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Abstract—As the core carrier of human food supply and 

agricultural economy, manual management in large-scale crop 

cultivation faces bottlenecks such as low efficiency, high cost, and 

difficulty in standardization. There is an urgent need for 

computer vision technology to realize automated detection and 

growth stage classification. However, most existing algorithms 

rely on high-performance GPUs for operation, resulting in high 

hardware costs, which makes it difficult to popularize them in 

low-end agricultural edge devices (e.g., embedded controllers, 

low-cost industrial computers). This study proposes a lightweight 

crop detection and classification model, Lite-CropNet. It builds a 

neural network architecture based on the CSPDarknet backbone 

network, designs a concise decoder, and adopts four-scale 

detection heads to adapt to crop targets of different sizes, 

balancing high accuracy and lightweight characteristics. Using 

tomatoes as the experimental object, tests on the TomatOD 

dataset (simulating real greenhouse environments) show that 

Lite-CropNet outperforms advanced methods, with a mean 

Average Precision (mAP)@0.5 of 85.7%. Under the conditions of 

the GTX 1650 GPU and 640×640 resolution, the Frame Per 

Second (FPS) reaches 76.9, and the model size is only 4.4M. This 

neural network model can efficiently complete tomato detection 

and maturity classification, and its architecture and design can 

also be transferred to crops such as potatoes and strawberries, 

providing a cost-effective and highly universal automated 

solution for agricultural production. 
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I. INTRODUCTION 

In large-scale agricultural production, accurate detection 
and growth stage classification of crops are core links for yield 
assessment, quality control, and automated management. 
Whether for vegetable and fruit crops such as tomatoes and 
potatoes, or food crops such as wheat and corn, real-time 
monitoring of their growth status directly affects production 
efficiency and economic benefits. With population growth and 
the development of agricultural intensification, models such as 
greenhouses and large-scale field cultivation have been widely 
applied [1]. However, traditional manual detection methods, 
limited by low efficiency, long time consumption, and high 
cost, can hardly meet the management needs of large-scale and 
multi-variety crops [2], [3]. 

With the development of computer vision and deep 
learning technologies, the advancement of image recognition 
technology in recent years has enabled Convolutional Neural 
Networks (CNNs) to be widely used in deep learning [4], 
becoming an important method for image classification, object 

detection, and recognition. Especially in the agricultural field, 
deep learning models based on the CNN architecture have been 
gradually applied [5], [6], [7] due to their high accuracy in 
image classification and object detection tasks. At this point, 
how to collect these images for deep learning training is a 
question that researchers should consider. Currently, 
commonly used methods include satellite remote sensing, 
unmanned aerial vehicles (UAVs), fixed platforms, and 
unmanned vehicles. These devices have their own advantages 
and disadvantages: satellite remote sensing systems are suitable 
for long-distance and large-scale monitoring but have relatively 
low image resolution, making it difficult to capture objects at 
the small organ level [8]; UAVs are usually used for large-
scale field monitoring [9]; these two technologies are suitable 
for long-distance shooting and have high costs. Fixed platforms 
are installed at fixed positions and are more suitable for 
monitoring small-scale areas. In contrast, unmanned vehicle 
technology has shown excellent performance in large-scale 
farmland or greenhouses—it can not only adapt to the detection 
of underlying fruits of hanging crops such as tomatoes but also 
meet the close-range image collection of low-growing crops 
such as potatoes, providing data support for high-precision 
detection of multi-variety crops. 

However, existing crop detection and classification 
technologies still face two core challenges: First, insufficient 
scene adaptability—different crops have significant differences 
in growth forms (e.g., hanging tomatoes, creeping potatoes, 
clustered strawberries) and appearance features (color, shape, 
size). In addition, the field environment has interferences such 
as light changes and occlusions (overlapping of leaves, 
branches, and fruits), making it difficult for a single model to 
adapt to multi-variety crops. Second, high hardware 
dependence—most existing models require high-performance 
GPUs for support, with large parameter scales and high 
computational costs, which cannot be deployed in low-end 
agricultural edge devices (e.g., embedded controllers, low-cost 
industrial computers), limiting the large-scale application of 
multi-variety crop detection technologies. Bathini and Usha 
Rani [10] also pointed out in their review on the application of 
artificial intelligence in agricultural crop yield analysis that 
although current deep learning models perform well in crop 
management, yield prediction, and other fields, they generally 
have problems of high dependence on data quality and 
insufficient adaptability of lightweight models. 

To address this challenge, this study adopts the TomatOD 
dataset [11], a highly specialized and innovative dataset 
designed specifically for tomato fruit object detection and 
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classification. Collected in a real greenhouse environment, it 
includes low-light conditions and long-distance shooting 
scenarios, providing challenging scenes for the model and 
helping it better adapt to real-world applications. Against this 
background, the study proposes the Lite-CropNet model, 
whose core differences in mathematical architecture from 
existing methods are as follows: 1) Feature extraction: A multi-
stage structure of 𝐶𝑘(𝑚) − 𝑃𝑘(𝑚) is adopted to output multi-
scale feature maps with 32/64/128/256 channels; 2) Loss 
function: Smoothed Intersection over Union (SIoU) loss 
(including angle cost 𝛥 = ∑ₜ₌ₓ, ᵧ (1 − 𝑒⁻ᵧᵨₜ)  and shape cost 

 𝛺 = ∑ₜ₌𝑤, ℎ (1 − 𝑒⁻ʷₜ)ᵗʰ) is introduced; 3) Lightweight: The 
parameter computation amount is controlled to 4.4M according 
to the formula 𝑃𝑎𝑟𝑎𝑚𝑠 = 𝑖 ⋅ (𝑘 ⋅ 𝑘) ⋅ 𝑜 + 𝑜 (where 𝑖  is input 
size, 𝑘 is convolution kernel, 𝑜 is output size), which is only 
2.8% of the DETR model (158M), solving the problem of high 
hardware dependence. While being lightweight, Lite-CropNet 
maintains high accuracy, with a mean Average Precision (mAP) 
of 85.7%. Notably, Lite-CropNet has only 4.4M parameters, 
and under the image resolution of 640×640, it achieves an 
excellent frame rate of 76.9 Frames Per Second (FPS) on the 
low-cost GTX 1650 GPU. This enables Lite-CropNet to have 
wide applicability in real-time applications and provides a cost-
effective and efficient automated solution for agricultural 
production. 

In summary, the main contributions of this study are 
threefold: 1) Lite-CropNet: a novel deep convolutional network 
with a lightweight encoder and a decoder that effectively 
processes encoded features, alleviating the problems of 
information loss and degradation. 2) Innovative use of four 
detection heads of different scales, which not only has 
excellent detection performance for medium and large target 
crops such as tomatoes but also can accurately identify other 
small clustered crops, improving the model's crop variety 
adaptability. 3) High real-time efficiency is reported on low-
cost devices, providing an effective and economical solution 
for the application of modern high-throughput plant 
phenotyping platforms. 

The structure of this study is arranged as follows: Section I 
(this section) introduces the research background. Section II 
presents related work by researchers and highlights the 
problem statement. Section III provides a detailed description 
of the Lite-CropNet model. Section IV introduces dataset 
details, challenges, and experimental design. Section V 
conducts experiments and performs comparative analysis with 
other models from multiple dimensions. Section VI discusses 
the research. Section VII draws the conclusions of this research 
and proposes future work. 

II. RELATED WORK 

In recent years, deep learning models based on 
Convolutional Neural Networks (CNNs) have been widely 
used in agricultural crop detection and classification tasks. 
Researchers have carried out explorations around "improving 
accuracy", "adapting to scenes", and "optimizing efficiency", 
forming research results in multiple directions. In terms of crop 
and weed detection and classification, Ahmad et al. [12] 
proposed a detection model based on Vision Transformer 
(ViT). Through pixel-level annotation training of high-

resolution UAV images, it overcomes the problem of similar 
appearance between crops and weeds, achieving a 
classification accuracy of 89.4%, which is significantly better 
than traditional models such as UNet and Fully Convolutional 
Network (FCN). Zhang et al. [13] further proposed the LMS-
YOLO11n lightweight multi-scale weed detection model. 
Through the design of FastGLU feature extraction module and 
Attention Hierarchical Feature Pyramid Network (AHFPN) 
feature fusion network, the mAP is increased by 2.5% on the 
CottonWeedDet3 dataset, while the model parameters and 
computational complexity are reduced by 37% and 26% 
respectively. Reedha et al. [14] used Transformer neural 
networks to process high-resolution UAV images, further 
optimizing the classification accuracy of weeds and crops. 
López-Correa et al. [15] designed an intelligent weed 
management system in tomato fields, providing technical 
support for precise weeding in the field. 

