(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 10, 2025

NetDAIL: An Optimized Deep Learning-Based
Hybrid Model for Anomaly Detection in Network
Traffic

Saad Khalifa* Mohamed Marie, Wael Mohamed
Information Systems Department-Faculty of Computers and Artificial Intelligence, Helwan University, Cairo, Egypt

Abstract—Detecting rare and subtle anomalies is critical for
ensuring cybersecurity, financial integrity, and operational
safety. High-dimensional features, severe class imbalance, and
large data volumes often challenge conventional intrusion
detection methods. This study presents NetDAIL, a hybrid
framework that integrates deep feature learning using a
denoising autoencoder, anomaly scoring through Isolation
Forest, and classification via LightGBM to address these
challenges. To evaluate its effectiveness, the proposed framework
was tested on two widely used benchmark datasets: NSL-KDD
for controlled-scale experimentation and KDD Cup 1999 for
large-scale evaluation. NetDAIL achieved an AUC of 0.998 on the
NSL-KDD dataset and 0.990 on the KDD Cup 1999 dataset,
demonstrating strong discriminative capability across different
traffic volumes and attack patterns. Experimental results
confirm the model’s high detection accuracy, scalability, and
generalization across diverse network intrusion scenarios. These
findings highlight NetDAIL as a practical and reliable solution
for real-world anomaly detection, capable of efficiently handling
both small- and large-scale environments while maintaining
robust and effective performance in operational settings.
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1. INTRODUCTION

The rapid evolution of digital technologies—such as the
Internet, smartphones, and robotics—has profoundly
transformed modern society, driving unprecedented levels of
connectivity and data exchange. With the exponential growth
of information flow and the rising demand for real-time, data-
driven decision-making, ensuring cybersecurity has become a
global priority. Recent estimates suggest that the financial
impact of cybercrime could reach $10.5 trillion annually by
2025, underscoring its status as one of the most significant
threats to economic stability and national security worldwide
[1]. Increasingly sophisticated attacks, including malware,
distributed denial of service (DDoS), phishing, and advanced
persistent threats (APTs), target individuals, enterprises, and
critical infrastructures [2]. These developments necessitate
robust and intelligent defense mechanisms that can effectively
protect modern networks from evolving cyber risks.

Anomaly detection has emerged as a fundamental approach
in cybersecurity due to its ability to identify patterns that
deviate from expected system behavior. By flagging suspicious
deviations, anomaly detection has proven effective across
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multiple domains, including fraud prevention, healthcare
monitoring, and, most notably, network intrusion detection [3].
Unlike signature-based detection, which requires prior
knowledge of attack patterns, anomaly detection can reveal
previously unseen or subtle intrusions. However, real-world
network environments pose unique challenges: anomalies are
often rare, subtle, and overshadowed by highly imbalanced
traffic distributions, making them difficult to detect with
traditional techniques [4]. Additionally, the growing volume,
velocity, and variety of network data further complicate
detection tasks and demand scalable, high-performance models

[5].

Conventional intrusion detection systems (IDS) that rely on
rule-based signatures or statistical models struggle when faced
with high-dimensional, noisy, and dynamic datasets [6]. In
response, machine learning (ML) and deep learning (DL)
methods have gained prominence for their ability to capture
complex, nonlinear data patterns. Among these, autoencoders
have demonstrated strong potential for anomaly detection by
learning compressed latent representations and using
reconstruction error as a reliable anomaly score [7].
Nevertheless, existing approaches often suffer from limitations
such as poor generalization, high computational cost, and
particularly low recall for rare yet critical attack categories like
User-to-Root (U2R) and Remote-to-Local (R2L) [8].

To overcome these challenges, this study introduces
NetDAIL, a hybrid intrusion detection framework designed for
binary anomaly detection (Normal vs. Attack). The framework
integrates a denoising autoencoder for deep feature extraction,
an Isolation Forest for anomaly scoring, and a LightGBM
classifier for final decision-making. Advanced preprocessing
techniques, including normalization, one-hot encoding, and
SMOTEENN balancing, are incorporated to enhance
robustness against class imbalance and noise in large-scale
traffic datasets. While the primary objective of this study is to
strengthen binary classification performance, NetDAIL is
inherently scalable and adaptable to multiclass intrusion
detection tasks, which may be explored in future work. The
main contributions of this study are summarized as follows:

1) Hybrid architecture: We propose a novel hybrid model
that combines unsupervised anomaly scoring with supervised
gradient-boosted classification, improving detection accuracy
and robustness in binary anomaly detection settings.
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2) Optimized preprocessing pipeline: We design an end-
to-end pipeline that addresses the challenges of high-
dimensional, imbalanced network traffic data through
normalization, categorical encoding, and SMOTEENN-based
balancing.

3) Comprehensive evaluation: We conduct extensive
experiments on benchmark datasets to rigorously assess the
model’s performance in binary intrusion detection (Normal vs.
Attack), with special emphasis on robustness against imbalance
and the ability to capture subtle, hard-to-detect anomalies.
Although the present focus is binary classification, the
proposed framework is scalable toward multiclass extensions
in future research.

