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Abstract—In the context of rapidly expanding urban water
supply networks and the prevalence of pipe defects — for example,
corrosion, cracks, leaks, blockages — that undermine efficiency
and pose safety risks, this study presents an intelligent detection
systemaimed atimproving maintenance accuracy and operational
stability. We propose a fusion-based detection architecture
combining Convolutional Neural Networks for stable multi-level
feature extraction, YOLOVS for high-speed real-time detection,
and Faster R-CNN for enhanced recall of small or occluded
defects. Individually, the models achieve 85.0% accuracy for the
CNN extractor, 90.0% detection accuracy with 50 FPS for
YOLOvS5, and 86.8% recall for Faster R-CNN. Ablation
experiments confirm that the fully integrated system attains
superior performance—92.1% accuracy, 85.0% recall, an F1
score 0f 81.0, and an mAP of 85.1 at 45 FPS—demonstrating that
ensemble methods harness complementary strengths to optimize
detection precision and speed. Overall, our findings highlight the
promise of deep learning—based ensembles for large-scale, real
time pipeline inspection, offering a foundation for future
intelligent infrastructure management.
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I.  INTRODUCTION

As animportant part of urbaninfrastructure, the stability and
safety of water pipes are directly related to the daily life of
residents, industrial production, and the stability of urban
operation [1][2].

Once the water supply system leaks, it will notonly cause a
huge waste of water resources but also may affect the normal
operation of urban water supply, and even lead to serious
consequences suchasroadcollapseand environmental pollution
[2,3,4]. Accordingto statistics, the leakage rate of water supply
systems worldwide is as high as 15%-30% [2][5][6], and a large
part of this is caused by defects in the internal or external water
pipes that are not detected and repaired in time. Therefore, it is
of greatsignificance to establish an efficient and accurate water-
pipe detection system to reduce leakage accidents, reduce
maintenance costs, and improve the operational efficiency of
water supply systems. In addition, water pipe detection
technologyalsoplaysakey role in many fields suchas industrial
safety, agricultural irrigation, and environmental protection,
providing strong support for resource conservation and
environmental protection [7][ 8].

Despite the growing importance of water pipe testing,
existing testing methods still have many limitations [9][10].

At present, common water-pipe detection technologies
include manual inspection, acoustic inspection, ultrasonic
testing, and optical fiber sensing technology [11]. However,
manual inspection relies on the experience of professionals,
which is not only time-consuming and labor-intensive but also
has low detection efficiency, making it difficultto cover large-
scale pipe network systems. Although acoustic and ultrasonic
testingcan detect internal defects in pipelines to a certain extent,
their sensitivity is greatly affected by environmental noise, and
the detection cost is high, so it is difficult to promote and apply
on a large scale. Although technologies such as optical fiber
sensing provide certain real-time monitoring capabilities, they
also face problems such as high cost and complex maintenance
[91[12]. Therefore, there is an urgent need for an efficient, low-
cost, and automated water-pipe defect detection method to
compensate for the deficiency of traditional methods for
detection.

Along with the development of technology, water-pipe
detection technology is evolving in the direction of automation
and intelligence, especially detection methods based on sensors,
artificial intelligence, and computer vision have gradually
become research hotspots [13][14]. Among them, the rapid
development of deep learning technology provides a new
solution for the detection of water pipe defects [15].

In this study, an intelligent water-pipe defect detection
system based on Convolutional Neural Network (CNN), Faster
R-CNN, and YOLOVS5 was proposed, aiming to improve the
accuracy and efficiency of detection. The system uses machine
vision technology and image processing methods, combined
with deep learning models, to automatically detect, classify, and
locate water-pipe defects, to achieve efficient and accurate
defect identification.

