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Abstract—Detecting rare and subtle anomalies is critical for 

ensuring cybersecurity, financial integrity, and operational 

safety. High-dimensional features, severe class imbalance, and 

large data volumes often challenge conventional intrusion 

detection methods. This study presents NetDAIL, a hybrid 

framework that integrates deep feature learning using a 

denoising autoencoder, anomaly scoring through Isolation 

Forest, and classification via LightGBM to address these 

challenges. To evaluate its effectiveness, the proposed framework 

was tested on two widely used benchmark datasets: NSL-KDD 

for controlled-scale experimentation and KDD Cup 1999 for 

large-scale evaluation. NetDAIL achieved an AUC of 0.998 on the 

NSL-KDD dataset and 0.990 on the KDD Cup 1999 dataset, 

demonstrating strong discriminative capability across different 

traffic volumes and attack patterns. Experimental results 

confirm the model’s high detection accuracy, scalability, and 

generalization across diverse network intrusion scenarios. These 

findings highlight NetDAIL as a practical and reliable solution 

for real-world anomaly detection, capable of efficiently handling 

both small- and large-scale environments while maintaining 

robust and effective performance in operational settings. 
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I. INTRODUCTION 

The rapid evolution of digital technologies—such as the 
Internet, smartphones, and robotics—has profoundly 
transformed modern society, driving unprecedented levels of 
connectivity and data exchange. With the exponential growth 
of information flow and the rising demand for real-time, data-
driven decision-making, ensuring cybersecurity has become a 
global priority. Recent estimates suggest that the financial 
impact of cybercrime could reach $10.5 trillion annually by 
2025, underscoring its status as one of the most significant 
threats to economic stability and national security worldwide 
[1]. Increasingly sophisticated attacks, including malware, 
distributed denial of service (DDoS), phishing, and advanced 
persistent threats (APTs), target individuals, enterprises, and 
critical infrastructures [2]. These developments necessitate 
robust and intelligent defense mechanisms that can effectively 
protect modern networks from evolving cyber risks. 

Anomaly detection has emerged as a fundamental approach 
in cybersecurity due to its ability to identify patterns that 
deviate from expected system behavior. By flagging suspicious 
deviations, anomaly detection has proven effective across 

multiple domains, including fraud prevention, healthcare 
monitoring, and, most notably, network intrusion detection [3]. 
Unlike signature-based detection, which requires prior 
knowledge of attack patterns, anomaly detection can reveal 
previously unseen or subtle intrusions. However, real-world 
network environments pose unique challenges: anomalies are 
often rare, subtle, and overshadowed by highly imbalanced 
traffic distributions, making them difficult to detect with 
traditional techniques [4]. Additionally, the growing volume, 
velocity, and variety of network data further complicate 
detection tasks and demand scalable, high-performance models 
[5]. 

Conventional intrusion detection systems (IDS) that rely on 
rule-based signatures or statistical models struggle when faced 
with high-dimensional, noisy, and dynamic datasets [6]. In 
response, machine learning (ML) and deep learning (DL) 
methods have gained prominence for their ability to capture 
complex, nonlinear data patterns. Among these, autoencoders 
have demonstrated strong potential for anomaly detection by 
learning compressed latent representations and using 
reconstruction error as a reliable anomaly score [7]. 
Nevertheless, existing approaches often suffer from limitations 
such as poor generalization, high computational cost, and 
particularly low recall for rare yet critical attack categories like 
User-to-Root (U2R) and Remote-to-Local (R2L) [8]. 

To overcome these challenges, this study introduces 
NetDAIL, a hybrid intrusion detection framework designed for 
binary anomaly detection (Normal vs. Attack). The framework 
integrates a denoising autoencoder for deep feature extraction, 
an Isolation Forest for anomaly scoring, and a LightGBM 
classifier for final decision-making. Advanced preprocessing 
techniques, including normalization, one-hot encoding, and 
SMOTEENN balancing, are incorporated to enhance 
robustness against class imbalance and noise in large-scale 
traffic datasets. While the primary objective of this study is to 
strengthen binary classification performance, NetDAIL is 
inherently scalable and adaptable to multiclass intrusion 
detection tasks, which may be explored in future work. The 
main contributions of this study are summarized as follows: 

1) Hybrid architecture: We propose a novel hybrid model 

that combines unsupervised anomaly scoring with supervised 

gradient-boosted classification, improving detection accuracy 

and robustness in binary anomaly detection settings. 

*Corresponding author. 
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2) Optimized preprocessing pipeline: We design an end-

to-end pipeline that addresses the challenges of high-

dimensional, imbalanced network traffic data through 

normalization, categorical encoding, and SMOTEENN-based 

balancing. 

3) Comprehensive evaluation: We conduct extensive 

experiments on benchmark datasets to rigorously assess the 

model’s performance in binary intrusion detection (Normal vs. 

Attack), with special emphasis on robustness against imbalance 

and the ability to capture subtle, hard-to-detect anomalies. 

Although the present focus is binary classification, the 

proposed framework is scalable toward multiclass extensions 

in future research. 

