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Abstract—As the core carrier of human food supply and
agricultural economy, manual management in large-scale crop
cultivation faces bottlenecks such as low efficiency, high cost, and
difficulty in standardization. There is an urgent need for
computer vision technology to realize automated detection and
growth stage classification. However, most existing algorithms
rely on high-performance GPUs for operation, resulting in high
hardware costs, which makes it difficult to popularize them in
low-end agricultural edge devices (e.g., embedded controllers,
low-cost industrial computers). This study proposes a lightweight
crop detection and classification model, Lite-CropNet. It builds a
neural network architecture based on the CSPDarknet backbone
network, designs a concise decoder, and adopts four-scale
detection heads to adapt to crop targets of different sizes,
balancing high accuracy and lightweight characteristics. Using
tomatoes as the experimental object, tests on the TomatOD
dataset (simulating real greenhouse environments) show that
Lite-CropNet outperforms advanced methods, with a mean
Average Precision (mAP)@0.5 of 85.7%. Under the conditions of
the GTX 1650 GPU and 640%x640 resolution, the Frame Per
Second (FPS) reaches 76.9, and the model size is only 4.4M. This
neural network model can efficiently complete tomato detection
and maturity classification, and its architecture and design can
also be transferred to crops such as potatoes and strawberries,
providing a cost-effective and highly universal automated
solution for agricultural production.
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I.  INTRODUCTION

In large-scale agricultural production, accurate detection
and growth stage classification of crops are core links for yield
assessment, quality control, and automated management.
Whether for vegetable and fruit crops such as tomatoes and
potatoes, or food crops such as wheat and corn, real-time
monitoring of their growth status directly affects production
efficiency and economic benefits. With population growth and
the development of agricultural intensification, models such as
greenhouses and large-scale field cultivation have been widely
applied [1]. However, traditional manual detection methods,
limited by low efficiency, long time consumption, and high
cost, can hardly meet the management needs of large-scale and
multi-variety crops [2], [3].

With the development of computer vision and deep
learning technologies, the advancement of image recognition
technology in recent years has enabled Convolutional Neural
Networks (CNNs) to be widely used in deep learning [4],
becoming an important method for image classification, object
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detection, and recognition. Especially in the agricultural field,
deep learning models based on the CNN architecture have been
gradually applied [5], [6], [7] due to their high accuracy in
image classification and object detection tasks. At this point,
how to collect these images for deep learning training is a
question that researchers should consider. Currently,
commonly used methods include satellite remote sensing,
unmanned aerial vehicles (UAVs), fixed platforms, and
unmanned vehicles. These devices have their own advantages
and disadvantages: satellite remote sensing systems are suitable
for long-distance and large-scale monitoring but have relatively
low image resolution, making it difficult to capture objects at
the small organ level [8]; UAVs are usually used for large-
scale field monitoring [9]; these two technologies are suitable
for long-distance shooting and have high costs. Fixed platforms
are installed at fixed positions and are more suitable for
monitoring small-scale areas. In contrast, unmanned vehicle
technology has shown excellent performance in large-scale
farmland or greenhouses—it can not only adapt to the detection
of underlying fruits of hanging crops such as tomatoes but also
meet the close-range image collection of low-growing crops
such as potatoes, providing data support for high-precision
detection of multi-variety crops.

However, existing crop detection and classification
technologies still face two core challenges: First, insufficient
scene adaptability—different crops have significant differences
in growth forms (e.g., hanging tomatoes, creeping potatoes,
clustered strawberries) and appearance features (color, shape,
size). In addition, the field environment has interferences such
as light changes and occlusions (overlapping of leaves,
branches, and fruits), making it difficult for a single model to
adapt to multi-variety crops. Second, high hardware
dependence—most existing models require high-performance
GPUs for support, with large parameter scales and high
computational costs, which cannot be deployed in low-end
agricultural edge devices (e.g., embedded controllers, low-cost
industrial computers), limiting the large-scale application of
multi-variety crop detection technologies. Bathini and Usha
Rani [10] also pointed out in their review on the application of
artificial intelligence in agricultural crop yield analysis that
although current deep leaming models perform well in crop
management, yield prediction, and other fields, they generally
have problems of high dependence on data quality and
insufficient adaptability of lightweight models.

To address this challenge, this study adopts the TomatOD
dataset [11], a highly specialized and innovative dataset
designed specifically for tomato fruit object detection and

165|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

classification. Collected in a real greenhouse environment, it
includes low-light conditions and long-distance shooting
scenarios, providing challenging scenes for the model and
helping it better adapt to real-world applications. Against this
background, the study proposes the Lite-CropNet model,
whose core differences in mathematical architecture from
existing methods are as follows: 1) Feature extraction: A multi-
stage structure of Ck(m) — Pk(m) is adopted to output multi-
scale feature maps with 32/64/128/256 channels; 2) Loss
function: Smoothed Intersection over Union (SloU) loss
(including angle cost 4 = Y-y, (1 — €74 and shape cost
N=Y.w,h(1—e")M) is introduced; 3) Lightweight: The
parameter computation amount is controlled to 4.4M according
to the formula Params =i- (k- k) -0+ o (where i is input
size, k is convolution kernel, o is output size), which is only
2.8% of the DETR model (158M), solving the problem of high
hardware dependence. While being lightweight, Lite-CropNet
maintains high accuracy, with a mean Average Precision (mAP)
of 85.7%. Notably, Lite-CropNet has only 44M parameters,
and under the image resolution of 640x640, it achieves an
excellent frame rate of 76.9 Frames Per Second (FPS) on the
low-cost GTX 1650 GPU. This enables Lite-CropNet to have
wide applicability in real-time applications and provides a cost-
effective and efficient automated solution for agricultural
production.

In summary, the main contributions of this study are
threefold: 1) Lite-CropNet: a novel deep convolutional network
with a lightweight encoder and a decoder that effectively
processes encoded features, alleviating the problems of
information loss and degradation. 2) Innovative use of four
detection heads of different scales, which not only has
excellent detection performance for medium and large target
crops such as tomatoes but also can accurately identify other
small clustered crops, improving the model's crop variety
adaptability. 3) High real-time efficiency is reported on low-
cost devices, providing an effective and economical solution
for the application of modem high-throughput plant
phenotyping platforms.