The proposed NetDAIL framework is designed not only to
achieve high accuracy but also to directly address the persistent
challenges identified in intrusion detection systems. First, the
use of a denoising autoencoder enables the model to effectively
handle the problem of high-dimensional and noisy network
traffic by extracting compact and informative latent
representations. Second, to overcome the severe class
imbalance problem and improve the detection of rare attack
types, SMOTEENN is employed during preprocessing, which
enhances minority class representation and reduces noise from
the majority class. Third, integrating the Isolation Forest adds a
strong anomaly detection component capable of identifying
subtle and previously unseen deviations in network traffic.
Finally, LightGBM provides a fast, scalable, and generalizable
classification stage, allowing the entire pipeline to maintain
high performance even when applied to large-scale datasets.
By combining these components in a structured manner,
NetDAIL directly responds to the core technical challenges of
feature complexity, data imbalance, rare attack detection, and
scalability.

Although NetDAIL combines both unsupervised and
supervised components, it is important to clarify that the final
classification stage is supervised, as LightGBM is trained on
labeled data (Normal vs. Attack). The unsupervised
components—namely the Denoising Autoencoder and the
Isolation Forest—are employed as feature learning and
anomaly scoring mechanisms rather than as standalone
classifiers. This design enables the model to leverage the
representational power of unsupervised leamning while
maintaining the decision accuracy and interpretability of
supervised classification. Therefore, the hybrid nature of
NetDAIL refers specifically to the integration of different
leaming paradigms within a single detection pipeline, not to a
fully hybrid training procedure.

The remainder of this study is organized as follows:
Section Il reviews related work on anomaly and intrusion
detection. Section III describes the proposed NetDAIL
methodology in detail. Section IV presents experimental results
and evaluation. Section V provides a discussion of findings and
performance analysis. Finally, Section VI concludes the study
and outlines future research directions.
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II. RELATED WORKS

Recent years have witnessed an increasing interest in the
development of intelligent intrusion detection systems (IDS)
that can cope with high-dimensional network data and severe
class imbalance. Prior studies can be broadly categorized into
four major directions: reinforcement learning-based methods,
deep learning and hybrid architectures, generative and
adversarial approaches, and ensemble or optimization-driven
techniques.

A. Reinforcement Learning-Based Approaches

Wang et al. [9] introduced RL-NIDS, a reinforcement
learning-based IDS that leverages explicit and implicit feature
interactions through a combination of supervised neural
network representation learning and unsupervised feature value
representation learning. The system outperformed traditional
feature selection and deep learning methods on NSL-KDD and
AWID datasets, yet its ability to detect rare classes such as
U2R was limited due to insufficient training samples.
Similarly, Li et al. [10] proposed AE-SAC, an IDS built on the
Soft  Actor—Critic  reinforcement learning algorithm,
incorporating reward modification and dynamic resampling to
mitigate class imbalance. Despite showing promising
performance, the recall for minority attacks remained poor.
Benaddi et al. [11] extended reinforcement learning to
industrial IoT security by combining distributional RL with
GANSs to enhance anomaly detection. Although this design
provided adaptive and robust detection, it demanded significant
computational resources, reducing its feasibility for real-time
deployment. Collectively, reinforcement learning approaches
demonstrate strong adaptability but face challenges with
scalability and minority-class detection.

B. Deep Learning and Hybrid Architectures

Sharma et al. [12] proposed a hybrid deep leaming model
that integrates Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks. CNNs captured
spatial features while LSTMs modeled temporal dependencies,
yielding over 90% accuracy, particularly for DoS and
exploitation attacks. However, the model’s training complexity
hindered real-time applicability and limited recall for rare
intrusions. Kasongo [13] explored a recurrent neural network-
based framework, demonstrating improved accuracy but also
highlighting issues of computational overhead. Kao et al. [ 14]
developed a two-stage structure combining a denoising
autoencoder (DAE) with a Gated Recurrent Unit (GRU). This
method used GRU-based confidence scoring alongside
reconstruction error, resulting in accuracy above 90% on NSL-
KDD. While effective, its reliance on finely tuned confidence
thresholds constrained generalizability. Meliboev et al. [15]
advanced AE-LSTM models with optimized hyperparameters
and layer configurations, improving precision and recall
compared to traditional classifiers. Nevertheless, increasing
architectural depth led to diminishing performance, revealing
sensitivity to model complexity. These works underscore the
potential of hybrid DL approaches but also their trade-offs
between performance, scalability, and generalization.
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C. Generative and Adversarial Learning Methods

Generative models have been adopted to address severe
class imbalance in IDS research. Rahman et al. [ 16] introduced
SYN-GAN, a system that generates synthetic loT traffic to
improve classifier robustness. While achieving perfect
performance on BoT-loT datasets, its results on NSL-KDD
were notably weaker, reflecting dependency on dataset-specific
quality. Xu et al. [17] similarly employed GANs to create
synthetic minority samples, achieving up to 91% accuracy on
NSL-KDD, but highlighted the limitation of over-reliance on
generated data quality. Zhang et al. [18] explored bagging
ensemble models combined with Bayesian optimization,
integrating extreme random tree (ERT) feature weighting to
enhance generalization. Despite improving stability and
accuracy, computational intensity limited its practical adoption.
Overall, adversarial leaming enriches minority-class
representation but introduces overheads in data generation and
tuning complexity, restricting scalability.

