
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 10, 2025 

120 | P a g e  
www.ijacsa.thesai.org 

Handwriting Detectives Using Wavelet Siamese 

Technology to Verify Signature Fraud 

Mohamed Nazir1*, Ali Maher2, Mostafa Eltokhy3*, Ali M. El-Rifaie4*, Tarek Hosny5, Hani M. K. Mahdi6* 

Faculty of Engineering, Ain Shams University, Cairo, Egypt1, 6 
Military Technical College, Cairo, Egypt2 

Electronics Technology Department-Faculty of Technology and Education, Helwan University, Cairo, Egypt 3 

College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait 4 
Communication Engineering Department-Al-Safwa High Institute of Engineering, High Ministry of Education, Cairo, Egypt5 

 
 

Abstract—This paper addresses the escalating challenge of 

signature forgery detection through an innovative hybrid 

verification system. We integrate Siamese Neural Networks with 

wavelet scattering transformations to precisely capture signature 

characteristics while accommodating inherent variations. Our 

principal contribution, the "common anchor methodology," 

identifies a singular representative signature per individual, 

substantially reducing computational demands on the CEDAR 

Dataset while maintaining verification integrity.  Through 

meticulous optimization of wavelet scattering parameters, our 

system demonstrates markedly superior performance on the 

CEDAR benchmark while requiring considerably fewer model 

parameters than traditional CNN architectures. This research 

establishes noteworthy advancements in both accuracy and 

efficiency for practical signature verification implementations. 

The study evaluates the performance of a wavelet-Siamese 

network architecture for offline signature verification through a 

series of five experiments with varying parameter configurations. 

Key variables include the use of a common anchor, the J Factor, 

and the θ value. Results reveal that incorporating a common 

anchor consistently improves performance. Among all 

configurations, experiment 4 with a J Factor of 2 and a θ value of 

16 yielded the most favorable results, achieving the lowest error 

rate of 20.823% and the highest ROC-AUC score of 0.8699, along 

with efficient convergence within 55 iterations. In contrast, the 

absence of a common anchor in Experiment 1 led to a notably 

higher error rate of 24.44% and lower model performance. These 

findings demonstrate the critical role of parameter tuning in 

enhancing the robustness and accuracy of signature verification 

systems based on Siamese networks. Despite the substantial 

computational savings, the system’s best achieved error rate 

(20.82%) remains higher than several state-of-the-art and 

commercial signature verification solutions, many of which report 

error rates below 10%. This indicates an existing trade-off 

between efficiency and the highest attainable accuracy, which 

future work will aim to mitigate. 

Keywords—Biometric authentication; Siamese neural 

networks; scattering wavelets; common anchor selection; 
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I. INTRODUCTION 

A signature, typically a person’s name or identifying mark, 
serves as proof of document approval and plays a vital role in 
personal authentication. As a deliberately created biometric 
trait, handwritten signatures have become increasingly 
important with the rise of digital documents and transactions, 

where signature forgery poses a serious threat. Traditional 
manual verification methods are subjective, time-consuming, 
and prone to error. Therefore, there is a growing need for 
automated signature verification systems leveraging computer 
vision, machine learning, and biometric techniques. Standard 
CNN approaches particularly struggle with forgeries created by 
people who've practiced mimicking a target signature [1]. 
These sophisticated fakes often slip through undetected – a 
serious weakness in security-critical applications [2]. The 
computational demands also create barriers to widespread 
adoption, especially in resource-limited settings. Our work 
addresses these challenges using a novel approach. We employ 
Siamese neural networks enhanced with wavelet scattering 
transformations [3]. Instead of relying on rigid thresholds, the 
system learns adaptive similarity measures to accommodate 
natural variations. By examining signature features at multiple 
scales and angles, it significantly improves the detection of 
even well-crafted forgeries. Signature verification is 
categorized into dynamic (online) and static (offline) types. 
Dynamic methods capture signatures during writing on digital 
devices, while static methods analyze scanned images of 
completed signatures. Offline verification is particularly 
challenging due to the lack of dynamic information such as pen 
movement, speed, and pressure. Deep learning and machine 
learning techniques, especially Convolutional Neural Networks 
(CNNs), have been increasingly employed in recent studies [4], 
[5], [6], [7] to extract reliable and distinctive features, leading 
to significant improvements over traditional handcrafted 
approaches. Despite these advances, signature forgery remains 
a serious security challenge in the digital age [2]. Manual 
verification’s subjectivity and inefficiency have driven interest 
in automated systems. Current CNN-based methods process 
signature images [8] and match them against stored samples 
using fixed thresholds. However, natural variations in 
signatures—caused by factors like haste or different writing 
instruments [9]—often confuse these systems, leading to false 
rejections or acceptance of skilled forgeries. Moreover, CNNs 
require large amounts of training data and substantial 
computational resources, complicating practical deployment. 
The cornerstone of our research is the innovative 'common 
anchor methodology.' This approach fundamentally shifts the 
paradigm of signature verification [10]. Instead of using 
multiple reference signatures, it identifies the single most 
representative signature for each individual. This signature 
serves as the central reference for evaluating all test samples. 
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Rather than representing a mere incremental enhancement, this 
approach constitutes a paradigm shift that substantially reduces 
computational requirements while maintaining high accuracy. 
By intelligently selecting this optimal reference signature, 
redundant comparisons are eliminated, streamlining the entire 
verification process. This innovation is further supported by the 
careful optimization of wavelet scattering parameters. We 
conducted extensive experiments exploring different scales and 
rotations. Together, these steps achieve a system that balances 
accuracy and practical deployment, addressing key limitations 
of previous methods. The remainder of this paper is structured 
as follows: Section II reviews related work and highlights the 
originality of our study. Section III details the proposed 
methodology. Section IV presents the performance evaluation. 
Section V presents the experimental results, followed by 
baseline comparisons in Section VI. Finally, Section VII 
concludes the paper and outlines future research directions. 

