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Abstract—As the scale of cloud data centers continues to
expand, energy consumption has become a critical issue. Virtual
machine (VM) consolidation is a key technology for improving
resource utilization and reducing energy consumption, yet it
remains challenging to effectively balance energy efficiency with
service level agreement violations (SLAV) in dynamic cloud
environments. This paper proposes an adaptive VM
consolidation strategy based on Autoformer and an enhanced
dual Q-Network, referred to as AEDQN-VMC. The approach
consists of three integrated components: 1) Autoformer-based
load detection, which leverages an autocorrelation mechanism to
decompose time-series data into multi-scale trend and periodic
components; 2) a VM selection method that integrates the
Pearson correlation coefficient and migration time to optimize
the selection of VMs for migration; and 3) an enhanced dual Q-
Network for VM placement, incorporating the upper confidence
bound (UCB) and adaptive learning rate (ALR) to improve the
exploration-exploitation trade-off. Extensive experiments on real-
world cloud workload traces (PlanetLab, Google Cluster, and
Alibaba datasets) demonstrate that the proposed method
significantly outperforms state-of-the-art benchmarks such as
PABFD, AD-VMC, and AMO-VMC. Specifically, it achieves
maximum reductions of 46.5% in energy consumption and
74.2% in SLAV rate. Ablation studies further validate the
contribution of each component and confirm the synergistic
effect of the overall architecture. The results highlight the
potential of AEDQN-VMC as an efficient and reliable solution
for sustainable cloud data center operations.

Keywords—Cloud computing; virtual machine consolidation;
load prediction; energy efficiency; deep reinforcement learning;
Autoformer

I.  INTRODUCTION

With the rapid development of cloud computing, data
centers have become the core infrastructure supporting various
online services, including big data analysis, artificial
intelligence, and Internet of Things (IoT) applications. The
exponential growth of user demands has driven a significant
expansion in the scale of data centers, which typically consist
of thousands of physical servers. However, this expansion
gives rise to a critical issue: excessive energy consumption,
with a considerable portion of energy wasted due to low
resource utilization efficiency [1]. High energy consumption
not only increases the operational costs for data center
operators but also exacerbates carbon emissions, conflicting
with global sustainable development and carbon neutrality
goals. Therefore, it has become an urgent challenge to reduce
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energy consumption while ensuring quality of service (QoS) in
the field of data center management.

Virtual Machine (VM) consolidation is a core strategy to
address the energy consumption issue of data centers. By
dynamically migrating VMs between physical machines (PMs),
VM consolidation optimizes resource allocation. Through
consolidating VMs onto a smaller number of active PMs, idle
or underloaded PMs can be shut down or switched to low-
power modes, thereby reducing overall energy consumption
and improving resource utilization [2, 3]. However, VM
consolidation is a complex decision-making process that
requires balancing multiple objectives, such as minimizing
energy consumption, reducing Service Level Agreement
Violation (SLAV), and lowering migration overhead.

The VM consolidation process is divided into three phases:
PM state detection, VM selection, and VM placement.
Therefore, accurate PM state detection, reasonable VM
selection, and optimized VM placement are the three major
challenges that must be addressed to solve the VM
consolidation problem. To tackle these challenges, Goyal et al.
[4] proposed an adaptive multi-objective VM consolidation
strategy (AMO-VMC), which aims to optimize resource
management in energy-efficient cloud data centers. This
strategy fuses the future resource utilization and the historical
utilization for identifying overutilized PMs and selecting VMs
to be migrated, and a multi-objective heuristic-based adaptive
VM placement algorithm is adopted to select the optimal target
host. Zeng et al. [S] proposed an adaptive Deep Reinforcement
Learning(DRL)-based VM consolidation framework (AD-
VMC), whose core components are an influence
coefficient(IC)-based VM Selection algorithm (ICVMS) and a
prediction aware DRL-based VM placement method(PADRL).
By calculating the similarity between VMs and PMs, VMs that
have the greatest impact on PM overload are migrated first to
quickly relieve load pressure. Additionally, Long Short-Term
Memory (LSTM) Neural Network is used to predict future
system states to accelerate the convergence of the DRL model,
thereby achieving energy-efficient VM placement.

However, existing researches still have significant
limitations and struggle to simultaneously meet the
requirements of energy efficiency optimization and QoS
assurance in dynamic cloud environments. In the PM state
detection phase, although workload prediction-based PM state
detection methods are widely adopted, and deep learning-based
prediction models can capture the temporal dependencies of
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workloads [6, 7], their ability to model the complex multi-scale
periodicity (e.g., intra-day and intra-week fluctuations) in cloud
workloads remains limited. This may lead to misjudgment of
overloaded/underloaded hosts. In the VM selection phase,
although some studies consider both resource correlation and
migration cost [4, 8], they fail to effectively model the non-
linear relationship between correlation and cost. In the VM
placement phase, researchers have proposed several VM
placement schemes based on DRL [9, 10]. However, these
schemes adopt fixed exploration probabilities and learning
rates, making it difficult to balance exploring new actions and
exploiting known optimal actions, thus resulting in the problem
of exploration-exploitation imbalance.

To address the aforementioned limitations, an adaptive VM
consolidation scheme based on Autoformer and enhanced
double Q-Network (AEDQN-VMC) is proposed, which
achieves efficient resource management in dynamic
environments through synergistic optimization across three
phases:

e Autoformer-based PM state detection: Autoformer is
employed for workload prediction, which decomposes
workload time series into trend and periodic
components via an auto-correlation mechanism.

e VM selection based on Pearson correlation coefficient
and migration Time: A VM migration impact factor is
constructed by fusing the Pearson correlation
coefficient and migration time to balance the effect of
load reduction and migration cost.

e VM placement based on enhanced double Q-Network:
The upper confidence bound (UCB) and adaptive
learning rate (ALR) are introduced into the double Q-
Network to optimize the exploration-exploitation
balance.

The remainder of this paper is organized as follows.
Section II presents a classified review of related research on
VM consolidation. Section III describes the system model and
overall framework. Section IV details the Autoformer-based
PM state detection method. Section V proposes the VM
selection strategy based on Pearson correlation coefficient and
migration time. Section VI introduces the VM placement
algorithm based on the enhanced double Q-Network.
Section VII evaluates the effectiveness of the proposed strategy
through experiments. Section VIII concludes the paper and
outlines future research directions.

II. RELATED WORKS

As a core strategy for resource management in energy-
efficient cloud data centers, VM consolidation aims to
significantly reduce system energy consumption by centrally
deploying VMs on a minimized cluster of PMs, thereby
maximizing physical resource utilization and minimizing the
number of active servers. This strategy runs through the entire
lifecycle management of VMs. In the initial VM creation phase,
VM consolidation manifests as placement decisions based on
PM state detection. During the dynamic migration process in
the operation phase, VM consolidation involves a three-stage
optimization of PM state detection, VM selection, and VM
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placement. To systematically analyze the inherent logic of the
consolidation mechanism, the following sections will sort out
existing studies from three core dimensions: PM state detection,
VM selection, and VM placement.

A. PM State Detection

Before selecting VMs and making placement decisions, it
is necessary to accurately detect the operational status of PMs.
Existing PM detection methods can be categorized into two
types based on whether they rely on workload trend prediction:

1) Non-prediction-based: This type of method directly
determines the PM status using real-time or historical
workload data, without the need to predict future workload
changes. In [11], PM state detection primarily relies on real-
time resource utilization, with CPU and memory as core
dimensions. This involves calculating the available resources
of PMs and classifying PM states into overloaded, normal, and
underloaded by setting thresholds. The study [12] classifies
workloads using the split-and-recombine (SAR) algorithm
based on real-time monitored resource utilization and
workload characteristics, and further considers thermal
cycling effects through a thermal model to determine the host
state. The study in [13] calculates power consumption across
different utilization intervals using a linear interpolation
power model, and then evaluates whether a PM can
accommodate additional VMs by combining current and
historical CPU utilization. The study [14] relies on real-time
temperature monitoring to periodically check server
temperatures, which dynamically sets a maximum temperature
threshold and determines if the server is overloaded when the
temperature exceeds this threshold.