D. Ensemble and Optimization-Based Methods

Several studies leveraged ensemble leaming and feature
optimization for improved detection. Chohra et al. [19]
presented Chameleon, a feature selection framework
combining particle swarm optimization (PSO) with ensemble
classifiers, achieving strong Fl-scores across NSL-KDD,
UNSW-NBI15, and IoT-Zeek datasets. Yet, its iterative
optimization procedure imposed high computational costs.
Soleymanzadeh et al. [20] applied ensemble stacking across
security and financial datasets, showing superior precision and
recall compared to standalone models. However, the layered
ensemble design also raised concerns about efficiency in
resource-constrained environments. Wang et al. [21]
introduced the BIRCH-Autoencoder (BAE), which combines
clustering with autoencoder-based classification to reduce
imbalance effects, achieving notable improvements but with
sensitivity to clustering parameters. Jeong et al. [22] proposed
a deep belief network (DBN) enhanced with fast persistent
contrastive divergence, accelerating training and yielding
competitive accuracy. Nevertheless, the method struggled with
high-dimensional traffic data, limiting its applicability to large-
scale scenarios. Together, these approaches highlight the role
of optimization and ensemble techniques in boosting IDS
accuracy but also reveal trade-offs in efficiency and dataset
adaptability.

E. Synthesis and Research Gap

Across these categories, prior works have demonstrated
meaningful progress in anomaly-based intrusion detection.
Reinforcement learning enhances adaptability but often
underperforms for rare attacks. Hybrid deep leaming
architectures capture both temporal and spatial features but are
computationally heavy and prone to overfitting. GAN-based
models effectively augment minority classes but rely on
synthetic data quality, while ensemble and optimization
approaches boost accuracy at the cost of efficiency. Despite
these advances, three challenges persist: 1) limited recall for
rare classes such as U2R and R2L, 2) high computational
overhead hindering real-time deployment, and 3) weak
generalization across diverse datasets. Addressing these
limitations, the proposed NetDAIL framework leverages a
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lightweight denoising autoencoder, Isolation Forest anomaly
scoring, and LightGBM classification, enhanced with
SMOTEENN balancing, to deliver robust rare-class detection
with lower computational complexity.

III. METHODOLOGY

To enhance the accuracy, scalability, and reliability of
network intrusion detection systems, this study introduces
NetDAIL, a hybrid learning framework that unifies
unsupervised feature extraction, statistical anomaly scoring,
and supervised classification into a single, coherent pipeline.
Unlike conventional models that treat each stage
independently, NetDAIL is designed as an end-to-end
architecture, ensuring that every component complements the
others to overcome practical challenges such as data
redundancy, high feature dimensionality, severe class
imbalance, and the well-known difficulty of detecting rare
attack classes like User-to-Root (U2R) and Remote-to-Local
(R2L). The overall architecture, illustrated in Fig. 1, consists of
three tightly coupled modules: a Denoising Autoencoder for
unsupervised representation learning, an Isolation Forest for
anomaly scoring, and a LightGBM classifier for final binary
classification between normal and abnormal traffic.

A. Data Preprocessing

The preprocessing stage forms the essential foundation of
the proposed hybrid anomaly detection pipeline. Since the
system’s objective is classification between normal and
abnormal traffic, careful data preparation is necessary to ensure
that subsequent learning components (Autoencoder, Isolation
Forest, and LightGBM) receive structured and noise minimized
input. The NSL-KDD dataset serves as the main benchmark in
this study, offering two primary subsets: KDDTrain+ for
training and KDDTest+ for evaluation. Both subsets contain
labeled instances of normal and attack traffic, and this dataset
remains widely adopted in intrusion detection research due to
its manageable size, balanced difficulty level, and
compatibility with modern leaming algorithms [10]. Unlike
other datasets such as UNSW-NBI 5 and CICIDS-2017, NSL-
KDD provides a controlled environment where preprocessing
strategies and classification models can be consistently
evaluated.

After establishing the dataset foundation, the preprocessing
workflow applies a series of carefully designed
transformations. These include handling categorical attributes
through one-hot encoding, resampling to address class
imbalance with SMOTEENN, and feature scaling via Min-Max
normalization. Each of these steps is sequentially integrated so
that the processed data smoothly transitions into the feature
leaming stage with the Autoencoder. In the following
subsections, each step is discussed in detail.

B. Handling Categorical Attributes

Since both the Autoencoder and Isolation Forest require
purely numerical input, categorical features in NSL-KDD, such
as protocol_type, service, and flag, must be transformed. These
features contain symbolic values (e.g., “tcp”, “http”, “SF”) that
have no inherent numeric ordering. To prevent introducing
ordinal bias, one-hot encoding is applied. This transformation
represents each category as a binary vector. For instance, if the
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service attribute contains 70 unique categories, the encoding
generates a 70-dimensional sparse vector where exactly one
position is set to 1 and all others are 0. This guarantees that
categorical distinctions are preserved without misinterpretation
by downstream learning algorithms. Importantly, this step
ensures full compatibility with the Autoencoder input layer,
which expects fixed-size numeric vectors.

