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Abstract—In the context of rapidly expanding urban water 

supply networks and the prevalence of pipe defects – for example, 

corrosion, cracks, leaks, blockages – that undermine efficiency 

and pose safety risks, this study presents an intelligent detection 

system aimed at improving maintenance accuracy and operational 

stability. We propose a fusion-based detection architecture 

combining Convolutional Neural Networks for stable multi‐level 

feature extraction, YOLOv5 for high‐speed real‐time detection, 

and Faster R‐CNN for enhanced recall of small or occluded 

defects. Individually, the models achieve 85.0% accuracy for the 

CNN extractor, 90.0% detection accuracy with 50 FPS for 

YOLOv5, and 86.8% recall for Faster R‐CNN. Ablation 

experiments confirm that the fully integrated system attains 

superior performance—92.1% accuracy, 85.0% recall, an F1 

score of 81.0, and an mAP of 85.1 at 45 FPS—demonstrating that 

ensemble methods harness complementary strengths to optimize 

detection precision and speed. Overall, our findings highlight the 

promise of deep learning–based ensembles for large‐scale, real‐

time pipeline inspection, offering a foundation for future 

intelligent infrastructure management. 
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I. INTRODUCTION 

As an important part of urban infrastructure, the stability and 
safety of water pipes are directly related to the daily life of 
residents, industrial production, and the stability of urban 
operation [1][2]. 

Once the water supply system leaks, it will not only cause a 
huge waste of water resources but also may affect the normal 
operation of urban water supply, and even lead to serious 
consequences such as road collapse and environmental pollution 
[2, 3, 4]. According to statistics, the leakage rate of water supply 
systems worldwide is as high as 15%-30% [2][5][6], and a large 
part of this is caused by defects in the internal or external water 
pipes that are not detected and repaired in time. Therefore, it is 
of great significance to establish an efficient and accurate water-
pipe detection system to reduce leakage accidents, reduce 
maintenance costs, and improve the operational efficiency of 
water supply systems. In addition, water pipe detection 
technology also plays a key role in many fields such as industrial 
safety, agricultural irrigation, and environmental protection, 
providing strong support for resource conservation and 
environmental protection [7][ 8]. 

Despite the growing importance of water pipe testing, 
existing testing methods still have many limitations [9][10]. 

At present, common water-pipe detection technologies 
include manual inspection, acoustic inspection, ultrasonic 
testing, and optical fiber sensing technology [11]. However, 
manual inspection relies on the experience of professionals, 
which is not only time-consuming and labor-intensive but also 
has low detection efficiency, making it difficult to cover large-
scale pipe network systems. Although acoustic and ultrasonic 
testing can detect internal defects in pipelines to a certain extent, 
their sensitivity is greatly affected by environmental noise, and 
the detection cost is high, so it is difficult to promote and apply 
on a large scale. Although technologies such as optical fiber 
sensing provide certain real-time monitoring capabilities, they 
also face problems such as high cost and complex maintenance 
[9][12]. Therefore, there is an urgent need for an efficient, low-
cost, and automated water-pipe defect detection method to 
compensate for the deficiency of traditional methods for 
detection. 

Along with the development of technology, water-pipe 
detection technology is evolving in the direction of automation 
and intelligence, especially detection methods based on sensors, 
artificial intelligence, and computer vision have gradually 
become research hotspots [13][14]. Among them, the rapid 
development of deep learning technology provides a new 
solution for the detection of water pipe defects [15]. 

In this study, an intelligent water-pipe defect detection 
system based on Convolutional Neural Network (CNN), Faster 
R-CNN, and YOLOv5 was proposed, aiming to improve the 
accuracy and efficiency of detection. The system uses machine 
vision technology and image processing methods, combined 
with deep learning models, to automatically detect, classify, and 
locate water-pipe defects, to achieve efficient and accurate 
defect identification. 

The results of this study will help solve many of the current 
challenges faced by water pipe defect detection and improve the 
degree of automation, accuracy, and efficiency of inspection 
[16, 17, 18, 19]. Intelligent detection systems can not only 
reduce maintenance costs, but also reduce the waste of water 
resources, improve the reliability of urban water supply systems, 
and provide technical support for the development of smart 
cities in the future [20][21]. In addition, this technology can also 
be extended to industrial pipeline inspection, oil and gas pipeline 
maintenance, and other fields, providing more efficient solutions 
for the intelligent management of various pipeline network 
infrastructure. 
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In the future, with further development of deep learning, 
computer vision, and Internet of Things technologies, the 
intelligence level of water pipe inspection systems will continue 
to improve, achieving more efficient and accurate defect 
detection and predictive maintenance, and providing a stronger 
guarantee for the safety and sustainable use of global water 
supply [21]. 

