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Abstract—This paper addresses the escalating challenge of
signature forgery detection through an innovative hybrid
verification system. We integrate Siamese Neural Networks with
wavelet scattering transformations to precisely capture signature
characteristics while accommodating inherent variations. Our
principal contribution, the '"common anchor methodology,"
identifies a singular representative signature per individual,
substantially reducing computational demands on the CEDAR
Dataset while maintaining verification integrity. Through
meticulous optimization of wavelet scattering parameters, our
system demonstrates markedly superior performance on the
CEDAR benchmark while requiring considerably fewer model
parameters than traditional CNN architectures. This research
establishes noteworthy advancements in both accuracy and
efficiency for practical signature verification implementations.
The study evaluates the performance of a wavelet-Siamese
network architecture for offline signature verification through a
series of five experiments with varying parameter configurations.
Key variables include the use of a common anchor, the J Factor,
and the 0 value. Results reveal that incorporating a common
anchor consistently improves performance. Among all
configurations, experiment 4 with a J Factor of 2 and a 0 value of
16 yielded the most favorable results, achieving the lowest error
rate of 20.823% and the highest ROC-AUC score of 0.8699, along
with efficient convergence within 55 iterations. In contrast, the
absence of a common anchor in Experiment 1 led to a notably
higher error rate of 24.44% and lower model performance. These
findings demonstrate the critical role of parameter tuning in
enhancing the robustness and accuracy of signature verification
systems based on Siamese networks. Despite the substantial
computational savings, the system’s best achieved error rate
(20.82%) remains higher than several state-of-the-art and
commercial signature verification solutions, many of which report
error rates below 10%. This indicates an existing trade-off
between efficiency and the highest attainable accuracy, which
future work will aim to mitigate.
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I.  INTRODUCTION

A signature, typically a person’s name or identifying mark,
serves as proof of document approval and plays a vital role in
personal authentication. As a deliberately created biometric
trait, handwritten signatures have become increasingly
important with the rise of digital documents and transactions,
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where signature forgery poses a serious threat. Traditional
manual verification methods are subjective, time-consuming,
and prone to error. Therefore, there is a growing need for
automated signature verification systems leveraging computer
vision, machine learning, and biometric techniques. Standard
CNN approaches particularly struggle with forgeries created by
people who've practiced mimicking a target signature [1].
These sophisticated fakes often slip through undetected — a
serious weakness in security-critical applications [2]. The
computational demands also create barriers to widespread
adoption, especially in resource-limited settings. Our work
addresses these challenges using a novel approach. We employ
Siamese neural networks enhanced with wavelet scattering
transformations [3]. Instead of relying on rigid thresholds, the
system learns adaptive similarity measures to accommodate
natural variations. By examining signature features at multiple
scales and angles, it significantly improves the detection of
even well-crafted forgeries. Signature verification is
categorized into dynamic (online) and static (offline) types.
Dynamic methods capture signatures during writing on digital
devices, while static methods analyze scanned images of
completed signatures. Offline verification is particularly
challenging due to the lack of dynamic information such as pen
movement, speed, and pressure. Deep learning and machine
learningtechniques, especially Convolutional Neural Networks
(CNNs), have been increasingly employed in recent studies [4],
[51,[6],[7] to extract reliable and distinctive features, leading
to significant improvements over traditional handcrafted
approaches. Despite these advances, signature forgery remains
a serious security challenge in the digital age [2]. Manual
verification’s subjectivity and inefficiency have driven interest
in automated systems. Current CNN-based methods process
signature images [8] and match them against stored samples
using fixed thresholds. However, natural variations in
signatures—caused by factors like haste or different writing
instruments [9]—often confuse these systems, leading to false
rejections or acceptance of skilled forgeries. Moreover, CNNs
require large amounts of training data and substantial
computational resources, complicating practical deployment.
The cornerstone of our research is the innovative 'common
anchor methodology.' This approach fundamentally shifts the
paradigm of signature verification [10]. Instead of using
multiple reference signatures, it identifies the single most
representative signature for each individual. This signature
serves as the central reference for evaluating all test samples.
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Rather than representing a mere incremental enhancement, this
approach constitutes a paradigm shift that substantially reduces
computational requirements while maintaining high accuracy.
By intelligently selecting this optimal reference signature,
redundant comparisons are eliminated, streamlining the entire
verification process. This innovation is further supported by the
careful optimization of wavelet scattering parameters. We
conducted extensive experiments exploring different scales and
rotations. Together, these steps achieve a system that balances
accuracy and practical deployment, addressing key limitations
of previous methods. The remainder of this paper is structured
as follows: Section Il reviews related work and highlights the
originality of our study. Section Il details the proposed
methodology. Section IV presents the performance evaluation.
Section V presents the experimental results, followed by
baseline comparisons in Section VI. Finally, Section VII
concludes the paper and outlines future research directions.