C. Data Balancing with SMOTEENN

Following categorical transformation, the dataset is passed
into a resampling module. Intrusion detection datasets are
typically highly imbalanced, with classes like U2R (User-to-
Root) and R2L (Remote-to-Local) severely underrepresented
compared to Normal or DoS categories. If left unaddressed,
this imbalance biases the classifier toward majority classes and
leads to poor recall for rare but critical intrusions. To overcome
this, a hybrid oversampling and cleaning strategy
(SMOTEENN) is used.

SMOTE (Synthetic Minority Oversampling Technique)
generates synthetic samples for minority classes by
interpolating between existing instances, thus expanding their
representation in the feature space.

ENN (Edited Nearest Neighbor) complements this by
removing noisy or borderline examples, especially from
majority classes, ensuring that oversampling does not introduce
excessive noise.

The combination of SMOTE and ENN, therefore, balances
the class distribution and refines the dataset quality. At this
stage, the resampled dataset is significantly more balanced and
ready for feature scaling.

Vol. 16, No. 10, 2025

D. Data Normalization

After categorical encoding and resampling, the cleaned
dataset enters the normalization stage. Different features in
NSL-KDD span different ranges (e.g., packet counts, byte
sizes, and duration values). Without scaling, attributes with
large numeric ranges would dominate the learing process and
hinder convergence. Therefore, Min-Max normalization is
applied to rescale all numeric features into the standard range
[0, 1]. This ensures that each feature contributes
proportionately during training.

The normalization process follows Eq. (1) and Eq. (2):
(1)

Xscaled = Xstd * (max — min) + min (2)

Xstd = X—Xmin

Xmax—Xmin

Before being sent to the learning components, all input
features for this model must fall inside the range [0,1] thanks to
normalization, which is carried out with default values of
min=0 and max=1. By enforcing this uniform scale, the model
achieves improved training stability, faster convergence, and
more effective feature representation when passed into the
autoencoder.

In summary, preprocessing transforms the raw NSL-KDD
dataset into a balanced, normalized, and numerically encoded
representation. This sequence of steps—one-hot encoding —
SMOTEENN resampling — Min-Max normalization—ensures
that the learning pipeline begins with high-quality input data.
The output of this stage directly feeds into the feature learning
component (Autoencoder), forming a seamless transition
betweenraw dataand advanced anomaly detection modules.
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Fig. 1. NetDAIL structure.
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E. Deep Learning-Hybrid Feature Learning Model

DAE, which forms the backbone of NetDAIL’s deep
feature leamning pipeline. Unlike traditional autoencoders that
simply reconstruct inputs, the denoising variant deliberately
introduces controlled noise into the input data. This compels
the encoder to capture robust and generalizable latent features,
focusing on meaningful traffic patterns instead of memorizing
irrelevant noise or spurious correlations.

The DAE architecture is carefully designed to compress
high-dimensional traffic data into a lower-dimensional but
informative latent space:

e Input Layer: Equal in size to the processed dataset
features after encoding and normalization.

e Encoder: Three fully connected layers with 128, 64, and
32 neurons. Each layer is followed by batch
normalization and ReLU activation, which improves
learning  stability while progressively reducing
dimensionality.

e Latent Space: A compact 32-dimensional embedding
that captures both linear and nonlinear dependencies,
preserving the intrinsic structure of the traffic data.

e Decoder: A mirrored architecture (32 — 64 — 128)
with a final sigmoid layer to reconstruct normalized
inputs within the [0, 1] range.

The DAE is trained with the Adam optimizer (learning rate
= 0.0005), the MAE reconstruction loss, and early stopping
(patience = 5 epochs). These strategies ensure stable
convergence and prevent overfitting. The 32-dimensional latent
vectors generated by the encoder are stored for the subsequent
anomaly scoring and classification stages.

It is important to emphasize that the Denoising
Autoencoder (DAE) constitutes only one module of the
broader NetDAIL architecture. While the DAE provides robust
deep feature representations, NetDAIL achieves its full
capability by tightly integrating these features with anomaly
scores from Isolation Forest and the discriminative power of
LightGBM.

Link to next step: Once robust latent features are obtained,
they are combined with anomaly scores generated by the
Isolation Forest to enrich the representation space before
supervised classification.

F. Reconstruction Loss, Anomaly Scoring, and Classification

Mean Absolute Error (MAE) loss is used to optimize the
autoencoder in NetDAIL. Eq. (3) provides the equation for it.

MAE =X

s SEalyi - 9l 3)

where, y; is the original input, §; is the reconstructed
output, and n is the number of input features. This loss ensures
the encoder learns meaningful latent features by minimizing

the reconstruction discrepancy.