II. MATERIALS AND METHODS 

A. Purpose of the Experiment 

The goal of this experiment is to build an efficient and 
accurate water pipe defect detection system, and use image 
processing and deep learning technology to realize the automatic 
detection and classification of water pipe surface defects, to 
improve the intelligent level of pipeline maintenance, reduce the 
cost of manual inspection, and improve the accuracy and 
reliability of detection. 

Identification of detecting targets and data acquisition: 
Firstly, by analyzing the definition and classification of water 
pipe defects, the detection target is clarified. Water pipe defects 
mainly include cracks and corrosion, and different image 
acquisition and processing methods are required for different 
types of defects. In order to ensure the efficiency of the 
inspection, the experiment will use high-resolution camera 
equipment to obtain high-definition images, combined with 
appropriate lighting equipment, to reduce uneven lighting, 
shadow interference, and other problems, to obtain stable and 
clear defect image data. 

Dataset building and enhancement: In order to improve the 
generalization ability of the model, the experiment will focus on 
constructing a high-quality water pipe defect dataset, covering 
two types of defects, water pipes of different materials, and 
image data collected in different environments. In addition, in 
order to enhance the adaptability of the model in complex 
working conditions, data augmentation techniques such as 
rotation, scaling, contrast adjustment, adding noise, etc., will be 
used to enable the model to adapt to different shooting angles, 
lighting changes, and environmental interference. 

Deep learning model training and optimization: In the defect 
detection task, the experiment will use a variety of deep learning 
models, such as Convolutional Neural Network (CNN), 
YOLOv5, Faster R-CNN, etc., and train and test them on the 
dataset. CNN is responsible for feature extraction, YOLOv5 is 
suitable for real-time detection, and Faster R-CNN excels in 
precise target positioning. The experiment will improve the 
performance of the model on the validation set through cross-
validation, transfer learning, hyper-parameter optimization, and 
other methods, so that it can maintain high recognition accuracy 
on different defect types. 

Evaluation and optimization: In order to comprehensively 
evaluate the detection effect of the model, the experiment will 
use indicators such as accuracy, recall, and F1-score, and 
analyze the advantages and disadvantages of each model in 
depth. In addition, false detection and missed detection will be 
discussed in detail, the key factors affecting the detection 
performance will be identified, and targeted optimization plans 
will be proposed to further improve the accuracy and stability of 

water-pipe defect detection, and provide reliable technical 
support for practical applications. 

B. Existing Datasets 

In the study of water pipe defect detection, the selection and 
analysis of data sets are crucial. At present, the publicly 
available datasets of water pipe defects mainly focus on two 
typical types of defects: cracks and corrosion. These datasets 
provide a reliable data foundation and diverse sample support 
for the training and validation of machine learning and deep 
learning models. In this study, two mainstream datasets of water 
pipe defects were selected: the water pipe crack dataset and the 
water pipe corrosion dataset. The two datasets have their own 
characteristics in terms of sample size, image resolution, and 
defect feature distribution. Among them, crack defects dominate 
the dataset and show a variety of structures and evolutionary 
forms, including the following typical types: 

1) Linear cracks: Extending in a straight line or near a 

straight line along the surface of the water pipe, their length and 

width vary greatly due to the aging of materials and 

environmental pressure. 

2) Branch cracks: The main crack extends outward into 

multiple branches, forming a network-like structure with high 

complexity. 

The width, depth, and morphological evolution of these 
cracks are affected by multiple factors such as water pipe 
material, internal pressure, operating time, and external 
environment. 

In contrast, the variation of corrosion defects is mainly 
reflected in the depth of corrosion and the size of the affected 
area. Corrosion may lead to localized pitting, spreading, and 
even perforations, which can significantly weaken the structure 
of water pipes and pose a risk of leakage or even breakage. 

The two water pipe defect datasets used in this study have 
been publicly released on the open source platform, and the link 
is as follows: https://github.com/chu2024/dataset2025.git. 