2) Load prediction-based: To overcome the response lag
of non-prediction-based methods, researchers have introduced
workload prediction technique, which enables proactive state
identification by forecasting the future resource utilization of
PMs. The core value of such methods lies in providing a
buffer time window for migration decisions, thereby avoiding
SLAVs and reducing the frequency of emergency migrations.

Statistical methods are traditional workload prediction
approaches and remain the mainstream modeling techniques
for workload prediction to date. The study [15] uses the
ARIMA model to analyze the trend of PM resource utilization,
predicting future resource utilization to determine whether a
PM is overloaded. Reference [16] predicts the future workload
of PMs via the exponential smoothing method, which
calculates a workload anomaly function by combining the
predicted future workload with the current workload, and then
determines whether a PM is in an overloaded state. The study
[17] infers the future overload probability by analyzing
historical host resource usage with the Local Regression
algorithm, thereby identifying whether a PM is in an abnormal
state.

However, statistical methods have obvious limitations
when dealing with complex dynamic workloads. First, most of
these methods rely on the assumptions of linearity and
stationarity of data. In reality, however, data center workloads
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often exhibit nonlinear and non-stationary characteristics,
accompanied by sudden fluctuations, which leads to a decline
in prediction accuracy. Second, traditional statistical models
have poor adaptability to high-dimensional data and struggle to
integrate multi-source information, resulting in limited
generalization ability in complex scenarios. Third, for
workload sequences with long-term dependency characteristics,
simple smoothing or regression methods are unable to capture
the deep correlation between historical data and future trends,
making them prone to lag errors.

To address the limitations of statistical methods,
researchers have increasingly adopted deep learning techniques
to construct workload prediction models in recent years. The
study [10] combines Temporal Convolutional Networks (TCN)
with Median Absolute Deviation (MAD) to predict the
overload probability of PMs, which reduces unnecessary VM
migrations and SLAVs. The study [5] designs an LSTM-based
network to forecast future system states, which provides more
reasonable environmental states for the DRL model, assisting
in more accurate judgments of whether PMs are overloaded or
underloaded. The study [18] proposes a virtualized adaptive
scheduling algorithm, which uses LSTM to predict future CPU
utilization, memory usage, and network bandwidth
requirements of VMs, and employs Deep Q-Network (DQN) to
achieve adaptive resource scheduling.

Nevertheless, deep learning-based workload prediction
confronts several issues, such as high model complexity,
substantial training costs, and sensitivity to small-sample data.
To further optimize prediction performance, researchers have
combined statistical methods with deep leaming to construct
hybrid workload prediction models. For instance, the study [4]
combines the Dynamic Weighted Moving Average (DWMA)
and a neural network model to calculate the expected
utilization rate of physical machines. The study [19] combines
Bollinger Bands and Neural Prophet techniques to predict the
future workload trend of hosts.

B. VM Selection

After identifying the source PMs that require adjustment, it
is necessary to further select the VMs to be migrated. Based on
the criteria used to select VMs from overloaded PMs, relevant
studies on VM selection can be categorized into three types:
based on PM-VM correlation, based on VM migration
overhead, and based on both correlation and migration
overhead.

1) PM-VM correlation: The VM selection criteria in this
category primarily focus on the degree of association between
VMs and PMs in aspects such as resource usage patterns,
workload trends, and energy consumption characteristics. By
quantifying this association, VMs that have a significant
impact on the PM’s state are selected. In study [5], VMs are
selected based on the Influence Coefficient, which quantifies a
VM’s contribution to the overload of a PM by calculating the
product of the cosine similarity between the VM’s and PM’s
resource usage. VMs with higher influence coefficient exhibit
a stronger correlation with the PM’s overload and are thus
prioritized for migration. In study [20], a load consolidation
strategy based on Q-learning selects VMs by learning the load

Vol. 16, No. 10, 2025

matching patterns between VMs and PMs. Specifically, it
prioritizes the migration of VMs that can balance the PM’s
load, which reflects the correlation between VM and PM load
trends. In study [15], VMs are selected based on contribution
of the VM to the overload of the PM. VMs with the largest
contribution are prioritized for migration, with the goal of
eliminating the overload trend of the PM. In [21], with the
goal of minimizing energy consumption, VMs that are
compatible with the energy consumption characteristics of
PMs are selected.

2) VM migration overhead: The VM selection criteria in
this category primarily focus on the costs incurred during the
migration process (e.g., time, performance loss, energy
consumption, and impacts on QoS). By optimizing the
selection of VMs, the negative impacts of migration on the
system are reduced. In study [11], a fuzzy meta-heuristic
algorithm is employed to select VMs whose migration
imposes the least impact on QoS. In study [22], the direct
criterion for VM selection is the migration time of VMs. The
Minimum Migration Time (MMT) algorithm is adopted to
prioritize the selection of VMs that can be migrated from
overloaded hosts in the shortest time.

3) Both correlation and migration overhead: The criteria
for VM selection in this type of research take into account
both the correlation between VMs and PMs and the overhead
during the migration process. The core is to balance these two
aspects to achieve the optimization goal. For example, in
study [8], the objective function aims to simultaneously
minimize the number of active PMs and the frequency of VM
migrations, thereby balancing resource utilization and
migration costs. In study [23], a Deep-Q Network is employed
to leam the load matching patterns between VMs and PMs,
taking into account the impacts of migration on VM
performance. It selects VMs that can balance load
optimization and low performance loss. In [24], the correlation
between VMs and the overload of PMs is determined to select
VMs that can alleviate PM overload, taking into account
migration time and performance degradation.

C. VM Placement

VM Placement (VMP) refers to the process of allocating
newly created VMs or VMs to be migrated to optimal PMs,
under the premise of satisfying multi-dimensional resource
constraints such as CPU, memory, storage, and network. The
rationality of this process directly affects resource utilization,
energy consumption, and service quality. In recent years,
researchers have proposed a variety of optimization methods to
address this problem, which can be categorized into the
following three types based on their technical approaches.

1) Heuristic algorithms: These algorithms generate
placement strategies based on intuitive experience or
predefined rules, with the goal of quickly obtaining feasible
solutions, which is suitable for large scale dynamic scenarios.
In study [8], a modified First-Fit strategy combined with a
backfilling mechanism is adopted. Based on the runtime and
priority of VMs, this approach places each VM onto the first
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PM that meets the resource constraints. In study [25], the
proposed cut-and-solve algorithm is a tree-search heuristic
algorithm, which achieves the optimized placement of VMs
by iteratively decomposing the problem and solving the sub-
problems. In study [24], the VM allocation problem is
modeled as a multi-dimensional bin packing problem, the
objective of which is to select the minimum number of
energy-cfficient PMs, thereby to reduce energy consumption
and resource waste. In study [26], a two-stage heuristic
algorithm is proposed to address the rack-level hot-spot issue.
In the first stage, VMs are selected for migration from
overloaded hosts within racks identified as hard hot-spots,
aiming to reduce the power consumption of these racks. In the
second stage, VMs are selected for migration from
underloaded hosts; this step serves to reduce the number of
active servers, thereby achieving resource consolidation.

Heuristic algorithms offer the advantage of strong real-time
performance. However, they struggle to balance multi-
objective optimization (e.g., simultaneously minimizing energy
consumption and achieving load balancing) and tend to get
trapped in local optima.