The structure of this study is arranged as follows: Section I
(this section) introduces the research background. Section II
presents related work by researchers and highlights the
problem statement. Section III provides a detailed description
of the Lite-CropNet model. Section IV introduces dataset
details, challenges, and experimental design. Section V
conducts experiments and performs comparative analysis with
other models from multiple dimensions. Section VI discusses
the research. Section VII draws the conclusions of this research
and proposes future work.

II. RELATED WORK

In recent years, deep learning models based on
Convolutional Neural Networks (CNNs) have been widely
used in agricultural crop detection and classification tasks.
Researchers have carried out explorations around "improving
accuracy", "adapting to scenes", and "optimizing efficiency",
forming research results in multiple directions. In terms of crop
and weed detection and classification, Ahmad et al. [12]
proposed a detection model based on Vision Transformer
(ViT). Through pixel-level annotation training of high-
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resolution UAV images, it overcomes the problem of similar
appearance between crops and weeds, achieving a
classification accuracy of 89.4%, which is significantly better
than traditional models such as UNet and Fully Convolutional
Network (FCN). Zhang et al. [13] further proposed the LMS-
YOLOlIn lightweight multi-scale weed detection model.
Through the design of FastGLU feature extraction module and
Attention Hierarchical Feature Pyramid Network (AHFPN)
feature fusion network, the mAP is increased by 2.5% on the
CottonWeedDet3 dataset, while the model parameters and
computational complexity are reduced by 37% and 26%
respectively. Reedha et al. [14] used Transformer neural
networks to process high-resolution UAV images, further
optimizing the classification accuracy of weeds and crops.
Lopez-Correa et al. [15] designed an intelligent weed
management system in tomato fields, providing technical
support for precise weeding in the field.

In terms of crop organ and maturity detection, Mu et al. [16]
proposed a tomato detection model based on Faster R-CNN
and ResNet-101. By transferring learning from the COCO
dataset, it can automatically detect intact green tomatoes
(ignoring occlusion and growth stages), with an average
precision of 87.83% on the test set. Su et al. [17] improved the
SE-YOLOv3-MobileNetV1 network, introduced a channel
attention mechanism, and could distinguish four tomato
maturity levels, with an average precision of 87.7%.
Rahim et al. [18] used Faster R-CNN to realize tomato flower
detection and counting in greenhouses. Rahim et al. [19]
further quantified the number of grapevine inflorescences and
flowers, providing data for yield prediction. Suh et al. [20]
realized the classification of sugar beets and potatoes through
transfer learning, adapting to field scenarios. Nkemelu et al.
[21] used a deep CNN to complete crop seedling classification,
solving the problem of seedling stage recognition.

In terms of data collection, commonly used devices include
satellite remote sensing, UAVs, fixed platforms, and unmanned
vehicles [8], [9]. Remote sensing is suitable for large-scale
areas but has low resolution; UAVs have high costs; fixed
platforms are suitable for small-scale areas; unmanned vehicles
are suitable for image collection of various crops such as
tomatoes and potatoes. Tsironis et al. [11], [22] constructed the
TomatOD dataset, which contains 277 images and 2413
tomato samples, annotates three maturity stages, and covers
complex scenarios such as light changes and occlusions, with
good challenging properties.

Although existing studies have made progress, there are
still three major bottlenecks: First, poor scene adaptability—
most models rely on ideal datasets and are difficult to cope
with complex field environments such as low light and high
occlusion. Second, high hardware dependence—models such
as DETR [23] and Faster R-CNN [24] have large parameter
sizes (DETR reaches 158 M), making it difficult to deploy them
on agricultural edge devices. Third, weak multi-variety
adaptability—existing studies mostly focus on a single crop or
task, and do not fully consider the morphological differences
between crops (e.g., hanging tomatoes, clustered strawberries),
making it difficult to achieve universal detection.
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To address the above problems, this study proposes Lite-
CropNet, achieving the following breakthroughs: In terms of
lightweight design, through multi-stage feature extraction and a
concise decoder, the number of parameters is controlled at
4.4M (only 2.8% of DETR), adapting to low-end devices such
as GTX 1650 and J4125. In terms of scene robustness, training
is conducted based on the TomatOD dataset, and the SIoU loss
function (including angle and shape costs) is introduced to
improve adaptability to complex field environments. In terms
of multi-variety detection capability, an innovative four-scale
detection head is designed to support various crops such as
tomatoes (medium and large-sized) and strawberries (small
clustered), reducing the cost and complexity of multi-variety
deployment.

III.  MATERIALS AND METHODS

This section provides a detailed introduction to the design
of the Lite-CropNet deep learning framework for crop
detection and classification.

Decoder

Encoder
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A. Lite-CropNet Model Design

In crop detection and classification, the model is required to
have higher robustness due to the influence of various natural
factors and imaging from different shooting angles. Moreover,
considering the deployment needs of edge devices in the
context of plant science, the model is also required to be
lightweight. Therefore, in the model architecture design, both
aspects are taken into account: while reducing parameters, the
performance of the model is maintained, and the Lite-CropNet
model is designed, which consists of three parts. The Encoder
(feature extraction network) is responsible for extracting image
features; after feature enhancement of the feature maps, the
Decoder combines, utilizes, and decodes the features from the
Encoder, aggregates low-level spatial features and high-level
semantic features, and improves the recognition accuracy of
objects of different scales. Finally, the features are transmitted
to the Detector for detection, generating object bounding boxes
with coordinates, categories, and confidence levels. The overall
architecture of the Lite-CropNet model is shown in Fig. 1, and
the global architecture of Lite-CropNet and its optimization are
introduced below.

] Conv

Bottleneck
II

ottleneck

=0 ~+0O ® + @ O

i MaxPool

Fig. 1.