Through in-depth analysis and comparison of the above two 
datasets, it helps the model to understand various defect features 
more accurately, to improve the robustness and generalization 
ability of detection. The dataset in this study is constructed by 
combining field collection and open-source resources, and 
includes pipeline defect images in different scenarios and 
environments, mainly covering five typical defect types, 
including cracks and corrosion, and also contains a certain 
proportion of defect-free images to enhance the generalization 
ability of the model. All images are captured with a high-
definition camera during the actual water main inspection with 
a resolution of 1920x1080, ensuring that the details inside the 
pipes are clearly reflected. 

Data sources and distribution: Acquisition part: About 2,000 
images were collected in real pipelines through the robot 
platform, covering a variety of pipe materials (metal, plastic) 
and service life (new, old). Fig. 1 shows a real pipeline image. 
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Fig. 1. Real pipe sample image. 

1) Open source: 1670 images were acquired from the public 

defect detection dataset. 

2) Data labeling and classification: All images are 

professionally annotated in YOLOv5 (.txt) and VOC (.xml) 

formats (including bounding boxes and category labels). The 

distribution of defect types is as balanced as possible, with 

cracks accounting for 51% and corrosion accounting for 49%. 

3) Data preprocessing: The acquired images were denoised 

and illuminated, blurry and low-quality samples were 

eliminated, and some images were cropped and normalized to 

meet the model input requirements. 

4) Data partitioning: The dataset is divided into three sets; 

the training set as 60% of the dataset, the validation set as 20% 

of the dataset, and the test set as 20% of the dataset. The training 

set is used for model learning, the validation set is used for 

model tuning, and the test set is used for final performance 

evaluation. The distribution of defect types is consistent across 

each subset to avoid the impact of sample distribution bias on 

the performance of the model. The diversity and coverage of the 

dataset provide a strong guarantee for the adaptability of the 

model in complex scenarios, and lay a foundation for the 

comprehensiveness and scientificity of the defect detection task. 

a) Water pipe cracks dataset: The pipe crack dataset 
mainly contains images of water pipe cracks – shown in Fig. 2 
– in different materials and environments, and the dataset has a 

rich sample size, covering a variety of crack types (linear 
cracks, branch cracks). The width and length of the cracks have 
significant characteristic differences, which are suitable for 

training CNN models to detect cracks, as shown in Table I. 

 

Fig. 2. Water pipe crack. 

b) Water pipe corrosion dataset: The pipe corrosion 
dataset contains images of varying degrees of corrosion on the 
surface of water pipes – shown in Fig. 3 – covering multiple 
stages from mild to severe corrosion. Corrosion data is often 
characterized by irregular spots and depressions, and images 

are characterized by high contrast and noise. Corrosion defects 
also behave differently on different pipe materials, and the 
following is a partial sample of this dataset, as shown in 

Table II. 

 

Fig. 3. Water pipe corrosion. 

TABLE I.  WATER PIPE CRACKS DATASET 

Number 
Image file 

name 

Image 

resolution 

Crack 

type 

Crack 

width 

(MM) 

Crack 

length 

(MM) 

1 polie1379.png 1024x768 
linear 

crack 
0.5 15 

2 polie517.png 1024x768 
branch 

crack 
0.7 12 

3 polie536.png 1280x960 
linear 

crack 
0.6 20 

4 polie1490.png 1280x960 
branch 

crack 
1.0 30 

5 polie1542.png 1024x768 
linear 

crack 
0.4 10 

TABLE II.  WATER PIPE CORROSION DATASET 

Numbe

r 

Image 

name 

Image 

resolutio

n 

Corrosio

n 

degree 

Corrosio

n area 

(%) 

Surface 

roughne

ss (RA, 

ΜM) 

1 
fushi22.pn

g 

1024x76

8 
severe 85% 2.0 

2 
fushi984.p

ng 

1280x96

0 
severe 90% 2.0 

3 
fushi18.pn

g 

1024x76

8 
medium 20% 2.0 

4 
fushi517.p

ng 

1280x96

0 
medium 40% 0.7 

5 
fushi45.pn

gg 

1024x76

8 
severe 20% 2.0 

Through the analysis performed earlier on two types of 
datasets, it can be found that the characteristic manifestations of 
various types of water pipe defects are significantly different, 
and the rational use of these datasets will provide a solid 
foundation for subsequent model development and defect 
detection. At the same time, the defect sample distribution and 
annotation details in the dataset also provide rich research 
materials for the design of optimized detection algorithms. 
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C. Tables to Support Experimental Design 

1) Dataset segmentation table: The dataset segmentation 

table is used to display the segmentation strategy for the dataset 

of self-managed water pipe defects. With a reasonable 

proportion of training, validation, and test sets, the model can be 

trained and validated on different data. The specific 

segmentation scenarios are shown in the following Table III. 