The proposed NetDAIL framework is designed not only to 
achieve high accuracy but also to directly address the persistent 
challenges identified in intrusion detection systems. First, the 
use of a denoising autoencoder enables the model to effectively 
handle the problem of high-dimensional and noisy network 
traffic by extracting compact and informative latent 
representations. Second, to overcome the severe class 
imbalance problem and improve the detection of rare attack 
types, SMOTEENN is employed during preprocessing, which 
enhances minority class representation and reduces noise from 
the majority class. Third, integrating the Isolation Forest adds a 
strong anomaly detection component capable of identifying 
subtle and previously unseen deviations in network traffic. 
Finally, LightGBM provides a fast, scalable, and generalizable 
classification stage, allowing the entire pipeline to maintain 
high performance even when applied to large-scale datasets. 
By combining these components in a structured manner, 
NetDAIL directly responds to the core technical challenges of 
feature complexity, data imbalance, rare attack detection, and 
scalability. 

Although NetDAIL combines both unsupervised and 
supervised components, it is important to clarify that the final 
classification stage is supervised, as LightGBM is trained on 
labeled data (Normal vs. Attack). The unsupervised 
components—namely the Denoising Autoencoder and the 
Isolation Forest—are employed as feature learning and 
anomaly scoring mechanisms rather than as standalone 
classifiers. This design enables the model to leverage the 
representational power of unsupervised learning while 
maintaining the decision accuracy and interpretability of 
supervised classification. Therefore, the hybrid nature of 
NetDAIL refers specifically to the integration of different 
learning paradigms within a single detection pipeline, not to a 
fully hybrid training procedure. 

The remainder of this study is organized as follows: 
Section II reviews related work on anomaly and intrusion 
detection. Section III describes the proposed NetDAIL 
methodology in detail. Section IV presents experimental results 
and evaluation. Section V provides a discussion of findings and 
performance analysis. Finally, Section VI concludes the study 
and outlines future research directions. 

II. RELATED WORKS 

Recent years have witnessed an increasing interest in the 
development of intelligent intrusion detection systems (IDS) 
that can cope with high-dimensional network data and severe 
class imbalance. Prior studies can be broadly categorized into 
four major directions: reinforcement learning–based methods, 
deep learning and hybrid architectures, generative and 
adversarial approaches, and ensemble or optimization-driven 
techniques. 

A. Reinforcement Learning-Based Approaches 

Wang et al. [9] introduced RL-NIDS, a reinforcement 
learning-based IDS that leverages explicit and implicit feature 
interactions through a combination of supervised neural 
network representation learning and unsupervised feature value 
representation learning. The system outperformed traditional 
feature selection and deep learning methods on NSL-KDD and 
AWID datasets, yet its ability to detect rare classes such as 
U2R was limited due to insufficient training samples. 
Similarly, Li et al. [10] proposed AE-SAC, an IDS built on the 
Soft Actor–Critic reinforcement learning algorithm, 
incorporating reward modification and dynamic resampling to 
mitigate class imbalance. Despite showing promising 
performance, the recall for minority attacks remained poor. 
Benaddi et al. [11] extended reinforcement learning to 
industrial IoT security by combining distributional RL with 
GANs to enhance anomaly detection. Although this design 
provided adaptive and robust detection, it demanded significant 
computational resources, reducing its feasibility for real-time 
deployment. Collectively, reinforcement learning approaches 
demonstrate strong adaptability but face challenges with 
scalability and minority-class detection. 

B. Deep Learning and Hybrid Architectures 

Sharma et al. [12] proposed a hybrid deep learning model 
that integrates Convolutional Neural Networks (CNNs) and 
Long Short-Term Memory (LSTM) networks. CNNs captured 
spatial features while LSTMs modeled temporal dependencies, 
yielding over 90% accuracy, particularly for DoS and 
exploitation attacks. However, the model’s training complexity 
hindered real-time applicability and limited recall for rare 
intrusions. Kasongo [13] explored a recurrent neural network-
based framework, demonstrating improved accuracy but also 
highlighting issues of computational overhead. Kao et al. [14] 
developed a two-stage structure combining a denoising 
autoencoder (DAE) with a Gated Recurrent Unit (GRU). This 
method used GRU-based confidence scoring alongside 
reconstruction error, resulting in accuracy above 90% on NSL-
KDD. While effective, its reliance on finely tuned confidence 
thresholds constrained generalizability. Meliboev et al. [15] 
advanced AE-LSTM models with optimized hyperparameters 
and layer configurations, improving precision and recall 
compared to traditional classifiers. Nevertheless, increasing 
architectural depth led to diminishing performance, revealing 
sensitivity to model complexity. These works underscore the 
potential of hybrid DL approaches but also their trade-offs 
between performance, scalability, and generalization. 
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C. Generative and Adversarial Learning Methods 

Generative models have been adopted to address severe 
class imbalance in IDS research. Rahman et al. [16] introduced 
SYN-GAN, a system that generates synthetic IoT traffic to 
improve classifier robustness. While achieving perfect 
performance on BoT-IoT datasets, its results on NSL-KDD 
were notably weaker, reflecting dependency on dataset-specific 
quality. Xu et al. [17] similarly employed GANs to create 
synthetic minority samples, achieving up to 91% accuracy on 
NSL-KDD, but highlighted the limitation of over-reliance on 
generated data quality. Zhang et al. [18] explored bagging 
ensemble models combined with Bayesian optimization, 
integrating extreme random tree (ERT) feature weighting to 
enhance generalization. Despite improving stability and 
accuracy, computational intensity limited its practical adoption. 
Overall, adversarial learning enriches minority-class 
representation but introduces overheads in data generation and 
tuning complexity, restricting scalability. 

