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Abstract—Aiming at the traditional deep learning fall
detection model due to high computational complexity and a
large number of parameters, this study proposes a lightweight
convolutional neural network model, SD-CNN (SMA-Enhanced
Depthwise Convolutional Neural Network), for fall detection.
The model is first designed with an SMA attention module to
enhance feature representation. Then, depth separable
convolution is used to significantly reduce the model complexity.
Finally, batch normalisation and Dropout regularisation
techniques are combined to efficiently extract spatial-temporal
features from temporal signals for accurate classification of fall
and non-fall behaviours. The experiments use a sliding window to
extract discrete features, three-axis acceleration, and synthetic
acceleration as feature inputs. SD-CNN achieves 99.11%
accuracy, 98.78% specificity, and 99.39% sensitivity on the
homemade dataset Act, which are improved by 7.14%, 6.42%,
and 9.38%, respectively, compared to CNN, while the number of
parameters is reduced significantly. The effectiveness of the
model is also verified by generalisation experiments on the public
datasets SisFall and WEDAFall. The SD-CNN algorithm can
efficiently complete the fall detection task, and the lightweight
design makes it particularly suitable for wearable devices, which
provides a highly efficient and reliable solution for real-time fall
detection, and it has an important value for practical
applications.
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I.  INTRODUCTION

In the context of global ageing, falls are frequent and
serious in the elderly. Not only is it the main cause of
casualties, but it also often leads to hospitalisation and
long-term rehabilitation, placing a heavy strain on society and
the healthcare system [1]. Therefore, how to effectively detect
and prevent fall events is of great relevance in the field of
smart health monitoring [2].

Existing fall detection methods fall into three main
categories: Machine vision-based inspection, Environmental
sensor-based detection, and wearable device-based detection
[3]. Machine vision-based detection relies on videos or images
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to determine behaviour. For example, Nana Vo et al. [4] used a
lightweight network structure based on Yolov5s and OpenPose
to identify video content with an accuracy of 95.43%. Mengdi
Cao et al. [5] proposed a fall detection algorithm for complex
scenes based on improved Yolov8, which uses video streams to
identify fall behaviour in real-time, and validated on multiple
video streaming datasets, achieving an average accuracy of
75.8%. However, such methods are limited in practical
application by the detection range and device privacy, and
cannot be widely spread. Detection based on environmental
sensors relies on external sensors to obtain information about
environmental changes. Wang Zhaojun et al. [6] designed an
infrared array sensor system to identify human behaviour
through temperature changes and used the KNN algorithm to
achieve fall detection, with an accuracy rate of about 95.2%,
but this approach is prone to receive interference from external
environmental transformations. Detection based on wearable
devices is more common. Liu Bo et al. [7] proposed a radial
basis function (RBF) neural network to achieve fall detection
using accelerometer data with 98.1% accuracy. Wei Jiaxue et
al. [8] used an improved temporal convolutional network (TCN)
to solve the problem of traditional RNN and CNN training
models are complex and prone to gradient explosion
phenomenon, the accuracy, sensitivity and specificity on the
public and fusion datasets reached 99.43%, 98.70% and
99.34%, respectively, but the number of model parameters is
relatively large, which is not conducive to the deployment on
embedded devices.

To address this problem, this study proposes a lightweight
fall detection model, SD-CNN, which employs Signal
Modulating Attention (SMA) for processing time-series data
collected by accelerometers, and which approximates the
traditional self-attention mechanism [9] approach to capture
long-time dependencies in the sequences through Random
Feature Mapping (RFM). The use of depth-separable
convolution significantly reduces the amount of computation,
reduces the complexity of the feature extraction process,
reduces the model parameters, and improves the computational
speed, thus effectively applying to the task of fall detection.
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II. RELATED WORK