TABLE III.  SEGMENTATION OF THE DATASET 

Dataset name Data volume (table) Percentage (%) 

Training Set 2202 60% 

Validation Set 734 20% 

Test Set 734 20% 

Total 3670 100% 

Table III presents the number and percentage of the training 
set – that is used for the training of the model, the number and 
percentage of the validation set – that is used for hyper-
parameter tuning, and the number and percentage of the test set 
– that is used for the evaluation of the final model performance. 
This segmentation ensures that the data is fully utilized and 
reduces the risk of overfitting. 

2) Algorithm performance indicator record table: The 

algorithm performance indicator record table is used to evaluate 

the performance of the different models used, especially in the 

water pipe defect detection task. Table IV shows the 

performance of each model in the task of detecting defects in 

water pipes through specific performance indicators, which is 

convenient for subsequent comparison and selection of the best 

model. 

TABLE IV.  ALGORITHM PERFORMANCE INDICATOR RECORD 

Model 

name 
Accuracy Recall 

F1 

point 

Average detection 

time（ms）  

YOLOv5 0.90 0.85 0.87 30 

Faster R-

CNN 
0.88 0.80 0.84 120 

CNN 0.86 0.78 0.82 50 

3) Model performance evaluation: The Model Performance 

Evaluation Form is used to provide a comprehensive evaluation 

of the final selected model, including how the model performs 

on the test set. The specific assessment results are shown in 

Table V. 

Table V provides systematic support for the design and 
implementation of this experiment, covering many aspects such 
as the segmentation of the data set, the recording of experimental 
variables, the evaluation of algorithm performance, and the 
summary of the final results, which not only provides intuitive 
data support for the experimental results, but also provides a 
basis for subsequent model optimization and improvement. This 
enables an efficient and reliable water pipe defect detection 
system. 

TABLE V.  PERFORMANCE ANALYSIS 

Model 

name 

Test 

set 

sample 

size 

Correct 

detection 

number 

Number 

of error 

detections 

Accuracy 

（%）  

Recall 

（%

）  

CNN 200 170 30 85.0 80.0 

YOLOv5 200 180 20 90.0 85.0 

Faster R-

CNN 
200 160 40 80.0 75.0 

D. Experimental Process 

1) CNN model training details: Before the model is trained, 

the data is first fully prepared and preprocessed to ensure that 

the data provides useful features in the training and enables the 

model to learn effectively. The dataset is divided into 60%-20%-

20% data, with 60% of the data used for training, 20% for 

validation, and the remaining 20% for testing. In terms of data 

preprocessing, a uniform resize was first applied to all images, 

and the dimensions of all images were adjusted to 640×640 

pixels. In order to improve the robustness of the model, the 

images in the training set were augmented with data, including 

rotation, cropping, scaling, and brightness change operations, 

which could effectively enhance the model’s ability to detect 

water pipe defects in different environments. Through these 

preprocessing and enhancements, the dataset has been 

significantly improved in terms of quantity and quality. 

2) YOLOv5 training details with hyper-parameter tuning: 

In this study, the task of water pipe defect detection requires the 

use of efficient and accurate deep learning models. YOLOv5 

was selected as the main detection model, which has high real-

time performance and good detection accuracy. YOLOv5 is a 

single-stage detection model based on Convolutional Neural 

Network (CNN), which achieves a good balance between 

processing speed and accuracy compared to traditional multi-

stage detection models. The v5.0 version of YOLO was used as 

the base model, and its architecture was partially customized 

according to the needs of the actual task. The YOLOv5 model 

consists of four main components: 

a) Input: This is to handle the input image. Here, the 

image is converted to a fixed size image by resizing. Various 
data augmentation techniques are also applied to improve the 

robustness and performance of the model. 

b) Backbone: This is used for feature extraction, 
CSPDarknet53 is used as the backbone network, which can 

effectively extract high-level image features. 

c) Neck: This is for feature fusion, PANet (Path 
Aggregation Network) is used to optimize the effect of feature 

fusion and enhance the ability of small object detection. 

d) Head: This is used to detect outputs, combined with 

the design of YOLO heads, it can output classification results, 
bounding box regression values, and confidence levels, as 

shown in Fig. 4. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

155 | P a g e  
www.ijacsa.thesai.org 

 

Fig. 4. Sample of classification result. 