2) Meta-heuristic algorithms: To address the limitations
of heuristic algorithms, meta-heuristic algorithms perform
global optimization by simulating natural phenomena (e.g.,
biological evolution, swarm behavior), which are suitable for
complex multi-objective scenarios. The study [11] proposes a
hybrid algorithm named IVPTS, which is designed for the
collaborative optimization of task scheduling and VM
placement in cloud computing environments. This algorithm
integrates the Improved Particle Swarm Optimization
algorithm with the Fuzzy Resource Management framework

to achieve the goals of load balancing and energy conservation.

To simultaneously optimize QoS, server energy consumption,
and cooling energy consumption, The study [12] proposes a
VM Placement strategy named BTVMP, which is based on the
Enhanced Simulated Annealing algorithm and integrates a
thermal cycling effect model. In study [14], the VM placement
involves both heuristic and meta-heuristic methods. In the
initial placement phase, a hybrid algorithm combining genetic
algorithm and simulated annealing algorithm is adopted to
achieve global optimization of the initial VM allocation. In the
dynamic migration phase, a dynamic migration strategy based
on the greedy algorithm is employed, which selects the server
with the highest energy efficiency as the migration target.
3) Reinforcement learning approaches: With the
development of machine learning, Reinforcement Learning
(RL) and Deep Reinforcement Learning (DRL) have been
applied to address the dynamic optimization problem of VM
placement. The core of this method lies in modeling the
placement process as a Markov Decision Process (MDP),
where an agent learns the optimal strategy through interaction
with the environment. In study [5], VM placement is
implemented based on DRL. An LSTM-based state prediction
network provides future environmental states, which
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accelerates the convergence of the DRL model and enables it
to adaptively select the optimal target host for migrated VMs.
To address the issue that existing methods optimize sub-steps
(such as selecting target PMs for migration and choosing
services to be migrated) independently while ignoring the
correlations between decisions, Reference [9] proposes a
micro-service migration framework based on Multi-Agent RL,
which jointly optimizes the three sub-steps of the migration
process: selecting source PMs, selecting micro-services, and
selecting target PMs. In study [27], a VM migration
management strategy based on RL is proposed, which adopts a
decentralized operation mode through parallel learning and
state/action space aggregation. In study [28], an energy-
efficient dynamic consolidation method named MAGNETIC
based on the multi-agent Q-Learning algorithm is proposed, in
which the agent dynamically selects the optimal power mode
to balance energy consumption and QoS.

RL approaches offer the advantage of strong adaptability,
enabling them to dynamically adjust strategies to accommodate
the uncertainties of cloud environments. However, they face
challenges such as high training costs and insufficient
convergence stability.

III. SYSTEM MODEL AND FRAMEWORK

A. System Model

Suppose a data center consists of N PMs denoted asH =
{H,, H,,..., Hy}, where each PM H; runs n; VMs denoted as
V={Vy, V.., V. }. VM consolidation refers to the process
of reasonably allocating a large number of VMs to PMs, with
the core objective of optimizing resource utilization and
reducing energy consumption while meeting QoS requirements
and resource constraints.

1) Energy Consumption: The energy consumption of a
PM is represented using a linear model as follows:
Ei = Eigie + (Emax — Eiaie) * w; (1)

where E; denotes the total energy consumption of the PM
H;, E;qic represents the base energy consumption in the idle
state, E .4 1S the maximum energy consumption under full
load, and u; € [0, 1] stands for the CPU utilization rate.

The total energy consumption of the entire data center is
the sum of the energy consumption of all active PMs:

EC = YL E; -6 2)

where §; € {0, 1} indicates the activation state of the PM
H; .
2) Service Level Agreement Violation: Service Level
Agreement Violation (SLAV), a key metric for measuring
whether VM consolidation affects QoS, refers to the number
or proportion of times the QoS specified in the SLA fails to be
met. In general, SLAV depends on two metrics: one is the
SLAV time of each active host (SLATAH), and the other is
the performance degradation caused by migration (PDM).
SLAV can be expressed as:
SLAV = SLATAH X PDM 3)
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where SLATAH represents the proportion of the total

operating time that is occupied by SLA violation time in the

service agreements of each active host, which is expressed as:
TO‘VER

1
SLATAH = {lef_(;w 4)

where N is the total number of all PMs. For any PM H;, the
total duration during which it violates the SLA due to overload
is recorded as T{fVER, and the total duration during which this
TTOTAL,

host is in an active state is

In study (3), PDM is used to represent the proportion of
performance degradation caused by VM migration to its total
performance requirements, which is expressed as:

OVER

_ 1 n Sa,j
PDM = 5} i 5)

where n represents the number of VMs, d denotes the
resource type. For any VM V;, the amount of performance
degradation caused by migration is marked as SYER, and the
total resource demand of this VM during its lifecycle is
recorded as REITA.
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B. System Framework

The framework of the VM consolidation system is
illustrated in Fig. 1. Adopting a modular design, this
framework decomposes the entire VM consolidation process
into three key phases, forming a complete closed-loop control
system.

e Workload Detection Module: Monitoring the resource
utilization of all PMs in real time and outputs three
types of PM states.

- Overloaded PMs: PMs predicted to exceed the
safety threshold.

- Underloaded PMs: Idle PMs whose resource
utilization remains below the minimum threshold.

- Normal PMs: PMs operating within the ideal load
range.

e VM Selection Module: For overloaded PMs, VMs are
selected to be migrated out. For underloaded PMs, all
VMs running on them are marked as to-be-migrated.

e VM Placement Module: The optimal target PM is
selected from normal PMs to place the VMs selected in
the VM selection module. After executing the
migration, idle PMs are shut down to save energy.

( Cloud Data Center )

PM1 PM 2

VM1 VM1

VM2

PM n

N J
Workload Detection
P : ———————————————————————— -
[ ™) \I
Overloaded Selecti : | .
: 1.ES‘SIE:; ) > VM n Selected VMs VMs to be migrated :
1A ) 7 1
I 1
| ( \ ( v :
: Und;:r\raded S All VMs VM |
1\ . J L Placement :
I 1
| \/ |
s ) 1
! Normal 1
1 PMs > Target PM Selection Target PM 1
I\ . ) 7 ;
B o mm mm m mm mm mm Em mm o e Em Em e e Em e e e e Em Em mm e mm e e mm mm e e mm mm Em mm e -
Fig. 1. Framework of VM consolidation.
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IV.  WORKLOAD DETECTION BASED ON AUTOFORMER

Cloud workload time-series data typically contain both
linear and non-linear components, exhibiting complex time-

Vol. 16, No. 10, 2025

varying characteristics and significant temporal dependence. In
response to this feature, a prediction architecture based on
Autoformer is adopted [29], whose core components consist of
an encoder and a decoder, as shown in Fig. 2.

Autoformer Encoder

Encoder Input
L < v Auto-
Ny To Predict o

Feed ;l)
orward

Time 1
S;:?e: f‘v'ﬂwfv\ﬂ.uf\ M \ ;‘} W
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\ -cyclical |-\ — £ — — | Data
Part Mean

Seasonal Init

Series

Trend-cyclical Init

/\

™ Auto- s Auto- 1
°L>Corre|at|onf Decomp L_—Correlatlonf Decomp Forward ? Decomp

Series Series

_.@4_1
uondipaid

/’\

g =)
[Input Data Mean|
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\
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M x
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Fig. 2.

The encoder module takes historical workload time-series
as input and performs multi-scale decomposition on the
original time-series data through the Auto-Correlation
Mechanism. This decomposition decouples the data into two
orthogonal components:

e workload trend component which characterizes the
long-term evolution law of resources;

e workload periodic component which depicts the
inherent periodic fluctuation pattern of the system.

The decoder module adopts a dual-branch structure to
process these two components separately. For the periodic
component, progressive time-series feature extraction is
achieved through cascaded auto-correlation blocks. For the
trend component, a cumulative summation operation is used
for multi-order trend information aggregation. Each layer of
the decoder receives complete time-series segments rather than
discrete sampling points. This global perception mechanism
significantly enhances the model's ability to model complex
workload patterns.