A. SD-CNN Model

The key points of building a fall detection model are the
appropriateness of feature extraction and the reasonableness of
the constructed network model. The traditional convolutional
network model is widely recognised for dealing with image
problems, but due to the limitation of its convolutional kernel
size, deeper networks are usually required to achieve more
satisfactory results when dealing with long time series data. To
address such problems, this study successively introduces the
SMA attention mechanism and depth-separable convolution.
SMA attention can achieve efficient and accurate fall detection
on long time series data by optimising feature extraction and
reducing the number of input channels. Deep separable
convolution extracts feature points by decomposing the
standard convolution into two independent operations, which
significantly reduces the amount of computation and the
number of parameters while extracting local features in each
channel. The SD-CNN model consists of three depth-separable
convolutional blocks, each containing a channel-by-channel
convolutional layer and a point-by-point convolutional layer.
The convolution kernel sizes are all set to 3, with a step size of
1 and padding of 1 to keep the time series length consistent.
The number of output channels for the three convolution
blocks is 32, 32, and 64 in that order. Each convolutional block
is followed by batch normalisation, ReLU activation function,
and average pooling (kernel size 2, step size 2) in order to
progressively compress the feature length and improve feature
stability. In terms of input feature design, this study divides the
three-axis acceleration sensor data into fixed-length segments
in a sliding-window fashion, with each sample containing 120
time steps, three channels (x, y, and z direction acceleration),
and the final input dimensions of the model are 3x128. The fall
detection task mainly consists of four parts, namely, data
acquisition, data preprocessing, feature extraction, and model
inference, and the overall layout is shown in Fig. 1.

B. SMA Attention

Although the traditional dot product attention mechanism
can highlight important features of the input data and suppress
unimportant features to improve the efficiency and accuracy of
feature extraction, it has a computational complexity of O(n?),
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General flow of the SD-CNN fall detection algorithm.

and the memory requirement grows by a square as the length of
the sequence increases, which is particularly unfavourable for
deployment in embedded devices. Therefore, in this study, we
design the SMA attention mechanism, which combines the
RFM idea of the EA attention mechanism [10] to reduce the
computational complexity to O(n). RFM essentially provides
an efficient form of approximate integration to capture
long-range dependencies, where the contribution of each time
step is accumulated in the global attention score. The A4,,,
obtained after normalisation characterises the distribution of
importance of each time step feature in the global context, i.c,

Eq. (1):
Araw =Xi=1Qr [ 11O Kpp[112] (1)

where, the contribution of each time step is accumulated in
the global attention score. A4,,, obtained after normalisation
characterises the distribution of the importance of each time
step feature in the global context; larger A,,, correspond to
signals with a consistently high response over multiple time
steps (indicating that the feature is stable and important over
time in the time series); smaller A4, correspond to noise or
short-term fluctuations (automatically suppressed by the
model). The structure of the SMA attention mechanism is
shown in Fig. 2.

For input feature mapping X € RP*SXL ' Channel

dimensionality reduction is first performed by two 1x1
convolutions [Eq. (2) and Eq. (3)]:

Q = Conv1d RP*CrxL Q g RP*CxL (2)
K = Conv1d, RPX¢<L K € RP*CrxL (3)

where, b is the batch size, C is the number of input
channels, L is the length of the sequence, Cr is the number of
channels after dimensionality reduction, and r is the ratio of
reduction.

Then, QT and KT are projected into a random feature
space using a random feature matrix Rp € R&*F, and ReLU
activation is applied, resulting in Eq. (4) and Eq. (5):

Q,¢= ReLU(QT ® Ry) € RPXLXF 4)
K,¢= ReLU(KT © Rp) € RPXLXF (5)
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Fig.2. Structure of the SMA attention mechanism.

where, QT and KT denote the transposition of the channel
dimension and the sequence length dimension, F is the number
of random features. In the random feature space, Attention
scores Ap,,, and normalisation factor N are then calculated as
follows [Eq. (6) and Eq. (7)]:

Araw = ZlelQrf[i, L:]OKyl:,1,:] € RPXF (6)
N =3k Kl :] O K, 1,:] € RPXF )

where, © is element-by-element multiplication. Then find
the normalised attention fraction A, as in Eq. (8):

A= g ROXF (®)

where, € is a small constant for numerical stability. The
attention scores are further extended to all channels and
averaged over the feature dimensions [Eq. (9)]:

W= %zglA[z, f] € RP*Cx1 9)

Finally, the calculated weights are applied directly to the
original input, as in Eq. (10):

0=XQOW e RPXCxL (10)

C. Depthwise Separable Convolution

Depthwise Separable Convolution (DSC) consists of
depth-by-depth convolution and point-by-point convolution,
where depth-by-depth convolution is used to extract spatial
features and point-by-point convolution is used to extract
channel features [11]. Depth-separable convolution groups
convolutions in feature dimensions, perform independent
depth-by-depth convolution for each channel, and aggregate all
channels using a 1x1 convolution (pointwise convolution)
before output. This approach reduces the convolutional
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dimension and can effectively reduce the convolutional kernel
parameters and unnecessary computations. The DSC
convolutional network structure is shown in Fig. 3.