Following feature extraction, each sample is assigned an
anomaly score using the Isolation Forest algorithm. This score
reflects the extent to which a sample deviates from the learned
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data distribution. Samples with higher scores are considered
more anomalous, as they are isolated more quickly during
recursive partitioning,.

Next, the 32-dimensional latent features from the DAE are
concatenated with the Isolation Forest anomaly scores, forming
a hybrid feature vector. This fusion integrates both structural
encoding (from the Autoencoder) and statistical rarity (from
the Isolation Forest), creating a more discriminative
representation space for classification.

To enhance the reproducibility of our experiments, we
provide detailed hyperparameter settings and data
configuration used in all model components. For the Denoising
Autoencoder (DAE), we used a learning rate of 0.001, a batch
size of 128, and trained for 100 epochs with early stopping. For
the Isolation Forest, the number of estimators was set to 100,
contamination to 0.1, and maximum samples to ‘auto’. For
LightGBM, we used 500 boosting rounds, a learning rate of
0.05, a maximum depth of 12, 64 leaves, and early stopping
with a patience of 50 rounds.

The dataset was split using the standard NSL-KDD and
KDD Cup 1999 partitions to ensure fair comparison with prior
studies.  Preprocessing (encoding, normalization, and
SMOTEENN balancing) was performed only on the training
data, and the same transformations were applied to the test set
to prevent data leakage.

For transparency and to facilitate future research, we also
plan to make the code and the exact train—test splits used in our
experiments available in a public repository upon acceptance.

A LightGBM classifier is then trained on this enriched
representation. Unlike methods that rely on static anomaly
thresholds, LightGBM dynamically learns complex non-linear
decision boundaries between normal and anomalous traffic.
During inference, the classifier produces probability estimates:

If probability < 0.5 — classify as Normal (Label 0).
If probability > 0.5 — classify as Abnormal (Label 1).

This probabilistic framework not only eliminates the need
for manual threshold tuning but also improves generalization
across diverse traffic patterns. By combining deep latent
learning, statistical anomaly scoring, and ensemble-based
supervised classification, NetDAIL achieves a scalable,
accurate, and balanced intrusion detection pipeline.

Why Hybridization Matters? Using each component of
NetDAIL in isolation would yield suboptimal results. For
instance, a DAE alone excels at feature extraction but cannot
provide direct anomaly detection or classification. Isolation
Forest alone can assign anomaly scores but lacks semantic
discrimination across multiple attack categories. Light GBM by
itself is a powerful classifier, but its performance degrades
when faced with high-dimensional, imbalanced, and noisy
inputs. By combining these three paradigms, NetDAIL
achieves a synergistic effect: the DAE reduces dimensionality
and suppresses noise, the Isolation Forest provides statistical
rarity scores that enrich the representation space, and
LightGBM leverages both original and leamed features for
precise decision boundaries. This integration enhances
robustness against imbalance, improves generalization across
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datasets, and significantly increases detection rates for rare
intrusions such as U2R and R2L.

Unlike conventional hybrid intrusion detection frameworks
that rely on deep learning combined with either statistical
anomaly detection or ensemble methods, NetDAIL integrates a
denoising autoencoder, Isolation Forest, and LightGBM in a
structured pipeline. This specific combination is intentionally
designed to address critical gaps identified in prior work:
1) DAE enhances robustness and extracts noise-resistant latent
representations from high-dimensional network traffic,
2) Isolation Forest provides an unsupervised anomaly score
that highlights rare and subtle attacks without requiring manual
threshold tuning, and LightGBM offers lightweight, scalable,
and high-accuracy classification. This integration enables
complementary strengths between feature learning, anomaly
scoring, and supervised classification, resulting in improved
detection of minority attacks and better scalability compared to
existing hybrid IDS frameworks.

IV. RESULTS

A. Dataset Description

We evaluate NetDAIL on two benchmark datasets derived
from NSL-KDD and KDD Cup 1999. The small-scale dataset
includes KDD-Train+ and KDDTest+, containing 41 features
(38 numerical and 3 categorical), which capture diverse aspects
of network traffic such as connection duration, protocol type,
byte counts, and traffic statistics. Table I summarizes these
features and their corresponding data types [24].
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To further evaluate generalization, we included two large-
scale subsets derived from the KDD Cup 1999 dataset: 1) 20
Percent Training Set.csv, which is a representative reduced
training subset, and 2) kddcup.data.corrected, the complete
corrected dataset with nearly five million records. For the
large-scale experiment, 20 Percent Training Set.csv was
employed exclusively for training, while kddcup.data.corrected
was used for testing. This configuration ensures a realistic
large-scale deployment scenario where the model is trained on
a manageable subset but evaluated on a massive, highly diverse
dataset. All datasets are summarized in Table IL

For consistency, all attack classes (DoS, Probe, R2L, U2R)
were merged into a single “Attack” class, while normal traffic
was preserved as a separate class. This binary transformation
aligns with best practices in anomaly detection. Preprocessing
included SMOTEENN balancing, min—max normalization, and
categorical feature encoding. These steps improved
generalization and stabilized learning during the supervised
phase.