D. Ensemble and Optimization-Based Methods 

Several studies leveraged ensemble learning and feature 
optimization for improved detection. Chohra et al. [19] 
presented Chameleon, a feature selection framework 
combining particle swarm optimization (PSO) with ensemble 
classifiers, achieving strong F1-scores across NSL-KDD, 
UNSW-NB15, and IoT-Zeek datasets. Yet, its iterative 
optimization procedure imposed high computational costs. 
Soleymanzadeh et al. [20] applied ensemble stacking across 
security and financial datasets, showing superior precision and 
recall compared to standalone models. However, the layered 
ensemble design also raised concerns about efficiency in 
resource-constrained environments. Wang et al. [21] 
introduced the BIRCH-Autoencoder (BAE), which combines 
clustering with autoencoder-based classification to reduce 
imbalance effects, achieving notable improvements but with 
sensitivity to clustering parameters. Jeong et al. [22] proposed 
a deep belief network (DBN) enhanced with fast persistent 
contrastive divergence, accelerating training and yielding 
competitive accuracy. Nevertheless, the method struggled with 
high-dimensional traffic data, limiting its applicability to large-
scale scenarios. Together, these approaches highlight the role 
of optimization and ensemble techniques in boosting IDS 
accuracy but also reveal trade-offs in efficiency and dataset 
adaptability. 

E. Synthesis and Research Gap 

Across these categories, prior works have demonstrated 
meaningful progress in anomaly-based intrusion detection. 
Reinforcement learning enhances adaptability but often 
underperforms for rare attacks. Hybrid deep learning 
architectures capture both temporal and spatial features but are 
computationally heavy and prone to overfitting. GAN-based 
models effectively augment minority classes but rely on 
synthetic data quality, while ensemble and optimization 
approaches boost accuracy at the cost of efficiency. Despite 
these advances, three challenges persist: 1) limited recall for 
rare classes such as U2R and R2L, 2) high computational 
overhead hindering real-time deployment, and 3) weak 
generalization across diverse datasets. Addressing these 
limitations, the proposed NetDAIL framework leverages a 

lightweight denoising autoencoder, Isolation Forest anomaly 
scoring, and LightGBM classification, enhanced with 
SMOTEENN balancing, to deliver robust rare-class detection 
with lower computational complexity. 

III. METHODOLOGY 

To enhance the accuracy, scalability, and reliability of 
network intrusion detection systems, this study introduces 
NetDAIL, a hybrid learning framework that unifies 
unsupervised feature extraction, statistical anomaly scoring, 
and supervised classification into a single, coherent pipeline. 
Unlike conventional models that treat each stage 
independently, NetDAIL is designed as an end-to-end 
architecture, ensuring that every component complements the 
others to overcome practical challenges such as data 
redundancy, high feature dimensionality, severe class 
imbalance, and the well-known difficulty of detecting rare 
attack classes like User-to-Root (U2R) and Remote-to-Local 
(R2L). The overall architecture, illustrated in Fig. 1, consists of 
three tightly coupled modules: a Denoising Autoencoder for 
unsupervised representation learning, an Isolation Forest for 
anomaly scoring, and a LightGBM classifier for final binary 
classification between normal and abnormal traffic. 

A. Data Preprocessing 

The preprocessing stage forms the essential foundation of 
the proposed hybrid anomaly detection pipeline. Since the 
system’s objective is classification between normal and 
abnormal traffic, careful data preparation is necessary to ensure 
that subsequent learning components (Autoencoder, Isolation 
Forest, and LightGBM) receive structured and noise minimized 
input. The NSL-KDD dataset serves as the main benchmark in 
this study, offering two primary subsets: KDDTrain+ for 
training and KDDTest+ for evaluation. Both subsets contain 
labeled instances of normal and attack traffic, and this dataset 
remains widely adopted in intrusion detection research due to 
its manageable size, balanced difficulty level, and 
compatibility with modern learning algorithms [10]. Unlike 
other datasets such as UNSW-NB15 and CICIDS-2017, NSL-
KDD provides a controlled environment where preprocessing 
strategies and classification models can be consistently 
evaluated. 

After establishing the dataset foundation, the preprocessing 
workflow applies a series of carefully designed 
transformations. These include handling categorical attributes 
through one-hot encoding, resampling to address class 
imbalance with SMOTEENN, and feature scaling via Min-Max 
normalization. Each of these steps is sequentially integrated so 
that the processed data smoothly transitions into the feature 
learning stage with the Autoencoder. In the following 
subsections, each step is discussed in detail. 

B. Handling Categorical Attributes 

Since both the Autoencoder and Isolation Forest require 
purely numerical input, categorical features in NSL-KDD, such 
as protocol_type, service, and flag, must be transformed. These 
features contain symbolic values (e.g., “tcp”, “http”, “SF”) that 
have no inherent numeric ordering. To prevent introducing 
ordinal bias, one-hot encoding is applied. This transformation 
represents each category as a binary vector. For instance, if the 
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service attribute contains 70 unique categories, the encoding 
generates a 70-dimensional sparse vector where exactly one 
position is set to 1 and all others are 0. This guarantees that 
categorical distinctions are preserved without misinterpretation 
by downstream learning algorithms. Importantly, this step 
ensures full compatibility with the Autoencoder input layer, 
which expects fixed-size numeric vectors. 