The workload detection process based on Autoformer is
shown in Algorithm 1. In the initialization phase, the sets of
PMs in overloaded, underloaded, and normal states are
initialized as empty sets respectively, and the trained
Autoformer model is loaded simultaneously. Next, the
algorithm processes each PM in sequence. Line 3 obtains the
current utilization rate of the PM by calling the
getCurrentUtilization function, while Line 4 wuses the
getHistoryUtilization function to acquire the historical
utilization sequence of the PM according to the window step
size. This sequence contains resource usage data within a
certain time span and serves as a key input for model
prediction. Line 5 inputs the historical utilization sequence into
the Autoformer model. Through its encoder, the historical
workload time series undergoes multi-scale decomposition to

Cloud workload prediction architecture based on Autoformer [29].

separate the workload trend component and workload periodic
component. These two components are then processed
separately by the dual-branch structure of the decoder,
ultimately outputting the predicted utilization rate. Lines 612
achieve accurate classification of PM states by comparing the
current utilization rate and predicted utilization rate with the
overload threshold and underload threshold. If the current
utilization rate or the predicted utilization rate exceeds the
overload threshold, the PM is determined to be in an
overloaded state. If the predicted utilization rate is lower than
the underload threshold and all data in the historical utilization
sequence are below the underload threshold, it indicates that
the host’s resource utilization has been continuously low in the
past and will remain low for a period in the future, so the PM is
judged to be in an underloaded state. In all other cases, the host
is classified as being in a normal state.

Algorithm 1: DetectWorkload

Input: physical machines H = {H;, H,, ...
window steps /
overload and underload threshold th,yer, thynder

Output: overloaded PMs, underloaded PMs, normal PMs

’ HN}

Initialize:
1 overloaded <— @, underloaded <— @ normal <— @
Autoformer — load pretrained Autoformer model

For each host H; in H Do
current_util < getCurrentUtilization( H;)
util_sequence «— getHistoryUtilization( H;, 1)
predicted_util < Autoformer.predict( util_sequence )

If current_util >th ;. OR predicted util >th e Then:

N N N A WN

overloaded < overloaded U { H;}
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Else If predicted_util < thy,ger AND

8 all(util < thynger for util in util_sequence) Then:
9 underloaded «— underloaded U { H;}

10 Else:

11 normal < normal U { H;}

12 End If

13 End For

14 return overloaded, underloaded, normal

V. VM SELECTION BASED ON PEARSON CORRELATION
COEFFICIENT AND MIGRATION TIME

In cloud computing environments dynamically changing,
VM selection strategy is a key link that affects consolidation
efficiency. An unreasonable VM selection strategy may lead to
low migration efficiency or the risk of secondary overload.
Therefore, this section proposes a comprehensive selection
strategy that combines the Pearson correlation coefficient and
migration time.

The Pearson correlation coefficient is a core metric for
measuring the linear correlation between two variables. In the
context of VM selection, it can accurately characterize the
degree of correlation between the resource utilization of a VM
and that of a PM. The equation is as follows:

ZZ:I(U{;_HV)(UIEI_HH) (6)

p(V,H) =
\/ZZ=1(U5-#V)2\/ZL1(U,5—uH)Z

where V denotes a VM, H represents a PM, and 7 stands for
the length of the historical time window. Uy is the CPU
utilization of the VM at time ¢, and U} is the CPU utilization of

the PM at time ¢. py = %ZtTﬂU\t, is the mean value of the CPU
utilization time series of the VM, while py = %ZtTﬂU{l is the
mean value of the CPU utilization time series of the PM.
The time overhead for migrating virtual machine V from
host H is modeled as:
MigTime(V, H) = Mem(V)/BW ,:; (H) @)

where Mem(V) is the memory usage of the virtual machine,
and BW,,,; (H) represents the available network bandwidth of
the host.

The VM migration impact factor based on the Pearson
correlation coefficient and migration time is defined as follows:

IF(V,H) = p?(V,H)/MigTime (V, H) (8)

where the square operation strengthens the impact of VMs
with high correlation, and the denominator term penalizes the
migration of VMs with large memory.

Based on the definition of the VM migration impact factor,
a VM selection algorithm that combines the Pearson
correlation coefficient and migration time is proposed, as
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shown in Algorithm 2. This algorithm adopts a greedy strategy,
selecting the VM with the largest current IF value for
migration until the resource utilization of the overloaded host
drops below the safety threshold.

Algorithm 2: SelectVMS

Input: overloaded hosts set Hyyerioad
Output: migration list M
Initialize: M <~ ¢
For each host H; in Hoperjoaq Do

v+ — argmax [F(V, H;)

VEH;
M~ MU {V*}
H; < H \ {V*}

End For

N N N R W N -

return M

VI. VM PLACEMENT BASED ON ENHANCED DuAL Q
NETWORK

VM placement refers to the reasonable allocation of VMs
to PMs, aiming to optimize resource utilization and reduce
energy consumption.

A. Problem Model

The VM placement framework based on the improved
double Q neural network is illustrated in Fig. 3. The double Q
neural network consists of two Q networks with identical
structures but different parameter update methods: the online Q
network QNet(0) and the target Q network TargetQNet(67).
The online Q network is used to select action a, based on the
current environmental state s;, while the target Q network is
employed to calculate the target Q-value. This design avoids
the overestimation problem that may occur in traditional Q-
learning, making the estimation of Q-values more accurate.

1) State representation: The environmental state s,
includes the CPU utilization information of each PM and the
CPU demand information of the VM, which is defined as s, =
[uf,ub, ..., uf, ..., ufy,vmyy,] . Here, uf denotes the CPU
utilization of the i-th PM, and vm,, represents the CPU
request information of the VM to be placed.

2) Action selection: Action a, refers to placing the
selected VM onto an appropriate PM. To balance exploration
and exploitation, the upper confidence bound (UCB) strategy
is adopted to improve action selection. For a given
environmental state s, , the optimal action is selected
according to Eq. (9):

a; = argmax UCB(s,, a) )

a€A

where UCB(s,,a) is defined as:
UCB(sy, a) = Qp(sp, @) + c+/InN(s,) /N(s;,a)

(10)
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Fig. 3.

where Qqg(s.,a) is the value estimation of action a under
state s, from the online Q-network; ¢ is the exploration
coefficient; N(s,) represents the total number of times the state
s; has been visited; and N(s;,a) is the number of times the
action a has been selected under state s.. In this way, more
diverse VM placement actions can be explored in the early
stage. As experience accumulates, the focus gradually shifts to
exploiting the optimal placement strategies that have been
identified.

3) Reward: Based on the multi-objective optimization
problem in the system model, the reward function is expressed
as a function of energy consumption, SLAV rate, and

migration count, which is defined as follows:
_ EC—ECpin SLAV-SLAV pin
Ry = —(a- ——2"—

- + By
ECmax—ECmin SLAVimax—SLAVpyin

i (1)

Mmax—Mmin

where o, B,y € [0,1] are weight coefficients that satisfy
a+ B + y = 1; EC denotes total energy consumption, EC .
and EC,,,;, represent the theoretical maximum and minimum
energy consumption respectively; SLAV .. and SLAV,;, are
the theoretical maximum and minimum SLAYV respectively; M
indicates the migration count, M., and M,;, are the
theoretical maximum and minimum migration counts
respectively.

VM placement framework based on enhanced deep Q-Network.

4) Loss Function: The online Q-network uses a mean
squared error (MSE) loss function to calculate parameter
gradients, which is defined by the following formula:

Loss(0) = E[(Qy(s,a) — (R +y -maxy Qg-(s",a")))?]