B. Metrics of Evaluation

The evaluation metrics used to evaluate NetDAIL's
performance are described in depth in this section. Accuracy,
precision, recall, and Fl-score are a set of standard
classification metrics that are used to objectively assess the
model's efficacy. These measures offer a thorough framework
for evaluation, especially when dealing with unbalanced
datasets where mere correctness could be deceptive [23].

TABLE 1. FEATURE NAMES WITH THEIR CORRESPONDING DATA TYPES
No. Features Type No. Features Type

0 Duration int64 21 is_guest login int64

1 protocol _type object 22 Count int64

2 Service object 23 srv_count int64

3 Flag object 24 serror_rate float64
4 src_bytes int64 25 srv_serror_rate float64
5 dst_bytes int64 26 rerror_rate float64
6 Land int64 27 Srv_rerror_rate float64
7 wrong fragment int64 28 same_srv_rate float64
8 Urgent int64 29 diff_srv_rate float64
9 Hot int64 30 srv_diff host_rate float64
10 num_failed logins int64 31 dst_host_count int64
11 logged in int64 32 dst_host_srv_count int64
12 num_compromised int64 33 dst_host_same srv_rate float64
13 root_shell int64 34 dst_host_diff srv_rate float64
14 su_attempted int64 35 dst_host_same_src_port _rate float64
15 num_root int64 36 dst_host_srv_diff host rate float64
16 num_file creations int64 37 dst_host_serror_rate float64
17 num_shells int64 38 dst_host_srv_serror_rate float64
18 num_access_files int64 39 dst_host_rerror_rate float64
19 num_outbound cmds int64 40 dst_host_srv_rerror rate float64
20 is_host_login int64
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TABLEII. DATASET DESCRIPTIONS
Dataset Dataset Name Normal Attack Total
Type
Small KDD-Train+ 67343 58630 125973
Scale KDDTest+ 9711 12833 22544
Large 20 Percent Training Set.csv 13449 11743 25192
Scale kddcup.data.corrected 972781 3925650 | 4898431

Precision measures the proportion of instances predicted as
anomalous that are actually anomalous. Formally defined in
Eq. (4), it reflects the model’s ability to minimize false
positives.

Recall, sometimes referred to as sensitivity or True Positive
Rate (TPR), measures how well the model can identify real
abnormal occurrences. Eq. (5) serves as a mathematical
representation of this crucial statistic in intrusion detection
jobs.

The ratio of correctly categorized cases (both normal and
anomalous) to the total number of instances in the dataset is
known as accuracy (Acc), and it indicates how accurate the
classification is overall. Its equation is provided in Eq. (6).

Fl-score is a balanced metric that is particularly useful
when addressing unequal class distributions. It is calculated as
the harmonic mean of precision and recall. Eq. (7) illustrates
how it is computed.

Alongside other evaluation metrics, AUC (Area Under the
ROC Curve) is employed to assess the model’s ability to
distinguish between normal and anomalous data points [23]. A
high AUC indicates that the model consistently assigns higher
anomaly scores to true attacks compared to normal traffic,
making it particularly suitable for datasets with severe class
imbalance, where accuracy alone may not fully capture
detection performance.

.. (1P
Precision = T @)
_ _(@Pp
Recall = Goeem (5)
—_ (@P+TN)
Accuracy = G rprm) (6)
F1 — score = 2 x predsionsrecald -
(precision+recall)

C. Findings

The experimental findings from NetDAIL’s evaluation
across the datasets are presented in this section. Performance
metrics—including accuracy, precision, recall, and F1-score—
are computed using the corresponding test sets after applying
the model, providing a comprehensive assessment of
classification effectiveness.

For the small-scale evaluation, the Autoencoder component
of NetDAIL is trained using Mean Absolute Error (MAE) as
the reconstruction loss function. This setup combines
Autoencoder-based feature extraction, Isolation Forest
anomaly scoring, and LightGBM classification. The resulting
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classification metrics produced by the LightGBM classifier are
summarized in Table IIL

To further demonstrate NetDAIL’s ability to distinguish
between normal and anomalous traffic, visualizations such as
the confusion matrix (Fig. 2) and ROC curve (Fig. 3) are
provided. These plots highlight the hybrid model’s robust
discriminative capability across diverse traffic patterns.
Additionally, the Autoencoder’s training and validation loss
(Fig. 4) and training and validation accuracy (Fig. 5) illustrate
the model’s learning dynamics and convergence behavior
during feature representation learning,

TABLEIII. RESULTS GENERATED FROM NETDAIL

Metric Label Precision Recall Acc F1-score AUC
Normal | 0.99 0.99

MAE 0.99 0.99 0.99
Attack 0.99 0.98

Confusion Matrix
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Fig. 2. Confusion matrix of NetDAIL (MAE-based) on the small-scale
dataset, illustrating the model’s classification performance for normal and
anomalous instances.
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Fig.3. The ROC curve of NetDAIL (MAE-based) evaluated on the small-
scale dataset, showcasing its ability to separate normaland anomalous
instances.
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Fig. 5. Autoencoder training and validation accuracy curves across epochs.

