanism, the following sections will sort out 
existing studies from three core dimensions: PM state detection, 
VM selection, and VM placement. 

A. PM State Detection 

Before selecting VMs and making placement decisions, it 
is necessary to accurately detect the operational status of PMs. 
Existing PM detection methods can be categorized into two 
types based on whether they rely on workload trend prediction: 

1) Non-prediction-based: This type of method directly 

determines the PM status using real-time or historical 

workload data, without the need to predict future workload 

changes. In [11], PM state detection primarily relies on real-

time resource utilization, with CPU and memory as core 

dimensions. This involves calculating the available resources 

of PMs and classifying PM states into overloaded, normal, and 

underloaded by setting thresholds. The study [12] classifies 

workloads using the split-and-recombine (SAR) algorithm 

based on real-time monitored resource utilization and 

workload characteristics, and further considers thermal 

cycling effects through a thermal model to determine the host 

state. The study in [13] calculates power consumption across 

different utilization intervals using a linear interpolation 

power model, and then evaluates whether a PM can 

accommodate additional VMs by combining current and 

historical CPU utilization. The study [14] relies on real-time 

temperature monitoring to periodically check server 

temperatures, which dynamically sets a maximum temperature 

threshold and determines if the server is overloaded when the 

temperature exceeds this threshold. 

2) Load prediction-based: To overcome the response lag 

of non-prediction-based methods, researchers have introduced 

workload prediction technique, which enables proactive state 

identification by forecasting the future resource utilization of 

PMs. The core value of such methods lies in providing a 

buffer time window for migration decisions, thereby avoiding 

SLAVs and reducing the frequency of emergency migrations. 

Statistical methods are traditional workload prediction 
approaches and remain the mainstream modeling techniques 
for workload prediction to date. The study [15] uses the 
ARIMA model to analyze the trend of PM resource utilization, 
predicting future resource utilization to determine whether a 
PM is overloaded. Reference [16] predicts the future workload 
of PMs via the exponential smoothing method, which 
calculates a workload anomaly function by combining the 
predicted future workload with the current workload, and then 
determines whether a PM is in an overloaded state. The study 
[17] infers the future overload probability by analyzing 
historical host resource usage with the Local Regression 
algorithm, thereby identifying whether a PM is in an abnormal 
state. 

However, statistical methods have obvious limitations 
when dealing with complex dynamic workloads. First, most of 
these methods rely on the assumptions of linearity and 
stationarity of data. In reality, however, data center workloads 
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often exhibit nonlinear and non-stationary characteristics, 
accompanied by sudden fluctuations, which leads to a decline 
in prediction accuracy. Second, traditional statistical models 
have poor adaptability to high-dimensional data and struggle to 
integrate multi-source information, resulting in limited 
generalization ability in complex scenarios. Third, for 
workload sequences with long-term dependency characteristics, 
simple smoothing or regression methods are unable to capture 
the deep correlation between historical data and future trends, 
making them prone to lag errors. 

To address the limitations of statistical methods, 
researchers have increasingly adopted deep learning techniques 
to construct workload prediction models in recent years. The 
study [10] combines Temporal Convolutional Networks (TCN) 
with Median Absolute Deviation (MAD) to predict the 
overload probability of PMs, which reduces unnecessary VM 
migrations and SLAVs. The study [5] designs an LSTM-based 
network to forecast future system states, which provides more 
reasonable environmental states for the DRL model, assisting 
in more accurate judgments of whether PMs are overloaded or 
underloaded. The study [18] proposes a virtualized adaptive 
scheduling algorithm, which uses LSTM to predict future CPU 
utilization, memory usage, and network bandwidth 
requirements of VMs, and employs Deep Q-Network (DQN) to 
achieve adaptive resource scheduling. 

Nevertheless, deep learning-based workload prediction 
confronts several issues, such as high model complexity, 
substantial training costs, and sensitivity to small-sample data. 
To further optimize prediction performance, researchers have 
combined statistical methods with deep learning to construct 
hybrid workload prediction models. For instance, the study [4] 
combines the Dynamic Weighted Moving Average (DWMA) 
and a neural network model to calculate the expected 
utilization rate of physical machines. The study [19] combines 
Bollinger Bands and Neural Prophet techniques to predict the 
future workload trend of hosts. 

B. VM Selection 

After identifying the source PMs that require adjustment, it 
is necessary to further select the VMs to be migrated. Based on 
the criteria used to select VMs from overloaded PMs, relevant 
studies on VM selection can be categorized into three types: 
based on PM-VM correlation, based on VM migration 
overhead, and based on both correlation and migration 
overhead. 

1) PM-VM correlation: The VM selection criteria in this 

category primarily focus on the degree of association between 

VMs and PMs in aspects such as resource usage patterns, 

workload trends, and energy consumption characteristics. By 

quantifying this association, VMs that have a significant 

impact on the PM’s state are selected. In study [5], VMs are 

selected based on the Influence Coefficient, which quantifies a 

VM’s contribution to the overload of a PM by calculating the 

product of the cosine similarity between the VM’s and PM’s 

resource usage. VMs with higher influence coefficient exhibit 

a stronger correlation with the PM’s overload and are thus 

prioritized for migration. In study [20], a load consolidation 

strategy based on Q-learning selects VMs by learning the load 

matching patterns between VMs and PMs. Specifically, it 

prioritizes the migration of VMs that can balance the PM’s 

load, which reflects the correlation between VM and PM load 

trends. In study [15], VMs are selected based on contribution 

of the VM to the overload of the PM. VMs with the largest 

contribution are prioritized for migration, with the goal of 

eliminating the overload trend of the PM. In [21], with the 

goal of minimizing energy consumption, VMs that are 

compatible with the energy consumption characteristics of 

PMs are selected. 

2) VM migration overhead: The VM selection criteria in 

this category primarily focus on the costs incurred during the 

migration process (e.g., time, performance loss, energy 

consumption, and impacts on QoS). By optimizing the 

selection of VMs, the negative impacts of migration on the 

system are reduced. In study [11], a fuzzy meta-heuristic 

algorithm is employed to select VMs whose migration 

imposes the least impact on QoS. In study [22], the direct 

criterion for VM selection is the migration time of VMs. The 

Minimum Migration Time (MMT) algorithm is adopted to 

prioritize the selection of VMs that can be migrated from 

overloaded hosts in the shortest time. 

3) Both correlation and migration overhead: The criteria 

for VM selection in this type of research take into account 

both the correlation between VMs and PMs and the overhead 

during the migration process. The core is to balance these two 

aspects to achieve the optimization goal. For example, in 

study [8], the objective function aims to simultaneously 

minimize the number of active PMs and the frequency of VM 

migrations, thereby balancing resource utilization and 

migration costs. In study [23], a Deep-Q Network is employed 

to learn the load matching patterns between VMs and PMs, 

taking into account the impacts of migration on VM 

performance. It selects VMs that can balance load 

optimization and low performance loss. In [24], the correlation 

between VMs and the overload of PMs is determined to select 

VMs that can alleviate PM overload, taking into account 

migration time and performance degradation. 

C. VM Placement 

VM Placement (VMP) refers to the process of allocating 
newly created VMs or VMs to be migrated to optimal PMs, 
under the premise of satisfying multi-dimensional resource 
constraints such as CPU, memory, storage, and network. The 
rationality of this process directly affects resource utilization, 
energy consumption, and service quality. In recent years, 
researchers have proposed a variety of optimization methods to 
address this problem, which can be categorized into the 
following three types based on their technical approaches. 

1) Heuristic algorithms: These algorithms generate 

placement strategies based on intuitive experience or 

predefined rules, with the goal of quickly obtaining feasible 

solutions, which is suitable for large scale dynamic scenarios. 