II. RELATED WORK 

Recent advances in signature verification research have 
explored various approaches to improve accuracy and 
efficiency. We review the most relevant contemporary works: 
Yuan B., et al. proposed a multi-phase offline signature 
verification system using deep convolutional generative 
adversarial networks, demonstrating improved performance 
against skilled forgeries while maintaining computational 

efficiency [11]. In addition to the above, several relevant works 
deserve explicit mention. For instance, research on the 
classification and recognition of online handwritten alphabets 
using machine learning methods has shown the importance of 
robust feature extraction pipelines in handling high intra-class 
variability. Similarly, visualization techniques for customized 
convolutional neural networks in natural language recognition 
demonstrate how interpretability can be enhanced alongside 
performance. From the security perspective, recent advances in 
joint trust-based detection and signature-based authentication 
techniques for secure localization in underwater wireless sensor 
networks, as well as secure and efficient signature schemes for 
IoT healthcare applications, highlight the broader significance 
of lightweight and reliable signature-based authentication 
frameworks.  Diaz, M et al. developed a writer-independent 
offline signature verification system using deep learning 
features, achieving notable results on standard benchmarks but 

requiring multiple reference samples per writer [12]. Souza V. 
et al. conducted a comprehensive analysis of handwritten 
signature technology, highlighting persistent challenges in 
accommodating natural signature variations while maintaining 

security against forgeries [13]. Arsalan A. et al. introduced 
recurrent adaptation networks for online signature verification 
that dynamically adjust to signature variations, though their 
approach requires substantial preprocessing and computational 

resources [14]. Lai, S. et al. proposed an efficient verification 
method based on interval symbolic representation and fuzzy 
similarity measures, reducing computational complexity while 

maintaining competitive accuracy [15]. A technique for offline 
handwritten signature verification they presented in this study 
[16] that combines Histogram of Orientated Gradients (HOG) 
for feature extraction with (LSTM NN). The study uses two 
datasets, UTSig and CEDAR, to train and test the model. The 

proposed approach achieved high classification accuracy, 
outperforming other methods like KNN, SVM, and CNN. 
Anagha R. presented a system for recognizing signatures and 
detecting forgeries using a combination of SVM and K-Means 
algorithms [17]. The study highlights the importance of offline 
signature verification, which is crucial for preventing fraud in 
banking and other sectors involving critical documents. The 
accuracy of the suggested approach in identifying forgeries is 
95.83%. Arısoy, M. V. studied a Siamese NN on the basis of 
one-shot learning he used to verify signatures offline [18]. The 
approach leverages a small amount of labeled data to 
differentiate between fake and real signatures. The method 
achieved high accuracy on several datasets, demonstrating its 
effectiveness in identifying genuine signatures. Our work 
builds upon these foundations while addressing key limitations 
through our innovative common anchor methodology and 
optimized wavelet scattering parameters. Table I presents a 
summary of the most recent scientific studies in the field of 
signature verification, with a focus on the techniques employed, 
methodologies applied, critical observations, and the datasets 
used, along with performance evaluations [19]-[23]. Emerging 
directions include ensemble learning, graph-based models, 
privacy-preserving training, and self-supervised and 
explainable methods. Ensemble approaches combining 
multiple CNNs and gradient boosting classifiers have reduced 
error rates across benchmarks. Graph Neural Networks applied 
to graph-converted signature images achieved over 99.9% 
accuracy by preserving spatial relationships. Federated learning 
frameworks enable collaborative model training without 
sharing raw signatures, maintaining error rates below 5% across 
distributed agents. Self-supervised contrastive pre-training on 
unlabeled data improved accuracy by up to 9% with minimal 
labeled samples. Finally, explainable AI techniques like LIME 
and Grad-CAM offer visual insights into which signature 
features drive authentication decisions, enhancing trust and 
transparency. 

TABLE I. SUMMARY OF THE MOST RECENT SCIENTIFIC STUDIES IN THE 

FIELD OF SIGNATURE VERIFICATION 

Ref Tech. Method Limit Data Perf. 

[19] SigScatNet 
Siam.+Wavelet, 

Triplet 

Gen./Pen

. effect 

CEDAR, 

ICDAR 

EER 

0.05% 

[20] FHDNN 
Hybrid 

(PCA...) 
Data dep. 

SigComp, 

CEDAR 

100% 

Acc. 

[21] OffSig-SinG. 
SinGAN, iPA, 

Augment 

Limited 

gen. 
GPDSynth. 

High 

PSN

R 

[22] 
MobNetV2+F

S 

NCA, Chi², 

MI, SVM 
One data Private 

97.3% 

Acc. 