The results of this study will help solve many of the current
challenges faced by water pipe defect detection and improve the
degree of automation, accuracy, and efficiency of inspection
[16, 17, 18, 19]. Intelligent detection systems can not only
reduce maintenance costs, but also reduce the waste of water
resources, improve thereliability of urban water supply systems,
and provide technical support for the development of smart
cities in the future [20][21]. In addition, this technology canalso
be extendedto industrial pipeline inspection, oil and gas pipeline
maintenance, and otherfields, providing more efficient solutions
for the intelligent management of various pipeline network
infrastructure.
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In the future, with further development of deep learning,
computer vision, and Internet of Things technologies, the
intelligence level of water pipe inspection systems will continue
to improve, achieving more efficient and accurate defect
detection and predictive maintenance, and providing a stronger
guarantee for the safety and sustainable use of global water

supply [21].
II. MATERIALS AND METHODS

A. Purpose of the Experiment

The goal of this experiment is to build an efficient and
accurate water pipe defect detection system, and use image
processingand deep learningtechnology to realize the automatic
detection and classification of water pipe surface defects, to
improvethe intelligent level of pipeline maintenance, reduce the
cost of manual inspection, and improve the accuracy and
reliability of detection.

Identification of detecting targets and data acquisition:
Firstly, by analyzing the definition and classification of water
pipe defects, the detection target is clarified. Water pipe defects
mainly include cracks and corrosion, and different image
acquisition and processing methods are required for different
types of defects. In order to ensure the efficiency of the
inspection, the experiment will use high-resolution camera
equipment to obtain high-definition images, combined with
appropriate lighting equipment, to reduce uneven lighting,
shadow interference, and other problems, to obtain stable and
clear defect image data.

Datasetbuilding and enhancement: In order to improve the
generalization ability ofthe model, the experiment will focus on
constructing a high-quality water pipe defect dataset, covering
two types of defects, water pipes of different materials, and
image data collected in different environments. In addition, in
order to enhance the adaptability of the model in complex
working conditions, data augmentation techniques such as
rotation, scaling, contrast adjustment, adding noise, etc., will be
used to enable the model to adapt to different shooting angles,
lighting changes, and environmental interference.

Deep learningmodel training and optimization: In the defect
detection task, the experiment will use a variety of deep learning
models, such as Convolutional Neural Network (CNN),
YOLOVS, Faster R-CNN, etc., and train and test them on the
dataset. CNN is responsible for feature extraction, YOLOVS is
suitable for real-time detection, and Faster R-CNN excels in
precise target positioning. The experiment will improve the
performance of the model on the validation set through cross-
validation, transfer learning, hyper-parameter optimization, and
other methods, so that it can maintain high recognition accuracy
on different defect types.

Evaluation and optimization: In order to comprehensively
evaluate the detection effect of the model, the experiment will
use indicators such as accuracy, recall, and F1-score, and
analyze the advantages and disadvantages of each model in
depth. In addition, false detection and missed detection will be
discussed in detail, the key factors affecting the detection
performance will be identified, and targeted optimization plans
will be proposed to further improve the accuracy and stability of
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water-pipe defect detection, and provide reliable technical
support for practical applications.

B. Existing Datasets

In the study of water pipe defect detection, the selection and
analysis of data sets are crucial. At present, the publicly
available datasets of water pipe defects mainly focus on two
typical types of defects: cracks and corrosion. These datasets
provide a reliable data foundation and diverse sample support
for the training and validation of machine learning and deep
learning models. In this study, two mainstream datasets of water
pipe defects were selected: the water pipe crack dataset and the
water pipe corrosion dataset. The two datasets have their own
characteristics in terms of sample size, image resolution, and
defect feature distribution. Amongthem, crack defects dominate
the dataset and show a variety of structures and evolutionary
forms, including the following typical types:

1) Linear cracks: Extending in a straight line or near a
straightline along the surface of the water pipe, their length and
width vary greatly due to the aging of materials and
environmental pressure.

2) Branch cracks: The main crack extends outward into
multiple branches, forming a network-like structure with high
complexity.

The width, depth, and morphological evolution of these
cracks are affected by multiple factors such as water pipe
material, internal pressure, operating time, and external
environment.

In contrast, the variation of corrosion defects is mainly
reflected in the depth of corrosion and the size of the affected
area. Corrosion may lead to localized pitting, spreading, and
even perforations, which can significantly weaken the structure
of water pipes and pose a risk of leakage or even breakage.

The two water pipe defect datasets used in this study have
been publicly released on the open source platform, and the link
is as follows: https://github.com/chu2024/dataset2025.git.

Through in-depth analysis and comparison of the above two
datasets, it helps the model to understand various defect features
more accurately, to improve the robustness and generalization
ability of detection. The dataset in this study is constructed by
combining field collection and open-source resources, and
includes pipeline defect images in different scenarios and
environments, mainly covering five typical defect types,
including cracks and corrosion, and also contains a certain
proportion of defect-free images to enhance the generalization
ability of the model. All images are captured with a high-
definition camera during the actual water main inspection with
a resolution of 1920x1080, ensuring that the details inside the
pipes are clearly reflected.