In terms of crop organ and maturity detection, Mu et al. [16] 
proposed a tomato detection model based on Faster R-CNN 
and ResNet-101. By transferring learning from the COCO 
dataset, it can automatically detect intact green tomatoes 
(ignoring occlusion and growth stages), with an average 
precision of 87.83% on the test set. Su et al. [17] improved the 
SE-YOLOv3-MobileNetV1 network, introduced a channel 
attention mechanism, and could distinguish four tomato 
maturity levels, with an average precision of 87.7%.  
Rahim et al. [18] used Faster R-CNN to realize tomato flower 
detection and counting in greenhouses. Rahim et al. [19] 
further quantified the number of grapevine inflorescences and 
flowers, providing data for yield prediction. Suh et al. [20] 
realized the classification of sugar beets and potatoes through 
transfer learning, adapting to field scenarios. Nkemelu et al. 
[21] used a deep CNN to complete crop seedling classification, 
solving the problem of seedling stage recognition. 

In terms of data collection, commonly used devices include 
satellite remote sensing, UAVs, fixed platforms, and unmanned 
vehicles [8], [9]. Remote sensing is suitable for large-scale 
areas but has low resolution; UAVs have high costs; fixed 
platforms are suitable for small-scale areas; unmanned vehicles 
are suitable for image collection of various crops such as 
tomatoes and potatoes. Tsironis et al. [11], [22] constructed the 
TomatOD dataset, which contains 277 images and 2,413 
tomato samples, annotates three maturity stages, and covers 
complex scenarios such as light changes and occlusions, with 
good challenging properties. 

Although existing studies have made progress, there are 
still three major bottlenecks: First, poor scene adaptability—
most models rely on ideal datasets and are difficult to cope 
with complex field environments such as low light and high 
occlusion. Second, high hardware dependence—models such 
as DETR [23] and Faster R-CNN [24] have large parameter 
sizes (DETR reaches 158M), making it difficult to deploy them 
on agricultural edge devices. Third, weak multi-variety 
adaptability—existing studies mostly focus on a single crop or 
task, and do not fully consider the morphological differences 
between crops (e.g., hanging tomatoes, clustered strawberries), 
making it difficult to achieve universal detection. 
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To address the above problems, this study proposes Lite-
CropNet, achieving the following breakthroughs: In terms of 
lightweight design, through multi-stage feature extraction and a 
concise decoder, the number of parameters is controlled at 
4.4M (only 2.8% of DETR), adapting to low-end devices such 
as GTX 1650 and J4125. In terms of scene robustness, training 
is conducted based on the TomatOD dataset, and the SIoU loss 
function (including angle and shape costs) is introduced to 
improve adaptability to complex field environments. In terms 
of multi-variety detection capability, an innovative four-scale 
detection head is designed to support various crops such as 
tomatoes (medium and large-sized) and strawberries (small 
clustered), reducing the cost and complexity of multi-variety 
deployment. 

III. MATERIALS AND METHODS 

This section provides a detailed introduction to the design 
of the Lite-CropNet deep learning framework for crop 
detection and classification. 

A. Lite-CropNet Model Design 

In crop detection and classification, the model is required to 
have higher robustness due to the influence of various natural 
factors and imaging from different shooting angles. Moreover, 
considering the deployment needs of edge devices in the 
context of plant science, the model is also required to be 
lightweight. Therefore, in the model architecture design, both 
aspects are taken into account: while reducing parameters, the 
performance of the model is maintained, and the Lite-CropNet 
model is designed, which consists of three parts. The Encoder 
(feature extraction network) is responsible for extracting image 
features; after feature enhancement of the feature maps, the 
Decoder combines, utilizes, and decodes the features from the 
Encoder, aggregates low-level spatial features and high-level 
semantic features, and improves the recognition accuracy of 
objects of different scales. Finally, the features are transmitted 
to the Detector for detection, generating object bounding boxes 
with coordinates, categories, and confidence levels. The overall 
architecture of the Lite-CropNet model is shown in Fig. 1, and 
the global architecture of Lite-CropNet and its optimization are 
introduced below. 

 

Fig. 1. Lite-CropNet model structure and module details. 

1) Encoder: For the encoder part, the general structure of 

Cross Stage Partial Darknet (CSPDarknet) [25] is adopted and 

its design is retained. First, an RGB image 𝐼 ∈ 𝑅𝐻×𝑊×3 is 

given as input, where 𝐻 and 𝑊 represent the height and width 

of the output feature map, respectively. The entire Encoder is 

composed of 5 convolutional layers and 4 feature extraction 

layers, specifically defined as Eq. (1): 

𝐶3(16) − 𝐶3(32) − 𝑃1(32) − 𝐶3(64) − 𝑃2(64)  −  
 𝐶3(128) − 𝑃3(128) − 𝐶3(256) − 𝑃4(256) (1) 

Here, 𝐶𝑘(𝑚)  denotes a 2D convolutional layer 
with m channels and 𝑘 × 𝑘  filters, all with a stride of 

2; 𝑃𝑘(𝑚)  denotes the 𝑘𝑡ℎ  feature extraction layer that 
outputs m channels. By inserting CSPLayer [26] at different 
stages to extract features, 32, 64, 128 and 256 channels are 

output, generating feature maps at different stages. After the 
last feature extraction layer (P4), a Spatial Pyramid Pooling - 
Fast (SPPF) [27] module is introduced. The number of input 
channels of this module is equal to the number of output 
channels of the last feature layer (𝐶𝑖𝑛𝑝𝑢𝑡 = 256), and the 

kernel size is 𝐾𝑆𝑃𝑃𝐹 = 5 × 5. Without changing the size of the 
feature map, pooling is performed on the feature map at 
different scales, which helps the network better capture the 
semantic information of various targets. 

2) Decoder: In the design of the Decoder, first, a 

convolutional layer with a kernel size of 1×1 is used to 

compress the 256-channel feature map extracted by the SPPF 

in the Encoder to 128 channels, reducing computational 

complexity while retaining key features. Subsequently, 

upsampling is performed to increase the spatial resolution of 
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the feature map, which is then concatenated with the feature 

map of P4. A Cross Stage Partial Fusion (C2f) module [28] is 

introduced to optimize the feature representation. Next, the 

same operation is carried out again, and the result is 

concatenated with the feature map of P3. Finally, a 

convolution with a stride of 2 and a kernel size of 3×3 is 

further connected, and the result is concatenated with the 

previous feature maps to form a more optimized feature 

representation. In this process, emphasis is placed on the 

utilization of P2 and P3 feature maps because they have a 

suitable scale for object detection. 

Another important design of the Lite-CropNet network is to 
add a prediction head to detect ultra-large targets while 
simplifying the process of adding detection layers. During the 
inspection of the dataset, it was found that some images 
contain ultra-large crop targets, which also exist in practical 
applications. Therefore, a convolution module with a stride of 
2 and a kernel size of 3×3 is directly added after the third 
feature map passed to the head. This innovation effectively 
improves the detection ability of ultra-large targets without 
significantly affecting the overall computational complexity of 
the model. Through gradual feature fusion and representation 
optimization (without significantly affecting the overall 
computational complexity of the model), the decoder finally 
transmits four feature maps of different sizes to the detection 
module (Detector) to output the final object detection results. 
The design of the Decoder has clear objectives in each step of 
the operation. From channel compression, upsampling to 
feature concatenation, all are aimed at comprehensively 
utilizing the sufficiently deep encoded feature layers in the 
encoder to respond to more abstract information, and 
combining an adaptive strategy to restore spatial resolution and 
improve the detection accuracy of targets of different scales. 