The input feature map size in Fig. 3 is DEXDF, the number
of input channels is M, the size of the convolution kemel is
DK, and the number of output channels is N. If the same
number of channels is output using an ordinary convolutional
product network, the number of parameters is DKXDKxMxN,
whereas when using a depth-separable convolutional network,
the number of parameters is DKxDKxM+MxN, The number

. 1 1 .
of parameters is only E+F times that of a normal
k

convolution. As DK and N increase, the number of covariates
of DSC relative to conventional CNN decreases dramatically.

DyxDy

DW CNN

PW CNN

Fig.3. Depth-separable convolutional network structure.

III. EXPERIMENTAL DATA AND ANALYSIS

A. Datasets and Experimental Environments

There are three datasets in this study. The first one is the
homemade dataset Act, and the data in the Act dataset is
collected by the mpu6050 sensor. The stm32f103c8t6 is used
as the main control chip, and the data sampling frequency is
S0Hz. The collection was completed by 12 volunteers, who
consisted of 12 young people on whom the sensor was
mounted on the left wrist. The dataset contains 5 fall activities
(falling backwards, falling forwards and landing on the knee,
falling forwards, failing to get up from a sedentary position
resulting in a fall, and falling from a standing position) and
nine non-falling activities (walking, jogging, sitting down,
trotting, going up the stairs, going down the stairs, opening and
closing doors, applauding, and jumping), a total of 4,200 data
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items are included. The dataset training set, test set and
validation set are divided in the ratio of 8:1:1.

The remaining two datasets are the public datasets
WEDAFall and SisFall [12]. The WEDAFall dataset
equipment samples primarily at SOHz, and data collection was
done by 31 volunteers, the volunteers consisting of 20 young
people and 11 older people, collected data via sensors placed
on their wrists and contained a total of 3,719 pieces of data on
8 fall activities and 11 non-fall activities. The SisFall dataset
device had a sampling frequency of 200Hz, and data collection
was done by 38 volunteers, consisting of 23 young people and
15 older people, who collected data via sensors placed on their
waists, containing a total of 4,510 pieces of data, capturing 15
fall activities and 19 non-fall activities. The specific data
distribution is shown in Table I.

The deep learning framework for the experiments in this
study is Pytorch, the training environment is a 64-bit Windows
11 operating system, the CPU is i7-12650H, the graphics card
uses RTX-4060, the RAM is 16GB, and the code running

environment is Python 3.8.

TABLEI. DATASET INFORMATION
Non-Fall Fall
Act 2000 2200
WEDAFall 2319 1400
Sisfall 2935 1575

B. Performance Indicators

For fall detection, the accurate identification of fall events
is very important, and there are three evaluation metrics used in
this study, which are accuracy, sensitivity, and specificity.
Accuracy is an important measure of the model's overall
classification ability, indicating the number of samples
correctly predicted by the model as a proportion of the total
number of samples. The equation is as follows [Eq. (11)]:

(1)

where, TP is True Positive, TN is True Negative, FP is
False Positive, and FN is False Negative.

TP+TN
Acc=——F——
TP+TN+FP+FN

Sensitivity and specificity, on the other hand, respond to the
model's ability to distinguish between positive and negative
samples. The equation is as follows [Eq. (12) and Eq. (13)]:

TN

5P = TP+FN (12)
TP
SE = TN+FP (13)

where, SP is specificity and SE is sensitivity, specificity
and sensitivity are complementary to each other, the higher the
sensitivity indicates that the model has a higher recognition
rate for fall events, and the two together measure the model's
ability to discriminate on positive and negative class samples.