In study [8], a modified First-Fit strategy combined with a 

backfilling mechanism is adopted. Based on the runtime and 

priority of VMs, this approach places each VM onto the first 
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PM that meets the resource constraints. In study [25], the 

proposed cut-and-solve algorithm is a tree-search heuristic 

algorithm, which achieves the optimized placement of VMs 

by iteratively decomposing the problem and solving the sub-

problems. In study [24], the VM allocation problem is 

modeled as a multi-dimensional bin packing problem, the 

objective of which is to select the minimum number of 

energy-efficient PMs, thereby to reduce energy consumption 

and resource waste. In study [26], a two-stage heuristic 

algorithm is proposed to address the rack-level hot-spot issue. 

In the first stage, VMs are selected for migration from 

overloaded hosts within racks identified as hard hot-spots, 

aiming to reduce the power consumption of these racks. In the 

second stage, VMs are selected for migration from 

underloaded hosts; this step serves to reduce the number of 

active servers, thereby achieving resource consolidation. 

Heuristic algorithms offer the advantage of strong real-time 
performance. However, they struggle to balance multi-
objective optimization (e.g., simultaneously minimizing energy 
consumption and achieving load balancing) and tend to get 
trapped in local optima. 

2) Meta-heuristic algorithms: To address the limitations 

of heuristic algorithms, meta-heuristic algorithms perform 

global optimization by simulating natural phenomena (e.g., 

biological evolution, swarm behavior), which are suitable for 

complex multi-objective scenarios. The study [11] proposes a 

hybrid algorithm named IVPTS, which is designed for the 

collaborative optimization of task scheduling and VM 

placement in cloud computing environments. This algorithm 

integrates the Improved Particle Swarm Optimization 

algorithm with the Fuzzy Resource Management framework 

to achieve the goals of load balancing and energy conservation. 

To simultaneously optimize QoS, server energy consumption, 

and cooling energy consumption, The study [12] proposes a 

VM Placement strategy named BTVMP, which is based on the 

Enhanced Simulated Annealing algorithm and integrates a 

thermal cycling effect model. In study [14], the VM placement 

involves both heuristic and meta-heuristic methods. In the 

initial placement phase, a hybrid algorithm combining genetic 

algorithm and simulated annealing algorithm is adopted to 

achieve global optimization of the initial VM allocation. In the 

dynamic migration phase, a dynamic migration strategy based 

on the greedy algorithm is employed, which selects the server 

with the highest energy efficiency as the migration target. 

3) Reinforcement learning approaches: With the 

development of machine learning, Reinforcement Learning 

(RL) and Deep Reinforcement Learning (DRL) have been 

applied to address the dynamic optimization problem of VM 

placement. The core of this method lies in modeling the 

placement process as a Markov Decision Process (MDP), 

where an agent learns the optimal strategy through interaction 

with the environment. In study [5], VM placement is 

implemented based on DRL. An LSTM-based state prediction 

network provides future environmental states, which 

accelerates the convergence of the DRL model and enables it 

to adaptively select the optimal target host for migrated VMs. 

To address the issue that existing methods optimize sub-steps 

(such as selecting target PMs for migration and choosing 

services to be migrated) independently while ignoring the 

correlations between decisions, Reference [9] proposes a 

micro-service migration framework based on Multi-Agent RL, 

which jointly optimizes the three sub-steps of the migration 

process: selecting source PMs, selecting micro-services, and 

selecting target PMs. In study [27], a VM migration 

management strategy based on RL is proposed, which adopts a 

decentralized operation mode through parallel learning and 

state/action space aggregation. In study [28], an energy-

efficient dynamic consolidation method named MAGNETIC 

based on the multi-agent Q-Learning algorithm is proposed, in 

which the agent dynamically selects the optimal power mode 

to balance energy consumption and QoS. 

RL approaches offer the advantage of strong adaptability, 
enabling them to dynamically adjust strategies to accommodate 
the uncertainties of cloud environments. However, they face 
challenges such as high training costs and insufficient 
convergence stability. 

III. SYSTEM MODEL AND FRAMEWORK 

A. System Model 

Suppose a data center consists of N PMs denoted as H =
{H1, H2 ,… , HN}, where each PM Hi runs ni VMs denoted as 
V = { V1 , V2 , … , Vni

}. VM consolidation refers to the process 

of reasonably allocating a large number of VMs to PMs, with 
the core objective of optimizing resource utilization and 
reducing energy consumption while meeting QoS requirements 
and resource constraints. 

1) Energy Consumption: The energy consumption of a 

PM is represented using a linear model as follows: 

𝐸𝑖 =  𝐸𝑖𝑑𝑙𝑒 + (𝐸𝑚𝑎𝑥 − 𝐸𝑖𝑑𝑙𝑒) ∙  𝑢𝑖   (1) 

where Ei denotes the total energy consumption of the PM 
Hi, Eidle represents the base energy consumption in the idle 
state, Emax  is the maximum energy consumption under full 
load, and ui  ∈ [0, 1] stands for the CPU utilization rate. 

The total energy consumption of the entire data center is 
the sum of the energy consumption of all active PMs: 

𝐸𝐶 =  ∑ 𝐸𝑖 ∙ 𝛿𝑖
𝑁
𝑖=1        (2) 

where δi ∈ {0, 1} indicates the activation state of the PM 
Hi . 

2) Service Level Agreement Violation: Service Level 

Agreement Violation (SLAV), a key metric for measuring 

whether VM consolidation affects QoS, refers to the number 

or proportion of times the QoS specified in the SLA fails to be 

met. In general, SLAV depends on two metrics: one is the 

SLAV time of each active host (SLATAH), and the other is 

the performance degradation caused by migration (PDM). 

SLAV can be expressed as: 

𝑆𝐿𝐴𝑉 = 𝑆𝐿𝐴𝑇𝐴𝐻 × 𝑃𝐷𝑀        (3) 
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where SLATAH represents the proportion of the total 
operating time that is occupied by SLA violation time in the 
service agreements of each active host, which is expressed as: 

𝑆𝐿𝐴𝑇𝐴𝐻 =  
1

𝑁
∑

𝑇𝐻𝑖
𝑂𝑉𝐸𝑅

𝑇𝐻𝑖
𝑇𝑂𝑇𝐴𝐿

𝑁
𝑖=1    (4) 

where N is the total number of all PMs. For any PM Hi, the 
total duration during which it violates the SLA due to overload 
is recorded as THi

OVER, and the total duration during which this 

host is in an active state is THi

TOTAL. 

In study (3), PDM is used to represent the proportion of 
performance degradation caused by VM migration to its total 
performance requirements, which is expressed as: 

𝑃𝐷𝑀 =  
1

𝑛
∑

𝑆𝑑,𝑗
𝑂𝑉𝐸𝑅

𝑅𝑑,𝑗
𝑇𝑂𝑇𝐴𝐿

𝑛
𝑗=1              (5) 

where n represents the number of VMs, d denotes the 
resource type. For any VM Vj , the amount of performance 

degradation caused by migration is marked as Sd,j
OVER, and the 

total resource demand of this VM during its lifecycle is 

recorded as Rd,j
TOTAL. 

B. System Framework 

The framework of the VM consolidation system is 
illustrated in Fig. 1. Adopting a modular design, this 
framework decomposes the entire VM consolidation process 
into three key phases, forming a complete closed-loop control 
system. 

• Workload Detection Module: Monitoring the resource 
utilization of all PMs in real time and outputs three 
types of PM states. 

- Overloaded PMs: PMs predicted to exceed the 
safety threshold. 

- Underloaded PMs: Idle PMs whose resource 

utilization remains below the minimum threshold. 

- Normal PMs: PMs operating within the ideal load 

range. 

• VM Selection Module: For overloaded PMs, VMs are 
selected to be migrated out. For underloaded PMs, all 
VMs running on them are marked as to-be-migrated. 

• VM Placement Module: The optimal target PM is 
selected from normal PMs to place the VMs selected in 
the VM selection module. After executing the 
migration, idle PMs are shut down to save energy. 