1) Encoder: For the encoder part, the general structure of
Cross Stage Partial Darknet (CSPDarknet) [25] is adopted and
its design is retained. First, an RGB image I € RF*W*3 ig
given as input, where H and W represent the height and width
of the output feature map, respectively. The entire Encoder is
composed of 5 convolutional layers and 4 feature extraction
layers, specifically defined as Eq. (1):

€3(16) — €3(32) — P1(32) — C3(64) — P2(64) —
C3(128) — P3(128) — C3(256) — P4(256) (1)

Here, Ck(m) denotes a 2D convolutional layer
with m channels and k X k filters, all with a stride of
2; Pk(m) denotes the k' feature extraction layer that
outputs m channels. By inserting CSPLayer [26] at different
stages to extract features, 32, 64, 128 and 256 channels are

—*:——-{ MaxPool -
¢ MaxPool

Lite-CropNet model structure and module details.

output, generating feature maps at different stages. After the
last feature extraction layer (P4), a Spatial Pyramid Pooling -
Fast (SPPF) [27] module is introduced. The number of input
channels of this module is equal to the number of output
channels of the last feature layer (Cippye = 256), and the
kemel size is Kgppp = 5 X 5. Without changing the size of the
feature map, pooling is performed on the feature map at
different scales, which helps the network better capture the
semantic information of various targets.

2) Decoder: In the design of the Decoder, first, a
convolutional layer with a kernel size of 1x1 is used to
compress the 256-channel feature map extracted by the SPPF
in the Encoder to 128 channels, reducing computational
complexity while retaining key features. Subsequently,
upsampling is performed to increase the spatial resolution of
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the feature map, which is then concatenated with the feature
map of P4. A Cross Stage Partial Fusion (C2f) module [28] is
introduced to optimize the feature representation. Next, the
same operation is carried out again, and the result is
concatenated with the feature map of P3. Finally, a
convolution with a stride of 2 and a kernel size of 3%3 is
further connected, and the result is concatenated with the
previous feature maps to form a more optimized feature
representation. In this process, emphasis is placed on the
utilization of P2 and P3 feature maps because they have a
suitable scale for object detection.

Another important design of the Lite-CropNet network is to
add a prediction head to detect ultra-large targets while
simplifying the process of adding detection layers. During the
inspection of the dataset, it was found that some images
contain ultra-large crop targets, which also exist in practical
applications. Therefore, a convolution module with a stride of
2 and a kernel size of 3x3 is directly added after the third
feature map passed to the head. This innovation effectively
improves the detection ability of ultra-large targets without
significantly affecting the overall computational complexity of
the model. Through gradual feature fusion and representation
optimization (without significantly affecting the overall
computational complexity of the model), the decoder finally
transmits four feature maps of different sizes to the detection
module (Detector) to output the final object detection results.
The design of the Decoder has clear objectives in each step of
the operation. From channel compression, upsampling to
feature concatenation, all are aimed at comprehensively
utilizing the sufficiently deep encoded feature layers in the
encoder to respond to more abstract information, and
combining an adaptive strategy to restore spatial resolution and
improve the detection accuracy of targets of different scales.

B. Activation Function

The selection of the activation function is of great
significance in neural networks. It can introduce non-linear
factors into the neural network and improve the model's
expressive ability. In the Lite-CropNet model, attempts were
made to use SiLU [29], ReLU [30], and LeakyReLU [31]
activation functions, and their performances were compared.
Finally, the more optimal LeakyReLU activation function was
selected.

SiLU is a smooth and differentiable activation function
with non-monotonicity, which can more easily capture
complex patterns. Its non-linear definition is Eq. (2):

SiLU(x) =x - a(x) )

In contrast, ReLU is widely used in neural networks and
has simple computation, which helps to improve the
computation speed of the network. It can effectively alleviate
the problem of gradient disappearance and introduce sparse
activation during the training process, making the network
easier to optimize. Its non-linear definition is Eq. (3):

ReLU(x) = max(0,x) 3)

where, x is the input. ReLU can effectively alleviate the
problem of gradient disappearance and introduce sparse
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activation during the training process, making the network
easier to optimize. However, it should be noted that ReLU has
the problem of neuron death, that is, the output is zero when
the input is negative, resulting in some neurons not being
activated. To solve the dead neuron problem of ReLU,
LeakyReLU introduces a small negative slope for negative
inputs while maintaining simplicity. LeakyReLU retains the
advantages of ReLU and provides a stronger gradient signal by
allowing small negative gradients. This helps to avoid the
problem of gradient disappearance during training while
maintaining the computational efficiency of the model. The
equation of LeakyReLU is Eq. (4):

x (x>0)

ax (x <0) )
where, « is a small positive slope, such as 0.1,0.01, or even

smaller.

LeakyRelLU(x) = {

In practical tasks, the selection of the activation function
usually depends on specific needs and experimental results. In
the Lite-CropNet model, considering the need to enhance the
leaming ability, LeakyReLU was finally selected as the
activation function because it solves the dead neuron problem,
has a lower computational cost compared to SiLU, and has a
more stable training process compared to ReLU.

C. Attention Mechanism

The attention mechanism is widely used in computer vision
technology. It is a cognitive process that selectively acts on
relevant information, enabling the model to ignore redundant
information and focus more on useful information.
Hu et al. [32] proposed the Squeeze-and-Excitation (SE)
attention mechanism, which focuses on channel information
and can enhance the channel features of the input feature map.
However, due to the introduction of the FC fully connected
layer, its computational complexity is relatively high.
Woo et al. [33] proposed the Convolutional Block Attention
Module (CBAM) attention module. Compared with the SE
module, CBAM adds a spatial attention mechanism and
focuses on regions of interest. The Efficient Channel Attention
(ECA) attention mechanism [34] with global context self-
attention generates weights by using global context information,
allowing the model to better capture context information, but
its computational complexity is relatively high. Shuffle
Attention (SA) [35] generates context information by
rearranging input features, enhances the robustness of the
model to spatial changes, and optimizes the allocation of
attention weights through feature grouping and rearrangement.
Its core equation is Eq. (5):