C. Data Preprocessing

The raw triaxial acceleration components (ax, ay, az) are
projections to the sensor's own coordinate axes and are highly
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dependent on its spatial attitude. Using this data directly, the
model has to learn not only the motion itself, but also the
complex relationship between the motion patterns and the
changing sensor poses. This double learning burden increases
model complexity and may impair generalisation capabilities,
especially in conditions where sensor poses are unknown or
changing. According to vector theory, the modulus of a vector
does not change with the rotation of the coordinate system
[13]. In other words, no matter how the sensor is rotated, the
calculated acceleration magnitude S is constant as long as the
magnitude ofthe total acceleration it senses remains constant.

Therefore, this study uses the acceleration amplitude as the
feature, and this approach can effectively eliminate the
interference caused by the sensor attitude change, making the
feature robust to the sensor installation position and orientation.
Acceleration amplitude indicates the size of the acceleration.
The amplitude of the acceleration of the human body
movement state reflects the intensity of the human body
movement, which is defined as shown in Eq. (14):

S =.ai+a3+aZ (14)

1) Sliding window algorithm: To extract the temporal
characteristics of the data, a sliding window strategy is used.
For dynamic behaviours with long duration, a larger window
allows for complete capture of their signals [14]. However,
blindly increasing the window size is not optimal and may
lead to increased computational complexity or failure to
accurately capture behavioural changes at shorter times.
Therefore, a reasonable choice of window size is essential to
balance the completeness of timing information with
computational efficiency.

A complete fall consists of three main phases: the
imbalance phase, the falling phase, and the contact with the
ground phase, as shown in Fig. 4. The duration of these phases
and is approximately 2s to 3s, respectively, in order to unify
the size of the input data, this study makes the window able to
cover a complete information of the fall event by setting the
window size to 120 and the window sliding step to 10, and
splits the time series into multiple fixed-length sub-sequences
through the window sliding, and this method overcomes the
situation that different behaviours may span different time
periods, and at the same time, the model provides a sufficiently
large number of training samples, which makes full use of the
time series data characteristics and enables the model to
capture long-time dependencies.

Fig.4. Analysis of backward falling activities.

2) Low-pass filtering: Accelerometer sensors are prone to
receive external noise interference when collecting data, and it
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can be seen through spectral analysis that accelerometer noise
is usually high-frequency noise. The frequency of human
motion signals is low, with the frequency range of daily
activities such as walking and running typically ranging from
0.5 Hz to 5 Hz, and the frequency of instantaneous
acceleration changes for falls typically ranging from 1 Hz to
20 Hz, as shown in Fig. 5.

ADL FFT Fall FFT

Fig. 5. Spectral analysis of human activity FFT plot.

In this study, a Butterworth low-pass filter is used to
remove high-frequency noise from acceleration sensor data,
which eliminates the need to rely on a physical model of signal
generation and effectively reduces the interference of noise
with subsequent detection tasks. After the cut-off frequency is
processed, the data becomes smoother and retains the data
features to have a better performance in training, as shown in
Fig. 6.
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Fig. 6. Comparison of the results of Butterworth low-pass filter processing.

After comparative experiments, it was found that the model
was best trained when the cut-off frequency was set to 5.5 Hz,

Vol. 16, No. 10, 2025

effectively removing the interference from the sensor (see
Table II).

TABLE II. COMPARISON OF TEST RESULTS
F}:i:;‘;r::cgy Acc% SP/% SE%
\ 96.34 96.25 97.11
2.5Hz 9831 97.26 98.78
5.5Hz 99.11 98.38 99.39
8Hz 98.42 98.21 99.01
10Hz 97.73 96.94 98.34

IV. RESULTS

A. Comparative Experiments on Correlation Models

In order to comprehensively evaluate the performance of
the proposed model and verify its effectiveness in fall detection
tasks, a series of comparative experiments is designed in this
study. Traditional detection methods and several
state-of-the-art deep learning models were selected, including
Threshold Analysis (Threshold) [15], Artificial Neural
Network (ANN) [16], Convolutional Neural Network (CNN)
[17], Temporal Convolutional Network (TCN) [8], Long
Short-Term Memory Networks (LSTMs) [19], Gated
Recurrent Neural Network (GRU) [18] and Bidirectional Long
Short-Term Memory Network (Bi-LSTM) [19]. They are
trained and tested on the same dataset and experimental
conditions. These models were chosen because of their wide
range of applications in processing time-series data and feature
extraction. Through experimental comparisons, the SD-CNN
model proposed in this study improves the accuracy, specificity
and sensitivity by 15.31%, 16.29% and 9.38%, respectively,
compared with the traditional detection method, Threshold.
Compared with several other state-of-the-art deep learning
models, the model in this study has the smallest number of
parameters while maintaining the highest accuracy, specificity
and sensitivity. This is a good indication that the SD-CNN
model performs more superior in terms of classification
accuracy and robustness. The specific data are shown in
Table III.