B. Activation Function 

The selection of the activation function is of great 
significance in neural networks. It can introduce non-linear 
factors into the neural network and improve the model's 
expressive ability. In the Lite-CropNet model, attempts were 
made to use SiLU [29], ReLU [30], and LeakyReLU [31] 
activation functions, and their performances were compared. 
Finally, the more optimal LeakyReLU activation function was 
selected. 

SiLU is a smooth and differentiable activation function 
with non-monotonicity, which can more easily capture 
complex patterns. Its non-linear definition is Eq. (2): 

𝑆𝑖𝐿𝑈(𝑥) = 𝑥 ⋅ 𝜎(𝑥)                   (2) 

In contrast, ReLU is widely used in neural networks and 
has simple computation, which helps to improve the 
computation speed of the network. It can effectively alleviate 
the problem of gradient disappearance and introduce sparse 
activation during the training process, making the network 
easier to optimize. Its non-linear definition is Eq. (3): 

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                     (3) 

where, 𝑥 is the input. ReLU can effectively alleviate the 
problem of gradient disappearance and introduce sparse 

activation during the training process, making the network 
easier to optimize. However, it should be noted that ReLU has 
the problem of neuron death, that is, the output is zero when 
the input is negative, resulting in some neurons not being 
activated. To solve the dead neuron problem of ReLU, 
LeakyReLU introduces a small negative slope for negative 
inputs while maintaining simplicity. LeakyReLU retains the 
advantages of ReLU and provides a stronger gradient signal by 
allowing small negative gradients. This helps to avoid the 
problem of gradient disappearance during training while 
maintaining the computational efficiency of the model. The 
equation of LeakyReLU is Eq. (4): 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥)  =  {
𝑥 (𝑥 > 0)

𝛼𝑥 (𝑥 ≤ 0)
                (4) 

where, 𝛼 is a small positive slope, such as 0.1, 0.01, or even 
smaller. 

In practical tasks, the selection of the activation function 
usually depends on specific needs and experimental results. In 
the Lite-CropNet model, considering the need to enhance the 
learning ability, LeakyReLU was finally selected as the 
activation function because it solves the dead neuron problem, 
has a lower computational cost compared to SiLU, and has a 
more stable training process compared to ReLU. 

C. Attention Mechanism 

The attention mechanism is widely used in computer vision 
technology. It is a cognitive process that selectively acts on 
relevant information, enabling the model to ignore redundant 
information and focus more on useful information.  
Hu et al. [32] proposed the Squeeze-and-Excitation (SE) 
attention mechanism, which focuses on channel information 
and can enhance the channel features of the input feature map. 
However, due to the introduction of the FC fully connected 
layer, its computational complexity is relatively high.  
Woo et al. [33] proposed the Convolutional Block Attention 
Module (CBAM) attention module. Compared with the SE 
module, CBAM adds a spatial attention mechanism and 
focuses on regions of interest. The Efficient Channel Attention 
(ECA) attention mechanism [34] with global context self-
attention generates weights by using global context information, 
allowing the model to better capture context information, but 
its computational complexity is relatively high. Shuffle 
Attention (SA) [35] generates context information by 
rearranging input features, enhances the robustness of the 
model to spatial changes, and optimizes the allocation of 
attention weights through feature grouping and rearrangement. 
Its core equation is Eq. (5): 

𝐹𝑆𝐴 = 𝑆ℎ𝑢𝑓𝑓𝑙𝑒(𝐶𝑜𝑛𝑣2(𝐶𝑜𝑛𝑣1(𝐹𝑖𝑛 ,
𝐶

𝑔
)))      (5) 

where, 𝐹𝑖𝑛  is the input feature map, 𝐶  is the number of 
input channels (such as 128, 64), 𝑔  is the number of 
groups, 𝐶𝑜𝑛𝑣1 is a 1×1 convolution (compressing the channels 

to 
𝐶

𝑔
), 𝐶𝑜𝑛𝑣2 is a 3×3 convolution (restoring the channels to 𝐶), 

and Shuffle(⋅) is the feature rearrangement operation.  
Yu et al. [36] proposed the Mlt_ECA attention module, which 
is a dimension-free local cross-channel interaction strategy. It 
generates feature weights by performing 1D convolution 
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operations, and the convolution kernel size K is adaptively 
determined by the mapping of the channel dimension C, which 
is defined as Eq. (6): 

𝐾 = |
log2(𝑐)+𝛽

𝛼
|
𝑜𝑑𝑑

                (6) 

𝛼  and 𝛽  are adjustable hyperparameters, and “ 𝑜𝑑𝑑 ” 
indicates that 𝐾 takes an odd number. 

Considering that most of the fruit target areas in the dataset 
are small and there is a lot of background, which is not helpful 
for the detection and classification of crop fruits. Therefore, to 
reduce the impact of the background and pay more attention to 
the required feature information, during the design process of 
the Lite-CropNet model, attempts were made to compare the 
effects of different attention mechanisms and apply them to 
different stages of the model. A large number of experiments 
were conducted, and it was found that the experimental results 
were better when the Shuffle Attention mechanism was applied 
to the upsampling and downsampling modules. The 
performance differences of different attention mechanisms will 
be verified in the ablation experiments of the article. 

D. Loss Function 

As a metric to calculate the error between the forward 
propagation result of a neural network in each iteration and the 
ground truth, the loss function guides the weight adjustment in 
backpropagation. In the implementation of Lite-CropNet, 
various commonly used loss functions were tested. For the 
bounding box loss function, the Complete Intersection over 
Union (CIoU) loss function was initially considered, with its 
calculation methods shown in Eq. (7) and Eq. (8): 

𝐶𝐼𝑜𝑈 =  𝐼𝑜𝑈 −  
𝜌2(𝑏,𝑏𝑔𝑡

)

𝑐2  −  𝛼𝑣               (7) 

𝐿𝐶𝐼𝑜𝑈  =  1 −  𝐶𝐼𝑜𝑈                       (8) 

Intersection over Union (IoU) represents the intersection 
ratio between the predicted bounding box and the ground truth 
box;  denotes the shortest diagonal length of the minimum 
enclosing box that contains both the predicted box and the 

ground truth box; 𝜌2(𝑏, 𝑏𝑔𝑡
)  is the Euclidean distance 

between the center of the ground truth box and the center of the 
predicted box; 𝛼  is a positive balance parameter; and 𝑣 
represents the consistency of the aspect ratio between the 
predicted box and the ground truth box. The calculation 
methods of 𝛼 and 𝑣 are shown in Eq. (9) and Eq. (10): 

𝑣 =
 4

𝜋2 (𝑎𝑟𝑐𝑡𝑎𝑛
𝑤𝑔𝑡

ℎ𝑔𝑡  −  𝑎𝑟𝑐𝑡𝑎𝑛
𝑤

ℎ
)2           (9) 

𝛼 =  
𝑣

(1 − 𝐼𝑜𝑈) + 𝑣
                          (10) 

In Eq. (9), ℎ𝑔𝑡
 and 𝑤𝑔𝑡

 represent the height and width of 
the ground truth box, respectively; ℎ and 𝑤 represent the height 
and width of the predicted box, respectively. The CIoU loss 
function comprehensively considers the overlapping area, 
aspect ratio, and center distance, and can well measure the 
relative position between boxes. However, CIoU does not 
consider the direction matching between the target box and the 
predicted box, leading to a slow convergence rate. Therefore, 

this study considered an alternative approach using the 
Smoothed Intersection over Union (SIoU) loss function [37]. 
SIoU optimizes the loss calculation by introducing the vector 
angle between the target box and the predicted box, and it 
plays an important role in strawberry detection networks 
through the linear combination of four components: angle cost, 
distance cost, shape cost, and IoU cost. Its calculation methods 
are shown in Eq. (11) and Eq. (12): 

𝐿𝑆𝐼𝑜𝑈 =  1 −  𝐼𝑜𝑈 + 
∆ + Ω

2
                (11) 

𝐼𝑜𝑈 =  
|𝐵 ∩ 𝐵𝐺𝑇|

|𝐵 ∪ 𝐵𝐺𝑇|
                   (12) 

where, 𝐵  and 𝐵𝐺𝑇  represent the predicted box and the 

ground truth box, respectively; 𝛺 denotes the shape cost; and ∆ 
represents the distance cost (which incorporates the angle cost 
and redefines the distance metric). The equations for 𝛺 and ∆ 
are defined as Eq. (13) and Eq. (14): 

𝛺 = ∑ (1 − 𝑒−𝑤𝑡)𝜃
𝑡=𝑤,ℎ                   (13) 

∆ = ∑ (1 − 𝑒−𝛾𝜌𝑡)𝑡=𝑥,𝑦                     (14) 

In Eq. (13), 𝑤𝑤 =
|𝑤−𝑤𝑔𝑡

|

𝑚𝑎𝑥(𝑤,𝑤𝑔𝑡
)

, 𝑤ℎ =
|ℎ−ℎ𝑔𝑡

|

𝑚𝑎𝑥(ℎ,ℎ𝑔𝑡
)
 

and 𝜃 represents the degree of attention paid to 𝛺. 