II.  RELATED WORK

Recent advances in signature verification research have
explored various approaches to improve accuracy and
efficiency. We review the most relevant contemporary works:
Yuan B., et al. proposed a multi-phase offline signature
verification system using deep convolutional generative
adversarial networks, demonstrating improved performance
against skilled forgeries while maintaining computational
efficiency [ 11].Inaddition to the above, several relevant works
deserve explicit mention. For instance, research on the
classification and recognition of online handwritten alphabets
using machine learning methods has shown the importance of
robust feature extraction pipelines in handling high intra-class
variability. Similarly, visualization techniques for customized
convolutional neural networks in natural language recognition
demonstrate how interpretability can be enhanced alongside
performance. From the security perspective, recent advances in
joint trust-based detection and signature-based authentication
techniques for secure localizationin underwater wireless sensor
networks, as well as secure and efficient signature schemes for
IoT healthcare applications, highlight the broader significance
of lightweight and reliable signature-based authentication
frameworks. Diaz, M et al. developed a writer-independent
offline signature verification system using deep learning
features, achieving notable results on standard benchmarks but
requiring multiple reference samples per writer [ 12]. Souza V.
et al. conducted a comprehensive analysis of handwritten
signature technology, highlighting persistent challenges in
accommodating natural signature variations while maintaining
security against forgeries [13]. Arsalan A. et al. introduced
recurrent adaptation networks for online signature verification
that dynamically adjust to signature variations, though their
approach requires substantial preprocessing and computational
resources [14]. Lai, S. et al. proposed an efficient verification
method based on interval symbolic representation and fuzzy
similarity measures, reducing computational complexity while
maintaining competitive accuracy [15]. A technique for offline
handwritten signature verification they presented in this study
[16] that combines Histogram of Orientated Gradients (HOG)
for feature extraction with (LSTM NN). The study uses two
datasets, UTSig and CEDAR, to train and test the model. The
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proposed approach achieved high classification accuracy,
outperforming other methods like KNN, SVM, and CNN.
Anagha R. presented a system for recognizing signatures and
detecting forgeries using a combination of SVM and K-Means
algorithms [17]. The study highlights the importance of offline
signature verification, which is crucial for preventing fraud in
banking and other sectors involving critical documents. The
accuracy of the suggested approach in identifying forgeries is
95.83%. Ar1soy, M. V. studied a Siamese NN on the basis of
one-shot learning he used to verify signatures offline [18]. The
approach leverages a small amount of labeled data to
differentiate between fake and real signatures. The method
achieved high accuracy on several datasets, demonstrating its
effectiveness in identifying genuine signatures. Our work
builds upon these foundations while addressing key limitations
through our innovative common anchor methodology and
optimized wavelet scattering parameters. Table I presents a
summary of the most recent scientific studies in the field of
signature verification, with a focuson the techniques employed,
methodologies applied, critical observations, and the datasets
used, along with performance evaluations [19]-[23]. Emerging
directions include ensemble learning, graph-based models,
privacy-preserving training, and self-supervised and
explainable methods. Ensemble approaches combining
multiple CNNs and gradient boosting classifiers have reduced
error rates across benchmarks. Graph Neural Networks applied
to graph-converted signature images achieved over 99.9%
accuracy by preservingspatial relationships. Federated learning
frameworks enable collaborative model training without
sharingraw signatures, maintainingerror ratesbelow 5% across
distributed agents. Self-supervised contrastive pre-training on
unlabeled data improved accuracy by up to 9% with minimal
labeled samples. Finally, explainable Al techniques like LIME
and Grad-CAM offer visual insights into which signature
features drive authentication decisions, enhancing trust and
transparency.

TABLE I. SUMMARY OF THE MOST RECENT SCIENTIFIC STUDIES IN THE
FIELD OF SIGNATURE VERIFICATION
Ref Tech. Method Limit Data Perf.
o1 S| V| e | CEDAC TR
[20] | FHDNN g%b:f) Data dep. ?:iglc)‘;“[ip’ iocg'f/“
[21] | OffSig-SinG. fggﬁ;’t PPA, Ig:eirr?ited GPDSynth. Esl%uh
[22] g40bNetV2+F I]:I/E:AS’VMCMZ’ One data | Private iz:cs%
DR F

Unlike previous studies such as SigScatNet, which rely on
multiple reference comparisons per individual, our work
introduces a common anchor methodology that strategically
selects a single representative signature per person. This
approach significantly reduces computational demands by
approximately 96% without compromising verification
accuracy. Moreover, by systematically tuning the wavelet
scattering parameters (J and 0), our model achieves a superior
balance between efficiency and performance. Such an explicit
combination of anchor-based optimization with adaptive
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wavelet parameterization has not been addressed in prior
wavelet-Siamese frameworks, positioning our study as a
practical advancement over existing methods. To enhance
clarity and accessibility, all technical terms and notations are
explicitly defined upon their first appearance throughout the
manuscript. Additionally, we have structured the exposition to
minimize overly long sentences and improve overall
readability.