 
Fig. 1. Framework of VM consolidation. 
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IV. WORKLOAD DETECTION BASED ON AUTOFORMER 

Cloud workload time-series data typically contain both 
linear and non-linear components, exhibiting complex time-

varying characteristics and significant temporal dependence. In 
response to this feature, a prediction architecture based on 
Autoformer is adopted [29], whose core components consist of 
an encoder and a decoder, as shown in Fig. 2. 

 
Fig. 2. Cloud workload prediction architecture based on Autoformer [29]. 

The encoder module takes historical workload time-series 
as input and performs multi-scale decomposition on the 
original time-series data through the Auto-Correlation 
Mechanism. This decomposition decouples the data into two 
orthogonal components: 

• workload trend component which characterizes the 
long-term evolution law of resources; 

• workload periodic component which depicts the 
inherent periodic fluctuation pattern of the system. 

The decoder module adopts a dual-branch structure to 
process these two components separately. For the periodic 
component, progressive time-series feature extraction is 
achieved through cascaded auto-correlation blocks. For the 
trend component, a cumulative summation operation is used 
for multi-order trend information aggregation. Each layer of 
the decoder receives complete time-series segments rather than 
discrete sampling points. This global perception mechanism 
significantly enhances the model's ability to model complex 
workload patterns. 

The workload detection process based on Autoformer is 
shown in Algorithm 1. In the initialization phase, the sets of 
PMs in overloaded, underloaded, and normal states are 
initialized as empty sets respectively, and the trained 
Autoformer model is loaded simultaneously. Next, the 
algorithm processes each PM in sequence. Line 3 obtains the 
current utilization rate of the PM by calling the 
getCurrentUtilization function, while Line 4 uses the 
getHistoryUtilization function to acquire the historical 
utilization sequence of the PM according to the window step 
size. This sequence contains resource usage data within a 
certain time span and serves as a key input for model 
prediction. Line 5 inputs the historical utilization sequence into 
the Autoformer model. Through its encoder, the historical 
workload time series undergoes multi-scale decomposition to 

separate the workload trend component and workload periodic 
component. These two components are then processed 
separately by the dual-branch structure of the decoder, 
ultimately outputting the predicted utilization rate. Lines 6–12 
achieve accurate classification of PM states by comparing the 
current utilization rate and predicted utilization rate with the 
overload threshold and underload threshold. If the current 
utilization rate or the predicted utilization rate exceeds the 
overload threshold, the PM is determined to be in an 
overloaded state. If the predicted utilization rate is lower than 
the underload threshold and all data in the historical utilization 
sequence are below the underload threshold, it indicates that 
the host’s resource utilization has been continuously low in the 
past and will remain low for a period in the future, so the PM is 
judged to be in an underloaded state. In all other cases, the host 
is classified as being in a normal state. 

Algorithm 1: DetectWorkload 

 

Input: physical machines 𝐻 = {𝐻1, 𝐻2, … , 𝐻𝑁} 
window steps I 

overload and underload threshold 𝑡ℎ𝑜𝑣𝑒𝑟, 𝑡ℎ𝑢𝑛𝑑𝑒𝑟 

 Output: overloaded PMs, underloaded PMs, normal PMs 

1 

Initialize:  

overloaded ← ∅, underloaded ← ∅, normal ← ∅ 

Autoformer ← load pretrained Autoformer model 

2 For each host 𝐻𝑖  in H  Do 

3 current_util ← getCurrentUtilization( 𝐻𝑖) 

4 util_sequence ← getHistoryUtilization( 𝐻𝑖, I ) 

5 predicted_util ← Autoformer.predict( util_sequence ) 

6 If current_util >𝑡ℎ𝑜𝑣𝑒𝑟 OR predicted_util >𝑡ℎ𝑜𝑣𝑒𝑟 Then: 

7 overloaded ← overloaded ∪ { 𝐻𝑖} 
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8 
Else If predicted_util < 𝑡ℎ𝑢𝑛𝑑𝑒𝑟 AND  

all(util < 𝑡ℎ𝑢𝑛𝑑𝑒𝑟 for util in util_sequence) Then: 

9 underloaded ← underloaded ∪ { 𝐻𝑖} 

10 Else: 

11 normal ← normal ∪ { 𝐻𝑖} 

12 End If 

13 End For 

14 return overloaded, underloaded, normal 

V. VM SELECTION BASED ON PEARSON CORRELATION 

COEFFICIENT AND MIGRATION TIME 

In cloud computing environments dynamically changing, 
VM selection strategy is a key link that affects consolidation 
efficiency. An unreasonable VM selection strategy may lead to 
low migration efficiency or the risk of secondary overload. 
Therefore, this section proposes a comprehensive selection 
strategy that combines the Pearson correlation coefficient and 
migration time. 

The Pearson correlation coefficient is a core metric for 
measuring the linear correlation between two variables. In the 
context of VM selection, it can accurately characterize the 
degree of correlation between the resource utilization of a VM 
and that of a PM. The equation is as follows: 

𝜌(𝑉, 𝐻) =  
∑ (𝑈𝑉

𝑡 −𝜇𝑉)(𝑈𝐻
𝑡 −𝜇𝐻)𝑇

𝑡=1

√∑ (𝑈𝑉
𝑡 −𝜇𝑉)2𝑇

𝑡=1 √∑ (𝑈𝐻
𝑡 −𝜇𝐻)2𝑇

𝑡=1

       (6) 

where V denotes a VM, H represents a PM, and T stands for 
the length of the historical time window. UV

t  is the CPU 
utilization of the VM at time t, and UH

t  is the CPU utilization of 

the PM at time t. μV =
1

T
∑ UV

tT
t=1  is the mean value of the CPU 

utilization time series of the VM, while μH =
1

T
∑ UH

tT
t=1  is the 

mean value of the CPU utilization time series of the PM. 

The time overhead for migrating virtual machine V from 
host H is modeled as: 

𝑀𝑖𝑔𝑇𝑖𝑚𝑒(𝑉, 𝐻) = 𝑀𝑒𝑚(𝑉)/𝐵𝑊𝑎𝑣𝑎𝑖𝑙(𝐻)        (7) 

where Mem(V) is the memory usage of the virtual machine, 
and BWavail(H) represents the available network bandwidth of 
the host. 

The VM migration impact factor based on the Pearson 
correlation coefficient and migration time is defined as follows: 

𝐼𝐹(𝑉, 𝐻) =  𝜌2(𝑉,𝐻)/𝑀𝑖𝑔𝑇𝑖𝑚𝑒(𝑉, 𝐻)      (8) 

where the square operation strengthens the impact of VMs 
with high correlation, and the denominator term penalizes the 
migration of VMs with large memory. 

Based on the definition of the VM migration impact factor, 
a VM selection algorithm that combines the Pearson 
correlation coefficient and migration time is proposed, as 

shown in Algorithm 2. This algorithm adopts a greedy strategy, 
selecting the VM with the largest current IF value for 
migration until the resource utilization of the overloaded host 
drops below the safety threshold. 

Algorithm 2: SelectVMS 

 Input: overloaded hosts set 𝐻𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑 

 Output: migration list M 

1 Initialize: M ← ∅ 

2 For each host 𝐻𝑖  in 𝐻𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑  Do 

3 𝑉∗ ← argmax
𝑉∈𝐻𝑖

𝐼𝐹(𝑉, 𝐻𝑖) 

4 M ← M ∪ {𝑉∗} 

5 𝐻𝑖  ← 𝐻𝑖  \ {𝑉∗} 

6 End For 

7 return M 

VI. VM PLACEMENT BASED ON ENHANCED DUAL Q 

NETWORK 

VM placement refers to the reasonable allocation of VMs 
to PMs, aiming to optimize resource utilization and reduce 
energy consumption. 