In Eq. (14), 𝜌𝑥 = (
|𝑏𝑐𝑥

𝑔𝑡
−𝑏𝑐𝑥

|

𝑐𝑤
)2 , 𝜌𝑦 = (

|𝑏𝑐𝑦
𝑔𝑡

−𝑏𝑐𝑦
|

𝑐ℎ
)2, and 𝛾 is 

defined as: 

𝑝 = 𝑎𝑟𝑐𝑠𝑖𝑛
max(𝑏𝑐𝑦

𝑔𝑡
,𝑏𝑐𝑦

)−min(𝑏𝑐𝑦
𝑔𝑡

,𝑏𝑐𝑦
)

√(𝑏𝑐𝑥
𝑔𝑡

−𝑏𝑐𝑥
)

2

+ (𝑏𝑐𝑦
𝑔𝑡

−𝑏𝑐𝑦
)

2
−

𝜋

4
        (15) 

𝛾 = 1 +  2 𝑠𝑖𝑛2(𝑝)                          (16) 

In Eq. (15) and Eq. (16), 𝑏𝑐𝑥

𝑔𝑡

 and 𝑏𝑐𝑦

𝑔𝑡

 are the coordinates of 

the center of the ground truth box; 𝑏𝑐𝑥
 and 𝑏𝑐𝑦

 are the 

coordinates of the center of the predicted box. 

 The loss function plays a key role in evaluating the 
performance of a detection model. Typically, at least three loss 
functions need to be defined: object loss, classification loss, 
and bounding box loss. The bounding box loss has a significant 
impact on the detection accuracy and convergence speed of the 
network model. 

To improve the stability of the model in predicting the size 
and position of target boxes, the SIoU loss function was 
introduced, which incorporates the vector angle of the expected 
regression into the calculation of the bounding box regression 
loss function. The mathematical expression of the SIoU loss 
function is as follows: 

𝐿𝑆𝐼𝑜𝑈 = 𝛼 ⋅ 𝐴𝑛𝑔𝑙𝑒𝐶𝑜𝑠𝑡 + 𝛽 ⋅ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡 + 

𝛾 ⋅ 𝑆ℎ𝑎𝑝𝑒𝐶𝑜𝑠𝑡 + 𝛿 ⋅ 𝐼𝑜𝑈𝐶𝑜𝑠𝑡           (17) 

In Eq. (17), α, β, γ and δ are the weight coefficients of the 
loss terms; 𝐴𝑛𝑔𝑙𝑒𝐶𝑜𝑠𝑡  represents the angle 
cost; 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡  represents the distance 
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cost; 𝑆ℎ𝑎𝑝𝑒𝐶𝑜𝑠𝑡  represents the shape cost; 
and 𝐼𝑜𝑈𝐶𝑜𝑠𝑡  represents the IoU cost. Through the linear 
combination of these four components (angle cost, distance 
cost, shape cost, and IoU cost), the difference between the 
predicted box and the ground truth box is measured more 
comprehensively. 

In summary, by introducing the vector angle between the 
required regression boxes, the SIoU loss function redefines the 
distance loss, effectively reducing the degree of freedom of 
regression, accelerating the convergence speed of the network, 
and further improving the regression accuracy. Therefore, this 
study adopts the SIoU loss function as the loss function for 
bounding box regression, which improves the detection 
accuracy and stability, enabling Lite-CropNet to better 
complete the classification task of crop fruits of different sizes. 
This will be further verified in the experiments below. 

IV. EXPERIMENTAL DESIGN 

In this section, the information of the adopted dataset is 
first introduced, followed by the presentation of evaluation 
metrics and experimental details. Additionally, the proposed 
Lite-CropNet model is compared with advanced detectors on 
the TomatOD dataset, and their performance is reported. 
Through the visualization of inference results and the analysis 
of the model's defects, the characteristics of the model are 
discussed in depth. Finally, ablation experiments are conducted 
to verify the selection of the key attention mechanism in Lite-
CropNet. 

A. Dataset Materials 

In this experiment, the TomatOD dataset [11], publicly 
released by Tsironis et al. (2020) [22], was adopted. The 
selection basis and dataset characteristics are as follows: This 
dataset was collected from a real soilless tomato greenhouse on 
Crete, Greece, aiming to simulate the actual agricultural 
scenario of robotic arm navigation. Its scene authenticity, task 
adaptability, and comprehensive challenges are highly 
consistent with the core goal of this study—"developing a 
practical lightweight crop detection model". On the one hand, 
the dataset covers field interferences such as light fluctuations 
and occlusions by branches, leaves, and fruits, which can 
verify the model's robustness in complex environments. On the 
other hand, it contains 277 images and 2,413 tomato samples, 
which not only annotate accurate bounding boxes but also 
classify three maturity stages (unripe (green) - semi-ripe 
(orange-red) - fully ripe (red)) according to color phenotypes. 

Since this dataset already provides bounding box 
annotations—each tomato is labeled with a bounding rectangle 
and marked with corresponding labels for the three growth 
stages—these annotated data form the basis for model training. 
To ensure the accuracy of the annotations, LabelImg [38] was 
used to check the tomato annotations in the dataset, and at the 
same time, the characteristics of the dataset were analyzed in 
depth to help design a better model. The number of tomatoes in 
each image ranges from 1 to 21, and the size of the annotation 
box accounts for 3% to 15% of the image size. Tomatoes with 
a size smaller than a certain range are considered out of scope 
and not annotated or detected. In terms of the number of 
category instances, the proportion of labels of different 

categories in all labels shows that the number of unripe 
instances is the largest, while the number of semi-ripe instances 
is the smallest. The TomatOD dataset uses an 8:2 ratio to 
divide the images into a training set and a test set. The details 
of the number of images and classification of the dataset are 
shown in Table I. 

TABLE I.  DATASET DETAILS 

Growth 

Stage 

Training Set 

Instances 

Testing Set 

Instances 
Total Percentage(Total) 

Unripe 1,295 292 1,587 65.8% 

Semi-ripe 318 77 395 16.4% 

Fully-ripe 332 99 431 17.8% 

Total 1,945 468 2,413 100.0% 

In addition, this dataset has a unique feature: it is collected 
in a real greenhouse tomato field. In actual tomato planting 
scenarios, conditions such as light may change at any time, and 
the dataset takes this into account, meeting the experimental 
needs. It includes scenarios such as occlusion by branches, 
occlusion by tomatoes, occlusion by leaves, and unsuitable dim 
light, even the superposition of multiple situations. The dataset 
contains multiple types of occlusion scenarios, and the 
occlusion degree is quantified using the mathematical 

equation: = 1 −
|𝐵𝑣𝑖𝑠|

|𝐵𝑔𝑡|
. Among them, 𝐵𝑔𝑡 is the area of the real 

bounding box of the fruit, 𝐵𝑣𝑖𝑠 is the area of the visible region 
of the fruit, and 𝑂  is the occlusion degree ( 𝑂 ∈ [0,1] , 
where 𝑂 = 0  means no occlusion and 𝑂 = 1  means full 
occlusion). As shown in Fig. 2, representative images are 
carefully selected to show the four main challenges in the 
tomato detection and classification task. For clear display, the 
brightness of the images has been enhanced, while the actual 
images have weak light. It is worth noting that to more 
intuitively display the key parts, these images are shown after 
magnification. In the actual dataset, the imaging distance of the 
images is longer, and the tomato targets are smaller. 