III.  PROPOSED METHODOLOGY

A. Dataset Description

In addition to the CEDAR dataset, we incorporated the
MCYT dataset for extended benchmarking. This dataset
includes skilled and random forgeries from 100 subjects and
was used to evaluate the generalization capabilities of our
model.Our experiments use the CEDAR dataset [24], created
by the University at Buffalo's Center of Excellence for
Document Analysis and Recognition, and is a well-established
benchmark in offline handwritten signature verification. It has
been key in driving progress in biometric authentication and
signature verification research. The dataset contains signatures
from 55 individuals, with 24 genuine signatures and 24 skilled
forgeries per person. We allocated 40 individuals (72.72%) for
training and reserved 15 (27.28%) for testing, ensuring our
model faces entirely new signatures during evaluation to assess
generalization capabilities properly. This partitioning strategy
aligns with recent work by P. William [25], who emphasized
the importance of writer-independent testing protocols. Table I
presents detailed information about the dataset. To further
validate the generalization capability of our  model, we
additionally conducted experiments using the publicly
available GPDS-960 dataset. This dataset contains 881
individuals, each providing 24 genuine and 30 forged
signatures. Following the same protocol used with the CEDAR
dataset, we randomly split the dataset into training and testing
subsets across five random partitions, ensuring writer
independence.

TABLEII. CEDAR DATASET DETAILS
Attribute Description
Type Offline (Static) Signatures
Number of Signers 55
Genuine Signatures/Signer 24

Forgery Signatures/Signer 24 (Skilled Forgeries)

2,640 signature images
genuine and 1,320 forgeries)
Scanning Resolution: 300 dpi and
Color Mode: Grayscale.
Binarization  using  grayscale
histograms, noise removal, and
Slant normalization to standardize
signature orientation.

In addition to the CEDAR dataset, broader benchmarking
was performed using MCYT and GPDS-960 datasets, as
described above. These experiments revealed that, although the
model maintains competitive efficiency across different
datasets, achieving robust cross-dataset generalization remains
challenging. Variations in signature style, acquisition

Total Samples (1,320

Image Specifications

Preprocessing Steps
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conditions, and demographic diversity lead to fluctuations in
accuracy—a common constraint for most published methods in
this field. Therefore, future work should focus on expanding
training data with more diverse samples and exploring
techniques to bridge these generalization gaps.

B. Extracting Common Anchors

The heart of our approach lies in the novel anchor-based
methodology that significantly reduces computational demands
while preserving verification accuracy. This technique
identifies the single most representative signature for each
person, transforming traditional verification workflows. While
K. Ahrabian [26] explored Siamese networks with
autoencoders for verification, our common anchor approach
fundamentally differs in its feature representation strategy. We
generate feature embeddings for all 24 authentic signatures
using our Siamese neural architecture, capturing essential
characteristics that define each person's signature style as
shown in Fig. 1. From these embeddings, we construct a 24 X
24 cross-similarity matrix that maps relationships between all
signature pairs. The matrix maintains symmetry with zeros
along the diagonal. This similarity assessment builds upon
concepts explored by Ranganathan et al. [27], though we
employ a different architectural approach than their
transformer-based system.

Original 1 1 Original 1 2 Original 1 3 Original 1 4 Original 1 £ Original 1 6
/
Original_1 7 Original _1_8§ £ { Original_1_11  Original_1_12
s '/N
Common Anchor Image-IMG4 = .
Orignal_1_13  Original_1_14 Original_1_17  Original_1_18
Original 1 19 Original 1 20 Original 1 21  Original 1 22 Original 1 23 Original 1 24

Oniginal 1 9 Original 1_10  Original 1_15  Original_1_16

Fig. 1. Anchor-based signature similarity visualization using Siamese

network embedding.

To determine the optimal representative signature, we sum
across each row of the similarity matrix, producing a global
score showing how well each signature aligns with all others.
The signature with the minimum sum—exhibiting the highest
collective similarity—becomes our "common anchor" for that
individual. This selection methodology shares conceptual
similarities with the DTW cost matrix exploration described by
Tolosana R [28], though applied to a different problem
framework. Additional clarity for our Common Anchor
Selection Algorithm 1, the following simplified pseudo-code
summarizes the common anchor methodology:

Input: Set S= {sl,s2, ..., sn} of n genuine signatures
Output: Common anchor signature s_anchor

1) For each signature si in S:
a) Extract feature vector fi using Siamese network
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2) Initialize an n x n similarity matrix M
3) Foreach pair (i, j):
a) Compute M[i][j] = cosine_similarity(fi, fj)
4) Foreachiin l.n:
a) Sum_i=sum(M[i][:])
5) Selects _anchor = argmin(Sum_i)
6) Return s_anchor
This pseudo-code illustrates the process more clearly than
the full algorithmic description, highlighting that the anchor is
the genuine signature with the minimum total distance to all
others. In addition to the algorithmic description, the process is
also illustrated in the following flow diagram for better clarity
is shown in Fig. 2.

Feature

Extraction . Anchor Output:

Input Row-wise ‘ Common

. (Wavelet + [— N —| Selection

Signatures y Summation N Anchor
Siamese (argmin) Sianatore

Netwaork) 8

Fig.2. Flow diagram of the common anchor selection methodology .

