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Abstract—Aiming at the traditional deep learning fall 

detection model due to high computational complexity and a 

large number of parameters, this study proposes a lightweight 

convolutional neural network model, SD-CNN (SMA-Enhanced 

Depthwise Convolutional Neural Network), for fall detection. 

The model is first designed with an SMA attention module to 

enhance feature representation. Then, depth separable 

convolution is used to significantly reduce the model complexity. 

Finally, batch normalisation and Dropout regularisation 

techniques are combined to efficiently extract spatial-temporal 

features from temporal signals for accurate classification of fall 

and non-fall behaviours. The experiments use a sliding window to 

extract discrete features, three-axis acceleration, and synthetic 

acceleration as feature inputs. SD-CNN achieves 99.11% 

accuracy, 98.78% specificity, and 99.39% sensitivity on the 

homemade dataset Act, which are improved by 7.14%, 6.42%, 

and 9.38%, respectively, compared to CNN, while the number of 

parameters is reduced significantly. The effectiveness of the 

model is also verified by generalisation experiments on the public 

datasets SisFall and WEDAFall. The SD-CNN algorithm can 

efficiently complete the fall detection task, and the lightweight 

design makes it particularly suitable for wearable devices, which 

provides a highly efficient and reliable solution for real-time fall 

detection, and it has an important value for practical 

applications. 
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I. INTRODUCTION 

In the context of global ageing, falls are frequent and 
serious in the elderly. Not only is it the main cause of 
casualties, but it also often leads to hospitalisation and 
long-term rehabilitation, placing a heavy strain on society and 
the healthcare system [1]. Therefore, how to effectively detect 
and prevent fall events is of great relevance in the field of 
smart health monitoring [2]. 

Existing fall detection methods fall into three main 
categories: Machine vision-based inspection, Environmental 
sensor-based detection, and wearable device-based detection 
[3]. Machine vision-based detection relies on videos or images 

to determine behaviour. For example, Nana Vo et al. [4] used a 
lightweight network structure based on Yolov5s and OpenPose 
to identify video content with an accuracy of 95.43%. Mengdi 
Cao et al. [5] proposed a fall detection algorithm for complex 
scenes based on improved Yolov8, which uses video streams to 
identify fall behaviour in real-time, and validated on multiple 
video streaming datasets, achieving an average accuracy of 
75.8%. However, such methods are limited in practical 
application by the detection range and device privacy, and 
cannot be widely spread. Detection based on environmental 
sensors relies on external sensors to obtain information about 
environmental changes. Wang Zhaojun et al. [6] designed an 
infrared array sensor system to identify human behaviour 
through temperature changes and used the KNN algorithm to 
achieve fall detection, with an accuracy rate of about 95.2%, 
but this approach is prone to receive interference from external 
environmental transformations. Detection based on wearable 
devices is more common. Liu Bo et al. [7] proposed a radial 
basis function (RBF) neural network to achieve fall detection 
using accelerometer data with 98.1% accuracy. Wei Jiaxue et 
al. [8] used an improved temporal convolutional network (TCN) 
to solve the problem of traditional RNN and CNN training 
models are complex and prone to gradient explosion 
phenomenon, the accuracy, sensitivity and specificity on the 
public and fusion datasets reached 99.43%, 98.70% and 
99.34%, respectively, but the number of model parameters is 
relatively large, which is not conducive to the deployment on 
embedded devices. 

To address this problem, this study proposes a lightweight 
fall detection model, SD-CNN, which employs Signal 
Modulating Attention (SMA) for processing time-series data 
collected by accelerometers, and which approximates the 
traditional self-attention mechanism [9] approach to capture 
long-time dependencies in the sequences through Random 
Feature Mapping (RFM). The use of depth-separable 
convolution significantly reduces the amount of computation, 
reduces the complexity of the feature extraction process, 
reduces the model parameters, and improves the computational 
speed, thus effectively applying to the task of fall detection. 

*Corresponding author. 
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Fig. 1. General flow of the SD-CNN fall detection algorithm. 