A. Problem Model 

The VM placement framework based on the improved 
double Q neural network is illustrated in Fig. 3. The double Q 
neural network consists of two Q networks with identical 
structures but different parameter update methods: the online Q 
network QNet(θ) and the target Q network TargetQNet(θ−). 
The online Q network is used to select action at  based on the 
current environmental state st, while the target Q network is 
employed to calculate the target Q-value. This design avoids 
the overestimation problem that may occur in traditional Q-
learning, making the estimation of Q-values more accurate. 

1) State representation: The environmental state 𝑠𝑡 

includes the CPU utilization information of each PM and the 

CPU demand information of the VM, which is defined as 𝑠𝑡 =
[𝑢1

𝑡 , 𝑢2
𝑡 ,… , 𝑢𝑖

𝑡 , … , 𝑢𝑁
𝑡 , 𝑣𝑚𝑐𝑝𝑢] . Here, 𝑢𝑖

𝑡  denotes the CPU 

utilization of the i-th PM, and 𝑣𝑚𝑐𝑝𝑢 represents the CPU 

request information of the VM to be placed. 

2) Action selection: Action 𝑎𝑡  refers to placing the 

selected VM onto an appropriate PM. To balance exploration 

and exploitation, the upper confidence bound (UCB) strategy 

is adopted to improve action selection. For a given 

environmental state 𝑠𝑡 , the optimal action is selected 

according to Eq. (9): 

𝑎𝑡
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑎∈𝐴
𝑈𝐶𝐵(𝑠𝑡, 𝑎)          (9) 

where UCB(st ,a) is defined as: 

𝑈𝐶𝐵(𝑠𝑡, 𝑎) = 𝑄𝜃(𝑠𝑡, 𝑎)  + 𝑐 ∙ √𝑙𝑛 𝑁(𝑠𝑡) 𝑁(𝑠𝑡 , 𝑎)⁄     (10) 
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Fig. 3. VM placement framework based on enhanced deep Q-Network. 

where Qθ(st ,a) is the value estimation of action a under 
state st  from the online Q-network; c is the exploration 
coefficient; N(st) represents the total number of times the state 
st  has been visited; and N(st ,a) is the number of times the 
action a has been selected under state st . In this way, more 
diverse VM placement actions can be explored in the early 
stage. As experience accumulates, the focus gradually shifts to 
exploiting the optimal placement strategies that have been 
identified. 

3) Reward: Based on the multi-objective optimization 

problem in the system model, the reward function is expressed 

as a function of energy consumption, SLAV rate, and 

migration count, which is defined as follows: 

R t = −(α ∙
EC−ECmin

ECmax−ECmin
+  β ∙  

SLAV−SLAVmin

SLAVmax−SLAVmin
 +  γ ∙

M−Mmin

Mmax−Mmin
) (11) 

where α, β, γ ∈ [0, 1] are weight coefficients that satisfy 
α +  β +  γ = 1; EC denotes total energy consumption, ECmax 
and ECmin  represent the theoretical maximum and minimum 
energy consumption respectively; SLAVmax  and SLAVmin  are 
the theoretical maximum and minimum SLAV respectively; M 
indicates the migration count, Mmax  and Mmin  are the 
theoretical maximum and minimum migration counts 
respectively. 

4) Loss Function: The online Q-network uses a mean 

squared error (MSE) loss function to calculate parameter 

gradients, which is defined by the following formula: 

𝐿𝑜𝑠𝑠(𝜃) = 𝐸[(𝑄𝜃(𝑠, 𝑎) − (𝑅 + 𝛾 ∙ 𝑚𝑎𝑥𝑎′ 𝑄𝜃−(𝑠′, 𝑎′)))2]
  (12) 

where Qθ(s, a)  is the value estimation of the online Q-
network for performing action a under state s; R denotes the 
obtained reward; γϵ[0,1)  is the discount factor; Qθ−(s′, a′) 
represents the value estimation of the target Q-network for 
action a′ under the next state s′; and maxa′ Qθ−(s′, a′) refers to 
selecting the optimal action for the next state through the target 
Q-network. 

5) Adaptive learning rate: An adaptive learning rate 

(ALR) is used for the training of the online Q-network, which 

is defined as follows: 

𝜂 =  
1

𝑁(𝑠,𝑎)+1
   (13) 

where N(s, a)  denotes the number of times action a has 
been selected under state  s. 

When the number of visits to a state-action pair is 
extremely small, N(s, a)≈0, and the learning rate η≈1 

accordingly. A larger step size allows the parameters of the 
online Q-network to update rapidly, accelerating the learning 
process for value estimation of new decisions. As the same 
state-action pair is visited repeatedly, N(s, a) increases, and the 

PM PM PM … VM 

Environment 

QNet( 𝜽 ) 

Memory 

Replay 

Target QNet( 𝜽− ) 

𝒔𝑡 
𝒂𝑡

∗ 
𝑹𝑡 

Loss(𝜃) =  [𝑄𝜃(𝑠, 𝑎) − (𝑅 + 𝛾 ∙ 𝑚𝑎𝑥𝑎′ 𝑄𝜃− (𝑠′,𝑎′))]2 

𝑄𝜃(𝑠, 𝑎) 

𝑚𝑎𝑥𝑎′ 𝑄𝜃−(𝑠′,𝑎′) 

train 

update 𝜽− with 𝜽 

𝑠𝑡
′ 

 

(𝑠, 𝑎, 𝑅, 𝑠′) 

𝑠′ (𝑠, 𝑎) 

𝜽 =  𝜽 −  𝜂 ∙  
𝜕𝐿𝑜𝑠𝑠

𝜕𝜽
 

R 

𝑎𝑡
∗ =  argmax

𝑎∈𝐴
[𝑄𝜃(𝑠𝑡 , 𝑎)  + 𝑐 ∙ √ln𝑁(𝑠𝑡 ) 𝑁(𝑠𝑡 , 𝑎)⁄  ] 
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learning rate η gradually approaches 0. A smaller step size 
prevents parameter oscillations caused by excessive updates, 
enabling the Q-value estimation to converge to a stable value 
and ensuring the accurate exploitation of known high-quality 
strategies. 

B. VM Consolidation Algorithm 

The VM consolidation algorithm is shown in Algorithm 3. 
The consolidation process consists of three parts: workload 
detection, VM detection, and VM placement. For each time 
window, the DetectWorkload function is executed first to 
detect the state of each PM. For overloaded PM, the 
SelectVMS function is executed to select the VMs that need to 
be migrated out. For underloaded PM, all VMs are migrated 
out. The VM placement phase is the core decision-making part 
of the algorithm, integrating deep reinforcement learning and 
the exploration-exploitation balance strategy. 

The action selection adopts an improved variant of the ε-
greedy strategy. On the basis of Q-network valuation, it 
introduces a confidence interval adjustment term composed of 
the exploration coefficient c, state-action counters N(s, a) and 
N(s). This design not only enables the exploitation of known 
high-quality placement schemes through the Q-network, but 
also encourages the exploration of low-frequency visited 

actions via √lnN(st) N(st, a)⁄   , thus preventing the algorithm 

from falling into local optimal solutions. 