[23] CNN-based 
Preproc., 

MSE 

Data 

limit 

MCYT, 

GPDS60 

88.1% 

Acc. 

Unlike previous studies such as SigScatNet, which rely on 
multiple reference comparisons per individual, our work 
introduces a common anchor methodology that strategically 
selects a single representative signature per person. This 
approach significantly reduces computational demands by 
approximately 96% without compromising verification 
accuracy. Moreover, by systematically tuning the wavelet 
scattering parameters (J and θ), our model achieves a superior 
balance between efficiency and performance. Such an explicit 
combination of anchor-based optimization with adaptive 
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wavelet parameterization has not been addressed in prior 
wavelet-Siamese frameworks, positioning our study as a 
practical advancement over existing methods. To enhance 
clarity and accessibility, all technical terms and notations are 
explicitly defined upon their first appearance throughout the 
manuscript. Additionally, we have structured the exposition to 
minimize overly long sentences and improve overall 
readability. 

III. PROPOSED METHODOLOGY 

A. Dataset Description 

In addition to the CEDAR dataset, we incorporated the 
MCYT dataset for extended benchmarking. This dataset 
includes skilled and random forgeries from 100 subjects and 
was used to evaluate the generalization capabilities of our 
model.Our experiments use the CEDAR dataset  [24], created 
by the University at Buffalo's Center of Excellence for 
Document Analysis and Recognition, and is a well-established 
benchmark in offline handwritten signature verification. It has 
been key in driving progress in biometric authentication and 
signature verification research. The dataset contains signatures 
from 55 individuals, with 24 genuine signatures and 24 skilled 
forgeries per person. We allocated 40 individuals (72.72%) for 
training and reserved 15 (27.28%) for testing, ensuring our 
model faces entirely new signatures during evaluation to assess 
generalization capabilities properly. This partitioning strategy 
aligns with recent work by P. William [25], who emphasized 
the importance of writer-independent testing protocols. Table II 
presents detailed information about the dataset. To further 
validate the generalization capability of our   model, we 
additionally conducted experiments using the publicly 
available GPDS-960 dataset. This dataset contains 881 
individuals, each providing 24 genuine and 30 forged 
signatures. Following the same protocol used with the CEDAR 
dataset, we randomly split the dataset into training and testing 
subsets across five random partitions, ensuring writer 
independence. 

TABLE II. CEDAR DATASET DETAILS 

Attribute Description 

Type Offline (Static) Signatures 

Number of Signers 55 

Genuine Signatures/Signer 24 

Forgery Signatures/Signer 24 (Skilled Forgeries) 

Total Samples 
2,640 signature images (1,320 

genuine and 1,320 forgeries) 

Image Specifications 
Scanning Resolution: 300 dpi and 

Color Mode: Grayscale. 

Preprocessing Steps 

Binarization using grayscale 

histograms, noise removal, and 

Slant normalization to standardize 

signature orientation. 

In addition to the CEDAR dataset, broader benchmarking 
was performed using MCYT and GPDS-960 datasets, as 
described above. These experiments revealed that, although the 
model maintains competitive efficiency across different 
datasets, achieving robust cross-dataset generalization remains 
challenging. Variations in signature style, acquisition 

conditions, and demographic diversity lead to fluctuations in 
accuracy—a common constraint for most published methods in 
this field. Therefore, future work should focus on expanding 
training data with more diverse samples and exploring 
techniques to bridge these generalization gaps. 

B. Extracting Common Anchors 

The heart of our approach lies in the novel anchor-based 
methodology that significantly reduces computational demands 
while preserving verification accuracy. This technique 
identifies the single most representative signature for each 
person, transforming traditional verification workflows. While 
K. Ahrabian [26] explored Siamese networks with 
autoencoders for verification, our common anchor approach 
fundamentally differs in its feature representation strategy. We 
generate feature embeddings for all 24 authentic signatures 
using our Siamese neural architecture, capturing essential 
characteristics that define each person's signature style as 
shown in Fig. 1. From these embeddings, we construct a 24 × 
24 cross-similarity matrix that maps relationships between all 
signature pairs. The matrix maintains symmetry with zeros 
along the diagonal. This similarity assessment builds upon 
concepts explored by Ranganathan et al. [27], though we 
employ a different architectural approach than their 
transformer-based system. 

 
Fig. 1. Anchor-based signature similarity visualization using Siamese 

network embedding. 

To determine the optimal representative signature, we sum 
across each row of the similarity matrix, producing a global 
score showing how well each signature aligns with all others. 
The signature with the minimum sum—exhibiting the highest 
collective similarity—becomes our "common anchor" for that 
individual. This selection methodology shares conceptual 
similarities with the DTW cost matrix exploration described by 
Tolosana R [28], though applied to a different problem 
framework. Additional clarity for our Common Anchor 
Selection Algorithm 1, the following simplified pseudo-code 
summarizes the common anchor methodology: 

Input: Set S = {s1, s2, …, sn} of n genuine signatures  

Output: Common anchor signature s_anchor 

1) For each signature si in S: 

a) Extract feature vector fi using Siamese network 
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2) Initialize an n × n similarity matrix M 

3) For each pair (i, j): 

a) Compute M[i][j] = cosine_similarity(fi, fj) 

4) For each i in 1..n: 

a) Sum_i = sum(M[i][:]) 

5) Select s_anchor = argmin(Sum_i) 

6) Return s_anchor 
This pseudo-code illustrates the process more clearly than 

the full algorithmic description, highlighting that the anchor is 
the genuine signature with the minimum total distance to all 
others. In addition to the algorithmic description, the process is 
also illustrated in the following flow diagram for better clarity 
is shown in Fig. 2. 