 

Fig. 2. Main challenges in the TomatOD dataset. 

In summary, it can be seen that the many characteristics of 
the TomatOD dataset increase the difficulty of object detection. 
Through more realistic scene challenges, it helps the model 
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better adapt to real-world applications and achieve better 
robustness and generalization. 

B. Experimental Configuration 

This experiment was implemented using the PyTorch deep 
learning framework [39] and accelerated using CUDA. The 
TomatOD dataset was used for training and evaluation, and all 
222 images in the training set were used for training and 
validation. The image size was adjusted to 640×640 pixels for 
training, which also meets the resolution requirements when 
deploying to low-end edge devices. During the training process, 
Adaptive Moment Estimation (Adam) [40] was used as the 
optimizer, with the initial learning rate (lr0) and cyclic learning 
rate (lrf) both set to 0.01, the momentum set to 0.8, and the 
batch size set to 8 images per batch. The hardware parameters 
of the equipment used in the experiment were Intel(R) 
Core(TM) i5-13400F and NVIDIA GeForce GTX 3090 GPU, 
equipped with a deep neural network acceleration library of 
CUDA version 11.8, parallel computing framework, and 
CUDNN version 8.9.5. 

After the configuration of relevant parameters was 
completed, according to the actual convergence of the model, 
the training process was configured to 280 epochs for 
optimization. Data augmentation techniques were adopted, 
including random horizontal flipping, random adjustment of 
brightness or contrast, and random cropping. The trained 
model was evaluated using the test set, and each image in the 
test set was different from those used in the training set. Fig. 3 
shows the changes in various losses and mAP values with 
epochs during the entire training process. It can be observed 
that the model was properly trained, showing convergence 
without overfitting. 

 

Fig. 3. Changes in loss and mAP values with epochs during training. 

C. Evaluation Metrics 

To evaluate the detection performance of the Lite-CropNet 
model, this study uses Precision (P), Recall (R), mean Average 
Precision (mAP@0.5, mAP@0.5:0.95), and F1 (F1-score) as 
evaluation metrics. A standard Intersection over Union (IoU) 
threshold of 0.5 was used in the experiment. If the overlap 
between a predicted bounding box and a labeled bounding box 
exceeds the IoU threshold, it is considered correct (true 
positive). Otherwise, the predicted bounding box is considered 
a false positive. When a labeled bounding box overlaps with a 
predicted bounding box below the threshold, it is considered a 

false negative. Precision (P) represents the proportion of 
correctly predicted objects by the model among all predicted 
objects. Recall (R) represents the proportion of correctly 
predicted objects by the model among all actual objects. 
Average Precision (AP) is defined as the area under the 
Precision-Recall (P-R) curve formed by the above Precision 
and Recall. The F1-score evaluates the model by balancing the 
weights of Precision and Recall. They are defined by the 
following equations, respectively [see Eq. (18) to Eq. (21)]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%                (18) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%                     (19) 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝑃(𝑅)𝑑(𝑅)𝑛

1                          (20) 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 100%                (21) 

where, TP (True Positives), FP (False Positives), and FN 
(False Negatives) represent the number of true positives, false 
positives, and false negatives, respectively. In combination, 
"TP + FP" is the total number of detected targets, and "TP + 
FN" is the total number of real targets in the image. mAP@0.5 
represents the average value of mAP when the IoU threshold is 
0.5. Among them, mAP@0.5:0.95 represents the average value 
of mAP under different IoU thresholds (from 0.5 to 0.95, with 
a step size of 0.05). Since the dataset has three category labels 
for different growth stages, n=3. 

V. RESULTS AND ANALYSIS 

A. Comprehensive Evaluation of Model Performance 

To evaluate the superiority of the Lite-CropNet model, the 
Lite-CropNet model was compared with five advanced object 
detection methods in terms of detection performance, including 
CenterNet [41], Faster R-CNN [24], EfficientDet [42], FCOS 
[43], and DETR [23]. The same training set and test set were 
used to train and test these models, and hyperparameter tuning 
was performed for all methods to ensure fair and objective 
results. The comprehensive evaluation indicators of each 
model for the three growth stages in the object detection task 
are shown in Table II. 

TABLE II.  COMPARISON OF EVALUATION METRICS OF DIFFERENT 

MODELS 

Model P R F1 mAP@0.5 mAP@0.5:0.95 

CenterNet 73.5% 66.4% 69.8% 48.0% 15.9% 

Faster R-

CNN 
57.5% 58.4% 57.9% 59.0% 25.4% 

EfficientDet 52.1% 51.0% 51.5% 47.4% 16.8% 

FCOS 62.4% 81.6% 70.7% 73.4% 44.7% 

DETR 63.5% 72.7% 67.8% 61.8% 27.2% 

YOLOv8 72.3% 81.6% 76.0% 83.3% 54.2% 

YOLOv11 77.0% 75.1% 76.6% 77.1% 51.7% 

Lite-

CropNet 
75.4% 86.2% 80.4% 85.7% 56.8% 

The experiments show that the comprehensive performance 
of Lite-CropNet is superior to other object detection methods. 
The FCOS model ranks second in comprehensive performance, 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

172 | P a g e  
www.ijacsa.thesai.org 

with relatively high accuracy and recall for object detection. 
However, due to its single and lightweight network structure, it 
may have certain difficulties in handling occluded tomatoes 
and tomatoes of different sizes. CenterNet adopts an object 
detection method based on center points. It may have poor 
overall performance because the model focuses too much on 
the target center point and ignores other possible target parts. 
The Faster R-CNN and EfficientDet models show balanced 
performance in the P and R indicators, but their overall 
performance is not excellent. It is worth noting that the DETR 
model is different from other object detection models. It adopts 
an end-to-end training method, which reduces cumbersome 
steps and manual intervention. However, it is easily limited by 
annotated data and computing resources, and has high 
computational costs, which is not suitable for real-time 
application scenarios, and does not achieve good performance 
in this task. 

In summary, the Lite-CropNet model performs best in the 
tomato detection task. The advantages of Lite-CropNet may 
come from its strong adaptability to multi-scale, multi-growth 
stage, and occluded targets, as well as the appropriate feature 
decoding and optimization processing of the feature maps of 
the Encoder in the Decoder. 

B. Lightweight Analysis of Different Models 

When deploying the tomato detection and classification 
model to low-end edge devices, lightweight performance is a 
key factor. To comprehensively consider the lightweight 
performance of the model, two indicators—Frame Per Second 
(FPS) and model parameter quantity (Params)—were used to 
evaluate the lightweight effect of different models. The FPS 
indicator measures the number of frames that the model can 
process per unit time; a higher FPS value indicates that the 
model can process more input data in the same time and has 
higher real-time performance. Params reflects the number of 
model parameters; a smaller number of parameters means that 
the model is more lightweight, requires fewer computing 
resources during inference, and is directly related to the storage 
space of the model and the efficiency of computing resource 
usage. Their calculation methods are as follows [see Eq. (22) 
and Eq. (23)]: 

𝐹𝑃𝑆 =
1000

𝑝𝑟𝑒−𝑝𝑟𝑜𝑐𝑒𝑠𝑠+𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒+𝑁𝑀𝑆
                (22) 

𝑃𝑎𝑟𝑎𝑚𝑠 = 𝑖 ∙ (𝑘 ∙ 𝑘) ∙ 𝑜 + 𝑜                    (23) 

In the equations,  is the input size,  is the convolution 
kernel size, and is the output size. Among them, 𝑝𝑟𝑒 −
𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒, and Non-Maximum Suppression (𝑁𝑀𝑆) 
represent the time required for preprocessing, inference, and 
non-maximum suppression of each image, respectively. 