C. Data Balancing with SMOTEENN 

Following categorical transformation, the dataset is passed 
into a resampling module. Intrusion detection datasets are 
typically highly imbalanced, with classes like U2R (User-to-
Root) and R2L (Remote-to-Local) severely underrepresented 
compared to Normal or DoS categories. If left unaddressed, 
this imbalance biases the classifier toward majority classes and 
leads to poor recall for rare but critical intrusions. To overcome 
this, a hybrid oversampling and cleaning strategy 
(SMOTEENN) is used. 

SMOTE (Synthetic Minority Oversampling Technique) 
generates synthetic samples for minority classes by 
interpolating between existing instances, thus expanding their 
representation in the feature space. 

ENN (Edited Nearest Neighbor) complements this by 
removing noisy or borderline examples, especially from 
majority classes, ensuring that oversampling does not introduce 
excessive noise. 

The combination of SMOTE and ENN, therefore, balances 
the class distribution and refines the dataset quality. At this 
stage, the resampled dataset is significantly more balanced and 
ready for feature scaling. 

D. Data Normalization 

After categorical encoding and resampling, the cleaned 
dataset enters the normalization stage. Different features in 
NSL-KDD span different ranges (e.g., packet counts, byte 
sizes, and duration values). Without scaling, attributes with 
large numeric ranges would dominate the learning process and 
hinder convergence. Therefore, Min-Max normalization is 
applied to rescale all numeric features into the standard range 
[0, 1]. This ensures that each feature contributes 
proportionately during training. 

The normalization process follows Eq. (1) and Eq. (2): 

𝑋𝑠𝑡𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
         (1) 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋𝑠𝑡𝑑 ∗ (𝑚𝑎𝑥 − 𝑚𝑖𝑛) + 𝑚𝑖𝑛          (2) 

Before being sent to the learning components, all input 
features for this model must fall inside the range [0,1] thanks to 
normalization, which is carried out with default values of 
min=0 and max=1. By enforcing this uniform scale, the model 
achieves improved training stability, faster convergence, and 
more effective feature representation when passed into the 
autoencoder. 

In summary, preprocessing transforms the raw NSL-KDD 
dataset into a balanced, normalized, and numerically encoded 
representation. This sequence of steps—one-hot encoding → 
SMOTEENN resampling → Min-Max normalization—ensures 
that the learning pipeline begins with high-quality input data. 
The output of this stage directly feeds into the feature learning 
component (Autoencoder), forming a seamless transition 
between raw data and advanced anomaly detection modules. 

 

Fig. 1. NetDAIL structure. 
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E. Deep Learning-Hybrid Feature Learning Model 

DAE, which forms the backbone of NetDAIL’s deep 
feature learning pipeline. Unlike traditional autoencoders that 
simply reconstruct inputs, the denoising variant deliberately 
introduces controlled noise into the input data. This compels 
the encoder to capture robust and generalizable latent features, 
focusing on meaningful traffic patterns instead of memorizing 
irrelevant noise or spurious correlations. 

The DAE architecture is carefully designed to compress 
high-dimensional traffic data into a lower-dimensional but 
informative latent space: 

• Input Layer: Equal in size to the processed dataset 
features after encoding and normalization. 

• Encoder: Three fully connected layers with 128, 64, and 
32 neurons. Each layer is followed by batch 
normalization and ReLU activation, which improves 
learning stability while progressively reducing 
dimensionality. 

• Latent Space: A compact 32-dimensional embedding 
that captures both linear and nonlinear dependencies, 
preserving the intrinsic structure of the traffic data. 

• Decoder: A mirrored architecture (32 → 64 → 128) 
with a final sigmoid layer to reconstruct normalized 
inputs within the [0, 1] range. 

The DAE is trained with the Adam optimizer (learning rate 
= 0.0005), the MAE reconstruction loss, and early stopping 
(patience = 5 epochs). These strategies ensure stable 
convergence and prevent overfitting. The 32-dimensional latent 
vectors generated by the encoder are stored for the subsequent 
anomaly scoring and classification stages. 

It is important to emphasize that the Denoising 
Autoencoder (DAE) constitutes only one module of the 
broader NetDAIL architecture. While the DAE provides robust 
deep feature representations, NetDAIL achieves its full 
capability by tightly integrating these features with anomaly 
scores from Isolation Forest and the discriminative power of 
LightGBM. 

Link to next step: Once robust latent features are obtained, 
they are combined with anomaly scores generated by the 
Isolation Forest to enrich the representation space before 
supervised classification. 

F. Reconstruction Loss, Anomaly Scoring, and Classification 

Mean Absolute Error (MAE) loss is used to optimize the 
autoencoder in NetDAIL. Eq. (3) provides the equation for it. 

𝑀𝐴𝐸 =
1

𝑛
    ∑ |𝑦𝑖 − ŷ𝑖|  

𝑛
𝑖=1              (3) 

where, 𝑦𝑖  is the original input, ŷ𝑖  is the reconstructed 
output, and n is the number of input features. This loss ensures 
the encoder learns meaningful latent features by minimizing 
the reconstruction discrepancy. 