Data sources and distribution: Acquisition part: About 2,000
images were collected in real pipelines through the robot
platform, covering a variety of pipe materials (metal, plastic)
and service life (new, old). Fig. 1 shows areal pipeline image.
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Fig. 1. Realpipe sample image.

1) Opensource: 1670images wereacquired from the public
defect detection dataset.

2) Data labeling and classification: All images are
professionally annotated in YOLOVS (.txt) and VOC (.xml)
formats (including bounding boxes and category labels). The
distribution of defect types is as balanced as possible, with
cracks accounting for 51% and corrosion accounting for 49%.

3) Data preprocessing: The acquired images were denoised
and illuminated, blurry and low-quality samples were
eliminated, and some images were cropped and normalized to
meet the model input requirements.

4) Data partitioning: The dataset is divided into three sets;
the training set as 60% of the dataset, the validation set as 20%
ofthe dataset,and the testsetas 20% of the dataset. The training
set is used for model learning, the validation set is used for
model tuning, and the test set is used for final performance
evaluation. The distribution of defect types is consistent across
each subset to avoid the impact of sample distribution bias on
the performance ofthe model. The diversity and coverage of the
dataset provide a strong guarantee for the adaptability of the
model in complex scenarios, and lay a foundation for the
comprehensiveness and scientificity ofthe defect detection task.

a) Water pipe cracks dataset. The pipe crack dataset
mainly contains images of water pipe cracks — shown in Fig. 2
—in different materials and environments, and the dataset has a
rich sample size, covering a variety of crack types (linear
cracks, branch cracks). The width and length of the cracks have
significant characteristic differences, which are suitable for

training CNN models to detect cracks, as shown in Table I.

Fig.2. Water pipe crack.
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b) Water pipe corrosion dataset: The pipe corrosion
dataset contains images of varying degrees of corrosion on the
surface of water pipes — shown in Fig. 3 — covering multiple
stages from mild to severe corrosion. Corrosion data is often
characterized by irregular spots and depressions, and images
are characterized by high contrast and noise. Corrosion defects
also behave differently on different pipe materials, and the
following is a partial sample of this dataset, as shown in
Table IL

Fig.3. Water pipe corrosion.

TABLEI. WATER PIPE CRACKS DATASET
Image file Image Crack C':aCk Crack
Number name resolution type width | length
™MM) | MM)
. linear
1 polie1379.png 1024x768 crack 0.5 15
. branch
2 polie517.png 1024x768 crack 0.7 12
. linear
3 polie536.png 1280x960 crack 0.6 20
; branch
4 polie1490.png 1280x960 crack 1.0 30
. linear
5 polie1542.png 1024x768 crack 0.4 10
TABLE II. WATER PIPE CORROSION DATASET
. . Surface
Image Corrosio | Corrosio
Numbe Image . roughne
' name resolutio n n aorea ss (RA,
n degree (%) MM)
1 ;uShlzz'pn é024X76 severe 85% 2.0
5 fushi984.p 1280x96 severe 90% 20
ng 0
3 {f;ushllS.pn 51;024X76 medium 20% 20
4 fushi517.p 1280x96 medium 40% 0.7
ng 0
5 2;5h145.pn é024x76 severe 20% 20

Through the analysis performed earlier on two types of
datasets, it can be found that the characteristic manifestations of
various types of water pipe defects are significantly different,
and the rational use of these datasets will provide a solid
foundation for subsequent model development and defect
detection. At the same time, the defect sample distribution and
annotation details in the dataset also provide rich research
materials for the design of optimized detection algorithms.
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C. Tables to Support Experimental Design

1) Dataset segmentation table: The dataset segmentation
table is used to display the segmentation strategy for the dataset
of self-managed water pipe defects. With a reasonable
proportion of training, validation, and test sets, the model can be
trained and validated on different data. The specific
segmentation scenarios are shown in the following Table III.