Fo, = Shuffle(ConvZ(Convl(Fin,g))) (5)

where, F;, is the input feature map, C is the number of
input channels (such as 128, 64), g is the number of
groups, Convl is a 1x1 convolution (compressing the channels

to g), Conv?2 is a 3x3 convolution (restoring the channels to C),

and Shuffle(-) is the feature rearrangement operation.
Yu et al. [36] proposed the Mt ECA attention module, which
is a dimension-free local cross-channel interaction strategy. It
generates feature weights by performing 1D convolution
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operations, and the convolution kernel size Kis adaptively
determined by the mapping of the channel dimension C, which
is defined as Eq. (6):

log,(0)+8
a

K =

(6)

a and [ are adjustable hyperparameters, and “odd ”
indicates that K takes an odd number.

odd

Considering that most of the fruit target areas in the dataset
are small and there is a lot of background, which is not helpful
for the detection and classification of crop fruits. Therefore, to
reduce the impact of the background and pay more attention to
the required feature information, during the design process of
the Lite-CropNet model, attempts were made to compare the
effects of different attention mechanisms and apply them to
different stages of the model. A large number of experiments
were conducted, and it was found that the experimental results
were better when the Shuffle Attention mechanism was applied
to the upsampling and downsampling modules. The
performance differences of different attention mechanisms will
be verified in the ablation experiments of the article.

D. Loss Function

As a metric to calculate the error between the forward
propagation result of a neural network in each iteration and the
ground truth, the loss function guides the weight adjustment in
backpropagation. In the implementation of Lite-CropNet,
various commonly used loss functions were tested. For the
bounding box loss function, the Complete Intersection over
Union (CloU) loss function was initially considered, with its
calculation methods shown in Eq. (7) and Eq. (8):

2(p,po"
CloU = IoU — % — av (7)

Loy = 1 — CloU (8)

Intersection over Union (IoU) represents the intersection
ratio between the predicted bounding box and the ground truth
box; denotes the shortest diagonal length of the minimum
enclosing box that contains both the predicted box and the
ground truth box; p? (b,bgt) is the Euclidean distance
between the center of the ground truth box and the center of the
predicted box; « is a positive balance parameter; and v
represents the consistency of the aspect ratio between the
predicted box and the ground truth box. The calculation
methods of & and v are shown in Eq. (9) and Eq. (10):

t

4 w9 wy o
v = P(arctanW — arctanz) 9)
v
© = T (10

In Eq. (9), h9" and w9’ represent the height and width of
the ground truth box, respectively; h and w represent the height
and width of the predicted box, respectively. The CloU loss
function comprehensively considers the overlapping area,
aspect ratio, and center distance, and can well measure the
relative position between boxes. However, CloU does not
consider the direction matching between the target box and the
predicted box, leading to a slow convergence rate. Therefore,
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this study considered an alternative approach using the
Smoothed Intersection over Union (SloU) loss function [37].
SloU optimizes the loss calculation by introducing the vector
angle between the target box and the predicted box, and it
plays an important role in strawberry detection networks
through the linear combination of four components: angle cost,
distance cost, shape cost, and IoU cost. Its calculation methods
are shown in Eq. (11) and Eq. (12):

A+Q

Loy =1 = IoU + 2 (11
BnBYT
loU = :BUBGT: (12)

where, B and B¢ represent the predicted box and the
ground truth box, respectively; £2 denotes the shape cost; and A
represents the distance cost (which incorporates the angle cost
and redefines the distance metric). The equations for (2 and A
are defined as Eq. (13) and Eq. (14):

0=Ywn(l —e™0)° (13)
A= ¥ (1 — e7P) (14)
_ v _ ]

In Eq. (13)9 Wy, = max(w,wgti > Wh = maxi h,h9 )

and 6 represents the degree of attention paid to 2.

bft—bc bft—bc

In Eq (14)9 Px = (xix)zz py = (yiy)za and Y is

Cw Ch

defined as:

bgt,bc —mi bgt,bc

p = arcsin max( e y> mm( 2 y) -Z 19
gt 2 gt 2 4

<bfx_bCX> + (bCy_bCy)

y =1+ 2sin?(p) (16)

In Eq. (15) and Eq. (16), bfxt and bgf’yt are the coordinates of
the center of the ground truth box; b, and bcy are the
coordinates of the center of the predicted box.

The loss function plays a key role in evaluating the
performance of a detection model. Typically, at least three loss
functions need to be defined: object loss, classification loss,
and bounding box loss. The bounding box loss has a significant
impact on the detection accuracy and convergence speed of the
network model.

To improve the stability of the model in predicting the size
and position of target boxes, the SloU loss function was
introduced, which incorporates the vector angle of the expected
regression into the calculation of the bounding box regression
loss function. The mathematical expression of the SloU loss
function is as follows:

Lgou = a - AngleCost + 8 - DistanceCost +
y - ShapeCost + 6 - IoUCost (17)
In Eq. (17), a, B, Y and & are the weight coefficients of the

loss terms;  AngleCost  represents the angle
cost; DistanceCost represents the distance
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cost;  ShapeCost  represents the shape cost;
and IoUCost represents the loU cost. Through the linear
combination of these four components (angle cost, distance
cost, shape cost, and IoU cost), the difference between the
predicted box and the ground truth box is measured more
comprehensively.

In summary, by introducing the vector angle between the
required regression boxes, the SloU loss function redefines the
distance loss, effectively reducing the degree of freedom of
regression, accelerating the convergence speed of the network,
and further improving the regression accuracy. Therefore, this
study adopts the SloU loss function as the loss function for
bounding box regression, which improves the detection
accuracy and stability, enabling Lite-CropNet to better
complete the classification task of crop fruits of different sizes.
This will be further verified in the experiments below.

IV. EXPERIMENTAL DESIGN

In this section, the information of the adopted dataset is
first introduced, followed by the presentation of evaluation
metrics and experimental details. Additionally, the proposed
Lite-CropNet model is compared with advanced detectors on
the TomatOD dataset, and their performance is reported.
Through the visualization of inference results and the analysis
of the model's defects, the characteristics of the model are
discussed in depth. Finally, ablation experiments are conducted
to verify the selection of the key attention mechanism in Lite-
CropNet.