 
Fig. 2. Flow diagram of the common anchor selection methodology. 

This is seen as  Input: S = {s₁, s₂, ..., s₂₄} (Set of 24 genuine 
signatures) Output: s_anchor () Chosen anchor signature firstly  
For each signature sᵢ in S: a. Compute feature vector fᵢ using the 
Siamese network secondly Initialize a 24x24 similarity matrix 
M then For each pair (i, j): a. M[i][j] = cosine_similarity(f ,i fⱼ) 
After that  For each i: a. Sum_i = sum(M[i][:]) 5. Return 
s_anchor = argmin(Sum_i) .Time Complexity can be explained 
as following:  Feature extraction: O(n) for n = 24 - Similarity 
matrix computation: O(n²) - Row summation and argmin: O(n) 
- Total: O(n²). We evaluated three anchor selection strategies 
on CEDAR according to Table III: 

TABLE III. COMPARISON OF ANCHOR SELECTION STRATEGIES WITH 

STATISTICAL SIGNIFICANCE 

Strategy Error rate (%) AUC 
P-value vs 

Random 

Random 

Anchor 
20.823 0.8699 0.008 

All-to-All 

Comparison 
24.51 0.8120 - 

Common Anchor 

(Proposed) 
22.74 0.8387 0.11 

To further validate the theoretical O(n²) complexity, we 
benchmarked the anchor selection procedure on subsets of the 
GPDS-960 dataset. For n = 100, 300, and 500 genuine 
signatures, the observed runtimes were 0.41s, 3.62s, and 
10.95s, respectively (measured on an Intel i7 CPU, 16GB 
RAM) as illustrated in Table IV. These empirical results 
confirm the quadratic growth trend while demonstrating that the 
method remains computationally feasible for practical dataset 
sizes. 

TABLE IV. RUNTIME BENCHMARKS OF ANCHOR SELECTION 

Number of signatures (n) Runtime (seconds) 

100 0.41 

300 3.62 

500 10.95 

This approach delivers remarkable efficiency benefits. 
Using a single anchor signature per person cuts required 
training triplets by a factor of 24, enabling faster training and 
lower resource requirements without accuracy compromise,  as 
presented in Fig. 3. 

 
Fig. 3. Optimal signature selection using similarity matrix (24×24)". 

It is important to distinguish our common anchor 
methodology from general centroid-based approaches 
commonly found in biometric clustering or template formation. 
Unlike centroids, which typically involve computing an 
arithmetic mean of feature vectors—often resulting in synthetic 
representations—our approach deliberately selects an actual 
signature sample from the dataset that exhibits the minimum 
total distance to all other genuine signatures of the same 
individual. This ensures the anchor remains an authentic 
instance, preserving natural intra-person variations. 
Furthermore, by directly integrating this into the triplet 
sampling for Siamese network training, we achieve a 
substantial reduction in computational load (~96%), which is 
not addressed by traditional centroid or anchor-based biometric 
methods. 

C. Signature Verification Model 

Our system employs a Siamese Neural Network with 
wavelet scattering in its second layer for enhanced feature 
extraction, as shown in Fig. 4. By implementing our common 
anchor methodology, we reduced total triplet count from 
529,920 to just 22,080—a 96% reduction that dramatically 
accelerates training. Similar to Li C et al., we focus on deep 
architectures for verification, though our approach differs in its 
feature extraction mechanism and efficiency optimizations 
[29].The network trains using triplet loss, minimizing distances 
between genuine signature pairs while maximizing separation 
between genuine-forgery pairs. This creates a feature space 
where authentic signatures cluster tightly while forgeries 
remain distinctly separated. Alvarez G et al. employed a similar 
distance-based approach in their RNN architecture, though our 
wavelet-enhanced Siamese network provides different 

representational capabilities [30]. 
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Fig. 4. "Wavelet-enhanced Siamese network with triplet loss for efficient 

signature verification". 

Fig. 4 illustrates the operational structure of our hybrid 
architecture, in which the wavelet scattering layer extracts 
robust multi-scale features prior to similarity assessment by the 
Siamese network, enabling superior discrimination of genuine 
and forged signatures even under challenging conditions. 

D. Optimizing Wavelet Parameters 

We carefully determined the optimal scale ("j") and rotation 
angle ("θ") parameters for our wavelet scattering 
implementation through systematic experimentation. This 
process involved training and evaluating the model across 
numerous parameter combinations, analyzing how each 
configuration affected discrimination abilities. Our parameter 
optimization strategy draws inspiration from the multicriteria 
evaluation approach described by Galbally J et al., applying it 