TABLE III. SEGMENTATION OF THE DATASET
Dataset name Data volume (table) Percentage (%)
Training Set 2202 60%
Validation Set 734 20%
Test Set 734 20%
Total 3670 100%

Table III presents the number and percentage of the training
set— that is used for the training of the model, the number and
percentage of the validation set — that is used for hyper-
parameter tuning, and the number and percentage of the test set
—that is used for the evaluation of the final model performance.
This segmentation ensures that the data is fully utilized and
reduces the risk of overfitting.

2) Algorithm performance indicator record table: The
algorithm performance indicator record table is used to evaluate
the performance of the different models used, especially in the
water pipe defect detection task. Table IV shows the
performance of each model in the task of detecting defects in
water pipes through specific performance indicators, which is
convenient for subsequent comparison and selection of the best
model.

TABLEIV. ALGORITHM PERFORMANCE INDICATOR RECORD
A detecti
Model Accuracy | Recall F.l ve'rage etection
name point time (ms)
YOLOvS5 0.90 0.85 0.87 30
Faster R-
CNN 0.88 0.80 0.84 120
CNN 0.86 0.78 0.82 50

3) Model performance evaluation: The Model Performance
Evaluation Formis used to provide a comprehensive evaluation
of the final selected model, including how the model performs
on the test set. The specific assessment results are shown in
Table V.

Table V provides systematic support for the design and
implementation of this experiment, covering many aspects such
asthe segmentationofthedata set, therecording of experimental
variables, the evaluation of algorithm performance, and the
summary of the final results, which not only provides intuitive
data support for the experimental results, but also provides a
basis for subsequent model optimization and improvement. This
enables an efficient and reliable water pipe defect detection
system.
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TABLE V. PERFORMANCE ANALYSIS
Test
Recall
Model set Correfct Number Accuracy o
name samle detection of error (%) (%
np number detections ° )
size
CNN 200 170 30 85.0 80.0
YOLOvVS5 200 180 20 90.0 85.0
Faster R-
CNN 200 160 40 80.0 75.0

D. Experimental Process

1) CNN model training details: Before the model is trained,
the data is first fully prepared and preprocessed to ensure that
the data provides useful features in the training and enables the
modelto leam effectively. The datasetis divided into 60%-20%-
20% data, with 60% of the data used for training, 20% for
validation, and the remaining 20% for testing. In terms of data
preprocessing, a uniform resize was first applied to all images,
and the dimensions of all images were adjusted to 640x640
pixels. In order to improve the robustness of the model, the
images in the training set were augmented with data, including
rotation, cropping, scaling, and brightness change operations,
which could effectively enhance the model’s ability to detect
water pipe defects in different environments. Through these
preprocessing and enhancements, the dataset has been
significantly improved in terms of quantity and quality.

2) YOLOVvS training details with hyper-parameter tuning:
In this study, the task of water pipe defect detection requires the
use of efficient and accurate deep learning models. YOLOvS
was selected as the main detection model, which has high real-
time performance and good detection accuracy. YOLOVS is a
single-stage detection model based on Convolutional Neural
Network (CNN), which achieves a good balance between
processing speed and accuracy compared to traditional multi-
stage detection models. The v5.0 version of YOLO was used as
the base model, and its architecture was partially customized
according to the needs of the actual task. The YOLOvS model
consists of four main components:

a) Input: This is to handle the input image. Here, the
image is converted to a fixed size image by resizing. Various
data augmentation techniques are also applied to improve the
robustness and performance of the model.

b) Backbone: This is used for feature extraction,
CSPDarknet53 is used as the backbone network, which can
effectively extract high-level image features.

¢) Neck: This is for feature fusion, PANet (Path
Aggregation Network) is used to optimize the effect of feature
fusion and enhance the ability of small object detection.

d) Head: This is used to detect outputs, combined with
the design of YOLO heads, it can outputclassification results,
bounding box regression values, and confidence levels, as
shown in Fig. 4.
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Fig. 4. Sample of classification result.

3) Faster R-CNN of the training process: The choice of
hyper-parameters is critical to the effectiveness of the model’s
training. The following hyper-parameter settings were used
during model training.

4) Learning rate: During the training process, the setting of
the learning rate has an important impact on the convergence
speed and accuracy of the model. The initial learning rate of
0.001 was selected, and Cosine Annealing Learning Rate
Scheduling was adopted, which could dynamically adjust the
learning rate during the training process to avoid the
phenomenon of gradient explosion or gradient disappearance.