Algorithm 3. Virtual Machine Consolidation 

1 

Initialize:  
the size of time window 
the physical machines 𝐻 = {𝐻1 , 𝐻2, … , 𝐻𝑁 } 
online net QNet(θ) with random weights θ  
target net TargetQNet(𝜃−) with weights 𝜃− ← 𝜃  

experience replay buffer D with capacity C 
exploration coefficient c 

discount factor γ 

2 For each time step t Do 

3 Overload,Underload,Normal ← DetectWorkload( H ) 

4 MigrationList ← SelectVMS(Overload) 

5 MigrationList ←MigrationList+VMs of underload PMs 

6 For each virtual machine V in MigrationList Do 

7 𝑠𝑡 = getCurrentState(Normal, V ) 

8                 𝑎𝑡
∗ =  argmax

𝑎∈𝐴
[𝑄𝜃

(𝑠𝑡 , 𝑎)  + 𝑐 ∙ √ln 𝑁(𝑠𝑡) 𝑁(𝑠𝑡 ,𝑎)⁄  ] 

9 Place V on the host determined by the action 𝑎𝑡
∗ 

10 
     𝑅𝑡 = −(𝛼 

𝐸𝐶−𝐸𝐶𝑚𝑖𝑛

𝐸𝐶𝑚𝑎𝑥 −𝐸𝐶𝑚𝑖𝑛

+  𝛽   
𝑆𝐿𝐴𝑉−𝑆𝐿𝐴𝑉𝑚 𝑖𝑛

𝑆𝐿𝐴𝑉𝑚𝑎𝑥−𝑆𝐿𝐴𝑉𝑚 𝑖𝑛

 +

 𝛾 
𝑀 −𝑀𝑚𝑖𝑛

𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛
) 

11  D ← D +  (𝑠, 𝑎, 𝑅, 𝑠′) 

12 End For 

13 If D.size()>=batchsize AND (t%traininterval)==0 Then 

14 Batch = D.sample(batch size) 

15 For each sample (𝑠, 𝑎, 𝑅, 𝑠′) in Batch Do 

16                     Loss(𝜃) =  [𝑄𝜃
(𝑠, 𝑎) − (𝑅 + 𝛾 ∙ 𝑚𝑎𝑥𝑎′𝑄𝜃−(𝑠 ′,𝑎′ ))]2  

17 𝜂 =  
1

𝑁(𝑠, 𝑎) + 1
 

18 𝜽 =  𝜽 −  𝜂 ∙  
𝜕𝐿𝑜𝑠𝑠

𝜕𝜽
   

19 End For 

20 End If 

21 If (t % target update interval ) ==0 Then 

22 𝜃− ← 𝜃  

23 End If 

24 End For 

The experience replay mechanism caches historical 
interaction data and performs random sampling for training 
when the batch condition is met. This breaks the temporal 
correlation between samples and improves the stability of Q-
network training. The loss function adopts the squared 
temporal difference error, taking the deviation between the 
current Q-value and the target Q-value as the optimization 
objective. The learning rate η is linked to N(s, a), enabling 
state-action pairs that are less frequently visited to obtain a 
larger parameter update magnitude, thus accelerating the 
learning of sparse sample regions. 

The periodic update of the target network further prevents 
oscillations in Q-value estimation. By copying the online 
network parameters θ to the target network parameters θ⁻ at 
fixed intervals, the calculation benchmark for target Q-values 
remains stable within a certain period, providing a reliable 
reference for the gradient descent of the online network. 

Overall, through the closed-loop mechanism of perception-
decision-learning, this algorithm achieves dynamic 
optimization of VM consolidation. Workload detection 
accurately identifies resource bottlenecks; VM selection 
focuses on key adjustment targets; VM placement integrates 
reinforcement learning to realize intelligent decision-making; 
and the design of experience replay and target network ensures 
the convergence and robustness of the algorithm in dynamic 
cloud environments. Ultimately, it achieves the comprehensive 
goals of improving resource utilization, reducing data center 
energy consumption, and ensuring service quality. 

VII. EXPERIMENTAL EVALUATION 

A. Experimental Setting 

To verify the effectiveness of the adaptive VM 
consolidation strategy based on Autoformer and Enhanced 
Double Q-Network (AEDQN-VMC) proposed in this paper, 
the experimental simulations were conducted by building a test 
environment on the CloudSim 4.0 simulation platform [30]. As 
a mainstream simulation tool in the cloud computing field, this 
platform supports the simulation of resource scheduling for 
PMs and VMs, as well as the quantitative calculation of key 
metrics such as energy consumption and SLA violation rate, 
and has been widely adopted in relevant research. To cover the 
load characteristics under different business scenarios and 
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verify the generalization ability of the strategy, three types of 
real cloud load datasets were used in the experiments: the 
PlanetLab dataset [31], the Google Cluster Trace dataset [32], 
and the Alibaba dataset [33]. 

1) Configuration of PMs and VMs: To ensure consistency 

with the experimental conditions of existing mainstream 

research, the hardware parameters of PMs and VMs are all set 

with reference to the experimental parameters in [5]. The 

specific configurations are as follows: 

a) PMs: Two types of heterogeneous hosts (HP ProLiant 
G4 and HP ProLiant G5) are adopted. Each host is configured 
with 2 CPU cores and a unified memory capacity of 4GB. The 
core difference lies in processor performance, with specific 

parameters shown in Table I. A total of 100 physical machines 
are deployed in the data center in the experiment, and the 
quantity ratio of the two types of hosts is 1:1, so as to simulate 

the heterogeneous hardware environment of real data centers. 

TABLE I. PM CONFIGURATION 

PM Type 
Processor 

(MIPS) 
Num. of Cores Memory (GB) 

HP ProLiant G4 1860 2 4 

HP ProLiant G5 2660 2 4 

b) VMs: Four types of VM instances are designed to 
cover scenarios from lightweight to high-performance. The 

MIPS (Million Instructions per Second) of processor ranges 
from 500 to 2500, and the memory capacity matches the CPU 
requirements, with specific parameters shown in Table II. 
There are 200 VMs in total in the experiment, with 50 VMs of 

each type. 

TABLE II. VM CONFIGURATION 

VM Type Processor(MIPS) Memory(GB) 

Micro 500 0.85 

Small 1000 1.7 

Extra Large 2000 3.75 

High-CPU Medium 2500 0.85 

2) Parameters of the energy consumption model: The 

energy consumption calculation of PMs refers to the 

SPECpower benchmark test data [34]. As an industry standard 

for data center energy consumption evaluation, this 

benchmark provides measured power consumption values 

under different CPU utilization rates. In the experiment, the 

power consumption data of the two types of hosts within the 

CPU utilization range of 0%–100% is shown in Table III. For 

intermediate utilization rates not covered in the table (e.g., 

15%, 25%), the linear interpolation method is used to 

calculate continuous power consumption values, ensuring the 

accuracy of the energy consumption model. 

3) Key parameter settings: Autoformer Load Prediction 

Parameters: The length of the historical time window is 24 

time steps; the number of encoder/decoder layers is 2 each; the 

number of heads in the autocorrelation block of each layer is 4; 

and the hidden layer dimension is 64. The batch size is 128, 

the number of epochs is 100, the Adam optimizer is used, the 

initial learning rate is 0.01, and the loss function is mean 

squared error (MSE). The overload threshold of physical 

machines is 0.9, and the underload threshold is 0.2. 

Enhanced Double Q-Network Parameters: A fully 
connected neural network is adopted as the network model for 
the double Q-network, and the online Q-network and target Q-
network share an identical network structure. This fully 
connected neural network contains 3 hidden layers, with the 
number of nodes in each hidden layer being 256, 128, and 64 
respectively. The exploration coefficient c in (10) is 0.5; 𝛼, 𝛽,
𝛾 in (11) are each 1/3; and the discount factor γ in (12) is 0.9. 

The training interval is 10 time steps, and the target network 
update interval is 100 time steps. 

TABLE III. POWER CONSUMPTION AT DIFFERENT CPU UTIL. (WATTS) 

CPU 

Util. 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

HP 

G4 
86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HP 

G4 
93.7 97 101 105 110 116 121 125 129 133 135 

4) Comparison benchmarks and evaluation metrics: To 

verify the superiority of the AEDQN-VMC strategy, three VM 

consolidation strategies were selected as comparison 

benchmarks in the experiment: 

• PABFD (Power-Aware Best Fit Decreasing): An 
energy-aware strategy built into CloudSim [35], which 
selects the host with the minimum energy consumption 
increment after VM placement. 