This experiment was conducted on a PC equipped with a 
relatively low-end Nvidia GTX 1650 GPU. Fig. 4 lists the 
comparison of lightweight parameters of different models. 
From the comparison results, the Lite-CropNet model achieves 
an excellent comprehensive level, with a high frame rate of 
76.9 and lightweight parameters of only 4.4M. In contrast, 
although the EfficientDet model has a small number of 
parameters (15.0M), its frame rate is only 17.2, which is 
relatively low. The Faster R-CNN and FCOS models also have 

a large number of parameters. The DETR model has a frame 
rate of 21.3 and a parameter quantity of 158M; although it 
adopts an end-to-end training method, its performance is still 
relatively general here. The CenterNet model has a high frame 
rate, but its parameter quantity is still not sufficient for 
deploying lightweight models. Although YOLOv11 shows 
balanced performance in accuracy (mAP@0.5 is 77.1%) and 
frame rate (63.6FPS), its parameter quantity (6.3M) and 
computational complexity are still higher than those of Lite-
CropNet. This further proves that the advantages of Lite-
CropNet in comprehensive performance come from its 
lightweight design, providing a more feasible solution for real-
time applications on low-end devices. Especially in the 
agricultural field where available resources are limited, 
lightweight models are usually more favored because they 
require fewer computing resources, which is important for 
some agricultural managers and can effectively reduce their 
economic burden. 

 

Fig. 4. FPS and Params comparison of different models. 

C. Inference Speed Analysis of Different Models in a CPU 

Environment 

In agricultural scenarios, many low-end edge devices (such 
as small embedded controllers and low-cost industrial 
computers) may not be equipped with GPUs and only rely on 
CPUs for inference. Therefore, a supplementary test on the 
inference speed of mainstream non-YOLO series models in the 
CPU environment was conducted. The experimental equipment 
was an Intel Celeron J4125 processor (4 cores and 4 threads, 
main frequency 2.0GHz) commonly used in agricultural 
scenarios, with 8GB of memory, and the test image resolution 
was still 640×640. The experimental data are shown in 
Table III. 

TABLE III.  COMPARISON OF EVALUATION METRICS OF DIFFERENT 

MODELS IN A GPU OR CPU ENVIRONMENT 

Model 
CPU 

FPS 
GPU FPS (GTX 1650) 

Parameter Count 

(M) 

Lite-CropNet 8.2 76.9 4.4 

CenterNet 6.5 59.9 108.0 

Faster R-CNN 2.1 25.3 124.0 

FCOS 3.3 21.3 122.0 

DETR 1.8 17.2 158.0 

EfficientDet 4.7 12.0 15.0 

The results show that Lite-CropNet can still reach 8.2FPS 
in the CPU environment, which meets the basic requirements 
of real-time agricultural monitoring (usually requiring ≥5FPS). 
This performance benefits from its lightweight design: 
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compared with Faster R-CNN (2.1FPS) and DETR (1.8FPS), 
the parameter scale of Lite-CropNet is only 3.5% and 2.8% of 
the former, respectively, reducing memory occupation and 
computational delay. Compared with the same-level 
EfficientDet (4.7FPS), the CPU inference speed of Lite-
CropNet is increased by 74%, which is due to the more concise 
feature fusion strategy adopted by its decoder, which reduces 
computational complexity. The Lite-CropNet in this study 
further optimizes the attention mechanism and loss function, 
and while maintaining accuracy, it achieves more efficient 
CPU inference, providing a feasible solution for agricultural 
scenarios without GPUs. 

D. Visualization Analysis of Inference Results 

By comparing the model prediction results with the real 
annotation results, the reasons affecting the detection 
performance of the model can be analyzed. Fig. 5 shows 
typical error cases, where the red arrows point to the regions 
missed by the model. Compared with other models, this model 
fails to correctly mark the real target regions. Missed detection 
is defined as failing to detect fruits with an occluded area of 
less than 50%, which is the standard for annotating the training 
set and test set in the TomatOD dataset. 

From the experiment, it was observed that false detections 
mainly occur due to similar appearances, where leaves or 
debris are mistakenly identified as tomatoes. However, it is 
reassuring that in the test set, except for the case where the 
occlusion degree of the region pointed by the red arrow in the 
figure exceeds and is close to 50%, no missed detections were 
found in other images. Compared with the baseline model 
YOLOv11, Lite-CropNet achieves a lower missed detection 
rate in occluded scenarios (such as leaf occlusion and fruit 
overlap) and low-light environments. This indicates that the 
model can better capture tomato fruits under various 
environmental conditions, and even in dim environments with 
insufficient light, the model still shows similar discrimination 
ability to humans, further proving that the model has strong 
robustness and generalization. 

 

Fig. 5. Inference error results of the baseline model YOLOv11 and the Lite-

CropNet model. Red arrows indicate missed detections. 

E. Ablation Experiments 

1) Ablation experiment on attention mechanism: In the 

above content, common attention mechanism methods are 

listed. To verify the detection differences of the Lite-CropNet 

model for tomatoes at each growth stage after adding different 

attention mechanisms to the upsampling and downsampling 

modules, ablation experiments were conducted using different 

attention mechanisms to analyze their performance differences. 

The experimental results are shown in Table IV. The use of 
the Shuffle Attention mechanism has a positive impact on the 
model performance. In particular, the unique channel shuffling 
design of Shuffle Attention makes the mAP@0.5 indicator of 
the model at least 1.6% higher than that of other attention 
mechanisms. It can better capture global and local features, 
thereby comprehensively understanding the image content. 
Moreover, its mAP@0.5:0.95 ranks first at 57.4%, which is the 
only mechanism among all schemes that exceeds 87% in the 
core accuracy indicator. This design brings better-balanced 
performance in practical applications, enabling the model to 
achieve high levels in multiple key indicators. 

TABLE IV.  PERFORMANCE COMPARISON OF LITE-CROPNET USING 

DIFFERENT ATTENTION MECHANISMS 

Attention 
Precision 

(P) 

Recall 

(R) 

F1-

Score 

(F1) 

mAP@0.5 mAP@0.5:0.95 

(None) 76.8% 80.7% 78.7% 85.5% 55.9% 

SEa 78.4% 85.5% 81.8% 84.9% 56.9% 

ECAb 80.2% 79.8% 80.0% 85.5% 56.2% 

CBAMc 77.8% 79.3% 78.5% 83.8% 54.8% 

Mlt_ECAd 75.4% 86.2% 80.4% 85.7% 56.8% 

SAe 80.4% 79.5% 79.9% 87.3% 57.4% 

a. SE = Squeeze-and-Excitation 

b. ECA = Efficient Channel Attention 

c. CBAM = Convolutional Block Attention Module 

d. Mlt_ECA = Multi-scale Efficient Channel Attention 

e. SA = Shuffle Attention 

In general, these observations indicate that the proposed 
Lite-CropNet model exhibits excellent robustness and 
generalization in practical tomato detection applications, 
providing a reliable automated solution for the agricultural 
field. 

2) Ablation experiment on four-scale detection heads: To 

verify the adaptive value of the core innovation of Lite-

CropNet—the "four-scale detection heads"—for crop targets 

of different sizes, this experiment constructs comparative 

models with only the number of detection heads modified. It 

focuses on analyzing the impact of the number of detection 

heads on the detection accuracy of small targets, large targets, 

and overall targets, so as to clarify the effectiveness of the 

scale design. 

In this experiment, the core architecture of the model 
(CSPDarknet Encoder, Shuffle Attention, SIoU loss) was kept 
unchanged, and only the number of detection heads was 
adjusted: a two-scale model (2 detection heads, removing the 
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P2 small-scale and P5 large-scale branches) and a three-scale 
model (3 detection heads, removing the P5 large-scale branch) 
were constructed, and compared with the original four-scale 
model (4 detection heads, i.e., Lite-CropNet, retaining the full-
scale branches of P2/P3/P4/P5). The performance comparison 
of the three groups of models on the same training set and 
validation set is shown in Table V. 