5) Batch size: In order to improve the training efficiency
and stability, 16 was selected as the number of images perbatch.
This batch size enables efficient training without exceeding the
GPU memory.

6) Optimizer: The AdamW optimizer is used, which
combines the advantages of Adam optimizer and [2
regularization, which can effectively avoid the overfitting
problem and accelerate the convergence process.

7) Weight attenuation: In order to prevent overfitting, the
weight attenuation is set to 0.0005, which can effectively
constrain the complexity of the model.

8) Image enhancement strategy: In addition to the basic
geometrictransformations (rotation, cropping), the image isalso
changed in color (brightness, contrast, saturation adjustment),
and noise is randomly added to further improve the robustness
of the model.

9) Fusion model: The water pipe defect detection system
based on the fusion strategy proposed in this study combines the
advantages of Convolutional Neural Network (CNN), YOLOvS
and Faster R-CNN to achieve efficient identification, precise
location and real-time detection of water pipe defects. The
overall process is presented in Figure 5.

As shown in Fig. 5, the overall model consists of the
following key modules:

1) Input image (high-definition water pipe image): The
systemuses an image of the inside of the water pipe collected
by a high-definition camera device or inspection robot as input.
These images retain detailed information about minor defects
such as cracks and corrosion, and are the basis for subsequent
processing.

Vol. 16, No. 10, 2025

2) CNN: The inputimage of the feature extraction module
is first processed by the CNN to extract multi-level image
features, including edges, textures, and semantic information.
CNN serves as a shared feature extraction backbone network,
providing basic feature representation for subsequent detection
and classification modules.

3) YOLOvS5: Image features extracted by real-time object
detection are fed into the YOLOv5 model. YOLOVS is a single-
stage inspection model with high detection accuracy (90.0%)
and high frame rate (50 FPS), which is suitable for large-scale,
real-time defect detection scenarios. It is capable of quickly
outputting defect type, location, and confidence level.

Input Image

CNN
Feature Extraction

v v

Faster R-CNN
Precise Localization

YOLOVS
Real-Time Detection

v

Fusion Module
(Ensemble Decision)

Defect Output Type
Detection

Fig.5. Structure diagram of the fusion model.

4) Faster R-CNN: At the same time, image features are also
input into the Faster R-CNN model. The model effectively
improves the detection accuracy through the Regional
Recommendation Network (RPN) and ROIpoolingmechanism,
especially for the identification of complex backgrounds, small
targets or overlapping defects. It has a recall rate of 86.8% and
is highly robust.

5) Fusion module: The output of YOLOVS and Faster R-
CNN will be integrated in the fusion module. By integrating
factors such as scoring, position overlap and confidence, the
module intelligently filters and optimizes to retain the optimal
prediction results and effectively improve the overall stability
and accuracy of the system.

6) Final output (defect type + location coordinates): The
final output of the system includes the identified defect
categories (e.g., cracks, corrosion) and their precise location
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coordinates in the image. These results can be further used for
network operation and maintenance decision-making, defect
level assessment, and automatic maintenance path planning.

7) Ablation Study: To evaluate the contribution of each
model component in the fusion system, we performed an
ablation study to selectively remove each sub-model and
observe its impact on detection performance shown in Table VL

The valuesin Table VI confirm that YOLOvS is a great help
for real-time inspection, while Faster R-CNN improves the
positioning accuracy, especially for small or overlapping
defects. CNN ensure consistent feature extraction across
environments. The ensemble model provides the best balance
between accuracy, speed, and recall.

TABLE VI. PERFORMANCE ANALYSIS OF ABLATION EXPERIMENTS
. . F1
Configuration Accuracy Recall mAP FPS
Score

CNN + YOLOvV5
+ Faster R-CNN 92.1 85 81 85.1 45
YOLOVS 90.0 82.0 78.0 82.3 50
Faster R-CNN 89.3 86.8 72.0 81.8 32
CNN 85.0 80.0 74.0 79.5 20
YOLOV5 + CNN 91.0 84.0 80.0 84.0 42
Faster R-CNN +
CNN 90.0 84.5 78.5 83.6 29

The design of this ablation test system illustrates the
complementary advantages of the constituent models.