TABLEIII.  COMPARISON OF MODELS
Acc% SP/% SE% Params FLOPs

Threshold | 83.80 89.00 83.10 /

CNN 91.97 92.36 90.01 28480 14.6M
LST™M 93.94 92.44 95.73 46754 37.8M
GRU 95.70 87.50 96.80 47856 38.2M
Bi-LSTM | 96.73 99.33 95.26 85866 42.5M
TCN 98.43 99.13 98.27 197,120 39.7M
ANN 94.02 93.20 94.21 271330 124.4M
SD-CNN 99.11 98.78 99.39 4076 0.97M
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B. Cross-Dataset Evaluation

In order to comprehensively assess the effectiveness and
usefulness of the proposed model in this study, avoid
overfitting of the model to specific training data, and validate
its generalisation ability on different data sources,
generalisation experiments across datasets are designed and
implemented in this section. In this study, two public datasets,
SisFall and WEDAFall, which are widely used in the field of
fall detection, are selected for testing, aiming to examine the
performance of the models when confronted with new data that
is different from the source of the training data. The
experimental environment is consistent with "3.1" of this study.
As can be seen from Table IV, SD-CNN improves accuracy,
specificity, and sensitivity by 6.92%, 623% and 7.34%,
respectively, over CNN on the WEDAFall dataset. On the
SisFall dataset, the accuracy, specificity, and sensitivity are
improved by 6.38%, 8.89% and 842%, respectively, over
CNN.

TABLEIV.  GENERALISATION EXPERIMENTS
WEDAFall SisFall
Models
Acc% SP/% SE% Acc% SP/% SE%
CNN 91.34 91.98 90.44 92.78 89.65 90.18

SD-CNN 98.26 98.21 97.78 99.16 98.54 98.60

V. DISCUSSION

The SD-CNN neural network architecture proposed in this
study aims to achieve efficient and accurate human activity
recognition, especially fall detection. The model achieves
significant lightweighting at the model structure level by
integrating deeply separable convolutions to reduce the
computational effort and incorporating the SMA attention
mechanism to dynamically focus on key features. The
experimental evaluation results show that SD-CNN not only
has significant advantages in terms of the number of model
parameters and the expected computational resource
consumption, but also outperforms other models in terms of
key performance indicators, including 99.11% accuracy,
98.78% specificity, and 99.39% sensitivity. This proves the
effectiveness of the lightweight architecture proposed in this
study. Nevertheless, this study still has some limitations.
Although SD-CNN shows good computational efficiency on
resource-constrained devices, it still needs to be further
optimised in scenarios with extreme low power consumption or
higher real-time requirements. Second, the design of the
attention mechanism in this study is still a relatively simplified
and approximate form, and its performance differences in
multi-channel and multi-modal data have not yet been fully
explored.

VI. CONCLUSION

The main contribution of this research is to provide a
lightweight activity recognition model, SD-CNN that balances
efficiency, performance, and robustness, which is capable of
recognising human activities effectively, especially in fall
detection tasks. In the future, we will continue to explore this

Vol. 16, No. 10, 2025

model by extending it to multimodal sensor data fusion,
investigating more efficient attentional mechanisms, and
validating it in larger and more diverse groups of people and
scenarios to further advance its translation into practical
applications.

ACKNOWLEDGMENT

This work is one of the phased achievements of Jiangsu
Province  Postgraduate  Practical Innovation  Project
(SJCX24 1796), Changzhou Science and Technology Project
(CZ20230025, CZ20250010, CJ20241070), and Jiangsu
University of Science and Technology Postgraduate Practical
Innovation Plan Project (XSJCX 46).