A. Dataset Materials

In this experiment, the TomatOD dataset [11], publicly
released by Tsironis et al. (2020) [22], was adopted. The
selection basis and dataset characteristics are as follows: This
dataset was collected from a real soilless tomato greenhouse on
Crete, Greece, aiming to simulate the actual agricultural
scenario of robotic arm navigation. Its scene authenticity, task
adaptability, and comprehensive challenges are highly
consistent with the core goal of this study—"developing a
practical lightweight crop detection model". On the one hand,
the dataset covers field interferences such as light fluctuations
and occlusions by branches, leaves, and fruits, which can
verify the model's robustness in complex environments. On the
other hand, it contains 277 images and 2,413 tomato samples,
which not only annotate accurate bounding boxes but also
classify three maturity stages (unripe (green) - semi-ripe
(orange-red) - fully ripe (red)) according to color phenotypes.

Since this dataset already provides bounding box
annotations—each tomato is labeled with a bounding rectangle
and marked with corresponding labels for the three growth
stages—these annotated data form the basis for model training.
To ensure the accuracy of the annotations, Labellmg [38] was
used to check the tomato annotations in the dataset, and at the
same time, the characteristics of the dataset were analyzed in
depth to help design a better model. The number of tomatoes in
each image ranges from 1 to 21, and the size of the annotation
box accounts for 3% to 15% of the image size. Tomatoes with
a size smaller than a certain range are considered out of scope
and not annotated or detected. In terms of the number of
category instances, the proportion of labels of different
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categories in all labels shows that the number of unripe
instances is the largest, while the number of semi-ripe instances
is the smallest. The TomatOD dataset uses an 8:2 ratio to
divide the images into a training set and a test set. The details
of the number of images and classification of the dataset are
shown in Table 1.

TABLEI. DATASET DETAILS
“Gage | imstamses | Instamces | Total | PercentageTotah
Unripe 1,295 292 1,587 | 65.8%
Semi-ripe | 318 77 395 16.4%
Fully-ripe | 332 99 431 17.8%
Total 1,945 468 2413 | 100.0%

In addition, this dataset has a unique feature: it is collected
in a real greenhouse tomato field. In actual tomato planting
scenarios, conditions such as light may change at any time, and
the dataset takes this into account, meeting the experimental
needs. It includes scenarios such as occlusion by branches,
occlusion by tomatoes, occlusion by leaves, and unsuitable dim
light, even the superposition of multiple situations. The dataset
contains multiple types of occlusion scenarios, and the

occlusion degree is quantified using the mathematical
equation: = 1 — “:’—"sl. Among them, By, is the area of the real
t

bounding box of tﬁ]e fruit, B, is the area of the visible region
of the fruit, and O is the occlusion degree (O €[0,1],
where 0 =0 means no occlusion and O =1 means full
occlusion). As shown in Fig. 2, representative images are
carefully selected to show the four main challenges in the
tomato detection and classification task. For clear display, the
brightness of the images has been enhanced, while the actual
images have weak light. It is worth noting that to more
intuitively display the key parts, these images are shown after
magnification. In the actual dataset, the imaging distance of the
images is longer, and the tomato targets are smaller.

Obscured by branches or leaves

Fig. 2.

Main challenges in the TomatOD dataset.

In summary, it can be seen that the many characteristics of
the TomatOD dataset increase the difficulty of object detection.
Through more realistic scene challenges, it helps the model
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better adapt to real-world applications and achieve better
robustness and generalization.

B. Experimental Configuration

This experiment was implemented using the PyTorch deep
leaming framework [39] and accelerated using CUDA. The
TomatOD dataset was used for training and evaluation, and all
222 images in the training set were used for training and
validation. The image size was adjusted to 640x640 pixels for
training, which also meets the resolution requirements when
deploying to low-end edge devices. During the training process,
Adaptive Moment Estimation (Adam) [40] was used as the
optimizer, with the initial learning rate (Ir0) and cyclic learning
rate (Irf) both set to 0.01, the momentum set to 0.8, and the
batch size set to 8 images per batch. The hardware parameters
of the equipment used in the experiment were Intel(R)
Core(TM) i5-13400F and NVIDIA GeForce GTX 3090 GPU,
equipped with a deep neural network acceleration library of
CUDA version 11.8, parallel computing framework, and
CUDNN version 8.9.5.

After the configuration of relevant parameters was
completed, according to the actual convergence of the model,
the training process was configured to 280 epochs for
optimization. Data augmentation techniques were adopted,
including random horizontal flipping, random adjustment of
brightness or contrast, and random cropping. The trained
model was evaluated using the test set, and each image in the
test set was different from those used in the training set. Fig. 3
shows the changes in various losses and mAP values with
epochs during the entire training process. It can be observed
that the model was properly trained, showing convergence
without overfitting.

MAPE0S
— mAPE0.5:0.95

50 100 150 200 250

Fig.3. Changes in loss and mAP values with epochs during training.

C. Evaluation Metrics

To evaluate the detection performance of the Lite-CropNet
model, this study uses Precision (P), Recall (R), mean Average
Precision (mAP@0.5, mAP@0.5:0.95), and F1 (F1-score) as
evaluation metrics. A standard Intersection over Union (IoU)
threshold of 0.5 was used in the experiment. If the overlap
between a predicted bounding box and a labeled bounding box
exceeds the IoU threshold, it is considered correct (true
positive). Otherwise, the predicted bounding box is considered
a false positive. When a labeled bounding box overlaps with a
predicted bounding box below the threshold, it is considered a
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false negative. Precision (P) represents the proportion of
correctly predicted objects by the model among all predicted
objects. Recall (R) represents the proportion of correctly
predicted objects by the model among all actual objects.
Average Precision (AP) is defined as the area under the
Precision-Recall (P-R) curve formed by the above Precision
and Recall. The F1-score evaluates the model by balancing the
weights of Precision and Recall. They are defined by the
following equations, respectively [see Eq. (18) to Eq. (21)]:

Precision = —— x 100% (18)
+FP
Recall = —2— x 100% (19)
TP+FN
mAP = %Z?P(R)d(R) (20)
Fl = 2><Pre.ci.sion><Recall % 100% (21)
Precision+Recall

where, TP (True Positives), FP (False Positives), and FN
(False Negatives) represent the number of true positives, false
positives, and false negatives, respectively. In combination,
"TP + FP" is the total number of detected targets, and "TP +
FN" is the total number of real targets in the image. mAP@0.5
represents the average value of mAP when the IoU threshold is
0.5. Among them, mAP@0.5:0.95 represents the average value
of mAP under different IoU thresholds (from 0.5 to 0.95, with
a step size of 0.05). Since the dataset has three category labels
for different growth stages, n=3.