TABLEIV. BENCHMARKING THE NETDAIL AGAINST STATE-OF-THE-ART
TECHNIQUES
Year Ref. No Technique Acc Fl1-score

2009 [8] Autoencoder 90.49% 91.81%

2022 [14] GRU + DAE 90.21% 89.87%

2022 [15] CNN + LSTM 82.6% 79.8%
BIRCH-

2023 [21] Autoencoder (BAE) 87.88% 88.46%

2024 [22] FPCD-DBN 89.39% 89.72%

2024 [23] BO-KNN-Bagging 82.4% 82.58%

2021 [24] Autoencoder 90.6 % 92.26 %

2024 [25] GANs 61% 73.5%
hyperdimensional

2025 [26] computing (HDC) | 91.5% -
techniques

2025 [27] Autoencoder 85% 84%

2025 [28] ResNet-CNN 98.9% -

2025 [29] FDA 98.3% -

NetDAIL 99 % 99 %

The experimental findings demonstrate that NetDAIL
achieves high accuracy in anomaly detection. The hybrid
architecture, which integrates Denoising Autoencoder-based
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feature learning, Isolation Forest anomaly scoring, and
LightGBM classification, exhibits superior robustness and
generalization across imbalanced and complex network traffic
patterns. Comparative evaluation against existing models using
the NSL-KDD benchmark dataset shows that NetDAIL attains
an accuracy of 99 per cent and an Fl-score of 0.99,
outperforming conventional deep learning approaches. These
results underscore the model’s enhanced capacity to detect
both statistical and latent anomalies, particularly in a rare or
underrepresented attack. A detailed comparison with related
studies is presented in Table IV. The results clearly
demonstrate that the proposed hybrid model not only surpasses
conventional deep leaming techniques but also maintains a
strong balance between detection precision and generalization.
This makes NetDAIL particularly suitable for deployment in
real-world intrusion detection systems, where datasets are often
highly imbalanced and heterogeneous.

D. Evaluation of Generalization and Scalability

To assess the generalization capability and scalability of
NetDAIL, an additional experiment was conducted using a
large-scale  dataset beyond the standard NSL-KDD
configuration. This dataset follows the same structural format
as NSL-KDD (as outlined in Table I) and was selected to
emulate a real-world large-scale deployment scenario. The
dataset consists of two subsets:

20 Percent Training Set.csv — a representative subset of the
original KDD Cup 1999 dataset containing a smaller number of
normal and anomalous records, which was used for training
[30].

kddcup.data.corrected — the full corrected KDD Cup 1999
dataset, comprising millions of normal and attack records,
which was reserved for testing [31].

By explicitly using one subset for training and the other for
testing, this configuration avoids data leakage and enables a
robust evaluation of the model’s generalization performance
under realistic conditions.

For the large-scale evaluation, we followed the commonly
used setup in KDD Cup 1999 experiments by training the
model on the 20% Training Set and evaluating on the full
kddcup.data.corrected dataset. Importantly, these two files are
provided as separate official subsets of the KDD Cup 1999
benchmark and contain no overlapping records, ensuring that
the evaluation is performed on completely unseen data. To
further ensure no data leakage, the preprocessing steps
(encoding, normalization, and SMOTEENN) were applied only
to the training data, and the learmed transformations were then
applied to the test set.

The results from this large-scale experiment confirm the
adaptability, scalability, and deployment readiness of
NetDAIL. Performance outcomes are summarized in Table V.
The confusion matrix in Fig. 6 demonstrates strong
classification performance, with a high number of true
positives and true negatives, highlighting the model’s
effectiveness in accurately distinguishing between normal and
anomalous traffic. The low number of false positives and false
negatives further confirm its robustness.
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TABLE V. RESULTS GENERATED FROM NETDAIL ON LARGE DATASET
Metric Label Precision Recall Ace Fl-score | AUC
Normal | 0.96 0.98
MAE 0.99 0.99 0.99
Attack 0.99 0.99
Confusion Matrix Heatmap
m
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2
o
2
2
3
8- 39175 3886475
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Fig. 6. Confusion matrix of NetDAIL (MAE-based) on the large-scale
dataset.
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Fig. 7. ROC curve of NetDAIL (MAE-based) evaluated on the large-scale

dataset, demonstrating its ability to distinguish between normaland
anomalous instances.

Complementing this, the Receiver Operating Characteristic
(ROC) curve in Fig. 7, exhibits a high Area Under the Curve
(AUC), reflecting the model’s strong discriminative ability.
The steep rise toward the top-left comer of the ROC space
indicates excellent sensitivity and specificity, validating
NetDAIL’s generalization capability.

To better demonstrate the contribution of each component
in the NetDAIL pipeline, we additionally trained a baseline
LightGBM model directly on the raw normalized data, without
any feature extraction (DAE) or anomaly scoring (Isolation

Vol. 16, No. 10, 2025

Forest). The baseline model achieved considerably lower
accuracy and Fl-score compared to NetDAIL’s performance
(99% accuracy and 0.99 F1-score). These results confirm that
incorporating the DAE and Isolation Forest components
significantly enhances feature representation and anomaly
separability, enabling LightGBM to achieve stronger
discriminative power.