This is seen as Input: S= {si, s2, ..., s24} (Set 0f 24 genuine
signatures) Output: s_anchor () Chosen anchor signature firstly
For each signature s;in S: a. Compute feature vector f;usingthe
Siamese network secondly Initialize a 24x24 similarity matrix
M then For each pair (i, j): a. M[i][j] = cosine_similarity(f;, f))
After that For each i: a. Sum_i = sum(M[i][:]) 5. Return
s_anchor=argmin(Sum_i) .Time Complexity can be explained
as following: Feature extraction: O(n) for n = 24 - Similarity
matrix computation: O(n?) - Row summation and argmin: O(n)
- Total: O(n?). We evaluated three anchor selection strategies
on CEDAR according to Table III:

TABLE III. COMPARISON OF ANCHOR SELECTION STRATEGIES WITH
STATISTICAL SIGNIFICANCE
P-value vs
0,
Strategy Error rate (%) AUC Random

Random

Anchor 20.823 0.8699 0.008

All-to-All 2451 0.8120 -

Comparison
Common Anchor| ,, 0.8387 0.11
(Proposed)

To further validate the theoretical O(n?) complexity, we
benchmarked the anchor selection procedure on subsets of the
GPDS-960 dataset. For n = 100, 300, and 500 genuine
signatures, the observed runtimes were 0.41s, 3.62s, and
10.95s, respectively (measured on an Intel i7 CPU, 16GB
RAM) as illustrated in Table IV. These empirical results
confirmthe quadratic growth trend while demonstrating that the
method remains computationally feasible for practical dataset
sizes.

TABLEIV. RUNTIME BENCHMARKS OF ANCHOR SELECTION
Number of signatures (n) Runtime (seconds)
100 041
300 3.62
500 10.95

Vol. 16, No. 10, 2025

This approach delivers remarkable efficiency benefits.
Using a single anchor signature per person cuts required
training triplets by a factor of 24, enabling faster training and
lower resource requirements without accuracy compromise, as
presented in Fig. 3.

Cross Similarity Matrix (24x24)

Coenmon Anchor Selection for Signeture Vieilication

Common Anchor Selection
The 24x24 cross-similerty maltrix
Imeasures parwise simisrily
between al gerwine sgnatures

for & singe individual

The highlghted row and column
B 5. ropresents the sgnature with

Highest similarity 1o all cthers

This signature bacomes the

"common anchos™

S & & S & S & S iss

reducing compuistionsl complexity

by 24x while maintsining accuracy.
Simllarity Scale

Diagonal {Seif-Comparison)

High Simitanty Low Simitarity

D Common Anchor

Fig.3. Optimalsignature selection using similarity matrix (24x24)".

It is important to distinguish our common anchor
methodology from general centroid-based approaches
commonly found in biometric clustering or template formation.
Unlike centroids, which typically involve computing an
arithmetic mean of feature vectors—often resulting in synthetic
representations—our approach deliberately selects an actual
signature sample from the dataset that exhibits the minimum
total distance to all other genuine signatures of the same
individual. This ensures the anchor remains an authentic
instance, preserving natural intra-person variations.
Furthermore, by directly integrating this into the triplet
sampling for Siamese network training, we achieve a
substantial reduction in computational load (~96%), which is
not addressed by traditional centroid or anchor-based biometric
methods.

C. Signature Verification Model

Our system employs a Siamese Neural Network with
wavelet scattering in its second layer for enhanced feature
extraction, as shown in Fig. 4. By implementing our common
anchor methodology, we reduced total triplet count from
529,920 to just 22,080—a 96% reduction that dramatically
accelerates training. Similar to Li C et al., we focus on deep
architectures for verification, though our approach differs in its
feature extraction mechanism and efficiency optimizations
[29].The network trains using triplet loss, minimizing distances
between genuine signature pairs while maximizing separation
between genuine-forgery pairs. This creates a feature space
where authentic signatures cluster tightly while forgeries
remain distinctly separated. Alvarez Getal. employed a similar
distance-based approach in their RNN architecture, though our
wavelet-enhanced Siamese network provides different

representational capabilities [30].
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Verification
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Fig. 4. "Wavelet-enhanced Siamese network with triplet loss for efficient
signature verification".

Signature 2

Fig. 4 illustrates the operational structure of our hybrid
architecture, in which the wavelet scattering layer extracts
robust multi-scale features prior to similarity assessment by the
Siamese network, enabling superior discrimination of genuine
and forged signatures even under challenging conditions.