(12)

where Qg(s,a) is the value estimation of the online Q-
network for performing action a under state s; R denotes the
obtained reward; ye[0,1) is the discount factor; Qg-(s’,a")
represents the value estimation of the target Q-network for
action a’ under the next state s’; and max,’ Qg-(s’,a") refers to
selecting the optimal action for the next state through the target
Q-network.

5) Adaptive learning rate: An adaptive learning rate
(ALR) is used for the training of the online Q-network, which
is defined as follows:

T]:

1
N(s,a)+1

(13)

where N(s,a) denotes the number of times action a has
been selected under state s.

When the number of visits to a state-action pair is
extremely small, N(s, a) =~ 0, and the learning rate n~1
accordingly. A larger step size allows the parameters of the
online Q-network to update rapidly, accelerating the learning
process for value estimation of new decisions. As the same
state-action pair is visited repeatedly, N(s, ) increases, and the
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learning rate # gradually approaches 0. A smaller step size
prevents parameter oscillations caused by excessive updates,
enabling the Q-value estimation to converge to a stable value
and ensuring the accurate exploitation of known high-quality
strategies.

B. VM Consolidation Algorithm

The VM consolidation algorithm is shown in Algorithm 3.
The consolidation process consists of three parts: workload
detection, VM detection, and VM placement. For each time
window, the DetectWorkload function is executed first to
detect the state of each PM. For overloaded PM, the
SelectVMS function is executed to select the VMs that need to
be migrated out. For underloaded PM, all VMs are migrated
out. The VM placement phase is the core decision-making part
of the algorithm, integrating deep reinforcement learning and
the exploration-exploitation balance strategy.

The action selection adopts an improved variant of the &-
greedy strategy. On the basis of Q-network valuation, it
introduces a confidence interval adjustment term composed of
the exploration coefficient c, state-action counters N(s, a) and
N(s). This design not only enables the exploitation of known
high-quality placement schemes through the Q-network, but
also encourages the exploration of low-frequency visited
actions via \/ InN(s;)/N(s;,a) , thus preventing the algorithm
from falling into local optimal solutions.

Algorithm 3. Virtual Machine Consolidation

Vol. 16, No. 10, 2025

16 Loss(8) = [Qp(s,a) — (R+y -maxQy-(s",a'))]?
17 n= ;
N(s,a) +1
18 0=6-7 2=
19 End For
20 End If
21 If (¢t % target update interval ) =0 Then
22 0«0
23 End If
24 End For

Initialize:
the size of time window
the physical machines H = {H;, H,, ..., Hy}
online net QNet(d) with random weights

! target net TargetQNet(9~) with weights ~ « 0
experience replay buffer D with capacity C
exploration coefficient ¢
discount factor y

2 For each time step t Do

3 Overload,Underload,Normal < DetectWorkload( H )

4 MigrationList < SelectVMS(Overload)

5 MigrationList —MigrationList+VMs of underload PMs

6 For each virtual machine V in MigrationList Do

7 s¢ = getCurrentState(Normal, V')

8 a; = argmax [Qq(s,, @) +c-/InN(s.)/N(sp,a) |

a€cA
9 Place V on the host determined by the action a;
EC—ECmin SLAV=SLAVin
Ry =—(a ———=* -
ECmax —ECmin SLAViax—SLAVmin
10 M —Mmin
Mmax —Mmin

11 D <D+ (s,a,R,s")

12 End For

13 If D.size()>=batchsize AND (#%traininterval}==0 Then

14 Batch = D.sample(batch size)

15 For each sample (s,a, R,s’) in Batch Do

The experience replay mechanism caches historical
interaction data and performs random sampling for training
when the batch condition is met. This breaks the temporal
correlation between samples and improves the stability of Q-
network training. The loss function adopts the squared
temporal difference error, taking the deviation between the
current Q-value and the target Q-value as the optimization
objective. The leaming rate # is linked to N(s, @), enabling
state-action pairs that are less frequently visited to obtain a
larger parameter update magnitude, thus accelerating the
learning of sparse sample regions.

The periodic update of the target network further prevents
oscillations in Q-value estimation. By copying the online
network parameters 6 to the target network parameters 6 at
fixed intervals, the calculation benchmark for target Q-values
remains stable within a certain period, providing a reliable
reference for the gradient descent of the online network.

Overall, through the closed-loop mechanism of perception-
decision-learning,  this  algorithm  achieves  dynamic
optimization of VM consolidation. Workload detection
accurately identifies resource bottlenecks; VM selection
focuses on key adjustment targets; VM placement integrates
reinforcement learning to realize intelligent decision-making;
and the design of experience replay and target network ensures
the convergence and robustness of the algorithm in dynamic
cloud environments. Ultimately, it achieves the comprehensive
goals of improving resource utilization, reducing data center
energy consumption, and ensuring service quality.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setting

To wverify the effectiveness of the adaptive VM
consolidation strategy based on Autoformer and Enhanced
Double Q-Network (AEDQN-VMC) proposed in this paper,
the experimental simulations were conducted by building a test
environment on the CloudSim 4.0 simulation platform [30]. As
a mainstream simulation tool in the cloud computing field, this
platform supports the simulation of resource scheduling for
PMs and VMs, as well as the quantitative calculation of key
metrics such as energy consumption and SLA violation rate,
and has been widely adopted in relevant research. To cover the
load characteristics under different business scenarios and
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verify the generalization ability of the strategy, three types of
real cloud load datasets were used in the experiments: the
PlanetLab dataset [31], the Google Cluster Trace dataset [32],
and the Alibaba dataset [33].

1) Configuration of PMs and VMs: To ensure consistency
with the experimental conditions of existing mainstream
research, the hardware parameters of PMs and VMs are all set
with reference to the experimental parameters in [5]. The
specific configurations are as follows:

a) PMs: Two types of heterogeneous hosts (HP ProLiant
G4 and HP ProLiant G5) are adopted. Each host is configured
with 2 CPU cores and a unified memory capacity of 4GB. The
core difference lies in processor performance, with specific
parameters shown in Table 1. A total of 100 physical machines
are deployed in the data center in the experiment, and the
quantity ratio of the two types of hosts is 1:1, so as to simulate
the heterogeneous hardware environment of real data centers.
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and the hidden layer dimension is 64. The batch size is 128,
the number of epochs is 100, the Adam optimizer is used, the
initial learning rate is 0.01, and the loss function is mean
squared error (MSE). The overload threshold of physical
machines is 0.9, and the underload threshold is 0.2.

Enhanced Double Q-Network Parameters: A fully
connected neural network is adopted as the network model for
the double Q-network, and the online Q-network and target Q-
network share an identical network structure. This fully
connected neural network contains 3 hidden layers, with the
number of nodes in each hidden layer being 256, 128, and 64
respectively. The exploration coefficient ¢ in (10) is 0.5; a, 3,
y in (11) are each 1/3; and the discount factor vy in (12)is 0.9.
The training interval is 10 time steps, and the target network
update interval is 100 time steps.

TABLE III. POWER CONSUMPTION AT DIFFERENT CPU UTIL. (WATTS)
%?U 0 lo1 |02 03|04 ]05]06|07]|08]09] 1
til.
gf: 86 894 (926 | 96 995 |102 |106 [108 |112 |14 |117
TP

G4 93.7( 97 101 |105 | 110 |116 |[121 |125 [129 (133 |135

TABLE L. PM CONFIGURATION
Processor
PM Type (MIPS) Num. of Cores Memory (GB)
HP ProLiant G4 1860 2 4
HP ProLiant G5 2660 2 4

b) VMs: Four types of VM instances are designed to
cover scenarios from lightweight to high-performance. The
MIPS (Million Instructions per Second) of processor ranges
from 500 to 2500, and the memory capacity matches the CPU
requirements, with specific parameters shown in Table II.
There are 200 VMs in total in the experiment, with 50 VMs of
each type.