II. RELATED WORK 

A. SD-CNN Model 

The key points of building a fall detection model are the 
appropriateness of feature extraction and the reasonableness of 
the constructed network model. The traditional convolutional 
network model is widely recognised for dealing with image 
problems, but due to the limitation of its convolutional kernel 
size, deeper networks are usually required to achieve more 
satisfactory results when dealing with long time series data. To 
address such problems, this study successively introduces the 
SMA attention mechanism and depth-separable convolution. 
SMA attention can achieve efficient and accurate fall detection 
on long time series data by optimising feature extraction and 
reducing the number of input channels. Deep separable 
convolution extracts feature points by decomposing the 
standard convolution into two independent operations, which 
significantly reduces the amount of computation and the 
number of parameters while extracting local features in each 
channel. The SD-CNN model consists of three depth-separable 
convolutional blocks, each containing a channel-by-channel 
convolutional layer and a point-by-point convolutional layer. 
The convolution kernel sizes are all set to 3, with a step size of 
1 and padding of 1 to keep the time series length consistent. 
The number of output channels for the three convolution 
blocks is 32, 32, and 64 in that order. Each convolutional block 
is followed by batch normalisation, ReLU activation function, 
and average pooling (kernel size 2, step size 2) in order to 
progressively compress the feature length and improve feature 
stability. In terms of input feature design, this study divides the 
three-axis acceleration sensor data into fixed-length segments 
in a sliding-window fashion, with each sample containing 120 
time steps, three channels (x, y, and z direction acceleration), 
and the final input dimensions of the model are 3×128. The fall 
detection task mainly consists of four parts, namely, data 
acquisition, data preprocessing, feature extraction, and model 
inference, and the overall layout is shown in Fig. 1. 

B. SMA Attention 

Although the traditional dot product attention mechanism 
can highlight important features of the input data and suppress 
unimportant features to improve the efficiency and accuracy of 
feature extraction, it has a computational complexity of O(n²), 

and the memory requirement grows by a square as the length of 
the sequence increases, which is particularly unfavourable for 
deployment in embedded devices. Therefore, in this study, we 
design the SMA attention mechanism, which combines the 
RFM idea of the EA attention mechanism [10] to reduce the 
computational complexity to O(n). RFM essentially provides 
an efficient form of approximate integration to capture 
long-range dependencies, where the contribution of each time 
step is accumulated in the global attention score. The 𝐴𝑟𝑎𝑤 
obtained after normalisation characterises the distribution of 
importance of each time step feature in the global context, i.e, 
Eq. (1): 

𝐴𝑟𝑎𝑤 = ∑ 𝑄𝑟𝑓
𝐿
𝑙=1 [: , 𝑙, : ] ⊙ 𝐾𝑟𝑓[: , 𝑙, : ]        (1) 

where, the contribution of each time step is accumulated in 
the global attention score. 𝐴𝑟𝑎𝑤 obtained after normalisation 
characterises the distribution of the importance of each time 
step feature in the global context; larger 𝐴𝑟𝑎𝑤 correspond to 
signals with a consistently high response over multiple time 
steps (indicating that the feature is stable and important over 
time in the time series); smaller 𝐴𝑟𝑎𝑤 correspond to noise or 
short-term fluctuations (automatically suppressed by the 
model). The structure of the SMA attention mechanism is 
shown in Fig. 2. 

For input feature mapping X ∈ ℝb×C×L , Channel 
dimensionality reduction is first performed by two 1×1 
convolutions [Eq. (2) and Eq. (3)]: 

Q = Conv1dqℝb×Cr×L  Q ∈ ℝb×Cr×L      (2) 

K = Conv1dkℝb×Cr×L  K ∈ ℝb×Cr×L        (3) 

where, b is the batch size, C is the number of input 
channels, L is the length of the sequence, Cr is the number of 
channels after dimensionality reduction, and r is the ratio of 
reduction. 

Then, QT and KT are projected into a random feature 
space using a random feature matrix RF ∈ ℝCr×F, and ReLU 
activation is applied, resulting in Eq. (4) and Eq. (5): 

Qrf = ReLU(QT ⊙ RF) ∈ ℝb×L×F         (4) 

Krf = ReLU(KT ⊙ RF) ∈ ℝb×L×F         (5) 
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Fig. 2. Structure of the SMA attention mechanism. 

where, QT and KT denote the transposition of the channel 
dimension and the sequence length dimension, F is the number 
of random features. In the random feature space, Attention 
scores Araw and normalisation factor N are then calculated as 
follows [Eq. (6) and Eq. (7)]: 

Araw = ∑l=1
L Qrf[: , l, : ] ⊙ Krf[: , l, : ] ∈ ℝb×F   (6) 

N = ∑l=1
L Krf[: , l, : ] ⊙ Krf[: , l, : ] ∈ ℝb×F      (7) 

where, ⊙ is element-by-element multiplication. Then find 
the normalised attention fraction A, as in Eq. (8): 