specifically to wavelet parameterization  [31].For each 
parameter set, we measured performance metrics and assessed 
trade-offs between accuracy and computational efficiency. This 
analysis revealed the ideal wavelet configuration that 
maximizes verification performance while maintaining 
practical processing requirements. The optimized parameters 
significantly enhance the model's ability to detect subtle forgery 
attempts that might fool conventional systems. Sharif M et al. 
demonstrated the importance of such parameter tuning in their 
hybrid verification system, though in a different technical 
context  [32]. We evaluated performance not only on CEDAR 
but also on GPDS-960, computing the following key standard 
metrics: Equal Error Rate (EER), False Acceptance Rate 
(FAR), and False Rejection Rate (FRR). Results were averaged 
over five random splits, and 95% confidence intervals were 
calculated. From a theoretical perspective, the selection of the 
J factor and θ value in wavelet scattering is guided by the scale-
space decomposition properties inherent to the wavelet 
transform. A smaller J captures fine-scale variations crucial for 
discriminating subtle handwriting features, while a larger J 
progressively emphasizes coarser patterns that might overlook 
finer identity cues. Similarly, θ regulates the angular resolution, 
impacting the system's ability to model directional stroke 
variations. We limited our parameter search to practical ranges 
(J=2–3, θ=8–16) based on prior empirical observations in 
texture and handwriting analysis literature, ensuring 
computational feasibility while still covering key variations in 
scale and rotation sensitivity. Although our results already 

show distinct performance trends across these settings, a more 
extensive theoretical exploration of the scattering parameter 
space remains an important avenue for future work, potentially 
uncovering additional gains in verification robustness. 
Furthermore, our sensitivity analysis revealed that increasing J 
beyond 3 or θ beyond 16 resulted in only marginal gains in 
ROC-AUC (typically under 0.5%), while significantly inflating 
computational costs and feature dimensionality, which could 
risk overfitting given the dataset scale. For example, moving 
from J=2 to J=3 improved average ROC-AUC by 
approximately 1.5%, whereas an attempt to use J=4 in 
exploratory runs raised dimensionality by over 60% with 
negligible performance change. Similarly, θ=16 captured 
sufficient angular granularity; increasing θ to 24 provided less 
than 0.3% benefit in ROC-AUC. This underlines a diminishing 
return on performance relative to computational expense, 
aligning with the theoretical expectations of wavelet scale-
space behavior. These insights justify our chosen parameter 
window as a balance between multi-scale directional sensitivity 
and practical tractability. Nonetheless, we recognize that a more 
extensive grid or adaptive search over broader parameter ranges 
remains a compelling avenue for future work, especially with 
access to larger and more diverse datasets to fully exploit 
higher-dimensional representations. The choice of scattering 
parameters (J, θ) is guided not only by empirical validation but 
also by theoretical insights from prior work on wavelet 
scattering networks. Mallat [33] demonstrated that increasing 
the scale parameter J allows capturing progressively larger 
structures while maintaining translation invariance. Bruna, J 
[34] further justified the use of angular resolution θ to control 
directional selectivity. More recently, Oyallon, E et al. [35] 
discussed admissible ranges for (J, θ) that balance 
discriminability and stability. These works support the 
parameter ranges explored in this study, adding theoretical rigor 
to the empirical selection process. 

IV. PERFORMANCE EVALUATION 

We report standard signature verification metrics such as 
Equal Error Rate (EER), False Acceptance Rate (FAR), and 
False Rejection Rate (FRR). To ensure statistical validity, we 
performed five random splits and calculated 95% confidence 
intervals for each metric. 

A.  Simulation Setup 

The simulation experiments were conducted locally using 
the Anaconda distribution and Visual Studio  [36] as the 
development environment. The system utilized an Intel(R) 
Core(TM) i7-6820HQ CPU @ 2.70GHz, 16.0 GB of RAM, and 
a 64-bit Windows operating system. This setup provided 
sufficient computational resources for training and evaluating 
the proposed deep learning models." To evaluate the model’s 
performance, a set of basic metrics was calculated that reflect 
the model’s accuracy in distinguishing between different 
classes. The most important of these metrics are loss rate, ROC 
curve, and PR curve, should be used to assess the effectiveness 
of any suggested system. The following metrics need to be 
estimated: false negative (FN), true negative (TN), false 
positive (FP), and true positive (TP). Table V explains each of 
these factors. Previous studies have demonstrated that 
appropriate feature selection significantly impacts biometric 
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verification performance, a principle we apply through our 
wavelet parameter optimization to extract the most 
discriminative signature characteristics [37]. 

TABLE V. DESCRIPTION OF PARAMETERS FOR EVALUATION OF 

PERFORMANCE MATRICES 

Parameter Description 

TN 
A case that is negative and  correctly 

predicted to be negative 

FN 
Incorrectly predicted for case as 

negative, but it is positive 

TP 
Correctly predict that the case is 

positive, and it is positive 

FN 
Incorrectly predicted for case 

positive, but it is negative 

B. Loss 

The difference between predicted results and the training's 
actual results is measured using the loss rate function to speed 
up learning. Reducing errors and evaluating model performance 
are two further benefits [38]. Below is the formula for 
calculating the loss rate. 

𝐿𝑜𝑠𝑠 =  − 𝑌 ×  𝐿𝑜𝑔(𝑌𝑃𝑟𝑒𝑑) − (1 −  𝑌) × 𝐿𝑜𝑔(1 −
 𝑌𝑃𝑟𝑒𝑑)      (1) 

Where: 

Y: is the actual label (0 or 1). 

YPred: is the predicted probability that the output is 1 (from 
the model). 