• ADVMC (Adaptive DRL-based VM Consolidation): A 
VM consolidation strategy proposed by [5], which is 
based on LSTM prediction and DQN placement. 

• AMOVMC (Adaptive Multi-Objective Virtual 
Machine Consolidation): An VM consolidation 
strategy proposed by [4], which uses a neural network 
to predict future resource utilization, and adopts a 
multi-objective heuristic adaptive VM placement 
algorithm to select the optimal target host. 

Two core evaluation metrics were used in the experiment: 
total energy consumption and SLAV rate. The calculation of 
total energy consumption refers to Eq. (2), and the calculation 
of SLAV rate refers to Eq. (3)–(5). The CPU performance loss 
caused by migration is set to 10% by default. 

B. Performance Evaluation 

To verify the effectiveness and advancement of the VM 
consolidation method AEDQN-VMC proposed in this paper, 
we conducted a comparative analysis between the proposed 
method and the benchmark methods. The comparison results 
are shown in Fig. 4. It can be seen that the energy consumption 
of the method proposed in this paper is significantly lower than 
that of the comparison methods on the three datasets 
(PlanetLab, Google, and Alibaba). Specifically, compared with 
the PABFD method, the energy consumption is reduced by 
44.5%, 46.5%, and 32.6% respectively; compared with the 
ADVMC method, the energy consumption is reduced by 
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25.2%, 25.7%, and 28.3% respectively; and compared with the 
AMOVMC method, the energy consumption is reduced by 
18%, 19.7%, and 18.8% respectively. 

 
(a) Energy 

 
(b) SLAV 

Fig. 4. Comparison of performance among consolidation methods. 

The performance improvement in energy consumption 
stems from the following aspects. The Autoformer-based 
workload detection module can accurately predict the load 
trend of PMs, identify overloaded and underloaded states in 
advance, and avoid redundant energy consumption caused by 
unbalanced resource allocation. The VM placement module 
achieves efficient resource utilization through the enhanced 
double Q-network. On the premise of meeting the resource 
requirements of VMs, it minimizes the number of active PMs, 
thereby reducing overall energy consumption. The timely 
shutdown strategy for underloaded hosts further reduces idle 
energy consumption and improves energy utilization efficiency. 

The SLAV of the method proposed in this paper remains 
the lowest across all three datasets. Specifically, on the Google 
dataset, its SLAV is 0.08%, a reduction of 50% compared to 
the ADVMC method, a reduction of 38.5% compared to the 
AMOVMC method, and a reduction of 74.2% compared to the 
PABFD method. The accurate load prediction of the 
Autoformer model can avoid the risk of PM overload in 
advance and reduce service interruptions caused by resource 
saturation. The VM selection module screens migration targets 
using the Pearson correlation coefficient, prioritizing the 
migration of VMs that have less impact on host load. 
Meanwhile, by integrating migration time optimization, it 

reduces performance loss during the migration process, thereby 
lowering the overall SLAV. 

C. Ablation Experiments 

1) Impact of PM detection on consolidation: To verify the 

impact of the Autoformer-based host state detection 

(Autoformer-HSD) proposed in this paper on VM 

consolidation performance, we kept the VM selection 

algorithm and VM placement algorithm unchanged, and 

replaced the host state detection algorithm proposed in this 

paper with other host state detection algorithms. In this way, 

we obtained the VM consolidation performance based on 

different host state detection algorithms. The benchmark 

methods used to verify Autoformer-HSD are as follows: 

• Current state-based host state detection without 
prediction (CS-HSD) 

• Local regression-based host state detection (LR-HSD) 

• LSTM-based host state detection (LSTM-HSD) 

The performance comparison results between Autoformer-
HSD and other methods are shown in Fig. 5. As can be seen 
from Fig. 5, Autoformer-HSD is significantly superior to other 
comparison methods in terms of the two core metrics—energy 
consumption and SLAV, verifying its role in improving VM 
consolidation performance. 

a) Energy consumption: Compared with CS-HSD, the 
energy consumption of Autoformer-HSD is reduced by 30.8% 
(PlanetLab), 34.5% (Google), and 26.4% (Alibaba) across the 
three datasets. This is because CS-HSD only relies on the 

current load state to make decisions and cannot identify 
overload risks in advance. It often triggers migration only after 
the host is already overloaded, leading to redundant resource 
allocation and additional energy consumption from frequent 
migrations. In contrast, Autoformer-HSD can adjust resource 
allocation in advance through accurate prediction of future 

loads, reducing ineffective energy consumption at the source. 

Compared with LR-HSD, the energy consumption of 
Autoformer-HSD is reduced by 25.6% (PlanetLab), 19.0% 
(Google), and 22.5% (Alibaba). LR-HSD can only capture 
local linear trends and has limited ability to model complex 
periodic fluctuations and long-term trends in cloud loads, 
resulting in high prediction errors that further affect the 
accuracy of host state judgment. However, the autocorrelation 
mechanism of Autoformer can effectively decompose the 
periodic and trend components of the load, improving 
prediction accuracy and reducing energy waste caused by 
misjudgment. 

Compared with LSTM-HSD, the energy consumption of 
Autoformer-HSD is still reduced by 5.3% (PlanetLab), 7.1% 
(Google), and 7.7% (Alibaba). This benefit comes from the 
global perception mechanism of the Autoformer decoder, 
enabling it to more accurately capture the long-term 
dependencies of the load. This optimizes the timeliness and 
accuracy of host state detection, further reducing energy 
consumption. 
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b) SLAV: The SLAV of Autoformer-HSD is the lowest 
across all datasets. Compared with CS-HSD, its SLAV is 
reduced by 57.7% (PlanetLab), 61.9% (Google), and 36.8% 
(Alibaba). This is because CS-HSD lacks prediction capability 
and cannot avoid overload in advance, causing hosts to 

frequently be in a state of resource saturation and triggering 
SLA violations. In contrast, Autoformer-HSD can complete 
VM migration before the arrival of load peaks by predicting 
overload risks in advance, significantly reducing service 

interruption time. 

 
(a) Energy 

 
(b) SLAV 

Fig. 5. Performance comparison between Autoformer-HSD and other host 

detection methods. 

Compared with LR-HSD and LSTM-HSD, the SLAV 
advantage of Autoformer-HSD is slightly narrowed but still 
maintains a leading position. For example, on the Google 
dataset, its SLAV is 38.5% lower than that of LR-HSD and 
11.1% lower than that of LSTM-HSD. This stems from 
Autoformer’s accurate modeling of load fluctuations, which 
enables more precise judgment on whether a host will enter an 
overloaded state, reducing the increase in SLAV caused by 
prediction errors. 

This ablation experiment shows that Autoformer-HSD can 
more precisely identify the overloaded and underloaded states 
of hosts by improving the accuracy of load prediction and the 
ability to model complex time-series features. It provides a 
reliable decision-making basis for subsequent VM selection 
and placement, ultimately reducing energy consumption while 

effectively ensuring service quality. This verifies its core role 
in the VM consolidation system. 

2) Impact of VM selection on consolidation: To evaluate 

the impact of the PCM-VMS proposed in this paper on the 

overall performance of VM consolidation, we kept all other 

components of the proposed VM consolidation algorithm 

unchanged, while replacing PCM-VMS with other benchmark 

VM selection algorithms. In this way, we obtained 

performance data of VM consolidation based on different VM 

selection algorithms. The other benchmark VM selection 

algorithms used to verify the performance of PCM-VMS are 

as follows: 

• Minimum migration time-based VM selection (MMT-
VMS) 

• Maximum correlation-based VM selection (MC-VMS) 

• Influence coefficient-based VM selection (IC-VMS) 

The performance comparison results between PCM-VMS 
and other VM selection algorithms are shown in Fig. 6. It can 
be indicated that the proposed PCM-VMS performs the best in 
terms of both energy consumption and SLAV metrics, 
verifying its role in improving VM consolidation performance. 