TABLE V.  PERFORMANCE COMPARISON OF MODELS WITH DIFFERENT 

NUMBERS OF DETECTION HEADS 

Model Scale P R F1 mAP@0.5 mAP@0.5:0.95 

2 70.9% 82.2% 76.1% 78.2% 49.4% 

3 72.7% 82.3% 77.2% 79.7% 50.7% 

4 (Lite-

CropNet) 
75.4% 86.2% 80.4% 85.7% 56.8% 

The experimental results show that the full-scale detection 
performance of the original four-scale model (4 detection 
heads) of Lite-CropNet is significantly better than that of the 
two-scale (2 detection heads) and three-scale (3 detection heads) 
comparative models: its overall detection accuracy (mAP@0.5 
of 85.7%) and comprehensive performance index (F1 of 80.4%) 
are both at the optimal level. This proves that the four-scale 
detection heads can effectively improve the model's detection 
robustness for crop targets in the full scene by integrating 
feature information of different levels, including P2 (small-
scale), P3 (medium-scale), P4 (medium-large scale), and P5 
(large-scale), and reduce missed detections and false detections 
caused by insufficient scale adaptation. From the perspective of 
adaptive ability for segmented targets, the addition of the 
small-scale branch (P2) is the key to solving the problem of 
small fruit detection, which can effectively improve the 
model's recognition accuracy for small targets such as tomato 
young fruits and edge small fruits; while the large-scale branch 
(P5) can strengthen the positioning ability for large targets such 
as mature large tomatoes, avoiding bounding box deviation 
caused by the lack of global semantic information. 

In summary, the four-scale detection heads enable Lite-
CropNet to better adapt to multi-scale crops, solve the problem 
of insufficient detection ability of single-scale or few-scale 
models for targets of extreme sizes (such as extremely small 
young fruits and extra-large mature fruits), achieve a balance 
between accuracy and efficiency, and provide universal 
adaptive capabilities for multi-variety crop detection. 

VI. DISCUSSION 

In this research work, the Lite-CropNet model was 
proposed. Considering the cost of hardware resources, the 
lightweight design of the model was focused on. The 
TomatOD dataset was used to conduct in-depth research and 
performance analysis on the problem of crop fruit object 
detection and classification. Experiments have shown that 
while maintaining high accuracy, Lite-CropNet has a smaller 
model parameter size and higher frame rate, making it suitable 
for real-time application scenarios on low-end devices. In 
addition, the TomatOD dataset used was collected from real 
tomato planting scenarios, considering various challenges such 

as light changes and occlusions, resulting in a model with 
better robustness and generalization. 

Furthermore, although the Lite-CropNet model generally 
performs well, the research still has potential shortcomings. 
First, a major problem is the relatively small scale of the 
dataset. It only contains 277 images and 2,413 tomato samples, 
and was collected from a single-region soilless cultivation 
greenhouse on Crete, Greece. It does not cover diverse planting 
environments (such as open fields and high-humidity solar 
greenhouses) in different countries and regions, nor does it 
include extreme scenarios such as rainstorm reflections and 
abnormal fruit appearances caused by diseases and pests, 
resulting in limited data diversity. Although the dataset already 
includes various environmental conditions and occlusion 
situations and successfully addresses them, the limited amount 
of data and the limitations of scene coverage may have a 
certain impact on the cross-region and cross-scene 
generalization ability and robustness of the model. Larger-scale 
datasets can usually better capture the diversity of the real 
world. As mentioned in the visual analysis above, the model 
inevitably has false detection problems when facing similar 
backgrounds, which is also considered to be caused by this 
reason. Second, for different tomato varieties in different 
countries and regions, the appearance characteristics of the 
plants are affected by various factors such as growth 
environment, soil conditions, and climate, and there may be 
slight differences in appearance, such as differences in fruit 
size and color depth, which may also affect the performance of 
the model. At the same time, although the study mentions that 
the model can be transferred to other horticultural crops such as 
potatoes and strawberries, it has not conducted verification for 
the morphological characteristics of these crops (such as 
clustered distribution of strawberries and underground fruiting 
of potatoes), and the multi-crop adaptability still needs further 
testing. This requires considering a wider and more diverse 
dataset during model training to ensure that the model has good 
adaptability to plant varieties in different countries and regions 
[44], [45]. 

VII. CONCLUSION 

Efficient and accurate detection and counting of crop fruits 
have long been a challenging task. In this study, a novel Lite-
CropNet model was proposed, with YOLOv11 as the baseline, 
aiming to address the key issues in horticultural crop detection 
and classification. A lightweight encoder was adopted and a 
concise yet efficient decoder was designed, which alleviates 
the problems of information loss and degradation. The 
exploration of different attention mechanisms revealed that the 
Shuffle Attention mechanism exerts a positive effect, helping 
to improve the model's performance. More importantly, 
efficiency enhancement was prioritized in the model design: a 
more lightweight architecture with a smaller parameter scale 
was developed, providing a cost-effective and highly efficient 
automated solution for agricultural production. 

Experiments demonstrate that Lite-CropNet performs 
excellently under various lighting and occlusion conditions, 
exhibiting strong robustness and generalization. Notably, Lite-
CropNet does not sacrifice efficiency at the expense of 
accuracy; instead, it achieves a balance between the two. Its 
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efficient performance in the CPU environment (8.2FPS) 
expands its application scenarios, making it particularly 
suitable for low-cost monitoring devices in greenhouses (e.g., 
Raspberry Pi-based embedded systems). In the future, CPU 
inference speed can be further improved through model 
quantization. 

This work not only provides advanced technical support for 
the agricultural field but also offers insights for future research 
directions. The next phase of research will expand the dataset 
scale to cover more horticultural crop varieties, thereby 
enhancing the model's adaptability. Additionally, efforts will 
be made to further extend Lite-CropNet’s performance 
advantages in the CPU environment and deploy it on low-cost 
monitoring devices in greenhouses, enabling it to better adapt 
to agricultural environments with extremely limited resources. 
Meanwhile, adversarial elements will be introduced to improve 
and optimize the object detection model, enhancing its 
robustness in complex scenarios. It is expected that this study 
will inspire more researchers to engage in agricultural 
intelligence and automation, and make more in-depth 
contributions to this field. 

ACKNOWLEDGMENT 

The research is supported by the Research Project of 
Software Engineering Institute of Guangzhou (No: KY202405). 

REFERENCES 

[1] F. Maureira, K. Rajagopalan, and C. O. Stöckle, “Evaluating tomato 

production in open-field and high-tech greenhouse systems,” J. Cleaner 

Prod., vol. 337, pp. 130459, Apr. 2022. 

[2] M. Afonso, H. Fonteijn, F. S. Fiorentin, D. Lensink, M. Mooij, N. Faber, 

R. Wehrens, “Tomato fruit detection and counting in greenhouses using 

deep learning,” Front. Plant Sci., vol. 11, pp. 571299, Nov. 2020. 

[3] L. Gong, M. Yu, S. Jiang, V. Cutsurid is, and S. Pearson, “Deep learning 

based prediction on greenhouse crop yield combined TCN and RNN,” 

Sensors, vol. 21, no. 13, pp. 4537, Jul. 2021. 

[4] Y. LeCun, Y. Bengio, and G. H inton, “Deep learning,” Nature, vol. 521, 

no. 7553, pp. 436-444, May 2015. 

[5] A. M. Hasan, F. Sohel, D. Diepeveen, H. Laga, and M. G. Jones, “A 

survey of deep learning techniques for weed  detection from images,” 

Comput. Electron. Agric., vol. 184, pp. 106067, May 2021. 

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification 

with deep convolutional neural networks,” Adv. Neural Inf. Process. 

Syst., vol. 25, pp. 1097-1105, 2012. 

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 

recognition,” in  Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las 

Vegas, NV, USA, 2016, pp. 770-778. 

[8] F. Waldner and F. I. Diakogiannis, “Deep learning on edge:  Extracting 

field boundaries from satellite images with a convolutional neural 

network,” Remote Sens. Environ., vol. 245, pp. 111741, Aug. 2020. 