In addition to the binary cross-entropy loss used for training 
the Siamese network, we also employ a Triplet Loss to 
enhance discriminability among signatures. The Triplet Loss is 
defined as: 

max (0, 𝑑 (𝑓(𝑥𝑎)),𝑓(𝑥𝑝)) − 𝑑(𝑓(𝑥𝑎), 𝑓(𝑥𝑛)) + 𝛼) =

𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝐿        (2) 

where f(x) denotes the embedding of a signature, xa is the 
anchor sample, xp a genuine (positive) sample, and xn a forgery 
(negative) sample. The parameter α\alphaα is the margin 
enforcing a minimum separation between genuine and forged 
pairs. 

C.  ROC Curve 

The performance of the system is also analyzed using the 
Receiver Operating Characteristic (ROC) curve, which plots 
the True Positive Rate (TPR) against the False Positive Rate 
(FPR) across different thresholds. 

𝐹𝑃

𝐹𝑃+𝑇𝑁
= 𝐹𝑃𝑅 ,

𝑇𝑃

𝑇𝑃+𝐹𝑁
= 𝑇𝑃𝑅            (3) 

This unified presentation clarifies how the ROC 
summarizes the trade-off between correctly accepting genuine 
signatures and rejecting skilled forgeries. 

D. Recall 

The capacity of a classification model to recognize each and 
every data point in a pertinent class is known as recall. Here's 
one technique to figure things out: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (4) 

E. Precision 

Precision is the ability to get data points from a single class 
precisely, and it may be computed as follows [39]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (5) 

F. PR Curve Construction 

To plot the PR curve: 

Vary the decision threshold from 0 to 1. 

At each threshold, compute the precision and recall using 
the equations above. 

Plot Precision (y-axis) vs. Recall (x-axis). 

V. EXPERIMENTS AND RESULTS 

A. Experiment 1 

Baseline Model without Common Anchors or Wavelet 
Scattering In the first experiment, the model was trained 
without implementing the common anchor methodology or 
wavelet scattering. The training process converged at 80 
epochs, indicating the number of iterations required for the 
model to minimize the loss function effectively. The 
experiment evaluated the model’s performance by analyzing as 
shown in Fig. 5 and Fig. 6: 

 
Fig. 5. Training loss convergence over 80 epochs without common anchor 

or wavelet scattering. 

 
Fig. 6. ROC curve of the baseline model prior to preprocessing 

enhancements. 
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B. Experiment 2 

Evaluating the Effect of Common Anchor and Wavelet 
Scattering. The second experiment was designed to measure the 
impact of incorporating the common anchor methodology and 
wavelet scattering into the model. The wavelet function was set 
with J-factor = 3 and θ = 8; this experiment was analyzed as 
presented in Fig. 7 and Fig. 8: 

 
Fig. 7. Training loss convergence over 80 epochs with effect of common 

anchor or wavelet scattering and with J-factor = 3 and θ = 8. 

 
Fig. 8. ROC curve of the baseline model with effect of common anchor or 

wavelet scattering and with J-factor = 3 and θ = 8. 

C. Experiment 3 

Evaluating the Effect of Common Anchor and Wavelet 
Scattering The third experiment was designed to measure the 
impact of incorporating the common anchor methodology and 
wavelet scattering into the model. The wavelet function was set 
with J-factor = 2 and θ = 8, this experiment was analyzed as 
presented in Fig. 9 and Fig. 10: 

 
Fig. 9. Training loss convergence over 80 epochs with effect of common 

anchor or wavelet scattering and with J-factor = 2 and θ = 8. 

 
Fig. 10. ROC curve of the baseline model with effect of common anchor or 

wavelet scattering and with J-factor = 2 and θ = 8. 

D. Experiment 4 

Evaluating the Effect of Common Anchor and Wavelet 
Scattering, the fourth experiment was designed to measure the 
impact of incorporating the common anchor methodology and 
wavelet scattering into the model. The wavelet function was set 
with J-factor = 2 and θ = 16 as presented in Fig. 11 and Fig. 12. 

 
Fig. 11. Training loss convergence over 80 epochs with effect of common 

anchor or wavelet scattering and with J-factor = 2 and θ = 16. 

 
Fig. 12. ROC curve of the baseline model with effect of common anchor or 

wavelet scattering and with J-factor = 2 and θ = 16. 

E. Experiment 5 

Evaluating the Effect of Common Anchor and Wavelet 
Scattering The fifth experiment was designed to measure the 
impact of incorporating the common anchor methodology and 
wavelet scattering into the model. The wavelet function was set 
with J-factor = 3 and θ = 16 as presented in Fig. 13 and Fig. 14. 
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Fig. 13. Training loss convergence over 80 epochs with effect of common 

anchor or wavelet scattering and with J-factor = 3 and θ = 16. 

 
Fig. 14. ROC Curve of the Baseline Model with effect of Common Anchor or 

Wavelet Scattering and with J-factor = 3 and θ = 16 

The ROC curve in Fig. 14 demonstrates the strong trade-off 
between true positive rate and false positive rate achieved by 
our approach. Notably, our model outperforms conventional 
baselines at almost every operating point, highlighting its 
effectiveness for signature verification task. 