TABLEII. VM CONFIGURATION
VM Type Processor(MIPS) Memory(GB)
Micro 500 0.85
Small 1000 1.7
Extra Large 2000 3.75
High-CPU Medium 2500 0.85

2) Parameters of the energy consumption model: The
energy consumption calculaton of PMs refers to the
SPECpower benchmark test data [34]. As an industry standard
for data center energy consumption evaluation, this
benchmark provides measured power consumption values
under different CPU utilization rates. In the experiment, the
power consumption data of the two types of hosts within the
CPU utilization range of 0%—100% is shown in Table III. For
intermediate utilization rates not covered in the table (e.g.,
15%, 25%), the linear interpolation method is used to
calculate continuous power consumption values, ensuring the
accuracy of the energy consumption model.

3) Key parameter settings: Autoformer Load Prediction
Parameters: The length of the historical time window is 24
time steps; the number of encoder/decoder layers is 2 each; the
number of heads in the autocorrelation block of each layer is 4;

4) Comparison benchmarks and evaluation metrics: To
verify the superiority of the AEDQN-VMC strategy, three VM
consolidation strategies were selected as comparison
benchmarks in the experiment:

e PABFD (Power-Aware Best Fit Decreasing): An
energy-aware strategy built into CloudSim [35], which
selects the host with the minimum energy consumption
increment after VM placement.

e ADVMC (Adaptive DRL-based VM Consolidation): A
VM consolidation strategy proposed by [5], which is
based on LSTM prediction and DQN placement.

e AMOVMC (Adaptive  Multi-Objective  Virtual
Machine Consolidation): An VM consolidation
strategy proposed by [4], which uses a neural network
to predict future resource utilization, and adopts a
multi-objective heuristic adaptive VM placement
algorithm to select the optimal target host.

Two core evaluation metrics were used in the experiment:
total energy consumption and SLAV rate. The calculation of
total energy consumption refers to Eq. (2), and the calculation
of SLAV rate refers to Eq. (3)-(5). The CPU performance loss
caused by migration is set to 10% by default.

B. Performance Evaluation

To verify the effectiveness and advancement of the VM
consolidation method AEDQN-VMC proposed in this paper,
we conducted a comparative analysis between the proposed
method and the benchmark methods. The comparison results
are shown in Fig. 4. It can be seen that the energy consumption
of the method proposed in this paper is significantly lower than
that of the comparison methods on the three datasets
(PlanetLab, Google, and Alibaba). Specifically, compared with
the PABFD method, the energy consumption is reduced by
44.5%, 46.5%, and 32.6% respectively; compared with the
ADVMC method, the energy consumption is reduced by
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25.2%, 25.7%., and 28.3% respectively; and compared with the
AMOVMC method, the energy consumption is reduced by
18%, 19.7%, and 18.8% respectively.
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Fig. 4.

The performance improvement in energy consumption
stems from the following aspects. The Autoformer-based
workload detection module can accurately predict the load
trend of PMs, identify overloaded and underloaded states in
advance, and avoid redundant energy consumption caused by
unbalanced resource allocation. The VM placement module
achieves efficient resource utilization through the enhanced
double Q-network. On the premise of meeting the resource
requirements of VMs, it minimizes the number of active PMs,
thereby reducing overall energy consumption. The timely
shutdown strategy for underloaded hosts further reduces idle

energy consumption and improves energy utilization efficiency.

The SLAV of the method proposed in this paper remains
the lowest across all three datasets. Specifically, on the Google
dataset, its SLAV is 0.08%, a reduction of 50% compared to
the ADVMC method, a reduction of 38.5% compared to the
AMOVMC method, and a reduction of 74.2% compared to the
PABFD method. The accurate load prediction of the
Autoformer model can avoid the risk of PM overload in
advance and reduce service interruptions caused by resource
saturation. The VM selection module screens migration targets
using the Pearson correlation coefficient, prioritizing the
migration of VMs that have less impact on host load.
Meanwhile, by integrating migration time optimization, it
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reduces performance loss during the migration process, thereby
lowering the overall SLAV.

C. Ablation Experiments

1) Impact of PM detection on consolidation: To verify the
impact of the Autoformer-based host state detection
(Autoformer-HSD) proposed in this paper on VM
consolidation performance, we kept the VM selection
algorithm and VM placement algorithm unchanged, and
replaced the host state detection algorithm proposed in this
paper with other host state detection algorithms. In this way,
we obtained the VM consolidation performance based on
different host state detection algorithms. The benchmark
methods used to verify Autoformer-HSD are as follows:

e Current state-based host state detection without
prediction (CS-HSD)

e Localregression-based host state detection (LR-HSD)
e LSTM-based host state detection (LSTM-HSD)

The performance comparison results between Autoformer-
HSD and other methods are shown in Fig. 5. As can be seen
from Fig. 5, Autoformer-HSD is significantly superior to other
comparison methods in terms of the two core metrics—energy
consumption and SLAV, verifying its role in improving VM
consolidation performance.

a) Energy consumption: Compared with CS-HSD, the
energy consumption of Autoformer-HSD is reduced by 30.8%
(PlanetLab), 34.5% (Google), and 26.4% (Alibaba) across the
three datasets. This is because CS-HSD only relies on the
current load state to make decisions and cannot identify
overload risks in advance. It often triggers migration only after
the host is already overloaded, leading to redundant resource
allocation and additional energy consumption from frequent
migrations. In contrast, Autoformer-HSD can adjust resource
allocation in advance through accurate prediction of future
loads, reducing ineffective energy consumption at the source.

Compared with LR-HSD, the energy consumption of
Autoformer-HSD is reduced by 25.6% (PlanetLab), 19.0%
(Google), and 22.5% (Alibaba). LR-HSD can only capture
local linear trends and has limited ability to model complex
periodic fluctuations and long-term trends in cloud loads,
resulting in high prediction errors that further affect the
accuracy of host state judgment. However, the autocorrelation
mechanism of Autoformer can effectively decompose the
periodic and trend components of the load, improving
prediction accuracy and reducing energy waste caused by
misjudgment.

Compared with LSTM-HSD, the energy consumption of
Autoformer-HSD is still reduced by 5.3% (PlanetLab), 7.1%
(Google), and 7.7% (Alibaba). This benefit comes from the
global perception mechanism of the Autoformer decoder,
enabling it to more accurately capture the long-term
dependencies of the load. This optimizes the timeliness and
accuracy of host state detection, further reducing energy
consumption.
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b) SLAV: The SLAV of Autoformer-HSD is the lowest
across all datasets. Compared with CS-HSD, its SLAV is
reduced by 57.7% (PlanetlLab), 61.9% (Google), and 36.8%
(Alibaba). This is because CS-HSD lacks prediction capability
and cannot avoid overload in advance, causing hosts to
frequently be in a state of resource saturation and triggering
SLA violations. In contrast, Autoformer-HSD can complete
VM migration before the arrival of load peaks by predicting
overload risks in advance, significantly reducing service
interruption time.
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Fig. 5.

Compared with LR-HSD and LSTM-HSD, the SLAV
advantage of Autoformer-HSD is slightly narrowed but still
maintains a leading position. For example, on the Google
dataset, its SLAV is 38.5% lower than that of LR-HSD and
11.1% lower than that of LSTM-HSD. This stems from
Autoformer’s accurate modeling of load fluctuations, which
enables more precise judgment on whether a host will enter an
overloaded state, reducing the increase in SLAV caused by
prediction errors.

This ablation experiment shows that Autoformer-HSD can
more precisely identify the overloaded and underloaded states
of hosts by improving the accuracy of load prediction and the
ability to model complex time-series features. It provides a
reliable decision-making basis for subsequent VM selection
and placement, ultimately reducing energy consumption while
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effectively ensuring service quality. This verifies its core role
in the VM consolidation system.