Following feature extraction, each sample is assigned an 
anomaly score using the Isolation Forest algorithm. This score 
reflects the extent to which a sample deviates from the learned 

data distribution. Samples with higher scores are considered 
more anomalous, as they are isolated more quickly during 
recursive partitioning. 

Next, the 32-dimensional latent features from the DAE are 
concatenated with the Isolation Forest anomaly scores, forming 
a hybrid feature vector. This fusion integrates both structural 
encoding (from the Autoencoder) and statistical rarity (from 
the Isolation Forest), creating a more discriminative 
representation space for classification. 

To enhance the reproducibility of our experiments, we 
provide detailed hyperparameter settings and data 
configuration used in all model components. For the Denoising 
Autoencoder (DAE), we used a learning rate of 0.001, a batch 
size of 128, and trained for 100 epochs with early stopping. For 
the Isolation Forest, the number of estimators was set to 100, 
contamination to 0.1, and maximum samples to ‘auto’. For 
LightGBM, we used 500 boosting rounds, a learning rate of 
0.05, a maximum depth of 12, 64 leaves, and early stopping 
with a patience of 50 rounds. 

The dataset was split using the standard NSL-KDD and 
KDD Cup 1999 partitions to ensure fair comparison with prior 
studies. Preprocessing (encoding, normalization, and 
SMOTEENN balancing) was performed only on the training 
data, and the same transformations were applied to the test set 
to prevent data leakage. 

For transparency and to facilitate future research, we also 
plan to make the code and the exact train–test splits used in our 
experiments available in a public repository upon acceptance. 

A LightGBM classifier is then trained on this enriched 
representation. Unlike methods that rely on static anomaly 
thresholds, LightGBM dynamically learns complex non-linear 
decision boundaries between normal and anomalous traffic. 
During inference, the classifier produces probability estimates: 

If probability < 0.5 → classify as Normal (Label 0). 

If probability ≥ 0.5 → classify as Abnormal (Label 1). 

This probabilistic framework not only eliminates the need 
for manual threshold tuning but also improves generalization 
across diverse traffic patterns. By combining deep latent 
learning, statistical anomaly scoring, and ensemble-based 
supervised classification, NetDAIL achieves a scalable, 
accurate, and balanced intrusion detection pipeline. 

Why Hybridization Matters? Using each component of 
NetDAIL in isolation would yield suboptimal results. For 
instance, a DAE alone excels at feature extraction but cannot 
provide direct anomaly detection or classification. Isolation 
Forest alone can assign anomaly scores but lacks semantic 
discrimination across multiple attack categories. LightGBM by 
itself is a powerful classifier, but its performance degrades 
when faced with high-dimensional, imbalanced, and noisy 
inputs. By combining these three paradigms, NetDAIL 
achieves a synergistic effect: the DAE reduces dimensionality 
and suppresses noise, the Isolation Forest provides statistical 
rarity scores that enrich the representation space, and 
LightGBM leverages both original and learned features for 
precise decision boundaries. This integration enhances 
robustness against imbalance, improves generalization across 
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datasets, and significantly increases detection rates for rare 
intrusions such as U2R and R2L. 

Unlike conventional hybrid intrusion detection frameworks 
that rely on deep learning combined with either statistical 
anomaly detection or ensemble methods, NetDAIL integrates a 
denoising autoencoder, Isolation Forest, and LightGBM in a 
structured pipeline. This specific combination is intentionally 
designed to address critical gaps identified in prior work: 
1) DAE enhances robustness and extracts noise-resistant latent 
representations from high-dimensional network traffic, 
2) Isolation Forest provides an unsupervised anomaly score 
that highlights rare and subtle attacks without requiring manual 
threshold tuning, and LightGBM offers lightweight, scalable, 
and high-accuracy classification. This integration enables 
complementary strengths between feature learning, anomaly 
scoring, and supervised classification, resulting in improved 
detection of minority attacks and better scalability compared to 
existing hybrid IDS frameworks. 

IV. RESULTS 

A. Dataset Description 

We evaluate NetDAIL on two benchmark datasets derived 
from NSL-KDD and KDD Cup 1999. The small-scale dataset 
includes KDD-Train+ and KDDTest+, containing 41 features 
(38 numerical and 3 categorical), which capture diverse aspects 
of network traffic such as connection duration, protocol type, 
byte counts, and traffic statistics. Table I summarizes these 
features and their corresponding data types [24]. 

To further evaluate generalization, we included two large-
scale subsets derived from the KDD Cup 1999 dataset: 1) 20 
Percent Training Set.csv, which is a representative reduced 
training subset, and 2) kddcup.data.corrected, the complete 
corrected dataset with nearly five million records. For the 
large-scale experiment, 20 Percent Training Set.csv was 
employed exclusively for training, while kddcup.data.corrected 
was used for testing. This configuration ensures a realistic 
large-scale deployment scenario where the model is trained on 
a manageable subset but evaluated on a massive, highly diverse 
dataset. All datasets are summarized in Table II. 

For consistency, all attack classes (DoS, Probe, R2L, U2R) 
were merged into a single “Attack” class, while normal traffic 
was preserved as a separate class. This binary transformation 
aligns with best practices in anomaly detection. Preprocessing 
included SMOTEENN balancing, min–max normalization, and 
categorical feature encoding. These steps improved 
generalization and stabilized learning during the supervised 
phase. 