V. RESULTS AND ANALYSIS

A. Comprehensive Evaluation of Model Performance

To evaluate the superiority of the Lite-CropNet model, the
Lite-CropNet model was compared with five advanced object
detection methods in terms of detection performance, including
CenterNet [41], Faster R-CNN [24], EfficientDet [42], FCOS
[43], and DETR [23]. The same training set and test set were
used to train and test these models, and hyperparameter tuning
was performed for all methods to ensure fair and objective
results. The comprehensive evaluation indicators of each
model for the three growth stages in the object detection task
are shown in Table II.

TABLE II. COMPARISON OF EVALUATION METRICS OF DIFFERENT
MODELS

Model 3 R F1 | mAP@0.5 | mAP@0.5:0.95
CenterNet | 73.5% | 66.4% | 69.8% | 48.0% 15.9%
(F;;It\?rR' 575% | 584% | 57.9% | 59.0% 25.4%
EfficientDet | 52.1% | 51.0% | 51.5% | 47.4% 16.8%
FCOS 624% | 81.6% | 70.7% | 73.4% 44.7%
DETR 63.5% | 727% | 67.8% | 61.8% 272%
YOLOVS 723% | 81.6% | 76.0% | 833% 54.2%
YOLOvIl | 770% | 75.1% | 76.6% | 77.1% 51.7%
Lite-

754% | 862% | 80.4% | 85.7% 56.8%

CropNet

The experiments show that the comprehensive performance
of Lite-CropNet is superior to other object detection methods.
The FCOS model ranks second in comprehensive performance,
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with relatively high accuracy and recall for object detection.
However, due to its single and lightweight network structure, it
may have certain difficulties in handling occluded tomatoes
and tomatoes of different sizes. CenterNet adopts an object
detection method based on center points. It may have poor
overall performance because the model focuses too much on
the target center point and ignores other possible target parts.
The Faster R-CNN and EfficientDet models show balanced
performance in the P and R indicators, but their overall
performance is not excellent. It is worth noting that the DETR
model is different from other object detection models. It adopts
an end-to-end training method, which reduces cumbersome
steps and manual intervention. However, it is easily limited by
annotated data and computing resources, and has high
computational costs, which is not suitable for real-time
application scenarios, and does not achieve good performance
in this task.

In summary, the Lite-CropNet model performs best in the
tomato detection task. The advantages of Lite-CropNet may
come from its strong adaptability to multi-scale, multi-growth
stage, and occluded targets, as well as the appropriate feature
decoding and optimization processing of the feature maps of
the Encoder in the Decoder.

B. Lightweight Analysis of Different Models

When deploying the tomato detection and classification
model to low-end edge devices, lightweight performance is a
key factor. To comprehensively consider the lightweight
performance of the model, two indicators—Frame Per Second
(FPS) and model parameter quantity (Params)—were used to
evaluate the lightweight effect of different models. The FPS
indicator measures the number of frames that the model can
process per unit time; a higher FPS value indicates that the
model can process more input data in the same time and has
higher real-time performance. Params reflects the number of
model parameters; a smaller number of parameters means that
the model is more lightweight, requires fewer computing
resources during inference, and is directly related to the storage
space of the model and the efficiency of computing resource
usage. Their calculation methods are as follows [see Eq. (22)
and Eq. (23)]:

FPS = — (22)
pre—process+inference+NMS
Params=i-(k-k)-o+o (23)

In the equations, is the input size, is the convolution
kemel size, andis the output size. Among them, pre —
process, inference, and Non-Maximum Suppression (NMS)
represent the time required for preprocessing, inference, and
non-maximum suppression of each image, respectively.

This experiment was conducted on a PC equipped with a
relatively low-end Nvidia GTX 1650 GPU. Fig. 4 lists the
comparison of lightweight parameters of different models.
From the comparison results, the Lite-CropNet model achieves
an excellent comprehensive level, with a high frame rate of
76.9 and lightweight parameters of only 44M. In contrast,
although the EfficientDet model has a small number of
parameters (15.0M), its frame rate is only 17.2, which is
relatively low. The Faster R-CNN and FCOS models also have

Vol. 16, No. 10, 2025

a large number of parameters. The DETR model has a frame
rate of 21.3 and a parameter quantity of 158M; although it
adopts an end-to-end training method, its performance is still
relatively general here. The CenterNet model has a high frame
rate, but its parameter quantity is still not sufficient for
deploying lightweight models. Although YOLOvI1 shows
balanced performance in accuracy (mAP@0.5 is 77.1%) and
frame rate (63.6FPS), its parameter quantity (6.3M) and
computational complexity are still higher than those of Lite-
CropNet. This further proves that the advantages of Lite-
CropNet in comprehensive performance come from its
lightweight design, providing a more feasible solution for real-
time applications on low-end devices. Especially in the
agricultural field where available resources are limited,
lightweight models are usually more favored because they
require fewer computing resources, which is important for
some agricultural managers and can effectively reduce their
economic burden.

180.0 158.0
160.0

140.0 124.0 122.0
120.0 - 108.0

100.0
80.0

60.0 |
20.0 | : | 6.0 5.2 a
0.0 _ s

CenterNe Faster R- EfficientD FCOS DETR YOLOVE | YOLOV11 Lite-
t CNN et

CropNet
uFPS 59.9 12.0 17.2 25.3 213 6.3 8.1 76.9
Params (M) 124.0 108.0 15.0 122.0 158.0 6.0 5.2 4.4

mFPS Params (M)

Fig.4. FPS and Params comparison of different models.