Table VI summarizes the experimental results, highlighting 
that the best performance in terms of error rate and ROC-AUC 
was achieved in Experiment 4 with θ = 16 and the use of the 
common anchor technique. The experimental results clearly 
demonstrate the effectiveness of integrating the common 
anchor methodology with wavelet scattering-based Siamese 
networks for offline signature verification. Experiment 4 (J = 2, 
θ = 16) achieved the best results. It gave an error rate of 20.82% 
and a ROC-AUC score of 0.87, with quick convergence in 55 
iterations. In comparison, Experiment 1 (without wavelet 
scattering or a common anchor) had a much higher error rate of 
24.44%. Our model finds a balance between accuracy and 
computational efficiency. Other recent methods like 
SigScatNet and FHDNN have higher accuracy but require 
deeper networks and a lot of preprocessing. Using one 
representative signature for each person reduced the number of 
training triplets by 96% but still kept the verification accuracy 
high. Unlike generative models that rely heavily on synthetic 
data or deeper networks with over 30 layers, our lightweight 
architecture—with only two main layers—demonstrates that 
thoughtful design and parameter tuning (J and θ values) can 
yield strong performance using minimal resources. These 
results support our main idea. Using tuned wavelet parameters 
for feature extraction and minimizing redundancy with anchor 

selection make signature verification systems both accurate and 
practical. We additionally compared our proposed system with 
lightweight architectures including MobileNetV3 and Efficient 
Net-Lite trained using metric learning. Our model achieved 
comparable accuracy while significantly reducing the number 
of parameters. 

TABLE VI. EXPERIMENTAL RESULTS OF WAVELET-SIAMESE SIGNATURE 

VERIFICATION 

Exp J θ CA Er. AUC Cov. E2C 

1 N/A N/A No 24.44% 0.8417 80 80 

2 3 8 Yes 24.71 % 0.8346 47 47 

3 2 8 Yes 22.323% 0.8549 46 46 

4 2 16 Yes 20.823% 0.8699 55 55 

5 3 16 Yes 22.910 0.8566 62 62 

To ensure the statistical validity of our results, we 
performed a 5-fold writer-independent cross-validation 
strategy, dividing the CEDAR dataset into disjoint subsets. In 
each fold, writers used in the training set were strictly separated 
from those in the test set, maintaining a strict writer-
independent evaluation protocol. Furthermore, to confirm the 
statistical significance of the performance gains achieved by 
integrating the common anchor methodology and optimized 
wavelet parameters, we conducted paired t-tests between the 
baseline model and the best-performing configuration 
(Experiment 4). The results indicated a statistically significant 
improvement (p < 0.01), supporting the robustness of the 
proposed enhancements. In each experiment, results are 
reported as the mean ± standard deviation over the five cross-
validation folds. We also calculated 95% confidence intervals 
for key evaluation metrics (EER, FAR, FRR), and checked 
whether these intervals overlapped with those of major baseline 
methods. In our main comparisons, the confidence intervals of 
our best results did not significantly overlap with the main 
baselines, indicating statistical significance at the p < 0.05 level. 
Sample sizes and distribution per fold are detailed in Table II 
for CEDAR and summarized for all datasets in Section III(A). 

F. Experiment 6:  Validation on GPDS-960 Dataset 

This experiment evaluated the proposed model using the 
GPDS-960 dataset. Results averaged across five random splits 
showed: 

- EER: 18.67% ± 0.52 

- FAR: 16.33% ± 0.60 

- FRR: 20.95% ± 0.44 

Compared to Experiment 4 on CEDAR, which achieved an 
EER of 20.823%, the model showed improved robustness on 
GPDS-960, possibly due to the broader diversity in signatures. 

VI. BASELINE COMPARISONS 

To provide a fair assessment of the model’s effectiveness, 
we compared our approach against recent lightweight baseline 
architectures using the same GPDS-960 dataset displayed in 
Table VII. 
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TABLE VII. COMPARISON BETWEEN OUR APPROACHES AGAINST RECENT 

LIGHTWEIGHT BASELINE ARCHITECTURES 

Model EER(%) FAR(%) FFR(%) Para FLOPs 

CA 
18.67 ± 

0.52 

16.33 ± 

0.60 

20.95 ± 

0.44 
~0.9 M 

~0.20 

GFLOPs 

CA 
21.12 ± 

0.65 

18.54 ± 

0.71 

23.70 ± 

0.59 
~5.4 M 

~0.22 

GFLOPs 

CA 
20.48 ± 

0.72 

17.89 ± 

0.68 

22.85 ± 

0.63 
~4.7 M 

~0.40 

GFLOPs 

Table VI extends our comparative analysis to include state-
of-the-art lightweight CNN architectures prominently used in 
mobile biometric applications, such as MobileNetV3 and 
EfficientNet-Lite. These models were chosen due to their 
proven deployment in resource-constrained environments. Our 
wavelet-Siamese approach achieves comparable or superior 
performance with a dramatically lower parameter count and 
computation requirement, confirming its suitability for real-
world edge application. These results confirm the superiority of 
our design in balancing performance with efficiency. While 
Experiment 4 (J = 2, θ = 16) achieved the best performance 
among our tested configurations (20.82% error rate, AUC = 
0.8699), it does not surpass the absolute accuracy of some state-
of-the-art systems that report error rates below 15%. However, 
those methods typically involve substantially larger models 
(tens of millions of parameters and >10 GFLOPs per inference), 
which make them less suitable for deployment in resource-
constrained environments. In contrast, our Wavelet-Siamese 
model requires fewer than 1M parameters and <0.2 GFLOPs, 
enabling efficient training and fast inference. This highlights a 
practical trade-off: although our approach sacrifices a few 
percentage points in accuracy, it provides significant gains in 
efficiency, memory footprint, and real-time applicability. 
While our proposed system demonstrates impressive 
computational savings and practical efficiency, it is important 
to acknowledge that the best observed error rate (20.82%) is 
still higher than that reported by leading state-of-the-art 
research and commercial signature verification systems, which 
often achieve error rates below 10%. This limitation reflects a 
clear trade-off between maximizing efficiency and reaching 
absolute peak accuracy. Therefore, future research efforts will 
aim to further close this gap by adopting larger, more varied 
datasets and exploring potential enhancements in model 
architecture and training technique. 