3) Faster R-CNN of the training process: The choice of 

hyper-parameters is critical to the effectiveness of the model’s 

training. The following hyper-parameter settings were used 

during model training. 

4) Learning rate: During the training process, the setting of 

the learning rate has an important impact on the convergence 

speed and accuracy of the model. The initial learning rate of 

0.001 was selected, and Cosine Annealing Learning Rate 

Scheduling was adopted, which could dynamically adjust the 

learning rate during the training process to avoid the 

phenomenon of gradient explosion or gradient disappearance. 

5) Batch size: In order to improve the training efficiency 

and stability, 16 was selected as the number of images per batch. 

This batch size enables efficient training without exceeding the 

GPU memory. 

6) Optimizer: The AdamW optimizer is used, which 

combines the advantages of Adam optimizer and L2 

regularization, which can effectively avoid the overfitting 

problem and accelerate the convergence process. 

7) Weight attenuation: In order to prevent overfitting, the 

weight attenuation is set to 0.0005, which can effectively 

constrain the complexity of the model. 

8) Image enhancement strategy: In addition to the basic 

geometric transformations (rotation, cropping), the image is also 

changed in color (brightness, contrast, saturation adjustment), 

and noise is randomly added to further improve the robustness 

of the model. 

9) Fusion model: The water pipe defect detection system 

based on the fusion strategy proposed in this study combines the 

advantages of Convolutional Neural Network (CNN), YOLOv5 

and Faster R-CNN to achieve efficient identification, precise 

location and real-time detection of water pipe defects. The 

overall process is presented in Figure 5. 
As shown in Fig. 5, the overall model consists of the 

following key modules: 

1) Input image (high-definition water pipe image): The 

system uses an image of the inside of the water pipe collected 

by a high-definition camera device or inspection robot as input. 

These images retain detailed information about minor defects 

such as cracks and corrosion, and are the basis for subsequent 

processing. 

2) CNN: The input image of the feature extraction module 

is first processed by the CNN to extract multi-level image 

features, including edges, textures, and semantic information. 

CNN serves as a shared feature extraction backbone network, 

providing basic feature representation for subsequent detection 

and classification modules. 

3) YOLOv5: Image features extracted by real-time object 

detection are fed into the YOLOv5 model. YOLOv5 is a single-

stage inspection model with high detection accuracy (90.0%) 

and high frame rate (50 FPS), which is suitable for large-scale, 

real-time defect detection scenarios. It is capable of quickly 

outputting defect type, location, and confidence level. 

 

Fig. 5. Structure diagram of the fusion model. 

4) Faster R-CNN: At the same time, image features are also 

input into the Faster R-CNN model. The model effectively 

improves the detection accuracy through the Regional 

Recommendation Network (RPN) and ROI pooling mechanism, 

especially for the identification of complex backgrounds, small 

targets or overlapping defects. It has a recall rate of 86.8% and 

is highly robust. 

5) Fusion module: The output of YOLOv5 and Faster R-

CNN will be integrated in the fusion module. By integrating 

factors such as scoring, position overlap and confidence, the 

module intelligently filters and optimizes to retain the optimal 

prediction results and effectively improve the overall stability 

and accuracy of the system. 

6) Final output (defect type + location coordinates): The 

final output of the system includes the identified defect 

categories (e.g., cracks, corrosion) and their precise location 
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coordinates in the image. These results can be further used for 

network operation and maintenance decision-making, defect 

level assessment, and automatic maintenance path planning. 

7) Ablation Study: To evaluate the contribution of each 

model component in the fusion system, we performed an 

ablation study to selectively remove each sub-model and 

observe its impact on detection performance shown in Table VI. 

The values in Table VI confirm that YOLOv5 is a great help 
for real-time inspection, while Faster R-CNN improves the 
positioning accuracy, especially for small or overlapping 
defects. CNN ensure consistent feature extraction across 
environments. The ensemble model provides the best balance 
between accuracy, speed, and recall. 

TABLE VI.  PERFORMANCE ANALYSIS OF ABLATION EXPERIMENTS 

Configuration Accuracy Recall 
F1 

Score 
mAP FPS 

CNN + YOLOv5 

+ Faster R-CNN 
92.1 85 81 85.1 45 

YOLOv5 90.0 82.0 78.0 82.3 50 

Faster R-CNN 89.3 86.8 72.0 81.8 32 

CNN 85.0 80.0 74.0 79.5 20 

YOLOv5 + CNN 91.0 84.0 80.0 84.0 42 

Faster R-CNN + 

CNN 
90.0 84.5 78.5 83.6 29 

The design of this ablation test system illustrates the 
complementary advantages of the constituent models. 