[9] J. Chen, J. Zhou, Q. Li, H. Li, Y. Xia, R. Jackson, J. Zhou, “CropQuant -

Air: an AI-powered system to enable phenotypic analysis of yield- and 

performance-related traits using wheat canopy imagery collected by 

low-cost drones,” Front. Plant Sci., vol. 14, pp. 1219983, Apr. 2023. 

[10] V. Bathini and K. U. Rani, “A review of analyzing different agricu ltural 

crop yields using artificial intelligence,” Int. J. Adv. Comput. Sci. Appl., 

vol. 16, no. 1, pp. 1-10, 2025. 

[11] V. Tsironis, S. Bourou, and C. Stentoumis, “tomatOD: Evaluation of 

object detection algorithms on a new real-world  tomato dataset,” in 

ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XLIII -B3-

2020, pp. 1077-1084, 2020. 

[12] S. Ahmad, Z. Chen, S. Ikram, and A. Ikram, “AI -enabled vision 

transformer for automated weed detection: Advancing innovation in 

agriculture,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 12, pp. 1 -9, 

2024. 

[13] Y. Zhang, Y. Xu, J. Hou, and Y. Song, “LMS -YOLO11n: A lightweight 

multi-scale weed detection model,” Int. J. Adv. Comput. Sci. Appl., vol. 

16, no. 1, pp. 1-8, 2025. 

[14] R. Reedha, E. Dericquebourg, R. Canals, and A. Hafiane, “Transformer 

neural network for weed and crop classification of high resolution UAV 

images,” Remote Sens., vol. 14, no. 3, pp. 592, Feb. 2022. 

[15] J. M. López-Correa, H. Moreno, A. Ribeiro, and D. Andújar, “Intelligent 

weed management based on object detection neural networks in tomato 

crops,” Agronomy, vol. 12, no. 12, pp. 2953, Dec. 2022. 

[16] Y. Mu, T. S. Chen, S. Ninomiya, and W. Guo, “Intact detection of 

highly occluded immature tomatoes on plants using deep learning 

techniques,” Sensors, vol. 20, no. 10, pp. 2984, May 2020. 

[17] F. Su, Y. Zhao, G. Wang, P. Liu, Y. Yan, and L. Zu, “Tomato maturity 

classification based on SE-YOLOv3-MobileNetV1 network  under 

nature greenhouse environment,” Agronomy, vol. 12, no. 7, pp. 1638, 

Jul. 2022. 

[18] U. F. Rahim and H. Mineno, “Tomato flower detection and counting in  

greenhouses using faster region-based convolutional neural network,” J. 

Image Graph., vol. 8, no. 4, pp. 107-113, Dec. 2020. 

[19] U. F. Rahim, T. Utsumi, and H. Mineno, “Deep learning-based accurate 

grapevine inflorescence and flower quantification in unstructured 

vineyard images acquired using a mobile sensing platform,” Comput. 

Electron. Agric., vol. 198, pp. 107088, Jul. 2022. 

[20] H. K. Suh, J. Ijsselmuiden, J. W. Hofstee, and E. J. van Henten, 

“Transfer learning for the classif ication of sugar beet and volunteer 

potato under field conditions,” Biosyst. Eng., vol. 174, pp. 50 -65, Oct. 

2018. 

[21] D. K. Nkemelu, D. Omeiza, and N. Lubalo, “Deep convolutional neural 

network for plant seedlings classification,” arXiv:1811.08404, Nov. 

2018, unpublished. 

[22] V. Tsironis, S. Bourou, and C. Stentoumis, “Tomatod: evaluation of 

object detection algorithms on a new real-world tomato dataset,” Int. 

Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. 43, pp. 1077-

1084, 2020. 

[23] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. 

Zagoruyko, “End-to-end object detection with transformers,” in Proc. 

Eur. Conf. Comput. Vis., Glasgow, U.K., 2020, pp. 213-229. 

[24] S. Ren, K. He, R. Girsh ick, and J. Sun, “Faster R-CNN: Towards real-

time object detection with region proposal networks,” Adv. Neural Inf. 

Process. Syst., vol. 28, pp. 91-99, 2015. 

[25] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4: Optimal 

speed and accuracy of object detection,” arXiv:2004.10934, Apr. 2020, 

unpublished. 

[26] C. Y. Wang, H. Y. M. Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, and I. H. 

Yeh, “CSPNet: A new backbone that can enhance learning capability of 

CNN,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 

Workshops, Seattle, WA, USA, 2020, pp. 390-391. 

[27] G. Jocher et al., “ult ralytics/yolov5: v6.0 — YOLOv5n ‘Nano’ models, 

Roboflow integration, TensorFlow export, OpenCV DNN support,” 

Zenodo, Oct. 2021, doi: 10.5281/zenodo.5563715. 

[28] Y. Sun, G. Chen, T. Zhou, Y. Zhang, and N. Liu, “Context-aware cross-

level fusion network for camouflaged object detection,” 

arXiv:2105.12555, May 2021, unpublished. 

[29] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for 

neural network function approximation in reinforcement learning,” 

Neural Netw., vol. 107, pp. 3-11, Nov. 2018. 

[30] X. Glorot, A. Bordes, and Y. Bengio, “Deep  sparse rectif ier neural 

networks,” in Proc. 14th Int. Conf. Artif. Intell. Stat., Fort Lauderdale, 

FL, USA, 2011, pp. 315-323. 

[31] J. Xu, Z. Li, B. Du, M. Zhang, and J. Liu, “Reluplex made more 

practical: Leaky ReLU,” in  Proc. IEEE Symp. Comput. Commun., 

Rennes, France, 2020, pp. 1-7. 

[32] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc. 

IEEE Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA, 

2018, pp. 7132-7141. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Vol. 16, No. 10, 2025 

176 | P a g e  
www.ijacsa.thesai.org 

[33] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “CBAM: Convolutional 

block attention module,” in Proc. Eur. Conf. Comput. Vis., Munich, 

Germany, 2018, pp. 3-19. 

[34] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “ECA-Net: 

Efficient channel attention for deep convolutional neural networks,” in 

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Seattle, WA, 

USA, 2020, pp. 11534-11542. 

[35] Q. L. Zhang and Y. B. Yang, “SA-Net: Shuffle attention for deep 

convolutional neural networks,” in Proc. IEEE ICASSP, Toronto, ON, 

Canada, 2021, pp. 2235-2239. 

[36] Z. Yu, J. Ye, C. Li, H. Zhou, and X. Li, “TasselLFANet: A novel 

lightweight mult i-branch feature aggregation neural network for high-

throughput image-based maize tassels detection and counting,” Front. 

Plant Sci., vol. 14, pp. 1158940, May 2023. 

[37] Z. Gevorgyan, “SIoU loss: More powerful learning for bounding box 

regression,” arXiv:2205.12740, May 2022, unpublished. 

[38] D. Tzutalin, “LabelImg: Graphical image annotation tool,” GitHub. 

https://github.com/tzutalin/labelImg, 2022. 

[39] A. Paszke et al., “PyTorch: An imperative style, high-performance deep 

learning library,” Adv. Neural Inf. Process. Syst., vol. 32, pp. 8024 -8035, 

2019. 

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 

arXiv:1412.6980, Dec. 2014, unpublished. 

[41] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “CenterNet: 

Keypoint trip lets for object detection,” in Proc. IEEE/CVF Int. Conf. 

Comput. Vis., Seoul, Korea, 2019, pp. 6569-6578. 

[42] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and efficient 

object detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern 

Recognit., Seattle, WA, USA, 2020, pp. 10781-10790. 

[43] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-

stage object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 

Seoul, Korea, 2019, pp. 9627-9636. 

[44] J. Ye, Z. Yu, Y. Wang, D. Lu, and H. Zhou, “WheatLFANet: In -field 

detection and counting of wheat heads with high-real-t ime global 

regression network,” Plant Methods, vol. 19, no. 1, pp. 103, Dec. 2023. 

[45] M. Gatto et al., “Trends in  varietal diversity of main staple crops in  Asia 

and Africa and implications for sustainable food systems,” Front. 

Sustain. Food Syst., vol. 5, pp. 626714, Mar. 2021. 

 