A =
Araw

N+ε
∈ ℝb×F           (8) 

where, ε is a small constant for numerical stability. The 
attention scores are further extended to all channels and 
averaged over the feature dimensions [Eq. (9)]: 

W =
1

F
∑f=1

F A[: , f] ∈ ℝb×C×1      (9) 

Finally, the calculated weights are applied directly to the 
original input, as in Eq. (10): 

O = X ⊙ W ∈ ℝb×C×L        (10) 

C. Depthwise Separable Convolution 

Depthwise Separable Convolution (DSC) consists of 
depth-by-depth convolution and point-by-point convolution, 
where depth-by-depth convolution is used to extract spatial 
features and point-by-point convolution is used to extract 
channel features [11]. Depth-separable convolution groups 
convolutions in feature dimensions, perform independent 
depth-by-depth convolution for each channel, and aggregate all 
channels using a 1x1 convolution (pointwise convolution) 
before output. This approach reduces the convolutional 

dimension and can effectively reduce the convolutional kernel 
parameters and unnecessary computations. The DSC 
convolutional network structure is shown in Fig. 3. 

The input feature map size in Fig. 3 is DE×DF, the number 
of input channels is M, the size of the convolution kernel is 
DK, and the number of output channels is N. If the same 
number of channels is output using an ordinary convolutional 
product network, the number of parameters is DK×DK×M×N, 
whereas when using a depth-separable convolutional network, 
the number of parameters is DK×DK×M+M×N, The number 

of parameters is only  
1

N
+

1

Dk
2 times that of a normal 

convolution. As DK and N increase, the number of covariates 
of DSC relative to conventional CNN decreases dramatically. 

DK×DK

DE×DF

1×1
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DW CNN

 

Fig. 3. Depth-separable convolutional network structure. 

III. EXPERIMENTAL DATA AND ANALYSIS 

A. Datasets and Experimental Environments 

There are three datasets in this study. The first one is the 
homemade dataset Act, and the data in the Act dataset is 
collected by the mpu6050 sensor. The stm32f103c8t6 is used 
as the main control chip, and the data sampling frequency is 
50Hz. The collection was completed by 12 volunteers, who 
consisted of 12 young people on whom the sensor was 
mounted on the left wrist. The dataset contains 5 fall activities 
(falling backwards, falling forwards and landing on the knee, 
falling forwards, failing to get up from a sedentary position 
resulting in a fall, and falling from a standing position) and 
nine non-falling activities (walking, jogging, sitting down, 
trotting, going up the stairs, going down the stairs, opening and 
closing doors, applauding, and jumping), a total of 4,200 data 
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items are included. The dataset training set, test set and 
validation set are divided in the ratio of 8:1:1. 

The remaining two datasets are the public datasets 
WEDAFall and SisFall [12]. The WEDAFall dataset 
equipment samples primarily at 50Hz, and data collection was 
done by 31 volunteers, the volunteers consisting of 20 young 
people and 11 older people, collected data via sensors placed 
on their wrists and contained a total of 3,719 pieces of data on 
8 fall activities and 11 non-fall activities. The SisFall dataset 
device had a sampling frequency of 200Hz, and data collection 
was done by 38 volunteers, consisting of 23 young people and 
15 older people, who collected data via sensors placed on their 
waists, containing a total of 4,510 pieces of data, capturing 15 
fall activities and 19 non-fall activities. The specific data 
distribution is shown in Table I. 

The deep learning framework for the experiments in this 
study is Pytorch, the training environment is a 64-bit Windows 
11 operating system, the CPU is i7-12650H, the graphics card 
uses RTX-4060, the RAM is 16GB, and the code running 
environment is Python 3.8. 

TABLE I.  DATASET INFORMATION 

 Non-Fall Fall 

Act 2000 2200 

WEDAFall 2319 1400 

Sisfall 2935 1575 

B. Performance Indicators 

For fall detection, the accurate identification of fall events 
is very important, and there are three evaluation metrics used in 
this study, which are accuracy, sensitivity, and specificity. 
Accuracy is an important measure of the model's overall 
classification ability, indicating the number of samples 
correctly predicted by the model as a proportion of the total 
number of samples. The equation is as follows [Eq. (11)]: 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
           (11) 

where, TP is True Positive, TN is True Negative, FP is 
False Positive, and FN is False Negative. 