III. RESULTS 

The experimental results show that there are significant 
differences in the performance of different models and their 
combinations. As shown in Table VI and Fig. 6, the fusion 
model (CNN + YOLOv5 + Faster R-CNN) has the best 
comprehensive performance, with an accuracy of 92.1%, a recall 
rate  of 85.0%, and an F1 value of 81.0%., the mean average 
precision (mAP) was 85.1, and the detection speed was 45 FPS, 
which verified the complementary advantages of each sub-
model after fusion. 

Specifically, the YOLOv5 standalone model excels in real-
time inspection capabilities, with an accuracy rate of 90.0% and 
an inspection speed of up to 50 FPS, making it ideal for real-
time pipeline monitoring tasks. However, despite its slower 
speed (32 FPS), Faster R-CNN is more robust in complex 
contexts, especially in reducing false positives, missed 
detections, and handling target overlap, with a recall rate of 
86.8%. 

The ablation experiments further showed that: 

1) The CNN model alone can provide basic feature 

extraction capabilities, but it has shortcomings in detection 

accuracy. 

2) YOLOv5 excels at quickly and accurately identifying 

defects with clear and well-defined boundaries; 

3) Faster R-CNN significantly improves positioning 

accuracy, especially when the image background is complex or 

there is a lot of interference. 

4) It is worth noting that the fusion model not only retains 

the speed advantage of YOLOv5, but also introduces the 

localization ability of Faster R-CNN and the feature stability of 

CNN, which shows better performance in both standard and 

complex scenarios, especially in small defect detection and 

high-noise environments. 

In summary, while YOLOv5 strikes a good balance between 
speed and accuracy, the fusion strategy is still better than any 
single model configuration across the board. Therefore, the 
detection system is particularly suitable for the actual pipe 
network inspection task, and has a broad application prospect in 
the application scenarios that require the coexistence of high 
real-time performance and high robustness. 

 

Fig. 6. Performance analysis of the fusion model. 

IV. DISCUSSION 

This study systematically evaluated and compared three 
deep learning models for water pipe defect recognition, 
demonstrating their complementary strengths. CNN excelled at 
multi‐level feature extraction and, after parameter tuning, 
achieved 98.9 % classification accuracy on the validation set, 
underscoring its fundamental role in image feature analysis. As 
a lightweight, single‐stage detector, YOLOv5 struck an effective 
balance between accuracy and speed, delivering 92.1 % 
accuracy at 45 fps – making it ideal for scenarios requiring real‐
time feedback. In contrast, Faster R-CNN leveraged its Region 
Proposal Network (RPN) and precise bounding‐box regression 
to achieve an 86.8 % recall rate for small or overlapping defects 
in noisy, complex environments, highlighting its robustness 
against occlusion and background interference. Ablation 
experiments confirmed that fusing all three models 
outperformed any single or dual‐model combination, yielding a 
92.1 % accuracy, 85.0 % recall, an F1 score of 81.0, and an mAP 
of 85.1 %, all while maintaining 45 fps. This validates that multi‐
model integration can effectively combine individual 
advantages to boost detection precision and stability. 

Despite the strong performance on binary defect detection 
tasks, there remains room for improvement. Future work could 
adopt a multi‐task learning framework to jointly model defect 
detection, type classification, and severity assessment. 
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Incorporating multimodal data—such as infrared, acoustic, and 
thermal imaging—may further enhance adaptability in complex 
operating conditions. To support large‐scale deployment, the 
system should integrate real‐time feedback, dynamic 
optimization, and incremental learning capabilities. Moreover, 
embedding reinforcement learning mechanisms could enable 
autonomous pipeline inspection path planning and intelligent 
defect‐repair suggestions, advancing toward a fully 
autonomous, intelligent, and closed‐loop maintenance solution. 

V. CONCLUSION 

The proposed CNN + YOLOv5 + Faster R-CNN fusion 
framework successfully balances detection accuracy and real-
time performance in water pipe defect recognition. 
Experimental results show that the integrated model surpasses 
individual models in key metrics – accuracy, recall, and F1 score 
– while sustaining a 45 fps detection speed. These findings 
confirm the potential of deep learning ensemble methods for 
intelligent, large-scale pipeline inspection and lay a solid 
foundation for future smart infrastructure management in urban 
environments. 
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