B. Metrics of Evaluation 

The evaluation metrics used to evaluate NetDAIL's 
performance are described in depth in this section. Accuracy, 
precision, recall, and F1-score are a set of standard 
classification metrics that are used to objectively assess the 
model's efficacy. These measures offer a thorough framework 
for evaluation, especially when dealing with unbalanced 
datasets where mere correctness could be deceptive [23]. 

TABLE I.  FEATURE NAMES WITH THEIR CORRESPONDING DATA TYPES 

No. Features Type No. Features Type 

0 Duration int64 21 is_guest_login int64 

1 protocol_type object 22 Count int64 

2 Service object 23 srv_count int64 

3 Flag object 24 serror_rate float64 

4 src_bytes int64 25 srv_serror_rate float64 

5 dst_bytes int64 26 rerror_rate float64 

6 Land int64 27 srv_rerror_rate float64 

7 wrong_fragment int64 28 same_srv_rate float64 

8 Urgent int64 29 diff_srv_rate float64 

9 Hot int64 30 srv_diff_host_rate float64 

10 num_failed_logins int64 31 dst_host_count int64 

11 logged_in int64 32 dst_host_srv_count int64 

12 num_compromised int64 33 dst_host_same_srv_rate float64 

13 root_shell int64 34 dst_host_diff_srv_rate float64 

14 su_attempted int64 35 dst_host_same_src_port_rate float64 

15 num_root int64 36 dst_host_srv_diff_host_rate float64 

16 num_file_creations int64 37 dst_host_serror_rate float64 

17 num_shells int64 38 dst_host_srv_serror_rate float64 

18 num_access_files int64 39 dst_host_rerror_rate float64 

19 num_outbound_cmds int64 40 dst_host_srv_rerror_rate float64 

20 is_host_login int64  
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TABLE II.  DATASET DESCRIPTIONS 

Dataset 

Type 
Dataset Name Normal Attack Total 

Small 

Scale 

KDD-Train+ 67343 58630 125973 

KDDTest+ 9711 12833 22544 

Large 

Scale 

20 Percent Training Set.csv 13449 11743 25192 

kddcup.data.corrected 972781 3925650 4898431 

Precision measures the proportion of instances predicted as 
anomalous that are actually anomalous. Formally defined in 
Eq. (4), it reflects the model’s ability to minimize false 
positives. 

Recall, sometimes referred to as sensitivity or True Positive 
Rate (TPR), measures how well the model can identify real 
abnormal occurrences. Eq. (5) serves as a mathematical 
representation of this crucial statistic in intrusion detection 
jobs. 

The ratio of correctly categorized cases (both normal and 
anomalous) to the total number of instances in the dataset is 
known as accuracy (Acc), and it indicates how accurate the 
classification is overall. Its equation is provided in Eq. (6). 

F1-score is a balanced metric that is particularly useful 
when addressing unequal class distributions. It is calculated as 
the harmonic mean of precision and recall. Eq. (7) illustrates 
how it is computed. 

Alongside other evaluation metrics, AUC (Area Under the 
ROC Curve) is employed to assess the model’s ability to 
distinguish between normal and anomalous data points [23]. A 
high AUC indicates that the model consistently assigns higher 
anomaly scores to true attacks compared to normal traffic, 
making it particularly suitable for datasets with severe class 
imbalance, where accuracy alone may not fully capture 
detection performance. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑃)
                           (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
                               (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                        (6) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
                    (7) 

C. Findings 

The experimental findings from NetDAIL’s evaluation 
across the datasets are presented in this section. Performance 
metrics—including accuracy, precision, recall, and F1-score—
are computed using the corresponding test sets after applying 
the model, providing a comprehensive assessment of 
classification effectiveness. 

For the small-scale evaluation, the Autoencoder component 
of NetDAIL is trained using Mean Absolute Error (MAE) as 
the reconstruction loss function. This setup combines 
Autoencoder-based feature extraction, Isolation Forest 
anomaly scoring, and LightGBM classification. The resulting 

classification metrics produced by the LightGBM classifier are 
summarized in Table III. 

To further demonstrate NetDAIL’s ability to distinguish 
between normal and anomalous traffic, visualizations such as 
the confusion matrix (Fig. 2) and ROC curve (Fig. 3) are 
provided. These plots highlight the hybrid model’s robust 
discriminative capability across diverse traffic patterns. 
Additionally, the Autoencoder’s training and validation loss 
(Fig. 4) and training and validation accuracy (Fig. 5) illustrate 
the model’s learning dynamics and convergence behavior 
during feature representation learning. 

TABLE III.  RESULTS GENERATED FROM NETDAIL 

Metric Label Precision Recall Acc F1-score AUC 

MAE 
Normal 0.99 0.99 

0.99 0.99 0.99 
Attack 0.99 0.98 

 
Fig. 2.  Confusion matrix of  NetDAIL (MAE-based) on the small-scale 

dataset, illustrating the model’s classification performance for normal and 

anomalous instances. 

 
Fig. 3. The ROC curve of  NetDAIL (MAE-based) evaluated on the small-

scale dataset, showcasing its ability to separate normal and anomalous 

instances. 
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Fig. 4. Autoencoder training and validation loss. 

 
Fig. 5. Autoencoder training and validation accuracy curves across epochs. 