 
(a) Energy 

 
(b) SLAV 

Fig. 6. Performance comparison between PCM-VMS and other VM 

selection algorithms. 

a) Energy consumption: Compared with MMT-VMS 
which only considers migration time, the energy consumption 

of PCM-VMS is reduced by 25.0% (PlanetLab), 26.1% 
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(Google), and 26.4% (Alibaba) across the three datasets. 
Although MMT-VMS can reduce the time cost of a single 
migration, it fails to consider the resource correlation between 
VMs and hosts. This may lead to the migration of VMs that 
have little impact on host load, resulting in overloaded hosts 

not being effectively relieved of their load, and requiring 
multiple migrations to achieve load balancing, which instead 
increases overall energy consumption. In contrast, PCM-VMS 
balances correlation and migration cost, which enable 
overloaded hosts to return to a normal state through fewer 

migration operations, thereby reducing energy consumption. 

Compared with MC-VMS which only focuses on 
correlation, the energy consumption of PCM-VMS is reduced 
by 14.1% (PlanetLab), 13.1% (Google), and 22.5% (Alibaba). 
Although MC-VMS can quickly alleviate host overload by 
migrating VMs with high correlation, it fails to consider 
migration time. This may lead to system performance loss due 
to excessive network resource occupation during migration, 
indirectly increasing energy consumption. In contrast, PCM-
VMS penalizes the migration of VMs with large memory, 
reducing migration operations that incur high resource 
overhead and further optimizing energy consumption. 

Compared with IC-VMS based on the influence coefficient, 
the energy consumption of PCM-VMS is reduced by 7.7% on 
the Alibaba dataset, and its performance is comparable to that 
of IC-VMS on the other datasets. This is because the influence 
coefficient of IC-VMS does not incorporate migration cost, 
whereas PCM-VMS precisely controls migration cost through 
a denominator term, making its decisions more aligned with 
the core goals of efficient load reduction and low overhead. 

b) SLAV: The SLAV of PCM-VMS is the lowest across 
all datasets. Compared with MMT-VMS, its SLAV is reduced 
by 26.7% (PlanetLab), 27.3% (Google), and 20.0% (Alibaba), 
respectively. Since MMT-VMS ignores the correlation 
between VMs and hosts, it may cause host load rebound after 

migration, increasing SLAV; in contrast, the high-correlation 
VMs migrated by PCM-VMS can effectively reduce host load 

fluctuations and lower the risk of overload. 

Compared with MC-VMS, the SLAV of PCM-VMS is 
reduced by 38.9% (PlanetLab), 46.7% (Google), and 36.8% 
(Alibaba). MC-VMS prioritizes migrating high-correlation 
VMs but may select VMs with large memory, leading to a 
decline in migration performance. In contrast, PCM-VMS 
restricts the migration of large-memory VMs through a 
denominator term, reducing performance loss during the 
migration process and thereby lowering the overall SLAV. 

Compared with IC-VMS, the SLAV of PCM-VMS is 
reduced by 35.3% (PlanetLab), 38.5% (Google), and 25.0% 
(Alibaba). This benefit comes from PCM-VMS’s refined 
modeling of correlation and migration cost, which ensures that 
migration operations can effectively alleviate host overload and 
control migration time. The collaborative optimization of these 
two aspects significantly reduces SLAV. 

In summary, this ablation experiment verifies the 
effectiveness of PCM-VMS. By integrating the Pearson 
correlation coefficient and migration time, a more optimized 
influence factor is constructed. While reducing the number of 

migrations and lowering energy consumption, it effectively 
controls SLAV, providing an efficient decision-making basis 
for VM consolidation. 

3) Impact of VM placement on consolidation: To evaluate 

the performance of the VM placement algorithm based on 

enhanced dual Q network (EDN-VMP) proposed in this paper, 

we kept all other components of the proposed VM 

consolidation algorithm unchanged, while replacing EDN-

VMP with other benchmark VM placement algorithms. In this 

way, we obtained performance data of VM consolidation 

based on different VM placement algorithms. The other 

benchmark VM placement algorithms used to verify the 

performance of EDN-VMP are as follows: 

• Minimum energy increment based VM placement 
(MEI-VMP) 

• Q-Learning-based VM placement (QL-VMP) 

• Dual-Q-network-based VM placement (DN-VMP) 

The comparison results of VM consolidation performance 
between the EDN-VMP and other VM placement algorithms 
are shown in Fig. 7. It can be seen that the EDN-VMP is 
significantly superior to other benchmark algorithms in both 
energy consumption and service quality, fully verifying its role 
in improving VM consolidation performance. 

 
(a) Energy 

 
(b) SLAV 

Fig. 7. Performance comparison between EDN-VMP and other VM 

placement algorithms. 
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a) Energy consumption: Compared with MEI-VMP, the 
energy consumption of EDN-VMP is reduced by 20.0% 
(PlanetLab), 21.1% (Google), and 21.1% (Alibaba) 
respectively. MEI-VMP adopts a greedy strategy and only 
takes the current energy consumption increment as the 

decision-making basis. It fails to consider long-term load 
trends and resource balance, which may lead to frequent 
migrations or host overload in the later stage due to short-term 
optimization, thereby increasing overall energy consumption. 
In contrast, EDN-VMP leverages the global decision-making 
capability of reinforcement learning and combines the UCB 

strategy to explore better placement schemes. While reducing 
current energy consumption, it avoids long-term resource 
imbalance, thus achieving more stable energy consumption 

optimization. 

Compared with QL-VMP, the energy consumption of 
EDN-VMP is reduced by 20.6% (PlanetLab), 22.3% (Google), 
and 21.7% (Alibaba) respectively. QL-VMP has limited ability 
to model high-dimensional state spaces and struggles to 
accurately capture the correlation between placement decisions 
and long-term energy consumption, resulting in low decision-
making accuracy. In contrast, EDN-VMP extracts complex 
state features through deep neural networks and combines a 
dual Q-network structure to avoid Q-value overestimation, 
significantly enhancing the global optimization capability of its 
decisions. 

Compared with DN-VMP, the energy consumption of 
EDN-VMP is still reduced by 5.1% (PlanetLab), 6.1% 
(Google), and 5.8% (Alibaba). Although DN-VMP solves the 
overestimation problem, it lacks the key improvements of 
EDN-VMP: (1) It does not introduce the UCB strategy, 
resulting in insufficient exploration of high-quality placement 
schemes with low access frequency and a tendency to fall into 
local optimality; (2) It does not adopt an adaptive learning rate, 
leading to low efficiency in parameter updates for sparse 
scenarios. Through these two improvements, EDN-VMP 
further enhances the accuracy of resource allocation and 
reduces redundant energy consumption. 

b) SLAV: Compared with MEI-VMP, the SLAV of 
EDN-VMP is reduced by 52.2% (PlanetLab), 57.9% (Google), 

and 52.0% (Alibaba), respectively. MEI-VMP, due to its over-
pursuit of energy consumption optimization, may deploy VMs 
to hosts that are nearly saturated, leading to frequent host 
overload. Additionally, it lacks global migration planning, 
which may trigger unnecessary migration operations and result 
in decreased migration performance. In contrast, the reward 

function of EDN-VMP constrains both energy consumption 
and SLAV simultaneously. By balancing multi-objectives 

through reinforcement learning, it effectively reduces the risk 

of overload and migration losses. 

Compared with QL-VMP, the SLAV of EDN-VMP is 
reduced by 26.7% (PlanetLab), 33.3% (Google), and 29.4% 
(Alibaba) respectively. QL-VMP’s coarse state modeling leads 
to low matching accuracy between placement decisions and 
VM resource requirements, easily causing overload. However, 
EDN-VMP accurately captures state features via deep 
networks and explores better matching schemes by combining 
the UCB strategy, significantly reducing the SLA violation rate. 