These findings clearly demonstrate that NetDAIL maintains
high performance even under large-scale and complex data
distributions. Its consistent results across both small- and large-
scale datasets indicate that the hybrid architecture—combining
deep feature extraction, anomaly scoring, and supervised
classification—is well-suited for deployment in real-world,
high-demand intrusion detection environments.

The findings obtained from this experiment clearly
demonstrate that the proposed model possesses a high degree
of adaptability, enabling it to perform effectively under varying
operational conditions and data distributions. Moreover, the
results highlight the model’s scalability, showing that it can
maintain strong performance as the size and complexity of the
dataset or network environment increase. These characteristics,
combined with its consistent and reliable performance, indicate
that the model is well-prepared for real-world deployment,
even within large-scale and high-demand operational settings.

V. DISCUSSION

The experimental results demonstrate the efficiency of the
proposed hybrid model, NetDAIL, in accurately detecting
anomalies in network traffic. Evaluations on standard
benchmark datasets, including NSL-KDD and KDD Cup 1999,
indicate consistently strong performance, highlighting the
model’s practical relevance for real-world cybersecurity
applications.

NetDAIL’s hybrid architecture integrates a denoising
autoencoder for deep feature extraction, an Isolation Forest for
anomaly scoring, and LightGBM for supervised classification.
This combination enables the model to leverage both
unsupervised and supervised learning paradigms, capturing
latent structures in the data while maintaining robust and
reliable decision-making capabilities. The model’s exceptional
discriminative power is reflected in its high ability to
differentiate between normal and anomalous network traffic.

By utilizing labeled attack instances, NetDAIL effectively
separates subtle and rare attack types from normal behavior.
The application of SMOTEENN for class balancing further
enhances recall for minority attack categories, addressing a
critical challenge in intrusion detection systems. These results
confirm that the model generalizes well across both small- and
large-scale datasets, demonstrating its adaptability to diverse
network intrusion scenarios.

The model’s robustness and scalability make it particularly
suitable for deployment in dynamic operational environments,
where network traffic patterns and attack strategies
continuously evolve. Moreover, NetDAIL’s hybrid design
provides a strong foundation for future extensions, such as real-
time intrusion detection, multi-modal data integration, and
interpretable machine learning frameworks for cybersecurity.
Future research may also explore incorporating human-in-the-
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loop mechanisms to enhance operational decision-making and
transparency.

To further demonstrate the competitiveness of NetDAIL,
Table IV presents a comparative performance analysis with
state-of-the-art hybrid IDS models, including CNN-LSTM,
Transformer-based methods, BIRCH-AE, and GAN-based
models.

NetDAIL achieves the highest accuracy (99%) and F1-
score (0.99), surpassing these models by a margin of 1-4% on
average.

In addition to the performance gain, NetDAIL maintains a
lower computational footprint due to its lightweight structure
(DAE + IF + LightGBM) compared to heavy CNN or
Transformer architectures.

Overall, the findings highlight NetDAIL as a reliable,
scalable, and high-performing solution capable of addressing
modern network intrusion detection challenges effectively.

VI. CONCLUSION

Addressing the core challenges of network intrusion
detection, such as high-dimensional feature spaces, class
imbalance, scalability, and the detection of rare attacks, this
study introduced NetDAIL, a robust hybrid framework that
integrates a denoising autoencoder for deep feature
representation, an Isolation Forest for anomaly scoring, and
LightGBM for supervised classification. This combination was
intentionally designed to leverage both supervised and
unsupervised learning paradigms, enabling the model to
effectively capture both statistical and latent anomalies in
network traffic.

Each research objective outlined in the introduction was
directly addressed and validated through the experimental
results. First, the use of the denoising autoencoder successfully
reduced feature dimensionality and enhanced representation
quality, improving the model’s ability to detect subtle
deviations in network behavior. Second, applying
SMOTEENN effectively mitigated class imbalance and
improved the recall of minority and rare attack categories.
Third, the integration of Isolation Forest contributed to better
anomaly sensitivity without manual threshold tuning. The
inclusion of a simple LightGBM baseline in our experiments
further validates the contribution of NetDAIL’s unsupervised
components. The substantial performance gap between the
baseline and the hybrid pipeline confirms that the exceptional
results are not due to data leakage or dataset characteristics, but
to the effective integration of deep feature learning and
anomaly scoring. Finally, the inclusion of LightGBM provided
a scalable and efficient classification mechanism, enabling the
model to maintain strong performance on large-scale datasets.

Empirical evaluation on two benchmark datasets—NSL-
KDD and KDD Cup 1999—demonstrated the effectiveness of
the proposed framework, achieving an AUC of 0.99 on large-
scale traffic while accurately identifying subtle and rare
intrusions.  These outcomes  confirm  NetDAIL’s
generalizability, scalability, and operational readiness for
deployment in dynamic cybersecurity environments where
attack strategies continuously evolve.

Vol. 16, No. 10, 2025

Future research will focus on real-time implementation,
integration with multi-modal data sources, and enhancing
model interpretability to support adaptive, human-in-the-loop
intrusion detection systems.
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