REFERENCES

[11 K. Durga Bhavani and M. Ferni Ukrit, “Design of inception with deep
convolutional neural network based fall detection and classification
model,” Multimedia Tools and Applications, vol. 83, pp. 23799-23817,
2024.

[2] S. K. Gharghan and H. A. Hashim, “A comprehensive review of elderly
fall detection using wireless communication and artificial intelligence
techniques,” Measurement, vol. 226, Art. no. 114186, 2024.

[31 Y. Li, P. Liu, Y. Fang, et al, “A Decade of Progress in Wearable
Sensors for Fall Detection (2015-2024): A Network-Based Visualization
Review,” Sensors, vol. 25, p.2205,2025.

[4] F. Nana, L. Daming, C. Xiaoting, et al, “A fall detection algorithm
based on the lightweight OpenPose model,” Sensors and Microsystems,
vol. 40, pp. 131-134,2021.

[5] C.Mengdi, Y. Mengfan, W. Liuyi, et al., “A fall detection algorithm for
complex scenes based on improved YOLOVS,” Modemn Infommation
Technology, vol. 9, pp. 66-71,2025.

[6] Z. Wang, Z. Xu, and L. Chen, “Research on Human Behaviour
Recognition System Based on Infrared Array Sensor,” Infrared
Technology, vol. 42, pp. 231-237,2020.

[7] B.Liu, W. Kong, J. Xiao,and M. Wang, “Fall detection algorithm based
on RBF neural network,” Computer Technology and Development, vol.
32,pp. 167-172,2022.

[8] J. Wang, G. Gao, and G. Teng, “Application of improved TCN
algorithm for human fall detection,” Computer Engineering and Design,
vol. 44, pp. 2859-2866, 2023.

[91] C.Li, M. Liu, X. Yan, et al., “Research on CNN-BIiLSTM fall detection
algorithm based on improved attention mechanism,” Applied Sciences,
vol. 12,p.9671,2022.

[10] Z. Shen, M. Zhang, H. Zhao, et al., “Efficient attention: Attention with
linear complexities,” in Proc. IEEE/CVF Winter Conf. Appl. Comput.
Vis., pp.3531-3539,2021.

R. Ligiang, H. Wang, X. Peng, et al, “Complex manoeuvre recognition
based on wavelet time-frequency maps and lightweight
CNN-Transformer hybrid neural networks,” J. Beijing Univ. Aeronaut.
Astronaut., pp. 1-24,2025.

[12] A. Sucerquia,J. D. Lopez, and J. F. Vargas-Bonilla, “SisFall: A fall and

movement dataset,” Sensors, vol. 17,no. 1, p. 198,2017.

[t

—

[13

—

J. Handong and J. Wengang, “Simulation Study of Attitude Solving
Based on Multi-MEMS Sensor Combination,” Instrumentation
Technology and Sensors, vol. 8, pp. 81-85,2020.

[14] L. Xiaoguang, J. Shaokang, W. Zihui, et al,, “Real-time fall detection
method based on threshold and extreme random tree,” Computer
Application, vol. 41, pp. 2761-2766,2021.

[15] T. Wang, B. Wang, Y. Shen, et al., “Accelerometer-based human fall
detection using sparrow search algorithm and back propagation neural
network,” Measurement, vol. 204, p. 112104, 2022.

[16] K. Lisa, W. Suzheng, Y.-Q. Chen, et al,, “A Review of Fall Detection

Algorithms Based on Wearable Devices,” J. Zhejiang Univ., vol. 52, pp.

1717-1728,2018.

Q

163 |[Page

o)

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 10, 2025

[17] L. Yan, Z. Meng, J. Wuhao, etal., “Design of fall detection system for [19] M. Dong and J. Peng, “A study on wearable fall detection based on
the elderly using convolutional neural network,” J. Zhejiang Univ., vol. bidirectional LSTM neural network,” J. Guangxi Normal Univ., vol. 40,
53,pp. 1130-1138,2019. pp. 141-150,2022.

[18] F. Luna-Perejon, M. J. Dominguez-Morales, and A. Civit-Balcells,

“Wearable fall detector using recurrent neural networks,” Sensors, vol.
19,n0.22,p.4885,2019.

164 |[Page
www.ijacsa.thesai.org