Compared with DN-VMP, the SLAV of EDN-VMP is 
reduced by 15.4% (PlanetLab), 20.0% (Google), and 20.0% 
(Alibaba) respectively. The performance gap arises because 
DN-VMP lacks an adaptive learning rate. For newly emerged 
state-action pairs, the fixed parameter update step size of DN-
VMP makes it difficult to quickly learn optimal decisions, 
leading to a short-term increase in SLAV. In contrast, EDN-
VMP assigns a larger update magnitude to sparse samples 
through its adaptive learning rate, accelerating adaptation to 
new scenarios and thereby reducing the violation rate. 

In summary, this ablation experiment fully verifies the 
effectiveness of EDN-VMP. By introducing the UCB strategy 
to balance exploration and exploitation, adopting an adaptive 
learning rate to optimize parameter updates, and integrating the 
global decision-making capability of the dual Q-network, 
EDN-VMP significantly improves the stability of service 
quality while reducing energy consumption. 

4) Impact of UCB and ALR on Dual Q-Network: To 

verify the impact of the UCB and ALR on the performance of 

the Dual Q-Network, we further conducted ablation 

experiments on the enhanced dual Q-Network. Based on the 

basic dual Q-Network, we integrated the UCB and adaptive 

learning rate, respectively. The several neural networks used 

for comparison are as follows: 

• General dual Q-Network (DQN) 

• Dual Q-Network with UCB (DQN+UCB) 

• Dual Q-Network with ALR (DQN+ALR) 

• Dual Q-Network with UCB and ALR (DQN+UCB+ 
ALR) 

The impact of the UCB and ALR on the performance of the 
Dual Q-Network is shown in Table IV. The experimental 
results indicate that the introduction of UCB and ALR plays a 
significant role in improving the performance of the Dual Q-
Network, and the synergistic effect of the two further optimizes 
the core metrics of VM consolidation. 

TABLE IV. IMPACT OF UCB AND ALR ON PERFORMANCE OF DUAL Q-NETWORK 

 Energy Consumption (KWH) SLAV (%) 
 PlanetLab Google Alibaba PlanetLab Google Alibaba 

DQN 132.4 98.7 91.8 0.13 0.1 0.15 

DQN+UCB 129.8 95.8 89.4 0.12 0.09 0.13 

DQN+ALR 128.6 94.6 88.7 0.12 0.09 0.13 

DQN+UCB+ALR 125.6 92.65 86.52  0.11 0.08 0.12 
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In terms of energy consumption, compared with the general 
dual Q-Network (DQN), the DQN+UCB achieves an energy 
consumption reduction of 1.96% (PlanetLab), 2.94% (Google), 
and 2.61% (Alibaba) across the three datasets. This benefit 
stems from the UCB strategy’s ability to balance exploration 
and exploitation, which reduces resource allocation imbalance 
caused by local optimality and makes VM placement decisions 
more aligned with the goal of global energy consumption 
optimization. The DQN+ALR shows a more significant 
reduction in energy consumption. Its advantage lies in its fast 
learning capability for sparse state-action pairs, which 
accelerates the convergence of high-quality placement 
strategies and reduces redundant energy consumption. 

The DQN+UCB+ALR performs the best, with energy 
consumption reduced by 5.14% (PlanetLab), 6.13% (Google), 
and 5.75% compared with DQN, reflecting the synergistic 
effect of the two mechanisms. UCB ensures sufficient 
exploration of the decision space, while ALR improves 
learning efficiency, enabling the algorithm to quickly find the 
balance between energy consumption and service quality in 
dynamic cloud environments. 

In terms of SLAV, the SLAV of DQN+UCB is reduced by 
7.69% (PlanetLab), 10.00% (Google), and 13.33% (Alibaba) 
compared with DQN. This indicates that the UCB strategy 
reduces the risk of host overload caused by decision limitations 
by exploring more potential high-quality placement schemes. 
The SLAV performance of DQN+ALR is comparable to that 
of DQN+UCB. This verifies the ALR’s ability to quickly adapt 
to new scenarios, which can effectively reduce short-term 
service interruptions. 

The SLAV advantage of DQN+UCB+ALR is further 
expanded. Compared with DQN, its SLAV is reduced by 15.38% 
(PlanetLab), 20.00% (Google), and 20.00% (Alibaba). The 
reason lies in that the UCB strategy reduces the proportion of 
suboptimal decisions caused by insufficient exploration, while 
the ALR accelerates the learning of high-risk state-action pairs. 
The combined effect of the two enables the algorithm to 
significantly reduce the SLAV rate. 

In summary, the introduction of the UCB and ALR 
optimizes the dual Q-Network from two dimensions: the 
breadth of decision exploration and the depth of learning 
efficiency. Their combination achieves a "1+1>2" optimization 
effect through a synergistic effect, providing more accurate and 
efficient intelligent support for VM placement decisions. 
Ultimately, it significantly improves the stability of service 
quality while reducing energy consumption. 

VIII. CONCLUSION AND FUTURE WORK 

To address the issues of energy optimization and service 
quality management in VM consolidation for cloud data 
centers, this paper proposes an adaptive consolidation strategy 
based on Autoformer and enhanced dual Q-Network. Through 
collaborative innovations in three stages: host state detection, 
VM selection, and VM placement, an effective balance 
between energy consumption and service quality in dynamic 
cloud environments is achieved. 

In the host state detection stage, a prediction method based 
on Autoformer is adopted. This method performs multi-scale 

decomposition of load time series through an autocorrelation 
mechanism, explicitly separating trend components from 
periodic components. This significantly improves both load 
prediction accuracy and the accuracy of host state classification. 
In the VM selection stage, a VM migration impact factor that 
integrates the Pearson correlation coefficient and migration 
time is proposed. This factor balances resource correlation and 
migration overhead, effectively avoiding performance 
degradation caused by excessively high migration costs or 
insufficient load mitigation. In the VM placement stage, an 
enhanced dual Q-Network algorithm is designed. It introduces 
the UCB strategy to optimize the exploration-exploitation 
trade-off and adopts an ALR mechanism to accelerate model 
convergence, thereby achieving intelligent decision-making 
under multi-objective trade-offs. 

Experimental results show that the strategy proposed in this 
paper significantly outperforms the comparative benchmark 
methods on three real load datasets, and can effectively reduce 
cloud data center energy consumption and SLAV rates. 
Ablation experiments further verify the effectiveness of each 
innovative module and their contributions to the overall 
performance. 

Despite the good performance of the AEDQN-VMC 
strategy, there are still some limitations that can be further 
explored in future research: 

• Adaptation to multi-resource dimensions and 
heterogeneous workloads: The current study mainly 
focuses on CPU and memory resources. In the future, it 
can be extended to multi-dimensional resource 
constraints such as network I/O and disk bandwidth, 
and the adaptability to heterogeneous workloads can be 
enhanced. 

• Model lightweighting and online learning: The 
Autoformer and Dual Q-Network models have a large 
number of parameters, resulting in high training and 
inference overhead. Future research can explore model 
compression, knowledge distillation, and online 
incremental learning mechanisms to improve the 
practicality and real-time performance of the algorithm 
in ultra-large-scale data center environments. 

• Cross-layer collaboration and cooling energy 
consumption optimization: The current energy 
consumption model only considers server energy 
consumption. In the future, a cooling system energy 
consumption model can be introduced, and cross-layer 
collaborative optimization between computing resource 
scheduling and cooling system control can be explored 
to further improve overall energy efficiency. 

• Extension to multi-cloud and edge environments: This 
study focuses on a single data center scenario. In the 
future, the framework can be extended to multi-cloud 
collaboration or edge-cloud collaboration 
environments, and cross-domain resource scheduling 
and fault-tolerance mechanisms can be studied to 
enhance the generalization ability and application 
scope of the strategy. 
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