TABLE IV.  BENCHMARKING THE NETDAIL AGAINST STATE-OF-THE-ART 

TECHNIQUES 

Year Ref. No Technique Acc F1-score 

2009 [8] Autoencoder 90.49% 91.81% 

2022 [14] GRU + DAE 90.21% 89.87% 

2022 [15] CNN + LSTM 82.6% 79.8% 

2023 [21] 
BIRCH-

Autoencoder (BAE) 
87.88% 88.46% 

2024 [22] FPCD-DBN 89.39% 89.72% 

2024 [23] BO-KNN-Bagging 82.4% 82.58% 

2021 [24] Autoencoder 90.6 % 92.26 % 

2024 [25] GANs 61% 73.5% 

2025 [26] 

hyperdimensional 

computing (HDC) 

techniques 

91.5% - 

2025 [27] Autoencoder 85% 84% 

2025 [28] ResNet-CNN 98.9% - 

2025 [29] FDA 98.3% - 

NetDAIL 99 % 99 % 

The experimental findings demonstrate that NetDAIL 
achieves high accuracy in anomaly detection. The hybrid 
architecture, which integrates Denoising Autoencoder-based 

feature learning, Isolation Forest anomaly scoring, and 
LightGBM classification, exhibits superior robustness and 
generalization across imbalanced and complex network traffic 
patterns. Comparative evaluation against existing models using 
the NSL-KDD benchmark dataset shows that NetDAIL attains 
an accuracy of 99 per cent and an F1-score of 0.99, 
outperforming conventional deep learning approaches. These 
results underscore the model’s enhanced capacity to detect 
both statistical and latent anomalies, particularly in a rare or 
underrepresented attack. A detailed comparison with related 
studies is presented in Table IV. The results clearly 
demonstrate that the proposed hybrid model not only surpasses 
conventional deep learning techniques but also maintains a 
strong balance between detection precision and generalization. 
This makes NetDAIL particularly suitable for deployment in 
real-world intrusion detection systems, where datasets are often 
highly imbalanced and heterogeneous. 

D. Evaluation of Generalization and Scalability 

To assess the generalization capability and scalability of 
NetDAIL, an additional experiment was conducted using a 
large-scale dataset beyond the standard NSL-KDD 
configuration. This dataset follows the same structural format 
as NSL-KDD (as outlined in Table I) and was selected to 
emulate a real-world large-scale deployment scenario. The 
dataset consists of two subsets: 

20 Percent Training Set.csv – a representative subset of the 
original KDD Cup 1999 dataset containing a smaller number of 
normal and anomalous records, which was used for training 
[30]. 

kddcup.data.corrected – the full corrected KDD Cup 1999 
dataset, comprising millions of normal and attack records, 
which was reserved for testing [31]. 

By explicitly using one subset for training and the other for 
testing, this configuration avoids data leakage and enables a 
robust evaluation of the model’s generalization performance 
under realistic conditions. 

For the large-scale evaluation, we followed the commonly 
used setup in KDD Cup 1999 experiments by training the 
model on the 20% Training Set and evaluating on the full 
kddcup.data.corrected dataset. Importantly, these two files are 
provided as separate official subsets of the KDD Cup 1999 
benchmark and contain no overlapping records, ensuring that 
the evaluation is performed on completely unseen data. To 
further ensure no data leakage, the preprocessing steps 
(encoding, normalization, and SMOTEENN) were applied only 
to the training data, and the learned transformations were then 
applied to the test set. 

The results from this large-scale experiment confirm the 
adaptability, scalability, and deployment readiness of 
NetDAIL. Performance outcomes are summarized in Table V. 
The confusion matrix in Fig. 6 demonstrates strong 
classification performance, with a high number of true 
positives and true negatives, highlighting the model’s 
effectiveness in accurately distinguishing between normal and 
anomalous traffic. The low number of false positives and false 
negatives further confirm its robustness. 
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TABLE V.  RESULTS  GENERATED FROM NETDAIL ON LARGE DATASET 

Metric Label Precision Recall Acc F1-score AUC 

MAE 
Normal 0.96 0.98 

0.99 0.99 0.99 
Attack 0.99 0.99 

 
Fig. 6. Confusion matrix of NetDAIL (MAE-based) on the large-scale 

dataset. 

 
Fig. 7. ROC curve of NetDAIL (MAE-based) evaluated on the large-scale 

dataset, demonstrating its ability to distinguish between normal and 

anomalous instances. 

Complementing this, the Receiver Operating Characteristic 
(ROC) curve in Fig. 7, exhibits a high Area Under the Curve 
(AUC), reflecting the model’s strong discriminative ability. 
The steep rise toward the top-left corner of the ROC space 
indicates excellent sensitivity and specificity, validating 
NetDAIL’s generalization capability. 

To better demonstrate the contribution of each component 
in the NetDAIL pipeline, we additionally trained a baseline 
LightGBM model directly on the raw normalized data, without 
any feature extraction (DAE) or anomaly scoring (Isolation 

Forest). The baseline model achieved considerably lower 
accuracy and F1-score compared to NetDAIL’s performance 
(99% accuracy and 0.99 F1-score). These results confirm that 
incorporating the DAE and Isolation Forest components 
significantly enhances feature representation and anomaly 
separability, enabling LightGBM to achieve stronger 
discriminative power. 