III.  RESULTS

The experimental results show that there are significant
differences in the performance of different models and their
combinations. As shown in Table VI and Fig. 6, the fusion
model (CNN + YOLOvS + Faster R-CNN) has the best
comprehensive performance, with anaccuracy 0f92.1%, arecall
rate of 85.0%, and an F1 value of 81.0%., the mean average
precision (mAP) was 85.1, and the detection speed was45 FPS,
which verified the complementary advantages of each sub-
model after fusion.

Specifically, the YOLOVS standalone model excels in real-
time inspection capabilities, with an accuracy rate of 90.0% and
an inspection speed of up to 50 FPS, making it ideal for real-
time pipeline monitoring tasks. However, despite its slower
speed (32 FPS), Faster R-CNN is more robust in complex
contexts, especially in reducing false positives, missed
detections, and handling target overlap, with a recall rate of
86.8%.

The ablation experiments further showed that:

1) The CNN model alone can provide basic feature
extraction capabilities, but it has shortcomings in detection
accuracy.

2) YOLOVS excels at quickly and accurately identifying
defects with clear and well-defined boundaries;

3) Faster R-CNN significantly improves positioning
accuracy, especially when the image background is complex or
there is a lot of interference.

Vol. 16, No. 10, 2025

4) 1t is worth noting that the fusion model not only retains
the speed advantage of YOLOvVS, but also introduces the
localization ability of Faster R-CNN and the feature stability of
CNN, which shows better performance in both standard and
complex scenarios, especially in small defect detection and
high-noise environments.

In summary, while YOLOVS strikes a good balance between
speed and accuracy, the fusion strategy is still better than any
single model configuration across the board. Therefore, the
detection system is particularly suitable for the actual pipe
network inspection task, and has a broad application prospect in
the application scenarios that require the coexistence of high
real-time performance and high robustness.

100
90
80
70
60
50
40
30
20
10
0
CNN+ YOLOvVS5 Faster R- NN  YOLOvS5 Faster R-
YOLOvV5 CNN +CNN CNN+
+ Faster CNN
R-CNN

W Recall ®F1 Score

Fig. 6. Performance analysis of the fusion model.

IV. DISCcUSSION

This study systematically evaluated and compared three
deep learning models for water pipe defect recognition,
demonstrating their complementary strengths. CNN excelled at
multi-level feature extraction and, after parameter tuning,
achieved 98.9 % classification accuracy on the validation set,
underscoring its fundamental role in image feature analysis. As
alightweight, single-stage detector, YOLOVS5 struck an effective
balance between accuracy and speed, delivering 92.1 %
accuracy at45 fps — making it ideal for scenarios requiring real-
time feedback. In contrast, Faster R-CNN leveraged its Region
Proposal Network (RPN) and precise bounding-box regression
to achieve an 86.8 % recall rate for small or overlapping defects
in noisy, complex environments, highlighting its robustness
against occlusion and background interference. Ablation
experiments confirmed that fusing all three models
outperformed any single or dual-model combination, yielding a
92.1%accuracy,85.0%recall,an F1 score 0of81.0,andan mAP
0f85.1 %, all while maintaining45 fps. This validates that multi-
model integration can effectively combine individual
advantages to boost detection precision and stability.

Despite the strong performance on binary defect detection
tasks, there remains room for improvement. Future work could
adopt a multi-task learing framework to jointly model defect
detection, type classification, and severity assessment.
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Incorporating multimodal data—such as infrared, acoustic, and
thermal imaging—may further enhance adaptability in complex
operating conditions. To support large-scale deployment, the
system should integrate real-time feedback, dynamic
optimization, and incremental learning capabilities. Moreover,
embedding reinforcement learning mechanisms could enable
autonomous pipeline inspection path planning and intelligent
defect-repair suggestions, advancing toward a fully
autonomous, intelligent, and closed-loop maintenance solution.

V. CONCLUSION

The proposed CNN + YOLOvS + Faster R-CNN fusion
framework successfully balances detection accuracy and real-
time performance in water pipe defect recognition.
Experimental results show that the integrated model surpasses
individual models in key metrics —accuracy, recall, and F1 score
— while sustaining a 45 fps detection speed. These findings
confirm the potential of deep learning ensemble methods for
intelligent, large-scale pipeline inspection and lay a solid
foundation for future smart infrastructure management in urban
environments.
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