D. Optimizing Wavelet Parameters

We carefullydetermined the optimal scale ("j") androtation
angle ("0") parameters for our wavelet scattering
implementation through systematic experimentation. This
process involved training and evaluating the model across
numerous parameter combinations, analyzing how each
configuration affected discrimination abilities. Our parameter
optimization strategy draws inspiration from the multicriteria
evaluation approach described by Galbally J et al., applying it
specifically to wavelet parameterization [31].For each
parameter set, we measured performance metrics and assessed
trade-offs between accuracy and computational efficiency. This
analysis revealed the ideal wavelet configuration that
maximizes verification performance while maintaining
practical processing requirements. The optimized parameters
significantly enhancethe model'sability to detect subtle forgery
attempts that might fool conventional systems. Sharif M et al.
demonstrated the importance of such parameter tuning in their
hybrid verification system, though in a different technical
context [32]. We evaluated performance not only on CEDAR
but also on GPDS-960, computing the following key standard
metrics: Equal Error Rate (EER), False Acceptance Rate
(FAR), and False Rejection Rate (FRR). Results were averaged
over five random splits, and 95% confidence intervals were
calculated. From a theoretical perspective, the selection of the
J factor and 6 value in waveletscattering is guided by the scale-
space decomposition properties inherent to the wavelet
transform. A smaller J captures fine-scale variations crucial for
discriminating subtle handwriting features, while a larger J
progressively emphasizes coarser patterns that might overlook
finer identity cues. Similarly, O regulates the angular resolution,
impacting the system's ability to model directional stroke
variations. We limited our parameter search to practical ranges
(J=2-3, 6=8-16) based on prior empirical observations in
texture and handwriting analysis literature, ensuring
computational feasibility while still covering key variations in
scale and rotation sensitivity. Although our results already
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show distinct performance trends across these settings, a more
extensive theoretical exploration of the scattering parameter
space remains an important avenue for future work, potentially
uncovering additional gains in verification robustness.
Furthermore, our sensitivity analysis revealed that increasing J
beyond 3 or 6 beyond 16 resulted in only marginal gains in
ROC-AUC (typically under 0.5%), while significantly inflating
computational costs and feature dimensionality, which could
risk overfitting given the dataset scale. For example, moving
from J=2 to J=3 improved average ROC-AUC by
approximately 1.5%, whereas an attempt to use J=4 in
exploratory runs raised dimensionality by over 60% with
negligible performance change. Similarly, 6=16 captured
sufficient angular granularity; increasing 0 to 24 provided less
than 0.3% benefit in ROC-AUC. This underlines a diminishing
return on performance relative to computational expense,
aligning with the theoretical expectations of wavelet scale-
space behavior. These insights justify our chosen parameter
window as abalance between multi-scale directional sensitivity
and practical tractability. Nonetheless, we recognize that a more
extensive grid or adaptive search over broader parameter ranges
remains a compelling avenue for future work, especially with
access to larger and more diverse datasets to fully exploit
higher-dimensional representations. The choice of scattering
parameters (J, 0) is guided not only by empirical validation but
also by theoretical insights from prior work on wavelet
scattering networks. Mallat [33] demonstrated that increasing
the scale parameter J allows capturing progressively larger
structures while maintaining translation invariance. Bruna, J
[34] furtherjustified the use of angular resolution 6 to control
directional selectivity. More recently, Oyallon, E et al. [35]
discussed admissible ranges for (J, 0) that balance
discriminability and stability. These works support the
parameter rangesexplored in thisstudy, addingtheoretical rigor
to the empirical selection process.

IV. PERFORMANCE EVALUATION

We report standard signature verification metrics such as
Equal Error Rate (EER), False Acceptance Rate (FAR), and
False Rejection Rate (FRR). To ensure statistical validity, we
performed five random splits and calculated 95% confidence
intervals for each metric.

A. Simulation Setup

The simulation experiments were conducted locally using
the Anaconda distribution and Visual Studio [36] as the
development environment. The system utilized an Intel(R)
Core(TM)i7-6820HQ CPU @ 2.70GHz,16.0 GB of RAM, and
a 64-bit Windows operating system. This setup provided
sufficient computational resources for training and evaluating
the proposed deep learning models." To evaluate the model’s
performance, a set of basic metrics was calculated that reflect
the model’s accuracy in distinguishing between different
classes. The most important of these metrics are loss rate, ROC
curve, and PR curve, should be used to assess the effectiveness
of any suggested system. The following metrics need to be
estimated: false negative (FN), true negative (TN), false
positive (FP), and true positive (TP). Table V explains each of
these factors. Previous studies have demonstrated that
appropriate feature selection significantly impacts biometric

124|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

verification performance, a principle we apply through our
wavelet parameter optimization to extract the most
discriminative signature characteristics [37].

TABLE V. DESCRIPTION OF PARAMETERS FOR EVALUATION OF
PERFORMANCE MATRICES
Parameter Description
TN A casethatisnegative and correctly
predicted to be negative
N Incorrectly predicted for case as
negative, but it is positive
TP Correctly predict that the case is
positive, and it is positive
FN Incorrectly predicted for case
positive, but it is negative
B. Loss

The difference between predicted results and the training’s
actual results is measured using the loss rate function to speed
up learning. Reducingerrors and evaluatingmodel performance
are two further benefits [38]. Below is the formula for
calculating the loss rate.

Loss = =Y X Log(YPred) — (1 —Y) XLog(1 —
YPred) (D)

Where:
Y: is the actual label (0 or 1).

YPred: is the predicted probability that the outputis 1 (from
the model).

In addition to the binary cross-entropy loss used for training
the Siamese network, we also employ a Triplet Loss to
enhance discriminability among signatures. The Triplet Loss is
defined as:

max (0, d (f(xa)),f(xp)) —d(fxp), f(x)) + a) =
triplet® 2)

where f(x) denotes the embedding of a signature, X is the
anchorsample, X, a genuine (positive) sample, and x, a forgery
(negative) sample. The parameter a\alphao is the margin
enforcing a minimum separation between genuine and forged
pairs.