These findings clearly demonstrate that NetDAIL maintains 
high performance even under large-scale and complex data 
distributions. Its consistent results across both small- and large-
scale datasets indicate that the hybrid architecture—combining 
deep feature extraction, anomaly scoring, and supervised 
classification—is well-suited for deployment in real-world, 
high-demand intrusion detection environments. 

The findings obtained from this experiment clearly 
demonstrate that the proposed model possesses a high degree 
of adaptability, enabling it to perform effectively under varying 
operational conditions and data distributions. Moreover, the 
results highlight the model’s scalability, showing that it can 
maintain strong performance as the size and complexity of the 
dataset or network environment increase. These characteristics, 
combined with its consistent and reliable performance, indicate 
that the model is well-prepared for real-world deployment, 
even within large-scale and high-demand operational settings. 

V. DISCUSSION 

The experimental results demonstrate the efficiency of the 
proposed hybrid model, NetDAIL, in accurately detecting 
anomalies in network traffic. Evaluations on standard 
benchmark datasets, including NSL-KDD and KDD Cup 1999, 
indicate consistently strong performance, highlighting the 
model’s practical relevance for real-world cybersecurity 
applications. 

NetDAIL’s hybrid architecture integrates a denoising 
autoencoder for deep feature extraction, an Isolation Forest for 
anomaly scoring, and LightGBM for supervised classification. 
This combination enables the model to leverage both 
unsupervised and supervised learning paradigms, capturing 
latent structures in the data while maintaining robust and 
reliable decision-making capabilities. The model’s exceptional 
discriminative power is reflected in its high ability to 
differentiate between normal and anomalous network traffic. 

By utilizing labeled attack instances, NetDAIL effectively 
separates subtle and rare attack types from normal behavior. 
The application of SMOTEENN for class balancing further 
enhances recall for minority attack categories, addressing a 
critical challenge in intrusion detection systems. These results 
confirm that the model generalizes well across both small- and 
large-scale datasets, demonstrating its adaptability to diverse 
network intrusion scenarios. 

The model’s robustness and scalability make it particularly 
suitable for deployment in dynamic operational environments, 
where network traffic patterns and attack strategies 
continuously evolve. Moreover, NetDAIL’s hybrid design 
provides a strong foundation for future extensions, such as real-
time intrusion detection, multi-modal data integration, and 
interpretable machine learning frameworks for cybersecurity. 
Future research may also explore incorporating human-in-the-
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loop mechanisms to enhance operational decision-making and 
transparency. 

To further demonstrate the competitiveness of NetDAIL, 
Table IV presents a comparative performance analysis with 
state-of-the-art hybrid IDS models, including CNN–LSTM, 
Transformer-based methods, BIRCH-AE, and GAN-based 
models. 

NetDAIL achieves the highest accuracy (99%) and F1-
score (0.99), surpassing these models by a margin of 1–4% on 
average. 

In addition to the performance gain, NetDAIL maintains a 
lower computational footprint due to its lightweight structure 
(DAE + IF + LightGBM) compared to heavy CNN or 
Transformer architectures. 

Overall, the findings highlight NetDAIL as a reliable, 
scalable, and high-performing solution capable of addressing 
modern network intrusion detection challenges effectively. 

VI. CONCLUSION 

Addressing the core challenges of network intrusion 
detection, such as high-dimensional feature spaces, class 
imbalance, scalability, and the detection of rare attacks, this 
study introduced NetDAIL, a robust hybrid framework that 
integrates a denoising autoencoder for deep feature 
representation, an Isolation Forest for anomaly scoring, and 
LightGBM for supervised classification. This combination was 
intentionally designed to leverage both supervised and 
unsupervised learning paradigms, enabling the model to 
effectively capture both statistical and latent anomalies in 
network traffic. 

Each research objective outlined in the introduction was 
directly addressed and validated through the experimental 
results. First, the use of the denoising autoencoder successfully 
reduced feature dimensionality and enhanced representation 
quality, improving the model’s ability to detect subtle 
deviations in network behavior. Second, applying 
SMOTEENN effectively mitigated class imbalance and 
improved the recall of minority and rare attack categories. 
Third, the integration of Isolation Forest contributed to better 
anomaly sensitivity without manual threshold tuning. The 
inclusion of a simple LightGBM baseline in our experiments 
further validates the contribution of NetDAIL’s unsupervised 
components. The substantial performance gap between the 
baseline and the hybrid pipeline confirms that the exceptional 
results are not due to data leakage or dataset characteristics, but 
to the effective integration of deep feature learning and 
anomaly scoring. Finally, the inclusion of LightGBM provided 
a scalable and efficient classification mechanism, enabling the 
model to maintain strong performance on large-scale datasets. 

Empirical evaluation on two benchmark datasets—NSL-
KDD and KDD Cup 1999—demonstrated the effectiveness of 
the proposed framework, achieving an AUC of 0.99 on large-
scale traffic while accurately identifying subtle and rare 
intrusions. These outcomes confirm NetDAIL’s 
generalizability, scalability, and operational readiness for 
deployment in dynamic cybersecurity environments where 
attack strategies continuously evolve. 

Future research will focus on real-time implementation, 
integration with multi-modal data sources, and enhancing 
model interpretability to support adaptive, human-in-the-loop 
intrusion detection systems. 
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