C. Inference Speed Analysis of Different Models in a CPU
Environment

In agricultural scenarios, many low-end edge devices (such
as small embedded controllers and low-cost industrial
computers) may not be equipped with GPUs and only rely on
CPUs for inference. Therefore, a supplementary test on the
inference speed of mainstream non-YOLO series models in the
CPU environment was conducted. The experimental equipment
was an Intel Celeron J4125 processor (4 cores and 4 threads,
main frequency 2.0GHz) commonly used in agricultural
scenarios, with 8 GB of memory, and the test image resolution
was still 640x640. The experimental data are shown in
Table III.

TABLEIII.  COMPARISON OF EVALUATION METRICS OF DIFFERENT
MODELS IN A GPU OR CPU ENVIRONMENT
Model %';ISJ GPU FPS (GTX 1650) Paramg}; Count

Lite-CropNet 8.2 76.9 44

CenterNet 6.5 599 108.0

Faster R-CNN 2.1 253 124.0

FCOS 33 21.3 122.0

DETR 1.8 17.2 158.0

EfficientDet 4.7 12.0 15.0

The results show that Lite-CropNet can still reach 8.2FPS
in the CPU environment, which meets the basic requirements
of real-time agricultural monitoring (usually requiring >5FPS).
This performance benefits from its lightweight design:
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compared with Faster R-CNN (2.1FPS) and DETR (1.8FPS),
the parameter scale of Lite-CropNet is only 3.5% and 2.8% of
the former, respectively, reducing memory occupation and
computational delay. Compared with the same-level
EfficientDet (4.7FPS), the CPU inference speed of Lite-
CropNet is increased by 74%, which is due to the more concise
feature fusion strategy adopted by its decoder, which reduces
computational complexity. The Lite-CropNet in this study
further optimizes the attention mechanism and loss function,
and while maintaining accuracy, it achieves more efficient
CPU inference, providing a feasible solution for agricultural
scenarios without GPUs.

D. Visualization Analysis of Inference Results

By comparing the model prediction results with the real
annotation results, the reasons affecting the detection
performance of the model can be analyzed. Fig. 5 shows
typical error cases, where the red arrows point to the regions
missed by the model. Compared with other models, this model
fails to correctly mark the real target regions. Missed detection
is defined as failing to detect fruits with an occluded area of
less than 50%, which is the standard for annotating the training
set and test set in the TomatOD dataset.

From the experiment, it was observed that false detections
mainly occur due to similar appearances, where leaves or
debris are mistakenly identified as tomatoes. However, it is
reassuring that in the test set, except for the case where the
occlusion degree of the region pointed by the red arrow in the
figure exceeds and is close to 50%, no missed detections were
found in other images. Compared with the baseline model
YOLOv11, Lite-CropNet achieves a lower missed detection
rate in occluded scenarios (such as leaf occlusion and fruit
overlap) and low-light environments. This indicates that the
model can better capture tomato fruits under various
environmental conditions, and even in dim environments with
insufficient light, the model still shows similar discrimination
ability to humans, further proving that the model has strong
robustness and generalization.

- W i |
T YOLOv1l

Fig.5. Inference error results of the baseline model YOLOv11 and the Lite-
CropNet model. Red arrows indicate missed detections.

Lite-CropNet
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E. Ablation Experiments

1) Ablation experiment on attention mechanism: In the
above content, common attention mechanism methods are
listed. To verify the detection differences of the Lite-CropNet
model for tomatoes at each growth stage after adding different
attention mechanisms to the upsampling and downsampling
modules, ablation experiments were conducted using different
attention mechanisms to analyze their performance differences.

The experimental results are shown in Table IV. The use of
the Shuffle Attention mechanism has a positive impact on the
model performance. In particular, the unique channel shuffling
design of Shuffle Attention makes the mAP@0.5 indicator of
the model at least 1.6% higher than that of other attention
mechanisms. It can better capture global and local features,
thereby comprehensively understanding the image content.
Moreover, its mAP@0.5:0.95 ranks first at 57.4%, which is the
only mechanism among all schemes that exceeds 87% in the
core accuracy indicator. This design brings better-balanced
performance in practical applications, enabling the model to
achieve high levels in multiple key indicators.

TABLEIV. PERFORMANCE COMPARISON OF LITE-CROPNET USING
DIFFERENT ATTENTION MECHANISMS
Precision | Recall Fl-
Attention ecisio ec Score | mAP@0.5 | mAP@0.5:0.95
®) ®)
(F1)
(None) 76.8% 80.7% | 78.7% | 85.5% 55.9%
SE* 78.4% 855% | 81.8% | 84.9% 56.9%
ECA® 80.2% 79.8% | 80.0% | 85.5% 56.2%
CBAM® | 77.8% 793% | 785% | 83.8% S4.8%
Mlt_ECA® | 75.4% 86.2% | 80.4% | 85.7% 56.8%
SA® 80.4% 79.5% | 79.9% | 87.3% 57.4%

% SE = Squeeze-and-Excitation

5 ECA = Efficient Channel Attention

¢ CBAM = Convolutional Block Attention Module

d MIt_ECA = Multi-scale Efficient Channel Attention

 SA = Shuffle Attention

In general, these observations indicate that the proposed

Lite-CropNet model exhibits excellent robustness and

generalization in practical tomato detection applications,

providing a reliable automated solution for the agricultural
field.

2) Ablation experiment on four-scale detection heads: To
verify the adaptive value of the core innovation of Lite-
CropNet—the "four-scale detection heads"—for crop targets
of different sizes, this experiment constructs comparative
models with only the number of detection heads modified. It
focuses on analyzing the impact of the number of detection
heads on the detection accuracy of small targets, large targets,
and overall targets, so as to clarify the effectiveness of the
scale design.

In this experiment, the core architecture of the model
(CSPDarknet Encoder, Shuffle Attention, SIoU loss) was kept
unchanged, and only the number of detection heads was
adjusted: a two-scale model (2 detection heads, removing the
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P2 small-scale and P5 large-scale branches) and a three-scale
model (3 detection heads, removing the P5 large-scale branch)
were constructed, and compared with the original four-scale
model (4 detection heads, i.e., Lite-CropNet, retaining the full-
scale branches of P2/P3/P4/P5). The performance comparison
of the three groups of models on the same training set and
validation set is shown in Table V.