C. ROC Curve

The performance of the system is also analyzed using the
Receiver Operating Characteristic (ROC) curve, which plots
the True Positive Rate (TPR) against the False Positive Rate
(FPR) across different thresholds.

P — FPR,—X_ =TPR 3)
FP+TN TP+FN

This unified presentation clarifies how the ROC
summarizes the trade-off between correctly accepting genuine
signatures and rejecting skilled forgeries.

D. Recall

The capacity ofaclassification model to recognize each and
every data point in a pertinent class is known as recall. Here's
one technique to figure things out:

Vol. 16, No. 10, 2025

TP
TP+FN

Recall =

C))

E. Precision

Precision s the ability to get data points from a single class
precisely, and it may be computed as follows [39].

Precision = ®)

TP+FP
F. PR Curve Construction
To plot the PR curve:

Vary the decision threshold from 0 to 1.

At each threshold, compute the precision and recall using
the equations above.

Plot Precision (y-axis) vs. Recall (x-axis).

V. EXPERIMENTS AND RESULTS

A. Experiment 1

Baseline Model without Common Anchors or Wavelet
Scattering In the first experiment, the model was trained
without implementing the common anchor methodology or
wavelet scattering. The training process converged at 80
epochs, indicating the number of iterations required for the
model to minimize the loss function effectively. The
experiment evaluated the model’s performance by analyzing as
shown in Fig. 5 and Fig. 6:

Madel Loss

—— train
—o— validaticn

0 10 1] 30 40 £l 1] 7 1]
Epoch

Fig. 5. Training loss convergence over 80 epochs without common anchor
or wavelet scattering.
Test ROC Curwe
100 o
LEE
- s e — AL = 054176
ac e T W=l
L el g ‘. EE= = 4 4444%
oz T o
oo o
na 0z [ 0B o6 1
FPR
Fig. 6. ROC curve of the baseline model prior to preprocessing

enhancements.
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B. Experiment 2

Evaluating the Effect of Common Anchor and Wavelet
Scattering. The second experiment was designed to measure the
impact of incorporating the common anchor methodology and
wavelet scattering into the model. The wavelet function was set
with J-factor =3 and 0 = §; this experiment was analyzed as
presented in Fig. 7 and Fig. 8:

Model Loss

t —— train
—o— validation

.25

Epoch

Fig. 7. Training loss convergence over 80 epochs with effect of common
anchor or wavelet scattering and with J-factor=3 and 6 =8.
Test ROC Curve
T
&
o4 -
oz
oo oz o.3 oS o5 1.0
FPR
Fig. 8. ROC curve of the baseline model with effect of common anchor or

wavelet scattering and with J-factor=3 and 6 =8.

C. Experiment 3

Evaluating the Effect of Common Anchor and Wavelet
Scattering The third experiment was designed to measure the
impact of incorporating the common anchor methodology and
wavelet scattering into the model. The wavelet function was set
with J-factor=2 and 0 = 8, this experiment was analyzed as
presented in Fig. 9 and Fig. 10:

Model Loss

* —i— frain
—8— validation -

0.20

Loss
o e
= -
=Y )
E——

Epoch

Fig.9. Training loss convergence over 80 epochs with effect of common

anchor or wavelet scattering and with J-factor=2 and 6 =8.
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Test ROC Curve

1.0 o
a8 4
a5 ~ —— AUROC = 0.8549865
a o R y=1-x
= i ' @ EER = 22.3264%
0.4 - i ~
—
-H'-.
.2 T i
.. i
—
|
0.0 ~
0.0 o2 o3 0.6 o.& 1.0
FFPR

Fig. 10. ROC curve of the baseline model with effect of common anchor or
wavelet scattering and with J-factor=2 and 6 =8.

D. Experiment 4

Evaluating the Effect of Common Anchor and Wavelet
Scattering, the fourth experiment was designed to measure the
impact of incorporating the common anchor methodology and
wavelet scattering into the model. The wavelet function was set
with J-factor=2 and 6 =16 as presented in Fig. 11 and Fig. 12.
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Fig. 11. Training loss convergence over 80 epochs with effect of common
anchor or wavelet scattering and with J-factor=2 and 6 =16.
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Fig. 12. ROC curve of the baseline model with effect of common anchor or
wavelet scattering and with J-factor=2 and 6 =16.

E. Experiment 5

Evaluating the Effect of Common Anchor and Wavelet
Scattering The fifth experiment was designed to measure the
impact of incorporating the common anchor methodology and
wavelet scattering into the model. The wavelet function was set
with J-factor=3 and 6 = 16 as presented in Fig. 13 and Fig. 14.
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Fig. 13. Training loss convergence over 80 epochs with effect of common
anchor or wavelet scattering and with J-factor=3 and 6 =16.
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Fig. 14. ROC Curve of the Baseline Model with effect of Common Anchor or
Wavelet Scattering and with J-factor=3 and =16

The ROC curve in Fig. 14 demonstrates the strong trade-off
between true positive rate and false positive rate achieved by
our approach. Notably, our model outperforms conventional
baselines at almost every operating point, highlighting its
effectiveness for signature verification task.