2) Impact of VM selection on consolidation: To evaluate
the impact of the PCM-VMS proposed in this paper on the
overall performance of VM consolidation, we kept all other
components of the proposed VM consolidation algorithm
unchanged, while replacing PCM-VMS with other benchmark
VM selection algorithms. In this way, we obtained
performance data of VM consolidation based on different VM
selection algorithms. The other benchmark VM selection
algorithms used to verify the performance of PCM-VMS are
as follows:

e Minimum migration time-based VM selection (MMT-

VMS)

e Maximum correlation-based VM selection (MC-VMS)
¢ Influence coefficient-based VM selection (IC-VMS)

The performance comparison results between PCM-VMS
and other VM selection algorithms are shown in Fig. 6. It can
be indicated that the proposed PCM-VMS performs the best in
terms of both energy consumption and SLAV metrics,
verifying its role in improving VM consolidation performance.
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Fig. 6.

a) Energy consumption: Compared with MMT-VMS
which only considers migration time, the energy consumption
of PCM-VMS is reduced by 25.0% (PlanetLab), 26.1%
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(Google), and 264% (Alibaba) across the three datasets.
Although MMT-VMS can reduce the time cost of a single
migration, it fails to consider the resource correlation between
VMs and hosts. This may lead to the migration of VMs that
have little impact on host load, resulting in overloaded hosts
not being effectively relieved of their load, and requiring
multiple migrations to achieve load balancing, which instead
increases overall energy consumption. In contrast, PCM-VMS
balances correlation and migration cost, which enable
overloaded hosts to return to a normal state through fewer
migration operations, thereby reducing energy consumption.
Compared with MC-VMS which only focuses on
correlation, the energy consumption of PCM-VMS is reduced
by 14.1% (PlanetLab), 13.1% (Google), and 22.5% (Alibaba).
Although MC-VMS can quickly alleviate host overload by
migrating VMs with high correlation, it fails to consider
migration time. This may lead to system performance loss due
to excessive network resource occupation during migration,
indirectly increasing energy consumption. In contrast, PCM-
VMS penalizes the migration of VMs with large memory,
reducing migration operations that incur high resource
overhead and further optimizing energy consumption.

Compared with IC-VMS based on the influence coefficient,
the energy consumption of PCM-VMS is reduced by 7.7% on
the Alibaba dataset, and its performance is comparable to that
of IC-VMS on the other datasets. This is because the influence
coefficient of IC-VMS does not incorporate migration cost,
whereas PCM-VMS precisely controls migration cost through
a denominator term, making its decisions more aligned with
the core goals of efficient load reduction and low overhead.

b) SLAV: The SLAV of PCM-VMS is the lowest across
all datasets. Compared with MMT-VMS, its SLAYV is reduced
by 26.7% (PlanetLab), 27.3% (Google), and 20.0% (Alibaba),
respectively. Since  MMT-VMS ignores the correlation
between VMs and hosts, it may cause host load rebound after
migration, increasing SLAV; in contrast, the high-correlation
VMs migrated by PCM-VMS can effectively reduce host load
fluctuations and lower the risk of overload.

Compared with MC-VMS, the SLAV of PCM-VMS is
reduced by 38.9% (PlanetLab), 46.7% (Google), and 36.8%
(Alibaba). MC-VMS prioritizes migrating high-correlation
VMs but may select VMs with large memory, leading to a
decline in migration performance. In contrast, PCM-VMS
restricts the migration of large-memory VMs through a
denominator term, reducing performance loss during the
migration process and thereby lowering the overall SLAV.

Compared with IC-VMS, the SLAV of PCM-VMS is
reduced by 35.3% (PlanetLab), 38.5% (Google), and 25.0%
(Alibaba). This benefit comes from PCM-VMS’s refined
modeling of correlation and migration cost, which ensures that
migration operations can effectively alleviate host overload and
control migration time. The collaborative optimization of these
two aspects significantly reduces SLAV.

In summary, this ablation experiment verifies the
effectiveness of PCM-VMS. By integrating the Pearson
correlation coefficient and migration time, a more optimized
influence factor is constructed. While reducing the number of
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migrations and lowering energy consumption, it effectively
controls SLAV, providing an efficient decision-making basis
for VM consolidation.

3) Impact of VM placement on consolidation: To evaluate
the performance of the VM placement algorithm based on
enhanced dual Q network (EDN-VMP) proposed in this paper,
we kept all other components of the proposed VM
consolidation algorithm unchanged, while replacing EDN-
VMP with other benchmark VM placement algorithms. In this
way, we obtained performance data of VM consolidation
based on different VM placement algorithms. The other
benchmark VM placement algorithms used to verify the
performance of EDN-VMP are as follows:

e Minimum energy increment based VM placement

(MEI-VMP)

e Q-Learning-based VM placement (QL-VMP)
e Dual-Q-network-based VM placement (DN-VMP)

The comparison results of VM consolidation performance
between the EDN-VMP and other VM placement algorithms
are shown in Fig. 7. It can be seen that the EDN-VMP is
significantly superior to other benchmark algorithms in both
energy consumption and service quality, fully verifying its role
in improving VM consolidation performance.
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placement algorithms.

116 |Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

a) Energy consumption: Compared with MEI-VMP, the
energy consumption of EDN-VMP is reduced by 20.0%
(PlanetLab), 21.1% (Google), and 21.1% (Alibaba)
respectively. MEI-VMP adopts a greedy strategy and only
takes the current energy consumption increment as the
decision-making basis. It fails to consider long-term load
trends and resource balance, which may lead to frequent
migrations or host overload in the later stage due to short-term
optimization, thereby increasing overall energy consumption.
In contrast, EDN-VMP leverages the global decision-making
capability of reinforcement learning and combines the UCB
strategy to explore better placement schemes. While reducing
current energy consumption, it avoids long-term resource
imbalance, thus achieving more stable energy consumption
optimization.

Compared with QL-VMP, the energy consumption of
EDN-VMP is reduced by 20.6% (PlanetLab), 22.3% (Google),
and 21.7% (Alibaba) respectively. QL-VMP has limited ability
to model high-dimensional state spaces and struggles to
accurately capture the correlation between placement decisions
and long-term energy consumption, resulting in low decision-
making accuracy. In contrast, EDN-VMP extracts complex
state features through deep neural networks and combines a
dual Q-network structure to avoid Q-value overestimation,
significantly enhancing the global optimization capability of its
decisions.

Compared with DN-VMP, the energy consumption of
EDN-VMP is still reduced by 5.1% (PlanetLab), 6.1%
(Google), and 5.8% (Alibaba). Although DN-VMP solves the
overestimation problem, it lacks the key improvements of
EDN-VMP: (1) It does not introduce the UCB strategy,
resulting in insufficient exploration of high-quality placement
schemes with low access frequency and a tendency to fall into
local optimality; (2) It does not adopt an adaptive learning rate,
leading to low efficiency in parameter updates for sparse
scenarios. Through these two improvements, EDN-VMP
further enhances the accuracy of resource allocation and
reduces redundant energy consumption.

b) SLAV: Compared with MEI-VMP, the SLAV of
EDN-VMP is reduced by 52.2% (PlanetLab), 57.9% (Google),
and 52.0% (Alibaba), respectively. MEI-VMP, due to its over-
pursuit of energy consumption optimization, may deploy VMs
to hosts that are nearly saturated, leading to frequent host
overload. Additionally, it lacks global migration planning,
which may trigger unnecessary migration operations and result
in decreased migration performance. In contrast, the reward
function of EDN-VMP constrains both energy consumption
and SLAV simultaneously. By balancing multi-objectives
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through reinforcement learning, it effectively reduces the risk
of overload and migration losses.