TABLE V. PERFORMANCE COMPARISON OF MODELS WITH DIFFERENT
NUMBERS OF DETECTION HEADS
Model Scale p R F1 | mAP@0.5 | mAP@0.5:0.95
2 709% | 82.2% | 76.1% | 78.2% 49.4%
3 727% | 823% | 772% | 79.7% 50.7%
4 (Lite- 754% | 86.2% | 80.4% | 85.7% 56.8%
CropNet)

The experimental results show that the full-scale detection
performance of the original four-scale model (4 detection
heads) of Lite-CropNet is significantly better than that of the
two-scale (2 detection heads) and three-scale (3 detection heads)
comparative models: its overall detection accuracy (mAP@0.5
0f'85.7%) and comprehensive performance index (F1 of 80.4%)
are both at the optimal level. This proves that the four-scale
detection heads can effectively improve the model's detection
robustness for crop targets in the full scene by integrating
feature information of different levels, including P2 (small-
scale), P3 (medium-scale), P4 (medium-large scale), and P5
(large-scale), and reduce missed detections and false detections
caused by insufficient scale adaptation. From the perspective of
adaptive ability for segmented targets, the addition of the
small-scale branch (P2) is the key to solving the problem of
small fruit detection, which can effectively improve the
model's recognition accuracy for small targets such as tomato
young fruits and edge small fruits; while the large-scale branch
(P5) can strengthen the positioning ability for large targets such
as mature large tomatoes, avoiding bounding box deviation
caused by the lack of global semantic information.

In summary, the four-scale detection heads enable Lite-
CropNet to better adapt to multi-scale crops, solve the problem
of insufficient detection ability of single-scale or few-scale
models for targets of extreme sizes (such as extremely small
young fruits and extra-large mature fruits), achieve a balance
between accuracy and efficiency, and provide universal
adaptive capabilities for multi-variety crop detection.

VI. DIsCUSSION

In this research work, the Lite-CropNet model was
proposed. Considering the cost of hardware resources, the
lightweight design of the model was focused on. The
TomatOD dataset was used to conduct in-depth research and
performance analysis on the problem of crop fruit object
detection and classification. Experiments have shown that
while maintaining high accuracy, Lite-CropNet has a smaller
model parameter size and higher frame rate, making it suitable
for real-time application scenarios on low-end devices. In
addition, the TomatOD dataset used was collected from real
tomato planting scenarios, considering various challenges such
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as light changes and occlusions, resulting in a model with
better robustness and generalization.

Furthermore, although the Lite-CropNet model generally
performs well, the research still has potential shortcomings.
First, a major problem is the relatively small scale of the
dataset. It only contains 277 images and 2,413 tomato samples,
and was collected from a single-region soilless cultivation
greenhouse on Crete, Greece. It does not cover diverse planting
environments (such as open fields and high-humidity solar
greenhouses) in different countries and regions, nor does it
include extreme scenarios such as rainstorm reflections and
abnormal fruit appearances caused by diseases and pests,
resulting in limited data diversity. Although the dataset already
includes various environmental conditions and occlusion
situations and successfully addresses them, the limited amount
of data and the limitations of scene coverage may have a
certain impact on the cross-region and cross-scene
generalization ability and robustness of the model. Larger-scale
datasets can usually better capture the diversity of the real
world. As mentioned in the visual analysis above, the model
inevitably has false detection problems when facing similar
backgrounds, which is also considered to be caused by this
reason. Second, for different tomato varieties in different
countries and regions, the appearance characteristics of the
plants are affected by wvarious factors such as growth
environment, soil conditions, and climate, and there may be
slight differences in appearance, such as differences in fruit
size and color depth, which may also affect the performance of
the model. At the same time, although the study mentions that
the model can be transferred to other horticultural crops such as
potatoes and strawberries, it has not conducted verification for
the morphological characteristics of these crops (such as
clustered distribution of strawberries and underground fruiting
of potatoes), and the multi-crop adaptability still needs further
testing. This requires considering a wider and more diverse
dataset during model training to ensure that the model has good
adaptability to plant varieties in different countries and regions
[44], [45].

VII. CONCLUSION

Efficient and accurate detection and counting of crop fruits
have long been a challenging task. In this study, a novel Lite-
CropNet model was proposed, with YOLOv11 as the baseline,
aiming to address the key issues in horticultural crop detection
and classification. A lightweight encoder was adopted and a
concise yet efficient decoder was designed, which alleviates
the problems of information loss and degradation. The
exploration of different attention mechanisms revealed that the
Shuffle Attention mechanism exerts a positive effect, helping
to improve the model's performance. More importantly,
efficiency enhancement was prioritized in the model design: a
more lightweight architecture with a smaller parameter scale
was developed, providing a cost-effective and highly efficient
automated solution for agricultural production.

Experiments demonstrate that Lite-CropNet performs
excellently under various lighting and occlusion conditions,
exhibiting strong robustness and generalization. Notably, Lite-
CropNet does not sacrifice efficiency at the expense of
accuracy; instead, it achieves a balance between the two. Its
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efficient performance in the CPU environment (8.2FPS)
expands its application scenarios, making it particularly
suitable for low-cost monitoring devices in greenhouses (e.g.,
Raspberry Pi-based embedded systems). In the future, CPU
inference speed can be further improved through model
quantization.

This work not only provides advanced technical support for
the agricultural field but also offers insights for future research
directions. The next phase of research will expand the dataset
scale to cover more horticultural crop varieties, thereby
enhancing the model's adaptability. Additionally, efforts will
be made to further extend Lite-CropNet’s performance
advantages in the CPU environment and deploy it on low-cost
monitoring devices in greenhouses, enabling it to better adapt
to agricultural environments with extremely limited resources.
Meanwhile, adversarial elements will be introduced to improve
and optimize the object detection model, enhancing its
robustness in complex scenarios. It is expected that this study
will inspire more researchers to engage in agricultural
intelligence and automation, and make more in-depth
contributions to this field.
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