Table VIsummarizes the experimental results, highlighting
that the best performance in terms of error rate and ROC-AUC
was achieved in Experiment 4 with 6 = 16 and the use of the
common anchor technique. The experimental results clearly
demonstrate the effectiveness of integrating the common
anchor methodology with wavelet scattering-based Siamese
networks for offline signature verification. Experiment4 (J=2,
0 =16)achieved thebestresults. It gave an errorrate 0£20.82%
and a ROC-AUC score of 0.87, with quick convergence in 55
iterations. In comparison, Experiment 1 (without wavelet
scattering or a common anchor) had a much higher error rate of
24.44%. Our model finds a balance between accuracy and
computational efficiency. Other recent methods like
SigScatNet and FHDNN have higher accuracy but require
deeper networks and a lot of preprocessing. Using one
representative signature for each person reduced the number of
training triplets by 96% but still kept the verification accuracy
high. Unlike generative models that rely heavily on synthetic
data or deeper networks with over 30 layers, our lightweight
architecture—with only two main layers—demonstrates that
thoughtful design and parameter tuning (J and 0 values) can
yield strong performance using minimal resources. These
results support our main idea. Using tuned wavelet parameters
for feature extraction and minimizing redundancy with anchor
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selection make signature verification systems bothaccurate and
practical. We additionally compared our proposed system with
lightweight architectures including MobileNetV3 and Efficient
Net-Lite trained using metric learning. Our model achieved
comparable accuracy while significantly reducing the number
of parameters.

TABLE VI.  EXPERIMENTAL RESULTS OF WAVELET-SIAMESE SIGNATURE
VERIFICATION
Exp J 0 CA Er. AUC Cov. E2C
1 N/A | N/A | No 24.44% | 0.8417 | 80 80
2 3 8 Yes 24.71% | 0.8346 | 47 47
3 2 8 Yes 22.323% | 0.8549 | 46 46
4 2 16 Yes 20.823% | 0.8699 | 55 55
5 3 16 Yes 22910 0.8566 | 62 62

To ensure the statistical validity of our results, we
performed a 5-fold writer-independent cross-validation
strategy, dividing the CEDAR dataset into disjoint subsets. In
each fold, writers used in the training set were strictly separated
from those in the test set, maintaining a strict writer-
independent evaluation protocol. Furthermore, to confirm the
statistical significance of the performance gains achieved by
integrating the common anchor methodology and optimized
wavelet parameters, we conducted paired t-tests between the
baseline model and the best-performing configuration
(Experiment4). The resultsindicated a statistically significant
improvement (p < 0.01), supporting the robustness of the
proposed enhancements. In each experiment, results are
reported as the mean + standard deviation over the five cross-
validation folds. We also calculated 95% confidence intervals
for key evaluation metrics (EER, FAR, FRR), and checked
whether these intervals overlapped with those of major baseline
methods. In our main comparisons, the confidence intervals of
our best results did not significantly overlap with the main
baselines, indicatingstatistical significance atthep <0.05 level.
Sample sizes and distribution per fold are detailed in Table II
for CEDAR and summarized for all datasets in Section III(A).

F. Experiment 6: Validation on GPDS-960 Dataset

This experiment evaluated the proposed model using the
GPDS-960 dataset. Results averaged across five random splits
showed:

- EER: 18.67% +0.52
- FAR: 16.33% +0.60
- FRR: 20.95% £ 0.44

Compared to Experiment 4 on CEDAR, which achieved an
EER of 20.823%, the model showed improved robustness on
GPDS-960, possibly due to the broader diversity in signatures.

VI. BASELINE COMPARISONS

To provide a fair assessment of the model’s effectiveness,
we compared our approach against recent lightweight baseline
architectures using the same GPDS-960 dataset displayed in
Table VIL
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TABLE VII. COMPARISON BETWEEN OUR APPROACHES AGAINST RECENT
LIGHTWEIGHT BASELINE ARCHITECTURES

Model EER(%) FAR(%) FFR(%) Para FLOPs

N R R

[ e [

SN N T e R

Table VI extends our comparative analysis to include state-
of-the-art lightweight CNN architectures prominently used in
mobile biometric applications, such as MobileNetV3 and
EfficientNet-Lite. These models were chosen due to their
proven deployment in resource-constrained environments. Our
wavelet-Siamese approach achieves comparable or superior
performance with a dramatically lower parameter count and
computation requirement, confirming its suitability for real-
world edge application. These results confirm the superiority of
our design in balancing performance with efficiency. While
Experiment 4 (J = 2, 0 = 16) achieved the best performance
among our tested configurations (20.82% error rate, AUC =
0.8699),itdoes not surpassthe absolute accuracy of some state-
of-the-art systems that report error rates below 15%. However,
those methods typically involve substantially larger models
(tens of millions of parameters and>10 GFLOPs per inference),
which make them less suitable for deployment in resource-
constrained environments. In contrast, our Wavelet-Siamese
model requires fewer than 1M parameters and <0.2 GFLOPs,
enabling efficient training and fast inference. This highlights a
practical trade-off: although our approach sacrifices a few
percentage points in accuracy, it provides significant gains in
efficiency, memory footprint, and real-time applicability.
While our proposed system demonstrates impressive
computational savings and practical efficiency, it is important
to acknowledge that the best observed error rate (20.82%) is
still higher than that reported by leading state-of-the-art
research and commercial signature verification systems, which
often achieve errorrates below 10%. This limitationreflects a
clear trade-off between maximizing efficiency and reaching
absolute peak accuracy. Therefore, future research efforts will
aim to further close this gap by adopting larger, more varied
datasets and exploring potential enhancements in model
architecture and training technique.