Compared with QL-VMP, the SLAV of EDN-VMP is
reduced by 26.7% (PlanetLab), 33.3% (Google), and 29.4%
(Alibaba) respectively. QL-VMP’s coarse state modeling leads
to low matching accuracy between placement decisions and
VM resource requirements, easily causing overload. However,
EDN-VMP accurately captures state features via deep
networks and explores better matching schemes by combining
the UCB strategy, significantly reducing the SLA violation rate.

Compared with DN-VMP, the SLAV of EDN-VMP is
reduced by 15.4% (PlanetLab), 20.0% (Google), and 20.0%
(Alibaba) respectively. The performance gap arises because
DN-VMP lacks an adaptive leaming rate. For newly emerged
state-action pairs, the fixed parameter update step size of DN-
VMP makes it difficult to quickly learn optimal decisions,
leading to a short-term increase in SLAV. In contrast, EDN-
VMP assigns a larger update magnitude to sparse samples
through its adaptive learning rate, accelerating adaptation to
new scenarios and thereby reducing the violation rate.

In summary, this ablation experiment fully verifies the
effectiveness of EDN-VMP. By introducing the UCB strategy
to balance exploration and exploitation, adopting an adaptive
leaming rate to optimize parameter updates, and integrating the
global decision-making capability of the dual Q-network,
EDN-VMP significantly improves the stability of service
quality while reducing energy consumption.

4) Impact of UCB and ALR on Dual Q-Network: To
verify the impact of the UCB and ALR on the performance of
the Dual Q-Network, we further conducted ablation
experiments on the enhanced dual Q-Network. Based on the
basic dual Q-Network, we integrated the UCB and adaptive
leaming rate, respectively. The several neural networks used
for comparison are as follows:

e General dual Q-Network (DQN)

e Dual Q-Network with UCB (DQN-+UCB)
e Dual Q-Network with ALR (DQN+ALR)

e Dual Q-Network with UCB and ALR (DQN+UCB+
ALR)

The impact of the UCB and ALR on the performance of the
Dual Q-Network is shown in Table IV. The experimental
results indicate that the introduction of UCB and ALR plays a
significant role in improving the performance of the Dual Q-
Network, and the synergistic effect of the two further optimizes
the core metrics of VM consolidation.

TABLEIV. IMPACT OF UCB AND ALR ON PERFORMANCE OF DUAL Q-NETWORK
Energy Consumption (KWH) SLAV (%)
PlanetLab Google Alibaba PlanetLab Google Alibaba
DOQN 1324 98.7 91.8 0.13 0.1 0.15
DQN+UCB 129.8 95.8 89.4 0.12 0.09 0.13
DQN+ALR 128.6 94.6 88.7 0.12 0.09 0.13
DQN+UCB+ALR 125.6 92.65 86.52 [o.11 [ 0.08 0.12
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In terms of energy consumption, compared with the general
dual Q-Network (DQN), the DQN+UCB achieves an energy
consumption reduction of 1.96% (PlanetLab), 2.94% (Google),
and 2.61% (Alibaba) across the three datasets. This benefit
stems from the UCB strategy’s ability to balance exploration
and exploitation, which reduces resource allocation imbalance
caused by local optimality and makes VM placement decisions
more aligned with the goal of global energy consumption
optimization. The DQN+ALR shows a more significant
reduction in energy consumption. Its advantage lies in its fast
learning capability for sparse state-action pairs, which
accelerates the convergence of high-quality placement
strategies and reduces redundant energy consumption.

The DQN+UCB+ALR performs the best, with energy
consumption reduced by 5.14% (PlanetLab), 6.13% (Google),
and 5.75% compared with DQN, reflecting the synergistic
effect of the two mechanisms. UCB ensures sufficient
exploration of the decision space, while ALR improves
learning efficiency, enabling the algorithm to quickly find the
balance between energy consumption and service quality in
dynamic cloud environments.

In terms of SLAV, the SLAV of DQN+UCB is reduced by
7.69% (PlanetLab), 10.00% (Google), and 13.33% (Alibaba)
compared with DQN. This indicates that the UCB strategy
reduces the risk of host overload caused by decision limitations
by exploring more potential high-quality placement schemes.
The SLAV performance of DQN+ALR is comparable to that
of DQN+UCB. This verifies the ALR’s ability to quickly adapt
to new scenarios, which can effectively reduce short-term
service interruptions.

The SLAV advantage of DQN+UCB+ALR is further

expanded. Compared with DQN, its SLAYV is reduced by 15.38%

(PlanetLab), 20.00% (Google), and 20.00% (Alibaba). The
reason lies in that the UCB strategy reduces the proportion of
suboptimal decisions caused by insufficient exploration, while
the ALR accelerates the learning of high-risk state-action pairs.
The combined effect of the two enables the algorithm to
significantly reduce the SLAV rate.

In summary, the introduction of the UCB and ALR
optimizes the dual Q-Network from two dimensions: the
breadth of decision exploration and the depth of leaming
efficiency. Their combination achieves a "1+1>2" optimization
effect through a synergistic effect, providing more accurate and
efficient intelligent support for VM placement decisions.
Ultimately, it significantly improves the stability of service
quality while reducing energy consumption.

VIIIL.

To address the issues of energy optimization and service
quality management in VM consolidation for cloud data
centers, this paper proposes an adaptive consolidation strategy
based on Autoformer and enhanced dual Q-Network. Through
collaborative innovations in three stages: host state detection,
VM selection, and VM placement, an effective balance
between energy consumption and service quality in dynamic
cloud environments is achieved.

CONCLUSION AND FUTURE WORK

In the host state detection stage, a prediction method based
on Autoformer is adopted. This method performs multi-scale
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decomposition of load time series through an autocorrelation
mechanism, explicitly separating trend components from
periodic components. This significantly improves both load
prediction accuracy and the accuracy of host state classification.
In the VM selection stage, a VM migration impact factor that
integrates the Pearson correlation coefficient and migration
time is proposed. This factor balances resource correlation and
migration overhead, effectively avoiding performance
degradation caused by excessively high migration costs or
insufficient load mitigation. In the VM placement stage, an
enhanced dual Q-Network algorithm is designed. It introduces
the UCB strategy to optimize the exploration-exploitation
trade-off and adopts an ALR mechanism to accelerate model
convergence, thereby achieving intelligent decision-making
under multi-objective trade-offs.

Experimental results show that the strategy proposed in this
paper significantly outperforms the comparative benchmark
methods on three real load datasets, and can effectively reduce
cloud data center energy consumption and SLAV rates.
Ablation experiments further verify the effectiveness of each
innovative module and their contributions to the overall
performance.

Despite the good performance of the AEDQN-VMC
strategy, there are still some limitations that can be further
explored in future research:

e Adaptation to multi-resource dimensions and
heterogeneous workloads: The current study mainly
focuses on CPU and memory resources. In the future, it
can be extended to multi-dimensional resource
constraints such as network I/O and disk bandwidth,
and the adaptability to heterogeneous workloads can be
enhanced.

e Model lightweighting and online leaming: The
Autoformer and Dual Q-Network models have a large
number of parameters, resulting in high training and
inference overhead. Future research can explore model
compression, knowledge distillation, and online
incremental learning mechanisms to improve the
practicality and real-time performance of the algorithm
in ultra-large-scale data center environments.

e Cross-layer collaboration and cooling energy
consumption optimization: The current energy
consumption model only considers server energy
consumption. In the future, a cooling system energy
consumption model can be introduced, and cross-layer
collaborative optimization between computing resource
scheduling and cooling system control can be explored
to further improve overall energy efficiency.

e Extension to multi-cloud and edge environments: This
study focuses on a single data center scenario. In the
future, the framework can be extended to multi-cloud
collaboration or edge-cloud collaboration
environments, and cross-domain resource scheduling
and fault-tolerance mechanisms can be studied to
enhance the generalization ability and application
scope of the strategy.
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