Sensitivity and specificity, on the other hand, respond to the 
model's ability to distinguish between positive and negative 
samples. The equation is as follows [Eq. (12) and Eq. (13)]: 

𝑆𝑃 =
𝑇𝑁

𝑇𝑃+𝐹𝑁
           (12) 

𝑆𝐸 =
𝑇𝑃

𝑇𝑁+𝐹𝑃
            (13) 

where, SP is specificity and SE is sensitivity, specificity 
and sensitivity are complementary to each other, the higher the 
sensitivity indicates that the model has a higher recognition 
rate for fall events, and the two together measure the model's 
ability to discriminate on positive and negative class samples. 

C. Data Preprocessing 

The raw triaxial acceleration components (ax, ay, az) are 
projections to the sensor's own coordinate axes and are highly 

dependent on its spatial attitude. Using this data directly, the 
model has to learn not only the motion itself, but also the 
complex relationship between the motion patterns and the 
changing sensor poses. This double learning burden increases 
model complexity and may impair generalisation capabilities, 
especially in conditions where sensor poses are unknown or 
changing. According to vector theory, the modulus of a vector 
does not change with the rotation of the coordinate system 
[13]. In other words, no matter how the sensor is rotated, the 
calculated acceleration magnitude S is constant as long as the 
magnitude of the total acceleration it senses remains constant. 

Therefore, this study uses the acceleration amplitude as the 
feature, and this approach can effectively eliminate the 
interference caused by the sensor attitude change, making the 
feature robust to the sensor installation position and orientation. 
Acceleration amplitude indicates the size of the acceleration. 
The amplitude of the acceleration of the human body 
movement state reflects the intensity of the human body 
movement, which is defined as shown in Eq. (14): 

𝑆 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2             (14) 

1) Sliding window algorithm: To extract the temporal 

characteristics of the data, a sliding window strategy is used. 

For dynamic behaviours with long duration, a larger window 

allows for complete capture of their signals [14]. However, 

blindly increasing the window size is not optimal and may 

lead to increased computational complexity or failure to 

accurately capture behavioural changes at shorter times. 

Therefore, a reasonable choice of window size is essential to 

balance the completeness of timing information with 

computational efficiency. 

A complete fall consists of three main phases: the 
imbalance phase, the falling phase, and the contact with the 
ground phase, as shown in Fig. 4. The duration of these phases 
and is approximately 2s to 3s, respectively, in order to unify 
the size of the input data, this study makes the window able to 
cover a complete information of the fall event by setting the 
window size to 120 and the window sliding step to 10, and 
splits the time series into multiple fixed-length sub-sequences 
through the window sliding, and this method overcomes the 
situation that different behaviours may span different time 
periods, and at the same time, the model provides a sufficiently 
large number of training samples, which makes full use of the 
time series data characteristics and enables the model to 
capture long-time dependencies. 

Normal

Loss of balance

Fall

 Contact with the ground

 

Fig. 4. Analysis of backward falling activities. 

2) Low-pass filtering: Accelerometer sensors are prone to 

receive external noise interference when collecting data, and it 
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can be seen through spectral analysis that accelerometer noise 

is usually high-frequency noise. The frequency of human 

motion signals is low, with the frequency range of daily 

activities such as walking and running typically ranging from 

0.5 Hz to 5 Hz, and the frequency of instantaneous 

acceleration changes for falls typically ranging from 1 Hz to 

20 Hz, as shown in Fig. 5. 
ADL FFT Fall FFT

 

Fig. 5. Spectral analysis of human activity FFT plot. 

In this study, a Butterworth low-pass filter is used to 
remove high-frequency noise from acceleration sensor data, 
which eliminates the need to rely on a physical model of signal 
generation and effectively reduces the interference of noise 
with subsequent detection tasks. After the cut-off frequency is 
processed, the data becomes smoother and retains the data 
features to have a better performance in training, as shown in 
Fig. 6. 

 

Fig. 6. Comparison of the results of Butterworth low-pass filter processing. 

After comparative experiments, it was found that the model 
was best trained when the cut-off frequency was set to 5.5 Hz, 

effectively removing the interference from the sensor (see 
Table II). 