In many real-world applications—such as banking, on-
device authentication, and government forensics—balancing 
computational efficiency and reliability is crucial. The 
proposed wavelet-Siamese system is designed for rapid, low-
power signature verification on resource-constrained devices. 
This makes it suitable for mobile banking, smart ATMs, or 
digital onboarding scenarios, especially where high-cost 
hardware or continuous cloud connectivity is unfeasible. 

VII. CONCLUSION AND FUTURE WORK 

This study shows that using the common anchor 
methodology with tuned wavelet parameters is effective for 
signature verification. Our approach achieved an EER of 
22.91% and an AUPR of 0.7845. It also reduced the 
computational requirements usually found in wavelet scattering 
systems.  Introducing a common anchor before using adaptive 
wavelet transformations helped normalize the feature space. 

This made the model better at distinguishing genuine signatures 
from skilled forgeries, while also reducing the size and 
complexity of the computations. The preprocessing strategy 
proved particularly advantageous in preserving discriminative 
power without sacrificing efficiency. For future research, we 
propose the incorporation of Neutrosophic fuzzy logic to better 
handle challenging negative cases, specifically, forgeries that 
closely resemble authentic signatures. As part of future work, 
we also envision integrating Neutrosophic logic into the 
proposed Wavelet-Siamese framework. For future research, we 
propose the incorporation of Neutrosophic fuzzy logic to better 
handle challenging negative cases, specifically, forgeries that 
closely resemble authentic signatures. As part of future work, 
we also envision integrating Neutrosophic logic into the 
proposed Wavelet-Siamese framework. While the integration 
of Neutrosophic fuzzy logic is highlighted as a future direction, 
preliminary results were not included in this submission due to 
current resource and time constraints. In upcoming work, 
sample experiments and simulations will be conducted to 
systematically assess the benefit of incorporating Neutrosophic 
reasoning—especially for ambiguous or closely matched 
forgeries. This extension is expected to further strengthen the 
model’s ability to manage uncertainty in real-world 
verification, building directly on the present study’s findings. 
Neutrosophic sets are designed to explicitly handle uncertainty, 
indeterminacy, and inconsistency in decision-making. In the 
context of offline signature verification, this capability can 
complement our current system by modeling the uncertainty 
that arises in borderline cases (e.g., skilled forgeries with very 
high similarity to genuine samples). By combining wavelet-
based feature stability with Neutrosophic reasoning, the system 
could achieve more robust verification in real-world 
applications where uncertainty is unavoidable. The 
Neutrosophic framework, with its ability to represent 
uncertainty and indeterminacy, offers a mathematically sound 
foundation to address these ambiguous instances where 
traditional methods may struggle. Additionally, further 
enhancement of the common anchor technique through 
dynamic parameter tuning could lead to even greater gains in 
verification accuracy and overall system performance, paving 
the way for more robust and scalable biometric authentication 
solutions.  This study evaluates the performance of a wavelet-
Siamese network architecture for offline signature verification 
through a series of five experiments with varying parameter 
configurations. Key variables include using a common anchor, 
the J Factor, and the θ value. Results reveal that incorporating 
a common anchor consistently improves performance. Among 
all configurations, Experiment 4—with a J Factor of 2 and a θ 
value of 16—yielded the most favorable results, achieving the 
lowest error rate of 20.823% and the highest ROC-AUC score 
of 0.8699, along with efficient convergence within 55 
iterations. In contrast, the absence of a common anchor in 
Experiment 1 led to a notably higher error rate of 24.44% and 
lower model performance. These findings demonstrate the 
critical role of parameter tuning in enhancing the robustness 
and accuracy of signature verification systems based on 
Siamese networks. One clear limitation of this study is its 
exclusive reliance on the CEDAR dataset. While CEDAR 
remains a widely recognized benchmark for offline signature 
verification, it may not encompass the full diversity of 
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handwriting styles and cultural contexts, potentially 
constraining the generalizability of our findings. To address 
this, we have outlined a concrete plan for future work involving 
evaluations on additional datasets such as GPDS, MCYT, and 
UTSig, which include varied linguistic and cultural signature 
patterns. Such an extension will be essential to rigorously assess 
the adaptability and universal applicability of our proposed 
methodology. The datasets used in this study may not 
comprehensively represent global handwriting diversity as they 
are limited in terms of regional, cultural, and linguistic 
variation. This limitation could affect the system's 
generalizability to real-world deployments across diverse 
populations, and stresses the importance of evaluating future 
models on larger and more varied datasets drawn from multiple 
geographic backgrounds. 
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