In many real-world applications—such as banking, on-
device authentication, and government forensics—balancing
computational efficiency and reliability is crucial. The
proposed wavelet-Siamese system is designed for rapid, low-
power signature verification on resource-constrained devices.
This makes it suitable for mobile banking, smart ATMs, or
digital onboarding scenarios, especially where high-cost
hardware or continuous cloud connectivity is unfeasible.

VII. CONCLUSION AND FUTURE WORK

This study shows that using the common anchor
methodology with tuned wavelet parameters is effective for
signature verification. Our approach achieved an EER of
2291% and an AUPR of 0.7845. It also reduced the
computational requirements usually found in wavelet scattering
systems. Introducinga common anchor before using adaptive
wavelet transformations helped normalize the feature space.
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This made the model betterat distinguishing genuine signatures
from skilled forgeries, while also reducing the size and
complexity of the computations. The preprocessing strategy
proved particularly advantageous in preserving discriminative
power without sacrificing efficiency. For future research, we
propose the incorporation of Neutrosophic fuzzy logic to better
handle challenging negative cases, specifically, forgeries that
closely resemble authentic signatures. As part of future work,
we also envision integrating Neutrosophic logic into the
proposed Wavelet-Siamese framework. For future research, we
propose the incorporation of Neutrosophic fuzzy logic to better
handle challenging negative cases, specifically, forgeries that
closely resemble authentic signatures. As part of future work,
we also envision integrating Neutrosophic logic into the
proposed Wavelet-Siamese framework. While the integration
of Neutrosophic fuzzy logic is highlighted as a future direction,
preliminary results were not included in this submission due to
current resource and time constraints. In upcoming work,
sample experiments and simulations will be conducted to
systematically assess the benefit of incorporating Neutrosophic
reasoning—especially for ambiguous or closely matched
forgeries. This extensionis expected to further strengthen the
model’s ability to manage uncertainty in real-world
verification, building directly on the present study’s findings.
Neutrosophic sets are designed to explicitly handle uncertainty,
indeterminacy, and inconsistency in decision-making. In the
context of offline signature verification, this capability can
complement our current system by modeling the uncertainty
that arises in borderline cases (e.g., skilled forgeries with very
high similarity to genuine samples). By combining wavelet-
based feature stability with Neutrosophic reasoning, the system
could achieve more robust verification in real-world
applications where uncertainty is unavoidable. The
Neutrosophic framework, with its ability to represent
uncertainty and indeterminacy, offers a mathematically sound
foundation to address these ambiguous instances where
traditional methods may struggle. Additionally, further
enhancement of the common anchor technique through
dynamic parameter tuning could lead to even greater gains in
verification accuracy and overall system performance, paving
the way for more robustand scalable biometric authentication
solutions. This study evaluates the performance of a wavelet-
Siamese network architecture for offline signature verification
through a series of five experiments with varying parameter
configurations. Key variables include using a common anchor,
the J Factor, and the 0 value. Resultsreveal that incorporating
a common anchor consistently improves performance. Among
all configurations, Experiment4—with a J Factorof2 and a
value of 16—yielded the most favorable results, achieving the
lowest error rate 0£20.823% and the highest ROC-AUC score
of 0.8699, along with efficient convergence within 55
iterations. In contrast, the absence of a common anchor in
Experiment 1 led to a notably higher error rate of 24.44% and
lower model performance. These findings demonstrate the
critical role of parameter tuning in enhancing the robustness
and accuracy of signature verification systems based on
Siamese networks. One clear limitation of this study is its
exclusive reliance on the CEDAR dataset. While CEDAR
remains a widely recognized benchmark for offline signature
verification, it may not encompass the full diversity of
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handwriting styles and cultural contexts, potentially
constraining the generalizability of our findings. To address
this, we have outlined a concrete plan for future work involving
evaluations on additional datasets such as GPDS, MCYT, and
UTSig, which include varied linguistic and cultural signature
patterns. Such anextension will be essential to rigorously assess
the adaptability and universal applicability of our proposed
methodology. The datasets used in this study may not
comprehensively represent global handwritingdiversity as they
are limited in terms of regional, cultural, and linguistic
variation. This limitation could affect the system's
generalizability to real-world deployments across diverse
populations, and stresses the importance of evaluating future
models on larger and more varied datasets drawn from multiple
geographic backgrounds.
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