TABLE II.  COMPARISON OF TEST RESULTS 

Filtering 

Frequency 
Acc% SP/% SE% 

\ 96.34 96.25 97.11 

2.5Hz 98.31 97.26 98.78 

5.5Hz 99.11 98.38 99.39 

8Hz 98.42 98.21 99.01 

10Hz 97.73 96.94 98.34 

IV. RESULTS 

A. Comparative Experiments on Correlation Models  

In order to comprehensively evaluate the performance of 
the proposed model and verify its effectiveness in fall detection 
tasks, a series of comparative experiments is designed in this 
study. Traditional detection methods and several 
state-of-the-art deep learning models were selected, including 
Threshold Analysis (Threshold) [15], Artificial Neural 
Network (ANN) [16], Convolutional Neural Network (CNN) 
[17], Temporal Convolutional Network (TCN) [8], Long 
Short-Term Memory Networks (LSTMs) [19], Gated 
Recurrent Neural Network (GRU) [18] and Bidirectional Long 
Short-Term Memory Network (Bi-LSTM) [19]. They are 
trained and tested on the same dataset and experimental 
conditions. These models were chosen because of their wide 
range of applications in processing time-series data and feature 
extraction. Through experimental comparisons, the SD-CNN 
model proposed in this study improves the accuracy, specificity 
and sensitivity by 15.31%, 16.29% and 9.38%, respectively, 
compared with the traditional detection method, Threshold. 
Compared with several other state-of-the-art deep learning 
models, the model in this study has the smallest number of 
parameters while maintaining the highest accuracy, specificity 
and sensitivity. This is a good indication that the SD-CNN 
model performs more superior in terms of classification 
accuracy and robustness. The specific data are shown in 
Table III. 

TABLE III.  COMPARISON OF MODELS 

 Acc% SP/% SE% Params FLOPs 

Threshold 83.80 89.00 83.10 /  

CNN 91.97 92.36 90.01 28480 14.6M 

LSTM 93.94 92.44 95.73 46754 37.8M 

GRU 95.70 87.50 96.80 47856 38.2M 

Bi-LSTM 96.73 99.33 95.26 85866 42.5M 

TCN 98.43 99.13 98.27 197,120 39.7M 

ANN 94.02 93.20 94.21 271330 124.4M 

SD-CNN 99.11 98.78 99.39 4076 0.97M 
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B. Cross-Dataset Evaluation 

In order to comprehensively assess the effectiveness and 
usefulness of the proposed model in this study, avoid 
overfitting of the model to specific training data, and validate 
its generalisation ability on different data sources, 
generalisation experiments across datasets are designed and 
implemented in this section. In this study, two public datasets, 
SisFall and WEDAFall, which are widely used in the field of 
fall detection, are selected for testing, aiming to examine the 
performance of the models when confronted with new data that 
is different from the source of the training data. The 
experimental environment is consistent with "3.1" of this study. 
As can be seen from Table IV, SD-CNN improves accuracy, 
specificity, and sensitivity by 6.92%, 6.23% and 7.34%, 
respectively, over CNN on the WEDAFall dataset. On the 
SisFall dataset, the accuracy, specificity, and sensitivity are 
improved by 6.38%, 8.89% and 8.42%, respectively, over 
CNN. 

TABLE IV.  GENERALISATION EXPERIMENTS 

Models 
WEDAFall SisFall 

Acc% SP/% SE% Acc% SP/% SE% 

CNN 91.34 91.98 90.44 92.78 89.65 90.18 

SD-CNN 98.26 98.21 97.78 99.16 98.54 98.60 

V. DISCUSSION 

The SD-CNN neural network architecture proposed in this 
study aims to achieve efficient and accurate human activity 
recognition, especially fall detection. The model achieves 
significant lightweighting at the model structure level by 
integrating deeply separable convolutions to reduce the 
computational effort and incorporating the SMA attention 
mechanism to dynamically focus on key features. The 
experimental evaluation results show that SD-CNN not only 
has significant advantages in terms of the number of model 
parameters and the expected computational resource 
consumption, but also outperforms other models in terms of 
key performance indicators, including 99.11% accuracy, 
98.78% specificity, and 99.39% sensitivity. This proves the 
effectiveness of the lightweight architecture proposed in this 
study. Nevertheless, this study still has some limitations. 
Although SD-CNN shows good computational efficiency on 
resource-constrained devices, it still needs to be further 
optimised in scenarios with extreme low power consumption or 
higher real-time requirements. Second, the design of the 
attention mechanism in this study is still a relatively simplified 
and approximate form, and its performance differences in 
multi-channel and multi-modal data have not yet been fully 
explored. 

VI. CONCLUSION 

The main contribution of this research is to provide a 
lightweight activity recognition model, SD-CNN that balances 
efficiency, performance, and robustness, which is capable of 
recognising human activities effectively, especially in fall 
detection tasks. In the future, we will continue to explore this 

model by extending it to multimodal sensor data fusion, 
investigating more efficient attentional mechanisms, and 
validating it in larger and more diverse groups of people and 
scenarios to further advance its translation into practical 
applications. 
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